Algorithmique des courbes destinées au contexte de la cryptographie bilinéaire et post-quantique

4 Décembre 2020
https://members.loria.fr/smasson/slides.pdf

Symmetric and asymmetric cryptography

Symmetric and asymmetric cryptography

Symmetric cryptography
(communication with a and ρ)

ρ

Symmetric and asymmetric cryptography

Symmetric cryptography (communication with a and $\boldsymbol{\rho}$)

Asymmetric cryptography (generation of the secret ρ)

Key exchange with strawberry and mint syrups

Key exchange with strawberry and mint syrups

Key exchange with strawberry and mint syrups

Common secret

Key exchange with strawberry and mint syrups

Secure if we consider that splitting the syrups is hard.

Diffie-Hellman key exchange (1976)

Let $G=\langle g\rangle$ be a cyclic group,

Diffie-Hellman key exchange (1976)

Let $G=\langle g\rangle$ be a cyclic group,
secret integer s_{A}

Diffie-Hellman key exchange (1976)

Let $G=\langle g\rangle$ be a cyclic group,
secret integer s_{A}

Diffie-Hellman key exchange (1976)

Let $G=\langle g\rangle$ be a cyclic group,

Diffie-Hellman key exchange (1976)

Let $G=\langle g\rangle$ be a cyclic group,
secret integer s_{A}
$\left(g^{S_{B}}\right)^{S_{A}}$

Diffie-Hellman key exchange (1976)

Let $G=\langle g\rangle$ be a cyclic group,
secret integer s_{A}

Diffie-Hellman key exchange (1976)

Let $G=\langle g\rangle$ be a cyclic group,
secret integer s_{A}

secret integer s_{B}
Definition (DLP over G)
Given $h \in G=\langle g\rangle$, find s such that $h=g^{s}$.

Diffie-Hellman key exchange (1976)

Let $G=\langle g\rangle$ be a cyclic group,
secret integer s_{A}

Definition (DLP over G)
Given $h \in G=\langle g\rangle$, find s such that $h=g^{s}$.
The different choices of group lead to different security levels.

Finite fields

1 Finite fields
2 Elliptic curves
3 Pairings
4 Isogeny-based cryptography
5 Verifiable delay functions

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

2

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

$$
\stackrel{8}{s_{B}}=9
$$

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Diffie-Hellman in \mathbb{F}_{p}

Let p be a prime, and \mathbb{F}_{p} the finite field with p elements. The set of invertibles \mathbb{F}_{p}^{*} is a cyclic group.

Index calculus method

We set a factor basis S of small elements of G.

Index calculus method

We set a factor basis S of small elements of G.
1 Relation collection. Find relations of the form

$$
g^{a_{i}}=\prod_{q \in S} q^{e_{q, i}}
$$

Index calculus method

We set a factor basis S of small elements of G.
1 Relation collection. Find relations of the form

$$
g^{a_{i}}=\prod_{q \in S} q^{e_{q, i}}
$$

2 Linear algebra. Solve linear equations modulo ℓ of the form

$$
a_{i} \equiv \sum_{q \in S} e_{q, i} \log q \bmod \ell
$$

Index calculus method

We set a factor basis S of small elements of G.
1 Relation collection. Find relations of the form

$$
g^{a_{i}}=\prod_{q \in S} q^{e_{q, i}} .
$$

2 Linear algebra. Solve linear equations modulo ℓ of the form

$$
a_{i} \equiv \sum_{q \in S} e_{q, i} \log q \bmod \ell
$$

3 Target discrete logarithm. Find a relation between h and the elements of S, and recover $\log h$ from solutions of Step 2.

The Number Field Sieve

The Number Field Sieve
$\mathbb{Z}[x]$

The Number Field Sieve

The Number Field Sieve

The Number Field Sieve

The Number Field Sieve

NFS variant	f_{1}	f_{2}	Complexity
Original	$\operatorname{deg}\left(f_{1}\right)=1$	$\operatorname{deg}\left(f_{2}\right) \approx(3 \log p / \log \log p)^{1 / 3}$	$L_{p^{k}}(1 / 3, \sqrt[3]{64 / 9}+o(1))$

The Number Field Sieve

NFS variant	f_{1}	f_{2}	Complexity
Original	$\operatorname{deg}\left(f_{1}\right)=1$	$\operatorname{deg}\left(f_{2}\right) \approx(3 \log p / \log \log p)^{1 / 3}$	$L_{p^{k}}(1 / 3, \sqrt[3]{64 / 9}+o(1))$
SNFS	small coeffs, chosen with the structure of p	$L_{p^{k}}(1 / 3, \sqrt[3]{32 / 9}+o(1))$	

The Number Field Sieve

NFS variant	f_{1}	f_{2}	Complexity
Original	$\operatorname{deg}\left(f_{1}\right)=1$	$\operatorname{deg}\left(f_{2}\right) \approx(3 \log p / \log \log p)^{1 / 3}$	$L_{p^{k}}(1 / 3, \sqrt[3]{64 / 9}+o(1))$
SNFS	small coeffs, chosen with the structure of p	$L_{p^{k}}(1 / 3, \sqrt[3]{32 / 9}+o(1))$	
TNFS	defined over $\mathbb{Z}[x] /(h(x))$		$L_{p^{k}}(1 / 3, \sqrt[3]{48 / 9}+o(1))$

The Number Field Sieve

NFS variant	f_{1}	f_{2}	Complexity
Original	$\operatorname{deg}\left(f_{1}\right)=1$	$\operatorname{deg}\left(f_{2}\right) \approx(3 \log p / \log \log p)^{1 / 3}$	$L_{p^{k}}(1 / 3, \sqrt[3]{64 / 9}+o(1))$
SNFS	small coeffs, chosen with the structure of p	$L_{p^{k}}(1 / 3, \sqrt[3]{32 / 9}+o(1))$	
TNFS	defined over $\mathbb{Z}[x] /(h(x))$		$L_{p^{k}}(1 / 3, \sqrt[3]{48 / 9}+o(1))$
STNFS	conditions of SNFS on $\mathbb{Z}[x] /(h(x))$	$L_{p^{k}}(1 / 3, \sqrt[3]{32 / 9}+o(1))$	

Finite fields for a 128-bit security level

Estimation of $\log _{2}(p)$ so that the best NFS variant has complexity $\approx 2^{128}$ operations.

Field	\mathbb{F}_{p}	$\mathbb{F}_{p^{5}}$	$\mathbb{F}_{p^{6}}$	$\mathbb{F}_{p^{7}}$	$\mathbb{F}_{p^{8}}$	$\mathbb{F}_{p\left(x_{0}\right)^{12}}$	$\mathbb{F}_{p\left(x_{0}\right)^{16}}$
Efficent variants	NFS	NFS	NFS TNFS	NFS		NFS	NFS
					NFS	TNFS	TNFS
					TNFS	SNFS	SNFS
						STNFS	STNFS
Field size	3072	3315	4032	3584	4352	5352	5424
$\log _{2}(p)$	3072	663	672	512	544	446	339

Benchmarks of multiplications in finite fields

Field prop. 64-bit words for $p \quad \mathbb{F}_{p}$ mult. timing special $p, k=12 \quad \square \square \square \square \square \square \square \square$

$$
\begin{array}{ll}
k=5 & \square \\
k=6 & \square \\
k=7 & \square \square \square \square \square \square \square \square \\
k=8 & \square \square \square \square \square \square \square \square \square \\
k=1 & \square \times 48
\end{array}
$$

Benchmarks of multiplications in finite fields

Field prop. 64-bit words for $p \quad \mathbb{F}_{p}$ mult. timing

$k=1 \quad \square \times 48$

Benchmarks of multiplications in finite fields

Field prop. 64-bit words for $p \quad \mathbb{F}_{p}$ mult. timing special $p, k=12 \quad \square \square \square \square \square \square \square \square 106 n s$
$k=5 \quad \square 181.5 n$ s *
$k=6 \quad \square 181.5 n)^{*}$
$k=7 \quad$ ㅁㅁㅁㅁㅁ 106 ns
$k=8 \quad \square \square \square \square \square \square \square \square \square 129 \mathrm{~ns}$
$k=1 \quad \square \times 48$

* Interpolation from the graph

Benchmarks of multiplications in finite fields

Field prop. 64-bit words for $p \quad \mathbb{F}_{p}$ mult. timing special $p, k=12 \quad \square \square \square \square \square \square \square \square \quad 106 \mathrm{~ns}$
$k=5 \quad \square 181.5 n$ s *
$k=6 \quad \square 181.5 n s^{*}$
$k=7 \quad$ ㅁㅁㅁㅁㅁ 106 ns
$k=8 \quad \square \square \square \square \square \square \square \square \square \quad 129 \mathrm{~ns}$
$k=1 \quad \square \times 48 \quad$ 3800ns**

* Interpolation from the graph **Benchmark with GMP.

Elliptic curves

1 Finite fields

2 Elliptic curves

3 Pairings

4 Isogeny-based cryptography

5 Verifiable delay functions

Elliptic curves group law

$$
E_{a, b}: y^{2}=x^{3}+a x+b
$$

Elliptic curves group law

$$
E_{a, b}: y^{2}=x^{3}+a x+b
$$

Elliptic curves group law

$$
E_{a, b}: y^{2}=x^{3}+a x+b
$$

Elliptic curves group law

$$
E_{a, b}: y^{2}=x^{3}+a x+b
$$

Elliptic curves group law

$$
E_{a, b}: y^{2}=x^{3}+a x+b
$$

Points on an elliptic curve form a group G (with group law +).
Attacking the discrete log costs $O(\sqrt{\# G})$.

Torsion

Let $E_{a, b}$ be an elliptic curve defined over \mathbb{F}_{p}.

$$
\begin{aligned}
& \pi: E_{a, b} \\
&(x, y) \longmapsto E_{a, b} \\
&\left(x^{p}, y^{p}\right)
\end{aligned}
$$

has characteristic polynomial $X^{2}-t X+p$ and the order of the curve satisfies

$$
\# E\left(\mathbb{F}_{p}\right)=p+1-t
$$

Hasse bound: $|t| \leq 2 \sqrt{p}$.

Torsion

Let $E_{a, b}$ be an elliptic curve defined over \mathbb{F}_{p}.

$$
\begin{aligned}
& \pi: E_{a, b} \\
&(x, y) \longmapsto E_{a, b} \\
&\left(x^{p}, y^{p}\right)
\end{aligned}
$$

has characteristic polynomial $X^{2}-t X+p$ and the order of the curve satisfies

$$
\# E\left(\mathbb{F}_{p}\right)=p+1-t
$$

Hasse bound: $|t| \leq 2 \sqrt{p}$.
For an integer ℓ, the ℓ-torsion is

$$
\begin{aligned}
E[\ell] & :=\left\{P \in E\left(\overline{\mathbb{F}}_{p}\right), \ell P=0_{E}\right\} \\
& \simeq \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z} \text { if } \operatorname{gcd}(\ell, p)=1
\end{aligned}
$$

Torsion

Let $E: y^{2}=x^{3}+6$ defined over \mathbb{F}_{p} with $p=27631$. $\# E\left(\mathbb{F}_{p}\right)=r$ prime, we denote $\mathbb{G}_{1}=E[r]\left(\mathbb{F}_{p}\right)$.

Torsion

Let $E: y^{2}=x^{3}+6$ defined over \mathbb{F}_{p} with $p=27631$. $\# E\left(\mathbb{F}_{p}\right)=r$ prime, we denote $\mathbb{G}_{1}=E[r]\left(\mathbb{F}_{p}\right)$.
$E[r] \simeq \mathbb{Z} / r \mathbb{Z} \times \mathbb{Z} / r \mathbb{Z}$. Over $\mathbb{F}_{p^{12}}, E$ has its full r-torsion rational.
$\# E\left(\mathbb{F}_{p}\right)=27481$
$\# E\left(\mathbb{F}_{p^{12}}\right)=2^{6} 3^{6} 5^{2} 7^{4} 13^{2} \cdot 73 \cdot 97 \cdot 109 \cdot 127 \cdot 283 \cdot 853 \cdot 2053 \cdot 2137 \cdot 6991 \cdot 27481^{2} \cdot 7634397$

Torsion

Let $E: y^{2}=x^{3}+6$ defined over \mathbb{F}_{p} with $p=27631$. $\# E\left(\mathbb{F}_{p}\right)=r$ prime, we denote $\mathbb{G}_{1}=E[r]\left(\mathbb{F}_{p}\right)$.
$E[r] \simeq \mathbb{Z} / r \mathbb{Z} \times \mathbb{Z} / r \mathbb{Z}$. Over $\mathbb{F}_{p^{12}}, E$ has its full r-torsion rational.

$$
\# E\left(\mathbb{F}_{p}\right)=27481
$$

$\# E\left(\mathbb{F}_{p^{12}}\right)=2^{6} 3^{6} 5^{2} 7^{4} 13^{2} \cdot 73 \cdot 97 \cdot 109 \cdot 127 \cdot 283 \cdot 853 \cdot 2053 \cdot 2137 \cdot 6991 \cdot 27481^{2} \cdot 7634397$

We represent $E[r]$ with two subgroups of order r :

- \mathbb{G}_{1}, often chosen over \mathbb{F}_{p}. In the above example, $(21993,24369)$ has order r.

Torsion

Let $E: y^{2}=x^{3}+6$ defined over \mathbb{F}_{p} with $p=27631$.
$\# E\left(\mathbb{F}_{p}\right)=r$ prime, we denote $\mathbb{G}_{1}=E[r]\left(\mathbb{F}_{p}\right)$.
$E[r] \simeq \mathbb{Z} / r \mathbb{Z} \times \mathbb{Z} / r \mathbb{Z}$. Over $\mathbb{F}_{p^{12}}, E$ has its full r-torsion rational.

$$
\# E\left(\mathbb{F}_{p}\right)=27481
$$

$$
\# E\left(\mathbb{F}_{p^{12}}\right)=2^{6} 3^{6} 5^{2} 7^{4} 13^{2} \cdot 73 \cdot 97 \cdot 109 \cdot 127 \cdot 283 \cdot 853 \cdot 2053 \cdot 2137 \cdot 6991 \cdot 27481^{2} \cdot 7634397
$$

We represent $E[r]$ with two subgroups of order r :

- \mathbb{G}_{1}, often chosen over \mathbb{F}_{p}. In the above example, $(21993,24369)$ has order r.
$■ \mathbb{G}_{2}$, often defined over $\mathbb{F}_{p^{k}}$ where k is the embedding degree.

$$
\begin{aligned}
& \mathbb{H}_{p}=\mathbb{H}_{p}(i)=\mathbb{H}_{p}[x] /\left(x^{2}+1\right) \quad \mathbb{H}_{p^{12}}=\mathbb{H}_{p^{2}}(u)=\mathbb{H}_{p^{2}}[y] /\left(y y^{6}-(1121 i+404)\right) \\
& x_{P}=(20678 i+23625) u^{5}+(1861 i+10882) u^{4}+(16355 i+5810) u^{3}+(20962 i+7790) u^{2}+(13621 i+26347) u+19587 i+23498 \\
& y_{P}=(11673 i+12944) u^{5}+(5902 i+22858) u^{4}+(11246 i+24609) u^{3}+(802 i+13087) u^{2}+(3722 i+15960) u+8881 i+13552
\end{aligned}
$$

Twists of curves

- If E has equation $y^{2}=x^{3}+a x$ for $a \in \mathbb{F}_{p}, E$ has four quartic twists.
- If E has equation $y^{2}=x^{3}+b$ for $b \in \mathbb{F}_{p}, E$ has six sextic twists.

Twists of curves

- If E has equation $y^{2}=x^{3}+a x$ for $a \in \mathbb{F}_{p}, E$ has four quartic twists.
- If E has equation $y^{2}=x^{3}+b$ for $b \in \mathbb{F}_{p}, E$ has six sextic twists. Twists can lead to a compression of the \mathbb{G}_{2} subgroup!

Twists of curves

- If E has equation $y^{2}=x^{3}+a x$ for $a \in \mathbb{F}_{p}, E$ has four quartic twists.
- If E has equation $y^{2}=x^{3}+b$ for $b \in \mathbb{F}_{p}, E$ has six sextic twists. Twists can lead to a compression of the \mathbb{G}_{2} subgroup!

Example (slide 14). a point $P \in E\left(\mathbb{F}_{p^{12}}\right)$ of order r :

$$
\begin{aligned}
& x_{P}=(20678 i+23625) u^{5}+(1861 i+10882) u^{4}+(16355 i+5810) u^{3}+(20962 i+7790) u^{2}+(13621 i+26347) u+19587 i+23498 \\
& y_{P}=(11673 i+12944) u^{5}+(5902 i+22858) u^{4}+(11246 i+24609) u^{3}+(802 i+13087) u^{2}+(3722 i+15960) u+8881 i+13552 .
\end{aligned}
$$

Twists of curves

- If E has equation $y^{2}=x^{3}+a x$ for $a \in \mathbb{F}_{p}, E$ has four quartic twists.
- If E has equation $y^{2}=x^{3}+b$ for $b \in \mathbb{F}_{p}, E$ has six sextic twists.

Twists can lead to a compression of the \mathbb{G}_{2} subgroup!

Example (slide 14). a point $P \in E\left(\mathbb{F}_{p^{12}}\right)$ of order r :

$$
\begin{aligned}
& x_{P}=(20678 i+23625) u^{5}+(1861 i+10882) u^{4}+(16355 i+5810) u^{3}+(20962 i+7790) u^{2}+(13621 i+26347) u+19587 i+23498, \\
& y_{P}=(11673 i+12944) u^{5}+(5902 i+22858) u^{4}+(11246 i+24609) u^{3}+(802 i+13087) u^{2}+(3722 i+15960) u+8881 i+13552 .
\end{aligned}
$$

Using the sextic twist, we get a point P of order r with sparse coordinates:

$$
\begin{aligned}
& x_{P}=(0 i+0) u^{5}+(17983 i+9957) u^{4}+(0 i+0) u^{3}+(0 i+0) u^{2}+(0 i+0) u+0 i+0, \\
& y_{P}=(0 i+0) u^{5}+(0 i+0) u^{4}+(12752 i+19494) u^{3}+(0 i+0) u^{2}+(0 i+0) u+0 i+0 .
\end{aligned}
$$

Endomorphism ring of elliptic curves

For an elliptic curve E defined over a finite field,

Endomorphism ring of elliptic curves

For an elliptic curve E defined over a finite field,

- End (E) is an order of a quadratic field $\mathbb{Q}(\sqrt{-D})$.
E is said to be ordinary.

Endomorphism ring of elliptic curves

For an elliptic curve E defined over a finite field,

- End (E) is an order of a quadratic field $\mathbb{Q}(\sqrt{-D})$. E is said to be ordinary. Ex: $\mathbb{Z}, \pi \Rightarrow \mathbb{Z}[\pi] \subset \mathbb{Q}(\sqrt{-D})$.

Endomorphism ring of elliptic curves

For an elliptic curve E defined over a finite field,

- End (E) is an order of a quadratic field $\mathbb{Q}(\sqrt{-D})$. E is said to be ordinary. Ex: $\mathbb{Z}, \pi \Rightarrow \mathbb{Z}[\pi] \subset \mathbb{Q}(\sqrt{-D})$.
- End (E) is a maximal order of a quaternion algebra (see later). E is said to be supersingular.

Endomorphism ring of elliptic curves

For an elliptic curve E defined over a finite field,

- End (E) is an order of a quadratic field $\mathbb{Q}(\sqrt{-D})$. E is said to be ordinary. Ex: $\mathbb{Z}, \pi \Rightarrow \mathbb{Z}[\pi] \subset \mathbb{Q}(\sqrt{-D})$.
- End (E) is a maximal order of a quaternion algebra (see later). E is said to be supersingular. Ex: \mathbb{Z}, π, ψ s.t. $\pi \circ \psi=-\psi \circ \pi$.

Endomorphism ring of elliptic curves

For an elliptic curve E defined over a finite field,

- End (E) is an order of a quadratic field $\mathbb{Q}(\sqrt{-D})$. E is said to be ordinary. Ex: $\mathbb{Z}, \pi \Rightarrow \mathbb{Z}[\pi] \subset \mathbb{Q}(\sqrt{-D})$.
- End (E) is a maximal order of a quaternion algebra (see later). E is said to be supersingular. Ex: \mathbb{Z}, π, ψ s.t. $\pi \circ \psi=-\psi \circ \pi$.
CM method.
Generate a curve E of given $\operatorname{End}(E)$ defined over a number field.
Restricted to discriminants $<10^{16}$.

Endomorphism ring of elliptic curves

For an elliptic curve E defined over a finite field,

- End (E) is an order of a quadratic field $\mathbb{Q}(\sqrt{-D})$.
E is said to be ordinary. Ex: $\mathbb{Z}, \pi \Rightarrow \mathbb{Z}[\pi] \subset \mathbb{Q}(\sqrt{-D})$.
- End (E) is a maximal order of a quaternion algebra (see later). E is said to be supersingular. Ex: \mathbb{Z}, π, ψ s.t. $\pi \circ \psi=-\psi \circ \pi$.
CM method.
Generate a curve E of given $\operatorname{End}(E)$ defined over a number field.
Restricted to discriminants $<10^{16}$.
Given an order \mathcal{O} of discriminant $-D, H_{D}=$ HilbertClassPolynomial (D).
Roots of H_{D} are invariants leading to curves of endomorphism ring \mathcal{O}.

Pairings

1 Finite fields

2 Elliptic curves

3 Pairings

4 Isogeny-based cryptography

5 Verifiable delay functions

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
$e: E \times E \longrightarrow \mathbb{F}_{p^{k}}^{\times}$

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
$e: E \times E \longrightarrow \mathbb{F}_{p^{k}}^{\times}$
For some particular $P, Q \in E[r]$ and $a, b \in \mathbb{Z}$,

$$
e(a P, b Q)
$$

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
$e: E \times E \longrightarrow \mathbb{F}_{p^{k}}^{\times}$
For some particular $P, Q \in E[r]$ and $a, b \in \mathbb{Z}$,

$$
e(a P, b Q)=e(P, b Q)^{a}=e(P, Q)^{a b}
$$

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
$e: E \times E \longrightarrow \mathbb{F}_{p^{k}}^{\times}$
For some particular $P, Q \in E[r]$ and $a, b \in \mathbb{Z}$,

$$
e(a P, b Q)=e(P, b Q)^{a}=e(P, Q)^{a b}
$$

elliptic curve

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
$e: E \times E \longrightarrow \mathbb{F}_{p^{k}}^{\times}$
For some particular $P, Q \in E[r]$ and $a, b \in \mathbb{Z}$,

$$
e(a P, b Q)=e(P, b Q)^{a}=e(P, Q)^{a b}
$$

pairing-friendly elliptic curve

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
$e: E \times E \longrightarrow \mathbb{F}_{p^{k}}^{\times}$
For some particular $P, Q \in E[r]$ and $a, b \in \mathbb{Z}$,

$$
e(a P, b Q)=e(P, b Q)^{a}=e(P, Q)^{a b}
$$

Secure pairing-friendly elliptic curve

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
$e: E \times E \longrightarrow \mathbb{F}_{p^{k}}^{\times}$
For some particular $P, Q \in E[r]$ and $a, b \in \mathbb{Z}$,

$$
e(a P, b Q)=e(P, b Q)^{a}=e(P, Q)^{a b}
$$

Secure pairing-friendly elliptic curve with an efficient pairing

Tate and ate pairings

The Tate and ate pairings are computed in two steps:
1 Evaluating a function at a point of the curve (Miller loop)
2 Exponentiating to the power $\left(p^{k}-1\right) / r$ (final exponentiation).

Tate and ate pairings

The Tate and ate pairings are computed in two steps:
1 Evaluating a function at a point of the curve (Miller loop)
2 Exponentiating to the power $\left(p^{k}-1\right) / r$ (final exponentiation).

Definition

$$
\text { For } P \in \mathbb{G}_{1}=E\left(\mathbb{F}_{p}\right)[r], Q \in \mathbb{G}_{2}=E\left(\mathbb{F}_{p^{k}}\right)[r]
$$

$$
\operatorname{Tate}(P, Q):=f_{r, P}(Q)^{\left(p^{k}-1\right) / r} \quad \text { ate }(P, Q):=f_{t-1, Q}(P)^{\left(p^{k}-1\right) / r}
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1 , i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1 , i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P)$.

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1 , i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1 , i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=1
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1 , i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=1
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1 , i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=1^{2}
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1 , i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1, i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5={\overline{10}{ }^{1}}^{2}$

$$
f=\left(1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)\right)^{2}
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1, i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5={\overline{10}]^{2}}^{2}$

$$
f=\left(1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)\right)^{2} \cdot \ell_{2 Q, 2 Q}(P) / v_{4 Q}(P)
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1, i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5={\overline{10} \overline{1}^{2}}^{2}$

$$
f=\left(1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)\right)^{2} \cdot \ell_{2 Q, 2 Q}(P) / v_{4 Q}(P) \cdot \ell_{4 Q, Q}(P) / v_{5 Q}(P)
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1, i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=\left(1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)\right)^{2} \cdot \ell_{2 Q, 2 Q}(P) / v_{4 Q}(P) \cdot \ell_{4 Q, Q}(P) / v_{5 Q}(P)
$$

Divisor:

$$
4(Q)+2(-2 Q)
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1 , i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=\left(1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)\right)^{2} \cdot \ell_{2 Q, 2 Q}(P) / v_{4 Q}(P) \cdot \ell_{4 Q, Q}(P) / v_{5 Q}(P)
$$

Divisor:

$$
4(Q)+2(-2 Q)+2(2 Q)+(-4 Q)
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1, i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=\left(1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)\right)^{2} \cdot \ell_{2 Q, 2 Q}(P) / v_{4 Q}(P) \cdot \ell_{4 Q, Q}(P) / v_{5 Q}(P)
$$

Divisor:

$$
4(Q)+2(-2 Q)+2(2 Q)+(-4 Q)+(Q)+(4 Q)+(-5 Q)
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1, i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=\left(1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)\right)^{2} \cdot \ell_{2 Q, 2 Q}(P) / v_{4 Q}(P) \cdot \ell_{4 Q, Q}(P) / v_{5 Q}(P)
$$

Divisor:

$$
\begin{gathered}
4(Q)+2(-2 Q)+2(2 Q)+(-4 Q)+(Q)+(4 Q)+(-5 Q) \\
-2(2 Q)-2(-2 Q)-2(\mathcal{O})
\end{gathered}
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1, i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=\left(1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)\right)^{2} \cdot \ell_{2 Q, 2 Q}(P) / v_{4 Q}(P) \cdot \ell_{4 Q, Q}(P) / v_{5 Q}(P)
$$

Divisor:

$$
\begin{gathered}
4(Q)+2(-2 Q)+2(2 Q)+(-4 Q)+(Q)+(4 Q)+(-5 Q) \\
-2(2 Q)-2(-2 Q)-2(\mathcal{O})-(4 Q)-(-4 Q)-(\mathcal{O})
\end{gathered}
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1, i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=\left(1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)\right)^{2} \cdot \ell_{2 Q, 2 Q}(P) / v_{4 Q}(P) \cdot \ell_{4 Q, Q}(P) / v_{5 Q}(P)
$$

Divisor:

$$
\begin{gathered}
4(Q)+2(-2 Q)+2(2 Q)+(-4 Q)+(Q)+(4 Q)+(-5 Q) \\
-2(2 Q)-2(-2 Q)-2(\mathcal{O})-(4 Q)-(-4 Q)-(\mathcal{O})-(5 Q)-(-5 Q)-(\mathcal{O})
\end{gathered}
$$

Miller function

Definition

The Miller loop computes the function $f_{s, Q}$ such that Q is a zero of order s, and $[s] Q$ is a pole of order 1 , i.e $\operatorname{div}\left(f_{s, Q}\right)=s(Q)-([s] Q)-(s-1) \mathcal{O}$.

Example of $f_{5, Q}(P) . s=5=\overline{101}^{2}$

$$
f=\left(1^{2} \cdot \ell_{Q, Q}(P) / v_{2 Q}(P)\right)^{2} \cdot \ell_{2 Q, 2 Q}(P) / v_{4 Q}(P) \cdot \ell_{4 Q, Q}(P) / v_{5 Q}(P)
$$

Divisor:

$$
\begin{gathered}
4(Q)+2(-2 Q)+2(2 Q)+(-4 Q)+(Q)+(4 Q)+(-5 Q) \\
-2(2 Q)-2(-2 Q)-2(\mathcal{O})-(4 Q)-(-4 Q)-(\mathcal{O})-(5 Q)-(-5 Q)-(\mathcal{O}) \\
\operatorname{div}(f)=5(Q)-(5 Q)-4(\mathcal{O})
\end{gathered}
$$

Final exponentiation

$f_{r, P}(Q)$ and $f_{t-1, Q}(P)$ are cosets modulo r-th powers.
We obtain a unique coset representative by elevating to the power $\left(p^{k}-1\right) / r$.

Final exponentiation

$f_{r, P}(Q)$ and $f_{t-1, Q}(P)$ are cosets modulo r-th powers.
We obtain a unique coset representative by elevating to the power $\left(p^{k}-1\right) / r$.

$$
\frac{p^{k}-1}{r}=\frac{p^{k}-1}{\Phi_{k}(p)} \cdot \frac{\Phi_{k}(p)}{r}
$$

Final exponentiation

$f_{r, P}(Q)$ and $f_{t-1, Q}(P)$ are cosets modulo r-th powers.
We obtain a unique coset representative by elevating to the power $\left(p^{k}-1\right) / r$.

$$
\frac{p^{k}-1}{r}=\frac{p^{k}-1}{\Phi_{k}(p)} \cdot \frac{\Phi_{k}(p)}{r}
$$

- First exponentiation: $\left(p^{k}-1\right) / \Phi_{k}(p)$.

Final exponentiation

$f_{r, P}(Q)$ and $f_{t-1, Q}(P)$ are cosets modulo r-th powers.
We obtain a unique coset representative by elevating to the power $\left(p^{k}-1\right) / r$.

$$
\frac{p^{k}-1}{r}=\frac{p^{k}-1}{\Phi_{k}(p)} \cdot \frac{\Phi_{k}(p)}{r}
$$

■ First exponentiation: $\left(p^{k}-1\right) / \Phi_{k}(p)$.
Polynomial in p with very small coefficients.
Very efficient with Frobenius: if $\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /\left(x^{k}-\alpha\right)$,
$a^{p}=\left(\sum_{i=0}^{k-1} a_{i} x^{i}\right)^{p}=\sum_{i=0}^{k-1} a_{i} x^{i p}$ and $x^{i p}$ can be precomputed.

Final exponentiation

$f_{r, P}(Q)$ and $f_{t-1, Q}(P)$ are cosets modulo r-th powers.
We obtain a unique coset representative by elevating to the power $\left(p^{k}-1\right) / r$.

$$
\frac{p^{k}-1}{r}=\frac{p^{k}-1}{\Phi_{k}(p)} \cdot \frac{\Phi_{k}(p)}{r}
$$

■ First exponentiation: $\left(p^{k}-1\right) / \Phi_{k}(p)$.
Polynomial in p with very small coefficients.
Very efficient with Frobenius: if $\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /\left(x^{k}-\alpha\right)$,
$a^{p}=\left(\sum_{i=0}^{k-1} a_{i} x^{i}\right)^{p}=\sum_{i=0}^{k-1} a_{i} x^{i p}$ and $x^{i p}$ can be precomputed.
■ Second exponentiation: $\Phi_{k}(p) / r$.

Final exponentiation

$f_{r, P}(Q)$ and $f_{t-1, Q}(P)$ are cosets modulo r-th powers.
We obtain a unique coset representative by elevating to the power $\left(p^{k}-1\right) / r$.

$$
\frac{p^{k}-1}{r}=\frac{p^{k}-1}{\Phi_{k}(p)} \cdot \frac{\Phi_{k}(p)}{r}
$$

■ First exponentiation: $\left(p^{k}-1\right) / \Phi_{k}(p)$.
Polynomial in p with very small coefficients.
Very efficient with Frobenius: if $\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /\left(x^{k}-\alpha\right)$,
$a^{p}=\left(\sum_{i=0}^{k-1} a_{i} x^{i}\right)^{p}=\sum_{i=0}^{k-1} a_{i} x^{i p}$ and $x^{i p}$ can be precomputed.

- Second exponentiation: $\Phi_{k}(p) / r$.

More expensive. Possible optimizations.

STNFS-resistant pairing-friendly constructions

Before the NFS variants, pairing-friendly curves came from polynomial constructions, with embedding degree $k=12$ and 16 .

STNFS-resistant pairing-friendly constructions

Before the NFS variants, pairing-friendly curves came from polynomial constructions, with embedding degree $k=12$ and 16 . All threaten by the STNFS variant!

STNFS-resistant pairing-friendly constructions

Before the NFS variants, pairing-friendly curves came from polynomial constructions, with embedding degree $k=12$ and 16 . All threaten by the STNFS variant!
Solutions.
1 Increase the size of $\log _{2}(p)$ so that NFS variants are not efficient. R. Barbulescu and S. Duquesne, 2019.
$\Longrightarrow \mathbb{F}_{p^{k}}$ becomes large.

STNFS-resistant pairing-friendly constructions

Before the NFS variants, pairing-friendly curves came from polynomial constructions, with embedding degree $k=12$ and 16 . All threaten by the STNFS variant!
Solutions.
1 Increase the size of $\log _{2}(p)$ so that NFS variants are not efficient. R. Barbulescu and S. Duquesne, 2019.
$\Longrightarrow \mathbb{F}_{p^{k}}$ becomes large.
2 Choose a $k=1$ curve with p non-special.
S. Chatterjee, A. Menezes, and F. Rodríguez-Henríquez, 2017.
\Longrightarrow Arithmetic over \mathbb{F}_{p} is not efficient.

STNFS-resistant pairing-friendly constructions

Before the NFS variants, pairing-friendly curves came from polynomial constructions, with embedding degree $k=12$ and 16 . All threaten by the STNFS variant!

Solutions.

1 Increase the size of $\log _{2}(p)$ so that NFS variants are not efficient. R. Barbulescu and S. Duquesne, 2019.
$\Longrightarrow \mathbb{F}_{p^{k}}$ becomes large.
2 Choose a $k=1$ curve with p non-special.
S. Chatterjee, A. Menezes, and F. Rodríguez-Henríquez, 2017.
\Longrightarrow Arithmetic over \mathbb{F}_{p} is not efficient.
3 Choose a curve with p non-special.
We investigated this solution for $5 \leq k \leq 8$.
A. Guillevic, S. Masson, and E. Thomé, 2020.
\Longrightarrow Competitive pairing?

Barreto-Lynn-Scott family

Curves of embedding degree $k=12$: TNFS applies! Discriminant $-D=-3$, twists of degree 6: $\mathbb{G}_{2} \simeq{ }^{t 6} E\left(\mathbb{F}_{p^{2}}\right)$.

Barreto-Lynn-Scott family

Curves of embedding degree $k=12$: TNFS applies! Discriminant $-D=-3$, twists of degree 6: $\mathbb{G}_{2} \simeq{ }^{t 6} E\left(\mathbb{F}_{p^{2}}\right)$. $p(x)=\left(x^{6}-2 x^{5}+2 x^{3}+x+1\right) / 3$

Barreto-Lynn-Scott family

Curves of embedding degree $k=12$: TNFS applies!
Discriminant $-D=-3$, twists of degree 6: $\mathbb{G}_{2} \simeq{ }^{t 6} E\left(\mathbb{F}_{p^{2}}\right)$.
$p(x)=\left(x^{6}-2 x^{5}+2 x^{3}+x+1\right) / 3$
p special \Rightarrow fast final exponentiation.

Barreto-Lynn-Scott family

Curves of embedding degree $k=12$: TNFS applies!
Discriminant $-D=-3$, twists of degree $6: \mathbb{G}_{2} \simeq{ }^{t 6} E\left(\mathbb{F}_{p^{2}}\right)$.
$p(x)=\left(x^{6}-2 x^{5}+2 x^{3}+x+1\right) / 3$
p special \Rightarrow fast final exponentiation.
p special \Rightarrow SNFS applies

Barreto-Lynn-Scott family

Curves of embedding degree $k=12$: TNFS applies!
Discriminant $-D=-3$, twists of degree 6: $\mathbb{G}_{2} \simeq{ }^{t 6} E\left(\mathbb{F}_{p^{2}}\right)$.
$p(x)=\left(x^{6}-2 x^{5}+2 x^{3}+x+1\right) / 3$
p special \Rightarrow fast final exponentiation.
p special \Rightarrow SNFS applies
128-bit security: NFS, SNFS, TNFS, STNFS apply! $\log _{2}\left(p^{k}\right) \geq 5000$ to avoid NFS variants!

Barreto-Lynn-Scott family

Curves of embedding degree $k=12$: TNFS applies!
Discriminant $-D=-3$, twists of degree 6: $\mathbb{G}_{2} \simeq{ }^{t 6} E\left(\mathbb{F}_{p^{2}}\right)$.
$p(x)=\left(x^{6}-2 x^{5}+2 x^{3}+x+1\right) / 3$
p special \Rightarrow fast final exponentiation.
p special \Rightarrow SNFS applies
128-bit security: NFS, SNFS, TNFS, STNFS apply! $\log _{2}\left(p^{k}\right) \geq 5000$ to avoid NFS variants!

Estimation of the pairing cost. Measurements.

Miller loop:
Final expo.:
Total:
$7805 \mathrm{~m} \approx 0.7 \mathrm{~ms}$
0.7 ms
$7723 \mathrm{~m} \approx 0.7 \mathrm{~ms}$
$15528 \mathrm{~m} \approx 1.3 \mathrm{~ms}$
0.7 ms
1.4 ms

The Cocks-Pinch construction

Given an integer k, and a discriminant $-D$.
Algorithm: Cocks-Pinch $(k,-D)$ - Compute a pairing-friendly curve E / \mathbb{F}_{p} of trace t with a subgroup of order r, such that $t^{2}-4 p=-D y^{2}$.

Set a prime r such that $k \mid r-1$ and $\sqrt{-D} \in \mathbb{F}_{r}$
Set T such that $r \mid \Phi_{k}(T)$
$t \leftarrow T+1$
$y \leftarrow(t-2) / \sqrt{-D}$
Lift $t, y \in \mathbb{Z}$ such that $t^{2}+D y^{2} \equiv 0 \bmod 4$
$p \leftarrow\left(t^{2}+D y^{2}\right) / 4$
if p is prime then return $[p, t, y, r]$ else Repeat with another r.

The Cocks-Pinch construction

Given an integer k, and a discriminant $-D$.
Algorithm: Cocks-Pinch $(k,-D)$ - Compute a pairing-friendly curve E / \mathbb{F}_{p} of trace t with a subgroup of order r, such that $t^{2}-4 p=-D y^{2}$.

Set a prime r such that $k \mid r-1$ and $\sqrt{-D} \in \mathbb{F}_{r}$
Set T such that $r \mid \Phi_{k}(T)$
$t \leftarrow T+1$
$y \leftarrow(t-2) / \sqrt{-D}$
Lift $t, y \in \mathbb{Z}$ such that $t^{2}+D y^{2} \equiv 0 \bmod 4$
$p \leftarrow\left(t^{2}+D y^{2}\right) / 4$
if p is prime then return $[p, t, y, r]$ else Repeat with another r.
Large trace $t \Longrightarrow$ the ate pairing is not very efficient

Our Cocks-Pinch variant

Given an integer k, and a discriminant $-D$.
Algorithm: Cocks-Pinch $(k,-D)$ - Compute a pairing-friendly curve E / \mathbb{F}_{p} of trace t with a subgroup of order r, such that $t^{2}-4 p=-D y$.

Set a small T
Set a prime r such that $k \mid r-1, \sqrt{-D} \in \mathbb{F}_{r}$ and $r \mid \Phi_{k}(T)$
$t \leftarrow T+1$
$y \leftarrow(t-2) / \sqrt{-D}$
Lift $t, y \in \mathbb{Z}$ such that $t^{2}+D y^{2} \equiv 0 \bmod 4$
$p \leftarrow\left(t^{2}+D y^{2}\right) / 4$
if p is prime then return $[p, t, y, r]$ else Repeat with another r.
Fix: first fix a small T and then choose $r . t=T+1$ is small

Our Cocks-Pinch variant

Given an integer k, and a discriminant $-D$.
Algorithm: Cocks-Pinch $(k,-D)$ - Compute a pairing-friendly curve E / \mathbb{F}_{p} of trace t with a subgroup of order r, such that $t^{2}-4 p=-D y$.

Set a small T
Set a prime r such that $k \mid r-1, \sqrt{-D} \in \mathbb{F}_{r}$ and $r \mid \Phi_{k}(T)$
$t \leftarrow T+1$
$y \leftarrow(t-2) / \sqrt{-D}$
Lift $t, y \in \mathbb{Z}$ such that $t^{2}+D y^{2} \equiv 0 \bmod 4$
$p \leftarrow\left(t^{2}+D y^{2}\right) / 4$
if p is prime and $p=1 \bmod k$ then return $[p, t, y, r]$ else Repeat with another r.
Fix: first fix a small T and then choose $r . t=T+1$ is small
$\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[u] /\left(u^{k}-\alpha\right)$

Properties of our modified Cocks-Pinch curves

Example of generation for $k=8$.
Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.

Properties of our modified Cocks-Pinch curves

Example of generation for $k=8$.
Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.
$D=4$ (twists of degree 4), $\log _{2}(T)=64$ with small Hamming weight
Lift t and y with 16 -bit h_{t} and h_{y}, and restrict on $\log _{2}(p)=544$
Check subgroup-security and twist-subgroup-security.

Properties of our modified Cocks-Pinch curves

Example of generation for $k=8$.

Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.
$D=4$ (twists of degree 4), $\log _{2}(T)=64$ with small Hamming weight
Lift t and y with 16 -bit h_{t} and h_{y}, and restrict on $\log _{2}(p)=544$
Check subgroup-security and twist-subgroup-security.
CocksPinchVariantResult(k=8, $=4, T=0 x f f f f f f f f e f f 7 c 200, i=5, h t=5$, hy $=-0 \times \mathrm{xd700}$, allowed_cofactor=420, allowed_size_cofactor=10, max_B1=600)

k	$-D$	NFS	TNFS	$\log \left(p^{k}\right)$	$\log (p)$	Twist	\mathbb{G}_{2} size
5	34 -bit	yes	slower	3315	663	no	3315
6	-3	yes	faster	4032	672	yes	672
7	-20	yes	slower	3584	512	no	3584
8	-4	yes	faster	4352	544	yes	1088

Pairing time Comparison

At the 128 -bit security level

Curve	Miller loop time estimation	Exponentiation time estimation	time estimation	RELIC Measurement
$k=5$				
$k=6$				
$k=7$				
$k=8$				
BN				
BLS12				
KSS16				
$k=1$				

Pairing time Comparison

At the 128 -bit security level

Curve	Miller loop time estimation	Exponentiation time estimation	time estimation	RELIC Measurement
$k=5$	2.6 ms	1.8 ms	4.4 ms	
$k=6$	0.8 ms	0.7 ms	1.5 ms	
$k=7$	1.9 ms	1.4 ms	3.4 ms	
$k=8$	0.6 ms	0.9 ms	1.5 ms	
BN				
BLS12				
KSS16				
$k=1$				

Pairing time Comparison

At the 128 -bit security level

Curve	Miller loop time estimation	Exponentiation time estimation	time estimation	RELIC Measurement
$k=5$	2.6 ms	1.8 ms	4.4 ms	
$k=6$	0.8 ms	0.7 ms	1.5 ms	
$k=7$	1.9 ms	1.4 ms	3.4 ms	
$k=8$	0.6 ms	0.9 ms	1.5 ms	
BN	1.0 ms	0.5 ms	1.4 ms	
BLS12	0.7 ms	0.7 ms	1.3 ms	
KSS16	0.5 ms	1.2 ms	1.7 ms	
$k=1$	17.7 ms	15.6 ms	33.3 ms	

Pairing time Comparison

At the 128 -bit security level

Curve	Miller loop time estimation	Exponentiation time estimation	time estimation	RELIC Measurement
$k=5$	2.6 ms	1.8 ms	4.4 ms	
$k=6$	0.8 ms	0.7 ms	1.5 ms	
$k=7$	1.9 ms	1.4 ms	3.4 ms	
$k=8$	0.6 ms	0.9 ms	1.5 ms	
BN	1.0 ms	0.5 ms	1.4 ms	
BLS12	0.7 ms	0.7 ms	1.3 ms	1.4 ms
KSS16	0.5 ms	1.2 ms	1.7 ms	
$k=1$	17.7 ms	15.6 ms	33.3 ms	

Pairing time Comparison

At the 128 -bit security level

Curve	Miller loop time estimation	Exponentiation time estimation	time estimation	RELIC Measurement
$k=5$	2.6 ms	1.8 ms	4.4 ms	
$k=6$	0.8 ms	0.7 ms	1.5 ms	
$k=7$	1.9 ms	1.4 ms	3.4 ms	
$k=8$	0.6 ms	0.9 ms	1.5 ms	2.0 ms
BN	1.0 ms	0.5 ms	1.4 ms	
BLS12	0.7 ms	0.7 ms	1.3 ms	1.4 ms
KSS16	0.5 ms	1.2 ms	1.7 ms	
$k=1$	17.7 ms	15.6 ms	33.3 ms	

Pairing time Comparison

At the 128 -bit security level

Curve	Miller loop time estimation	Exponentiation time estimation	time estimation	RELIC Measurement
$k=5$	2.6 ms	1.8 ms	4.4 ms	
$k=6$	0.8 ms	0.7 ms	1.5 ms	
$k=7$	1.9 ms	1.4 ms	3.4 ms	
$k=8$	0.6 ms	0.9 ms	1.5 ms	$0.6 \mathrm{~ms}+1.4 \mathrm{~ms}$
BN	1.0 ms	0.5 ms	1.4 ms	
BLS12	0.7 ms	0.7 ms	1.3 ms	1.4 ms
KSS16	0.5 ms	1.2 ms	1.7 ms	
$k=1$	17.7 ms	15.6 ms	33.3 ms	

Isogeny-based cryptography

1 Finite fields

2 Elliptic curves

3 Pairings

4 Isogeny-based cryptography

5 Verifiable delay functions

Isogeny of elliptic curve

Definition

An isogeny is a morphism $\varphi: E \rightarrow E^{\prime}$ between elliptic curves such that $\varphi\left(0_{E}\right)=0_{E^{\prime}}$.
■ We focus here on cyclic separable isogenies.

- A generator of $\operatorname{ker}(\varphi)$ defines the isogeny.

■ $\operatorname{deg}(\varphi) \approx \# \operatorname{ker}(\varphi)$. Efficient for small degrees.

- An isogeny $\varphi: E \rightarrow E^{\prime}$ has a dual $\hat{\varphi}: E^{\prime} \rightarrow E$ s.t. $\varphi \circ \hat{\varphi}=\hat{\varphi} \circ \varphi=[\operatorname{deg} \varphi]$.

The SIDH key exchange

E supersingular curve defined over $\mathbb{F}_{p^{2}}$
$E\left[2^{n}\right]=\left\langle P_{2}, Q_{2}\right\rangle, E\left[3^{m}\right]=\left\langle P_{3}, Q_{3}\right.$

E

The SIDH key exchange

E supersingular curve defined over $\mathbb{F}_{p^{2}}$. $E\left[2^{n}\right]=\left\langle P_{2}, Q_{2}\right\rangle, E\left[3^{m}\right]=\left\langle P_{3}, Q_{3}\right\rangle$.
Alice chooses an isogeny of kernel of the form $P_{2}+s_{A} Q_{2}$.

She also computes the image of P_{3} and
Q_{3} by her isogeny.

The SIDH key exchange

E supersingular curve defined over $\mathbb{F}_{p^{2}}$. $E\left[2^{n}\right]=\left\langle P_{2}, Q_{2}\right\rangle, E\left[3^{m}\right]=\left\langle P_{3}, Q_{3}\right\rangle$.
Bob chooses an isogeny of kernel of the form $P_{3}+s_{B} Q_{3}$.
He also computes the image of P_{2} and Q_{2} by his isogeny.

The SIDH key exchange

E supersingular curve defined over $\mathbb{F}_{p^{2}}$. $E\left[2^{n}\right]=\left\langle P_{2}, Q_{2}\right\rangle, E\left[3^{m}\right]=\left\langle P_{3}, Q_{3}\right\rangle$.
Alice computes the isogeny of kernel $\varphi_{B}\left(P_{2}\right)+s_{A} \varphi_{B}\left(Q_{2}\right)$.
Bob computes the isogeny of kernel $\varphi_{A}\left(P_{3}\right)+s_{B} \varphi_{A}\left(Q_{3}\right)$.
They arrive at the same curve $E_{A B}$.

The SIDH key exchange

E supersingular curve defined over $\mathbb{F}_{p^{2}}$. $E\left[2^{n}\right]=\left\langle P_{2}, Q_{2}\right\rangle, E\left[3^{m}\right]=\left\langle P_{3}, Q_{3}\right\rangle$.
Alice computes the isogeny of kernel $\varphi_{B}\left(P_{2}\right)+s_{A} \varphi_{B}\left(Q_{2}\right)$.
Bob computes the isogeny of kernel $\varphi_{A}\left(P_{3}\right)+s_{B} \varphi_{A}\left(Q_{3}\right)$.
They arrive at the same curve $E_{A B}$.

Security assumption.
■ It is hard to compute φ_{A} given $E, E_{A}, \varphi_{A}\left(P_{3}\right)$ and $\varphi_{A}\left(Q_{3}\right)$

The SIDH key exchange

E supersingular curve defined over $\mathbb{F}_{p^{2}}$. $E\left[2^{n}\right]=\left\langle P_{2}, Q_{2}\right\rangle, E\left[3^{m}\right]=\left\langle P_{3}, Q_{3}\right\rangle$.
Alice computes the isogeny of kernel $\varphi_{B}\left(P_{2}\right)+s_{A} \varphi_{B}\left(Q_{2}\right)$.
Bob computes the isogeny of kernel $\varphi_{A}\left(P_{3}\right)+s_{B} \varphi_{A}\left(Q_{3}\right)$.
They arrive at the same curve $E_{A B}$.

Security assumption.
■ It is hard to compute φ_{A} given $E, E_{A}, \varphi_{A}\left(P_{3}\right)$ and $\varphi_{A}\left(Q_{3}\right)$

- (stronger) Given E, E^{\prime}, it is hard to find an isogeny $E \rightarrow E^{\prime}$ of given degree

The SIDH key exchange

E supersingular curve defined over $\mathbb{F}_{p^{2}}$. $E\left[2^{n}\right]=\left\langle P_{2}, Q_{2}\right\rangle, E\left[3^{m}\right]=\left\langle P_{3}, Q_{3}\right\rangle$.
Alice computes the isogeny of kernel $\varphi_{B}\left(P_{2}\right)+s_{A} \varphi_{B}\left(Q_{2}\right)$.
Bob computes the isogeny of kernel $\varphi_{A}\left(P_{3}\right)+s_{B} \varphi_{A}\left(Q_{3}\right)$.
They arrive at the same curve $E_{A B}$.

Security assumption.
■ It is hard to compute φ_{A} given $E, E_{A}, \varphi_{A}\left(P_{3}\right)$ and $\varphi_{A}\left(Q_{3}\right)$

- (stronger) Given E, E^{\prime}, it is hard to find an isogeny $E \rightarrow E^{\prime}$ of given degree

■ (stronger) It is hard to compute the endomorphism ring of E_{A}

The SIDH key exchange

E supersingular curve defined over $\mathbb{F}_{p^{2}}$. $E\left[2^{n}\right]=\left\langle P_{2}, Q_{2}\right\rangle, E\left[3^{m}\right]=\left\langle P_{3}, Q_{3}\right\rangle$.
Alice computes the isogeny of kernel $\varphi_{B}\left(P_{2}\right)+s_{A} \varphi_{B}\left(Q_{2}\right)$.
Bob computes the isogeny of kernel $\varphi_{A}\left(P_{3}\right)+s_{B} \varphi_{A}\left(Q_{3}\right)$.
They arrive at the same curve $E_{A B}$.

Security assumption.
■ It is hard to compute φ_{A} given $E, E_{A}, \varphi_{A}\left(P_{3}\right)$ and $\varphi_{A}\left(Q_{3}\right)$ even with a quantum computer.
■ (stronger) Given E, E^{\prime}, it is hard to find an isogeny $E \rightarrow E^{\prime}$ of given degree even with a quantum computer.

- (stronger) It is hard to compute the endomorphism ring of E_{A} even with a quantum computer.

Endomorphism ring of supersingular curves

Proposition
The endomorphism ring of a supersingular curve is a maximal order of a quaternion algebra.

Endomorphism ring of supersingular curves

Proposition

The endomorphism ring of a supersingular curve is a maximal order of a quaternion algebra.

■ Quaternion algebra: non-commutative dimension-4 \mathbb{Q}-algebras. Here, we consider for primes p and q the quaternion algebra $H_{-q,-p}=\mathbb{Q} 1+\mathbb{Q} i+\mathbb{Q} j+\mathbb{Q} i j$ where $i^{2}=-q$ and $j^{2}=-p$.

Endomorphism ring of supersingular curves

Proposition

The endomorphism ring of a supersingular curve is a maximal order of a quaternion algebra.

■ Quaternion algebra: non-commutative dimension-4 \mathbb{Q}-algebras. Here, we consider for primes p and q the quaternion algebra $H_{-q,-p}=\mathbb{Q} 1+\mathbb{Q} i+\mathbb{Q} j+\mathbb{Q} i j$ where $i^{2}=-q$ and $j^{2}=-p$.

- Order: full rank lattice which is a subring of $H_{-q,-p}$.

Endomorphism ring of supersingular curves

Proposition

The endomorphism ring of a supersingular curve is a maximal order of a quaternion algebra.

■ Quaternion algebra: non-commutative dimension-4 \mathbb{Q}-algebras. Here, we consider for primes p and q the quaternion algebra $H_{-q,-p}=\mathbb{Q} 1+\mathbb{Q} i+\mathbb{Q} j+\mathbb{Q} i j$ where $i^{2}=-q$ and $\mathrm{j}^{2}=-p$.

- Order: full rank lattice which is a subring of $H_{-q,-p}$.

■ Maximal order: no order contain this order.
Maximal orders are not unique!

Example of endomorphism ring

Let $p=3 \bmod 4$.
The curve $E: y^{2}=x^{3}+x$ defined over $\mathbb{F}_{p^{2}}$ is supersingular.

Example of endomorphism ring

Let $p=3 \bmod 4$.
The curve $E: y^{2}=x^{3}+x$ defined over $\mathbb{F}_{p^{2}}$ is supersingular.
$\square \pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$ is an endomorphism of E.

Example of endomorphism ring

Let $p=3 \bmod 4$.
The curve $E: y^{2}=x^{3}+x$ defined over $\mathbb{F}_{p^{2}}$ is supersingular.

- $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$ is an endomorphism of E.
- $\psi:(x, y) \mapsto(-x, \sqrt{-1} y)$ is an endomorphism of E.

Example of endomorphism ring

Let $p=3 \bmod 4$.
The curve $E: y^{2}=x^{3}+x$ defined over $\mathbb{F}_{p^{2}}$ is supersingular.

- $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$ is an endomorphism of E.

■ $\psi:(x, y) \mapsto(-x, \sqrt{-1} y)$ is an endomorphism of E.
Let $q=3$, and consider $H_{-q,-p}$,

$$
\operatorname{End}(E)=\mathbb{Z}+\mathbb{Z} \mathbf{i}+\mathbb{Z} \frac{1+\mathrm{j}}{2}+\mathbb{Z} \frac{\mathrm{i}+\mathrm{k}}{2}=\mathbb{Z}[1]+\mathbb{Z} \psi+\mathbb{Z} \frac{[1]+\pi}{2}+\mathbb{Z} \frac{\psi+\psi \circ \pi}{2}
$$

Example of endomorphism ring

Let $p=3 \bmod 4$.
The curve $E: y^{2}=x^{3}+x$ defined over $\mathbb{F}_{p^{2}}$ is supersingular.

- $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$ is an endomorphism of E.

■ $\psi:(x, y) \mapsto(-x, \sqrt{-1} y)$ is an endomorphism of E.
Let $q=3$, and consider $H_{-q,-p}$,

$$
\operatorname{End}(E)=\mathbb{Z}+\mathbb{Z} \mathbf{i}+\mathbb{Z} \frac{1+\mathrm{j}}{2}+\mathbb{Z} \frac{\mathrm{i}+\mathrm{k}}{2}=\mathbb{Z}[1]+\mathbb{Z} \psi+\mathbb{Z} \frac{[1]+\pi}{2}+\mathbb{Z} \frac{\psi+\psi \circ \pi}{2}
$$

Endomorphism ring is easy to compute because it is a particular curve: reduction of a \mathbb{Q}-curve of discriminant $-D=-4$.

Computing endomorphism rings

- Small discriminant curves: easy.

Computing endomorphism rings

- Small discriminant curves: easy.
$y^{2}=x^{3}+x$: discriminant $-D=-4$ (latter example).

Computing endomorphism rings

- Small discriminant curves: easy.

$$
\begin{aligned}
& y^{2}=x^{3}+x: \text { discriminant }-D=-4 \text { (latter example). } \\
& y^{2}=x^{3}+1 \text { : discriminant }-D=-3 \text { (similar). }
\end{aligned}
$$

Computing endomorphism rings

- Small discriminant curves: easy.

$$
\begin{aligned}
& y^{2}=x^{3}+x: \text { discriminant }-D=-4 \text { (latter example). } \\
& y^{2}=x^{3}+1: \text { discriminant }-D=-3 \text { (similar). }
\end{aligned}
$$

- Random supersingular curve: hard.

Computing endomorphism rings

■ Small discriminant curves: easy.

$$
\begin{aligned}
& y^{2}=x^{3}+x: \text { discriminant }-D=-4 \text { (latter example) } \\
& y^{2}=x^{3}+1: \text { discriminant }-D=-3(\text { similar })
\end{aligned}
$$

- Random supersingular curve: hard.

■ Curve + isogeny from a small disc. curve: easy (theoretically).

Computing endomorphism rings

- Small discriminant curves: easy.

$$
\begin{aligned}
& y^{2}=x^{3}+x: \text { discriminant }-D=-4 \text { (latter example) } \\
& y^{2}=x^{3}+1: \text { discriminant }-D=-3(\text { similar })
\end{aligned}
$$

- Random supersingular curve: hard.
- Curve + isogeny from a small disc. curve: easy (theoretically).

Here, we focus on computing endomorphism rings given the knowledge of an isogeny (in a practical point of view).

Endomorphism ring through isogenies

$$
\begin{gathered}
\operatorname{ker} \varphi=\langle P\rangle, \operatorname{deg} \varphi=2 \\
y^{2}=x^{3}+x: E_{0} \xrightarrow[\varphi:(x, y) \mapsto\left(\frac{x^{2}-1}{x}, y \frac{x^{2}+1}{x^{2}}\right)]{ } E
\end{gathered}
$$

Endomorphism ring through isogenies

$$
\begin{gathered}
\operatorname{ker} \varphi=\langle P\rangle, \operatorname{deg} \varphi=2 \\
y^{2}=x^{3}+x: E_{0} \xrightarrow[\varphi:(x, y) \mapsto\left(\frac{x^{2}-1}{x}, y \frac{x^{2}+1}{x^{2}}\right)]{ } E \\
\mathcal{O}_{0}
\end{gathered}
$$

Endomorphism ring through isogenies

$$
\begin{gather*}
\operatorname{ker} \varphi=\langle P\rangle, \operatorname{deg} \varphi=2 \\
y^{2}=x^{3}+x: E_{0} \xrightarrow{\varphi:(x, y) \mapsto\left(\frac{x^{2}-1}{x}, y \frac{x^{2}+1}{x^{2}}\right)} \mathbb{O} \text { O }
\end{gather*}
$$

Endomorphism ring through isogenies

$$
\begin{gathered}
\operatorname{ker} \varphi=\langle P\rangle, \operatorname{deg} \varphi=2 \\
y^{2}=x^{3}+x: E_{0} \underset{\varphi:(x, y) \mapsto\left(\frac{x^{2}-1}{x}, y \frac{x^{2}+1}{x^{2}}\right)}{ } E \\
\mathbb{Z}\left\langle 1, \mathrm{i}, \frac{1+\mathrm{j}}{2}, \frac{i+\mathrm{k}}{2}\right\rangle=\mathcal{O}_{0} \longleftrightarrow \mathcal{O}
\end{gathered}
$$

Endomorphism ring through isogenies

$$
\begin{gathered}
\operatorname{ker} \varphi=\langle P\rangle, \operatorname{deg} \varphi=2 \\
y^{2}=x^{3}+x: E_{0} \xrightarrow[\varphi:(x, y) \mapsto\left(\frac{x^{2}-1}{x}, y \frac{x^{2}+1}{x^{2}}\right)]{ } E \\
\mathbb{Z}\left\langle 1, \mathrm{i}, \frac{1+\mathrm{j}}{2}, \frac{i+\mathrm{k}}{2}\right\rangle=\mathcal{O}_{0} \longleftrightarrow \mathcal{O}
\end{gathered}
$$

The endomorphism α can be written $\alpha=n_{1} 1+n_{2} \mathrm{i}+n_{3} \frac{1+\mathrm{j}}{2}+n_{4} \frac{\mathrm{i}+\mathrm{k}}{2}$.

Endomorphism ring through isogenies

$$
\begin{gathered}
\operatorname{ker} \varphi=\langle P\rangle, \operatorname{deg} \varphi=2 \\
y^{2}=x^{3}+x: E_{0} E \\
\mathbb{Z}\left\langle 1, \mathrm{i}, \frac{1+\mathrm{j}}{2}, \frac{\mathrm{i}+\mathrm{k}}{2}\right\rangle=\mathcal{O}_{0} \longleftrightarrow(x, y) \mapsto\left(\frac{x^{2}-1}{x}, y \frac{x^{2}+1}{x^{2}}\right) \\
\mathcal{I}=\mathcal{O}_{0} \cdot 2+\mathcal{O}_{0} \cdot \alpha \\
\mathcal{O}
\end{gathered}
$$

The endomorphism α can be written $\alpha=n_{1} 1+n_{2} \mathrm{i}+n_{3} \frac{1+\mathrm{j}}{2}+n_{4} \frac{\mathrm{i}+\mathrm{k}}{2}$.
We solve $n_{1} 1(P)+n_{2}(P)+n_{3}(1+\mathrm{j}) / 2(P)+n_{4}(\mathrm{i}+\mathrm{k}) / 2(P)=0_{E_{0}}$.

Endomorphism ring through isogenies

$$
\begin{gathered}
\operatorname{ker} \varphi=\langle P\rangle, \operatorname{deg} \varphi=2 \\
y^{2}=x^{3}+x: E_{0} \underset{\varphi:(x, y) \mapsto\left(\frac{x^{2}-1}{x}, y \frac{x^{2}+1}{x^{2}}\right)}{ } E \\
\mathbb{Z}\left\langle 1, \mathrm{i}, \frac{1+\mathrm{j}}{2}, \frac{\mathrm{i}+\mathrm{k}}{2}\right\rangle=\mathcal{O}_{0} \longleftrightarrow \mathcal{O}
\end{gathered}
$$

The endomorphism α can be written $\alpha=n_{1} 1+n_{2} i+n_{3} \frac{1+\mathrm{j}}{2}+n_{4} \frac{i+\mathrm{k}}{2}$.
We solve $n_{1} 1(P)+n_{2}(P)+n_{3}(1+\mathrm{j}) / 2(P)+n_{4}(\mathrm{i}+\mathrm{k}) / 2(P)=0_{E_{0}}$.
$\mathcal{I}=\mathcal{O}_{0} \cdot 2+\mathcal{O}_{0} \cdot \alpha=\mathbb{Z}\left\langle\frac{1+\mathrm{i}+\mathrm{j}+3 \mathrm{k}}{2}, \mathrm{i}+\mathrm{k}, \mathrm{j}+\mathrm{k}, 2 \mathrm{k}\right\rangle$ and $\operatorname{End}(E) \simeq \mathcal{O}=O_{R}(\mathcal{I})$.

Endomorphism ring through isogenies

$$
\begin{gathered}
\operatorname{ker} \varphi=\langle P\rangle, \operatorname{deg} \varphi=2 \\
y^{2}=x^{3}+x: E_{0} \underset{\varphi:(x, y) \mapsto\left(\frac{x^{2}-1}{x}, y \frac{x^{2}+1}{x^{2}}\right)}{ } E \\
\mathbb{Z}\left\langle 1, \mathrm{i}, \frac{1+\mathrm{j}}{2}, \frac{\mathrm{i}+\mathrm{k}}{2}\right\rangle=\mathcal{O}_{0} \longleftrightarrow \mathcal{O}
\end{gathered}
$$

The endomorphism α can be written $\alpha=n_{1} 1+n_{2} \mathrm{i}+n_{3} \frac{1+\mathrm{j}}{2}+n_{4} \frac{\mathrm{i}+\mathrm{k}}{2}$.
We solve $n_{1} 1(P)+n_{2}(P)+n_{3}(1+\mathrm{j}) / 2(P)+n_{4}(\mathrm{i}+\mathrm{k}) / 2(P)=0_{E_{0}}$.
$\mathcal{I}=\mathcal{O}_{0} \cdot 2+\mathcal{O}_{0} \cdot \alpha=\mathbb{Z}\left\langle\frac{1+\mathrm{i}+\mathrm{j}+3 \mathrm{k}}{2}, \mathrm{i}+\mathrm{k}, \mathrm{j}+\mathrm{k}, 2 \mathrm{k}\right\rangle$ and $\operatorname{End}(E) \simeq \mathcal{O}=O_{R}(\mathcal{I})$.
https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.

Verifiable delay functions

1 Finite fields

2 Elliptic curves

3 Pairings

4 Isogeny-based cryptography

5 Verifiable delay functions

Definition

Definition

A verifiable delay function (VDF) is a function $f: X \longrightarrow Y$ such that 1 it takes T steps to evaluate, even with massive amounts of parallelism
2 the output can be verified efficiently.

Definition

Definition

A verifiable delay function (VDF) is a function $f: X \longrightarrow Y$ such that
1 it takes T steps to evaluate, even with massive amounts of parallelism
2 the output can be verified efficiently.

■ $\operatorname{Setup}(\lambda, T) \longrightarrow$ public parameters $p p$
■ Eval $(p p, x) \longrightarrow$ output y such that $y=f(x)$, and a proof π (requires T steps)
■ Verify $(p p, x, y, \pi) \longrightarrow$ yes or no.

VDF based on RSA

Setup. $\mathbb{Z} / N \mathbb{Z}$ where N is a RSA modulus

VDF based on RSA

Setup. $\mathbb{Z} / N \mathbb{Z}$ where N is a RSA modulus
Evaluation. $y=x^{2^{T}} \bmod N$.

VDF based on RSA

Setup. $\mathbb{Z} / N \mathbb{Z}$ where N is a RSA modulus
Evaluation. $y=x^{2^{T}} \bmod N$.
Verification. The evaluator also sends a proof π to convince the verifier.

VDF based on RSA

Setup. $\mathbb{Z} / N \mathbb{Z}$ where N is a RSA modulus
Evaluation. $y=x^{2^{T}} \bmod N$.
Verification. The evaluator also sends a proof π to convince the verifier.

- Wesolowski verification. [Eurocrypt '19]
π is short
Verification is fast.
- Pietrzak verification. [ITCS '19]
π computation is more efficient
Verification is slower.
Different security assumptions.

Generalization of the RSA VDF

If one knows the factorization of N, the evaluation can be computed using

$$
x^{2^{T}} \equiv x^{2^{T} \bmod \varphi(N)} \quad \bmod N
$$

Need a trusted setup to choose N.

Generalization of the RSA VDF

If one knows the factorization of N, the evaluation can be computed using

$$
x^{2^{T}} \equiv x^{2^{T} \bmod \varphi(N)} \quad \bmod N
$$

Need a trusted setup to choose N. This VDF also works in another group of unknown order.

Generalization of the RSA VDF

If one knows the factorization of N, the evaluation can be computed using

$$
x^{2^{T}} \equiv x^{2^{T} \bmod \varphi(N)} \quad \bmod N
$$

Need a trusted setup to choose N. This VDF also works in another group of unknown order. Generalization to the class group VDF. Let $K=\mathbb{Q}(\sqrt{-D})$ and O_{K} its ring of integers.

$$
\operatorname{ClassGroup}(D)=\operatorname{Ideals}\left(O_{K}\right) / \text { Principalldeals }\left(O_{K}\right)
$$

This group is finite and it is hard to compute \#ClassGroup (D).

Generalization of the RSA VDF

If one knows the factorization of N, the evaluation can be computed using

$$
x^{2^{T}} \equiv x^{2^{T} \bmod \varphi(N)} \quad \bmod N
$$

Need a trusted setup to choose N. This VDF also works in another group of unknown order.
Generalization to the class group VDF. Let $K=\mathbb{Q}(\sqrt{-D})$ and O_{K} its ring of integers.

$$
\operatorname{ClassGroup}(D)=\operatorname{Ideals}\left(O_{K}\right) / \text { Principalldeals }\left(O_{K}\right)
$$

This group is finite and it is hard to compute \#ClassGroup (D).

VDF	pro	con
RSA	fast verification	trusted setup not post-quantum
Class group	small parameters	slow verification not post-quantum

VDF constructions with isogenies and pairings

L. De Feo, S. Masson, C. Petit, and A Sanso, Asiacrypt'19.

VDF constructions with isogenies and pairings

L. De Feo, S. Masson, C. Petit, and A Sanso, Asiacrypt'19.

Idea:

- Evaluation. Evaluate T isogenies sequentially at a point.
- Verification. Compute pairings on the domain and the codomain curve.

VDF constructions with isogenies and pairings

L. De Feo, S. Masson, C. Petit, and A Sanso, Asiacrypt'19.

Idea:
■ Evaluation. Evaluate T isogenies sequentially at a point.

- Verification. Compute pairings on the domain and the codomain curve.

Two constructions: isogenies over \mathbb{F}_{p} or over $\mathbb{F}_{p^{2}}$.

VDF constructions with isogenies and pairings

L. De Feo, S. Masson, C. Petit, and A Sanso, Asiacrypt'19.

Idea:
■ Evaluation. Evaluate T isogenies sequentially at a point.

- Verification. Compute pairings on the domain and the codomain curve.

Two constructions: isogenies over \mathbb{F}_{p} or over $\mathbb{F}_{p^{2}}$.

Not post-quantum because of pairings.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

Setup A public walk in the isogeny graph.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

Setup A public walk in the isogeny graph.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

Setup A public walk in the isogeny graph.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

Setup A public walk in the isogeny graph.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtracking walk).

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtracking walk).

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtracking walk).

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtracking walk).

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtracking walk).
Verification Check that $e(P, \hat{\varphi}(Q))=e(\varphi(P), Q)$.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves

Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtracking walk).
Verification Check that $e(P, \hat{\varphi}(Q))=e(\varphi(P), Q)$.

Another version with isogenies defined over \mathbb{F}_{p} in the paper.

Security

What means the VDF is secure ?

Security

What means the VDF is secure ?
One cannot evaluate in less than T steps.

Security

What means the VDF is secure ?
One cannot evaluate in less than T steps.

- Attacking the DLP in $\mathbb{F}_{p^{2}}$.

Writing $\mathbb{G}_{2}=\langle G\rangle$, find x such that $e(P, G)^{x}=e(\varphi(P), Q)$.
Solution: choose a large prime p (1500 bits) such that DLP is hard in $\mathbb{F}_{p^{2}}$.

Security

What means the VDF is secure ?
One cannot evaluate in less than T steps.

- Attacking the DLP in $\mathbb{F}_{p^{2}}$.

Writing $\mathbb{G}_{2}=\langle G\rangle$, find x such that $e(P, G)^{x}=e(\varphi(P), Q)$.
Solution: choose a large prime $p\left(1500\right.$ bits) such that DLP is hard in $\mathbb{F}_{p^{2}}$.

- Find a shortcut.

Find a way to compute the isogeny in less than T steps.

Isogeny shortcut

$$
y^{2}=x^{3}+x
$$

Isogeny shortcut

Isogeny shortcut

If E has a known endomorphism ring, a shortcut can be found.

Isogeny shortcut

If E has a known endomorphism ring, a shortcut can be found.

- Convert the isogeny into an ideal of $\operatorname{End}(E)$;
- Find an equivalent ideal J of different (smaller) norm;
- Convert J into another isogeny ψ of smaller degree.

Isogeny shortcut

If E has a known endomorphism ring, a shortcut can be found.

- Convert the isogeny into an ideal of $\operatorname{End}(E)$;
- Find an equivalent ideal J of different (smaller) norm;
■ Convert J into another isogeny ψ of smaller degree.

Conclusion: do not use a curve with a known endomorphism ring!

The need of trusted setup

Do we know curves with an unknown endomorphism ring?

The need of trusted setup

Do we know curves with an unknown endomorphism ring?

Pairing-friendly
ordinary curves
no

The need of trusted setup

Do we know curves with an unknown endomorphism ring?

Pairing-friendly
ordinary curves supersingular curves
no
no

The need of trusted setup

Do we know curves with an unknown endomorphism ring?

Pairing-friendly ordinary curves supersingular curves no

CM
no

Trusted setup (supersingular case).

The need of trusted setup

Do we know curves with an unknown endomorphism ring?

Pairing-friendly	CM
ordinary curves	supersingular curves
no	no

Trusted setup (supersingular case).

- Start from a well known supersingular curve,

The need of trusted setup

Do we know curves with an unknown endomorphism ring?

Pairing-friendly
ordinary curves supersingular curves
no
no
Trusted setup (supersingular case).

- Start from a well known supersingular curve,
- Do a random walk,

The need of trusted setup

Do we know curves with an unknown endomorphism ring?

```
Pairing-friendly
ordinary curves supersingular curves
no
no
```

Trusted setup (supersingular case).

- Start from a well known supersingular curve,
- Do a random walk,
- Forget it.

The need of trusted setup

Do we know curves with an unknown endomorphism ring?

$$
\begin{array}{cc}
\text { Pairing-friendly } & \text { CM } \\
\text { ordinary curves } & \text { supersingular curves } \\
\text { no } & \text { no }
\end{array}
$$

Trusted setup (supersingular case).
■ Start from a well known supersingular curve,

- Do a random walk,
- Forget it.
- $\quad E$
E has an unknown endomorphism ring.

Implementation of the VDF

- Proof of concept in SageMath : https://github.com/isogenies-vdf.

Implementation of the VDF

■ Proof of concept in SageMath : https://github.com/isogenies-vdf.

- Parameters chosen for 128 bits of security

Implementation of the VDF

■ Proof of concept in SageMath: https://github.com/isogenies-vdf.

- Parameters chosen for 128 bits of security
- Arithmetic of Montgomery curves

Implementation of the VDF

■ Proof of concept in SageMath: https://github.com/isogenies-vdf.

- Parameters chosen for 128 bits of security
- Arithmetic of Montgomery curves
- Isogeny computation with recursive strategy

Implementation of the VDF

■ Proof of concept in SageMath: https://github.com/isogenies-vdf.

- Parameters chosen for 128 bits of security
- Arithmetic of Montgomery curves
- Isogeny computation with recursive strategy
- Tate pairing computation.

Implementation of the VDF

■ Proof of concept in SageMath: https://github.com/isogenies-vdf.

- Parameters chosen for 128 bits of security
- Arithmetic of Montgomery curves
- Isogeny computation with recursive strategy
- Tate pairing computation.

	Step	\mathbf{e}_{k} size	Time	Throughput
\mathbb{F}_{p} graph	Setup	238 kb	90 s	$0.75 i \mathrm{isog} / \mathrm{ms}$
	Evaluation	-	89 s	$0.75 i \mathrm{isog} / \mathrm{ms}$
	Verification	-	0.3 s	-
$\mathbb{F}_{p^{2}}$ VDF	Setup	491 kb	193 s	$0.35 i s o g / \mathrm{ms}$
	Evaluation	-	297 s	$0.23 i \mathrm{isog} / \mathrm{ms}$
	Verification	-	4 s	-

Table: Benchmarks for our VDFs, on a Intel Core i7-8700@ $3.20 \mathrm{GHz}, T \approx 2^{16}$

Comparison of the VDFs

VDF	pro	con
RSA	fast verification	trusted setup
Class group	no trusted setup small parameters	slow verification
Isogenies over \mathbb{F}_{p}	Fast verification	trusted setup long setup
Isogenies over $\mathbb{F}_{p^{2}}$	Quantum-annoying Fast verification	trusted setup long setup

Comparison of the VDFs

VDF	pro	con
RSA	fast verification	trusted setup
Class group	no trusted setup small parameters	slow verification
Isogenies over \mathbb{F}_{p}	Fast verification	trusted setup long setup
Isogenies over $\mathbb{F}_{p^{2}}$	Quantum-annoying Fast verification	trusted setup long setup

Open problems.

■ Hash to the supersingular set (in order to remove the trusted setup);

Comparison of the VDFs

VDF	pro	con
RSA	fast verification	trusted setup
Class group	no trusted setup small parameters	slow verification
Isogenies over \mathbb{F}_{p}	Fast verification	trusted setup long setup
Isogenies over $\mathbb{F}_{p^{2}}$	Quantum-annoying Fast verification	trusted setup long setup

Open problems.

■ Hash to the supersingular set (in order to remove the trusted setup);

- Find a fully post-quantum VDF.

Conclusion

■ Construction of new pairing-friendly curves resistant to NFS variants, with an efficient optimal pairing.
Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Designs, Codes and Cryptography (2020).

Conclusion

- Construction of new pairing-friendly curves resistant to NFS variants, with an efficient optimal pairing.
Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Designs, Codes and Cryptography (2020).
- Implementation of endomorphism rings through isogenies.

Magma code available at https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.

Conclusion

- Construction of new pairing-friendly curves resistant to NFS variants, with an efficient optimal pairing.
Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Designs, Codes and Cryptography (2020).
- Implementation of endomorphism rings through isogenies. Magma code available at https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.
- Constuction of two verifiable delay functions based on isogenies and pairings. Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso Asiacrypt 2019.

Conclusion

- Construction of new pairing-friendly curves resistant to NFS variants, with an efficient optimal pairing.
Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Designs, Codes and Cryptography (2020).
- Implementation of endomorphism rings through isogenies. Magma code available at https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.
- Constuction of two verifiable delay functions based on isogenies and pairings. Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso Asiacrypt 2019.

Thank you for your attention.

