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Diffie–Hellman key exchange (1976)

Let G = 〈g〉 be a cyclic group,

secret integer sA

secret integer sB

g sA

g sB

(g sA)sB(g sB )sA (g sB )sA = g sAsB = (g sA)sB

Definition (DLP over G )

Given h ∈ G = 〈g〉, find s such that h = g s .

The different choices of group lead to different security levels.
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Finite fields

1 Finite fields

2 Elliptic curves

3 Pairings

4 Isogeny-based cryptography

5 Verifiable delay functions
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Diffie–Hellman in Fp

Let p be a prime, and Fp the finite field with p elements.

The set of invertibles F∗p is a cyclic group.
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DL2(6)?

Complexity O(#G ) operations in G .
Exponential in the size of G .
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Index calculus method

We set a factor basis S of small elements of G .

1 Relation collection. Find relations of the form

gai =
∏
q∈S

qeq,i .

2 Linear algebra. Solve linear equations modulo ` of the form

ai ≡
∑
q∈S

eq,i log q mod `

3 Target discrete logarithm. Find a relation between h and the elements of S , and
recover log h from solutions of Step 2.
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The Number Field Sieve

Z[x ]

Z[x ]/(f1(x)) Z[x ]/(f2(x))

Fpk

mod (p,R(x)) mod (p,R(x))

NFS variant f1 f2 Complexity

Original deg(f1) = 1 deg(f2) ≈ (3 log p/ log log p)1/3 Lpk (1/3, 3
√

64/9 + o(1))

SNFS small coeffs, chosen with the structure of p Lpk (1/3, 3
√

32/9 + o(1))

TNFS defined over Z[x ]/(h(x)) Lpk (1/3, 3
√

48/9 + o(1))

STNFS conditions of SNFS on Z[x ]/(h(x)) Lpk (1/3, 3
√

32/9 + o(1))
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Finite fields for a 128-bit security level

Estimation of log2(p) so that the best NFS variant has complexity ≈ 2128 operations.

Field Fp Fp5 Fp6 Fp7 Fp8 Fp(x0)12 Fp(x0)16

NFS NFS NFS

NFS NFS
Efficent NFS NFS TNFS TNFS
variants TNFS TNFS SNFS SNFS

STNFS STNFS

Field size 3072 3315 4032 3584 4352 5352 5424

log2(p) 3072 663 672 512 544 446 339
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Benchmarks of multiplications in finite fields

Field prop. 64-bit words for p Fp mult. timing
special p, k = 12 ��������

106ns

k = 5 �����������
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k = 6 �����������
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129ns

k = 1 �× 48

3800ns**

* Interpolation from the graph
**Benchmark with GMP.
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Elliptic curves

1 Finite fields

2 Elliptic curves

3 Pairings

4 Isogeny-based cryptography

5 Verifiable delay functions
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Elliptic curves group law

Ea,b : y2 = x3 + ax + b

• •
•

•

P
Q

P + Q

••
•

•

P

2P

•

•

•

•
P

2P

3P•
••

•

P
3P

4P

Points on an elliptic curve form a group G (with group law +).
Attacking the discrete log costs O(

√
#G ).
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Torsion

Let Ea,b be an elliptic curve defined over Fp.

π : Ea,b −→ Ea,b

(x , y) 7−→ (xp, yp)

has characteristic polynomial X 2 − tX + p and the order of the curve satisfies

#E (Fp) = p + 1− t.

Hasse bound: |t| ≤ 2
√

p.

For an integer `, the `-torsion is

E [`] :=
{

P ∈ E (F̄p), `P = 0E
}

' Z/`Z× Z/`Z if gcd(`, p) = 1.
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Torsion

Let E : y2 = x3 + 6 defined over Fp with p = 27631.
#E (Fp) = r prime, we denote G1 = E [r ](Fp).

E [r ] ' Z/rZ× Z/rZ. Over Fp12 , E has its full r -torsion rational.

#E (Fp) = 27481

#E (Fp12) = 26365274132 · 73 · 97 · 109 · 127 · 283 · 853 · 2053 · 2137 · 6991 · 274812 · 763439701

We represent E [r ] with two subgroups of order r :

G1, often chosen over Fp. In the above example, (21993, 24369) has order r .

G2, often defined over Fpk where k is the embedding degree.

Fp2 = Fp(i) = Fp[x ]/(x2 + 1) Fp12 = Fp2(u) = Fp2 [y ]/(y6 − (1121i + 404))

xP = (20678i + 23625)u5 + (1861i + 10882)u4 + (16355i + 5810)u3 + (20962i + 7790)u2 + (13621i + 26347)u + 19587i + 23498,

yP = (11673i + 12944)u5 + (5902i + 22858)u4 + (11246i + 24609)u3 + (802i + 13087)u2 + (3722i + 15960)u + 8881i + 13552.
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Twists of curves

If E has equation y2 = x3 + ax for a ∈ Fp, E has four quartic twists.

If E has equation y2 = x3 + b for b ∈ Fp, E has six sextic twists.

Twists can lead to a compression of the G2 subgroup!

Example (slide 14). a point P ∈ E (Fp12) of order r :

xP = (20678i + 23625)u5 + (1861i + 10882)u4 + (16355i + 5810)u3 + (20962i + 7790)u2 + (13621i + 26347)u + 19587i + 23498,

yP = (11673i + 12944)u5 + (5902i + 22858)u4 + (11246i + 24609)u3 + (802i + 13087)u2 + (3722i + 15960)u + 8881i + 13552.

Using the sextic twist, we get a point P of order r with sparse coordinates:

xP = (0i + 0)u5 + (17983i + 9957)u4 + (0i + 0)u3 + (0i + 0)u2 + (0i + 0)u + 0i + 0,

yP = (0i + 0)u5 + (0i + 0)u4 + (12752i + 19494)u3 + (0i + 0)u2 + (0i + 0)u + 0i + 0.
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Endomorphism ring of elliptic curves

For an elliptic curve E defined over a finite field,

End(E ) is an order of a quadratic field Q(
√
−D).

E is said to be ordinary. Ex: Z, π ⇒ Z[π] ⊂ Q(
√
−D).

End(E ) is a maximal order of a quaternion algebra (see later).
E is said to be supersingular. Ex: Z, π, ψ s.t. π ◦ ψ = −ψ ◦ π.

CM method.
Generate a curve E of given End(E ) defined over a number field.
Restricted to discriminants < 1016.
Given an order O of discriminant −D, HD = HilbertClassPolynomial(D).
Roots of HD are invariants leading to curves of endomorphism ring O.
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Pairings

1 Finite fields

2 Elliptic curves

3 Pairings

4 Isogeny-based cryptography

5 Verifiable delay functions



18/46

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e : E × E −→ F×

pk

For some particular P,Q ∈ E [r ] and a, b ∈ Z,

e(aP, bQ) = e(P, bQ)a = e(P,Q)ab

Secure pairing-friendly elliptic curve with an efficient pairing
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Tate and ate pairings

The Tate and ate pairings are computed in two steps:

1 Evaluating a function at a point of the curve (Miller loop)

2 Exponentiating to the power (pk − 1)/r (final exponentiation).

Definition

For P ∈ G1 = E (Fp)[r ],Q ∈ G2 = E (Fpk )[r ],

Tate(P,Q) := fr ,P(Q)(p
k−1)/r ate(P,Q) := ft−1,Q(P)(p

k−1)/r
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Miller function

Definition

The Miller loop computes the function fs,Q such that Q is a zero of order s, and [s]Q
is a pole of order 1, i.e div(fs,Q) = s(Q)− ([s]Q)− (s − 1)O.

Example of f5,Q(P).
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Example of f5,Q(P). s = 5 = 1 0 1
2

f = 12
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Example of f5,Q(P). s = 5 = 1 0 1
2

f = 12 · `Q,Q(P)/v2Q(P)
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Definition

The Miller loop computes the function fs,Q such that Q is a zero of order s, and [s]Q
is a pole of order 1, i.e div(fs,Q) = s(Q)− ([s]Q)− (s − 1)O.

Example of f5,Q(P). s = 5 = 101
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f =
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)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Divisor:
4(Q) + 2(−2Q)
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Miller function

Definition

The Miller loop computes the function fs,Q such that Q is a zero of order s, and [s]Q
is a pole of order 1, i.e div(fs,Q) = s(Q)− ([s]Q)− (s − 1)O.

Example of f5,Q(P). s = 5 = 101
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Divisor:

4(Q) + 2(−2Q) + 2(2Q) + (−4Q) + (Q) + (4Q) + (−5Q)

−2(2Q)− 2(−2Q)− 2(O)− (4Q)− (−4Q)− (O)− (5Q)− (−5Q)− (O)

div(f ) = 5(Q)− (5Q)− 4(O)
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Final exponentiation

fr ,P(Q) and ft−1,Q(P) are cosets modulo r -th powers.
We obtain a unique coset representative by elevating to the power (pk − 1)/r .

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

First exponentiation: (pk − 1)/Φk(p).
Polynomial in p with very small coefficients.
Very efficient with Frobenius: if Fpk = Fp[x ]/(xk − α),

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

Second exponentiation: Φk(p)/r .
More expensive. Possible optimizations.



21/46

Final exponentiation

fr ,P(Q) and ft−1,Q(P) are cosets modulo r -th powers.
We obtain a unique coset representative by elevating to the power (pk − 1)/r .

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

First exponentiation: (pk − 1)/Φk(p).
Polynomial in p with very small coefficients.
Very efficient with Frobenius: if Fpk = Fp[x ]/(xk − α),

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

Second exponentiation: Φk(p)/r .
More expensive. Possible optimizations.



21/46

Final exponentiation

fr ,P(Q) and ft−1,Q(P) are cosets modulo r -th powers.
We obtain a unique coset representative by elevating to the power (pk − 1)/r .

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

First exponentiation: (pk − 1)/Φk(p).

Polynomial in p with very small coefficients.
Very efficient with Frobenius: if Fpk = Fp[x ]/(xk − α),

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

Second exponentiation: Φk(p)/r .
More expensive. Possible optimizations.



21/46

Final exponentiation

fr ,P(Q) and ft−1,Q(P) are cosets modulo r -th powers.
We obtain a unique coset representative by elevating to the power (pk − 1)/r .

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

First exponentiation: (pk − 1)/Φk(p).
Polynomial in p with very small coefficients.
Very efficient with Frobenius: if Fpk = Fp[x ]/(xk − α),

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

Second exponentiation: Φk(p)/r .
More expensive. Possible optimizations.



21/46

Final exponentiation

fr ,P(Q) and ft−1,Q(P) are cosets modulo r -th powers.
We obtain a unique coset representative by elevating to the power (pk − 1)/r .

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

First exponentiation: (pk − 1)/Φk(p).
Polynomial in p with very small coefficients.
Very efficient with Frobenius: if Fpk = Fp[x ]/(xk − α),

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

Second exponentiation: Φk(p)/r .

More expensive. Possible optimizations.



21/46

Final exponentiation

fr ,P(Q) and ft−1,Q(P) are cosets modulo r -th powers.
We obtain a unique coset representative by elevating to the power (pk − 1)/r .

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

First exponentiation: (pk − 1)/Φk(p).
Polynomial in p with very small coefficients.
Very efficient with Frobenius: if Fpk = Fp[x ]/(xk − α),

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

Second exponentiation: Φk(p)/r .
More expensive. Possible optimizations.



22/46

STNFS-resistant pairing-friendly constructions

Before the NFS variants, pairing-friendly curves came from polynomial
constructions, with embedding degree k = 12 and 16.

All threaten by the STNFS variant!
Solutions.

1 Increase the size of log2(p) so that NFS variants are not efficient.
R. Barbulescu and S. Duquesne, 2019.
=⇒ Fpk becomes large.

2 Choose a k = 1 curve with p non-special.
S. Chatterjee, A. Menezes, and F. Rodŕıguez-Henŕıquez, 2017.
=⇒ Arithmetic over Fp is not efficient.

3 Choose a curve with p non-special.
We investigated this solution for 5 ≤ k ≤ 8.
A. Guillevic, S. Masson, and E. Thomé, 2020.
=⇒ Competitive pairing?
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=⇒ Competitive pairing?



22/46

STNFS-resistant pairing-friendly constructions

Before the NFS variants, pairing-friendly curves came from polynomial
constructions, with embedding degree k = 12 and 16.
All threaten by the STNFS variant!
Solutions.

1 Increase the size of log2(p) so that NFS variants are not efficient.
R. Barbulescu and S. Duquesne, 2019.
=⇒ Fpk becomes large.

2 Choose a k = 1 curve with p non-special.
S. Chatterjee, A. Menezes, and F. Rodŕıguez-Henŕıquez, 2017.
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=⇒ Competitive pairing?



22/46

STNFS-resistant pairing-friendly constructions

Before the NFS variants, pairing-friendly curves came from polynomial
constructions, with embedding degree k = 12 and 16.
All threaten by the STNFS variant!
Solutions.

1 Increase the size of log2(p) so that NFS variants are not efficient.
R. Barbulescu and S. Duquesne, 2019.
=⇒ Fpk becomes large.

2 Choose a k = 1 curve with p non-special.
S. Chatterjee, A. Menezes, and F. Rodŕıguez-Henŕıquez, 2017.
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Barreto-Lynn-Scott family

Curves of embedding degree k = 12: TNFS applies!
Discriminant −D = −3, twists of degree 6: G2 ' t6E (Fp2).

p(x) = (x6 − 2x5 + 2x3 + x + 1)/3
p special ⇒ fast final exponentiation.
p special ⇒ SNFS applies
128-bit security: NFS, SNFS, TNFS, STNFS apply!
log2(pk) ≥ 5000 to avoid NFS variants!

Estimation of the pairing cost. Measurements.
Miller loop: 7805m ≈ 0.7ms 0.7ms
Final expo.: 7723m ≈ 0.7ms 0.7ms

Total: 15528m ≈ 1.3ms 1.4ms (error< 10%)
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The Cocks–Pinch construction

Given an integer k , and a discriminant −D.

Algorithm: Cocks-Pinch(k ,−D) – Compute a pairing-friendly curve E/Fp of
trace t with a subgroup of order r , such that t2 − 4p = −Dy2.

Set a prime r such that k | r − 1 and
√
−D ∈ Fr

Set T such that r | Φk(T )
t ← T + 1
y ← (t − 2)/

√
−D

Lift t, y ∈ Z such that t2 + Dy2 ≡ 0 mod 4
p ← (t2 + Dy2)/4
if p is prime then return [p, t, y , r ] else Repeat with another r .

Large trace t =⇒ the ate pairing is not very efficient
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Our Cocks–Pinch variant

Given an integer k , and a discriminant −D.

Algorithm: Cocks-Pinch(k ,−D) – Compute a pairing-friendly curve E/Fp of
trace t with a subgroup of order r , such that t2 − 4p = −Dy .

Set a small T
Set a prime r such that k | r − 1,

√
−D ∈ Fr and r | Φk(T )

t ← T + 1
y ← (t − 2)/

√
−D

Lift t, y ∈ Z such that t2 + Dy2 ≡ 0 mod 4
p ← (t2 + Dy2)/4
if p is prime then return [p, t, y , r ] else Repeat with another r .

Fix: first fix a small T and then choose r . t = T + 1 is small
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Our Cocks–Pinch variant

Given an integer k , and a discriminant −D.

Algorithm: Cocks-Pinch(k ,−D) – Compute a pairing-friendly curve E/Fp of
trace t with a subgroup of order r , such that t2 − 4p = −Dy .

Set a small T
Set a prime r such that k | r − 1,

√
−D ∈ Fr and r | Φk(T )

t ← T + 1
y ← (t − 2)/

√
−D

Lift t, y ∈ Z such that t2 + Dy2 ≡ 0 mod 4
p ← (t2 + Dy2)/4
if p is prime and p = 1 mod k then return [p, t, y , r ] else Repeat with another r .

Fix: first fix a small T and then choose r . t = T + 1 is small
Fpk = Fp[u]/(uk − α)
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Properties of our modified Cocks–Pinch curves

Example of generation for k = 8.
Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.

D = 4 (twists of degree 4), log2(T ) = 64 with small Hamming weight
Lift t and y with 16-bit ht and hy , and restrict on log2(p) = 544
Check subgroup-security and twist-subgroup-security.

CocksPinchVariantResult(k=8,D=4,T=0xffffffffeff7c200,i=5,ht=5,

hy=-0xd700,allowed_cofactor=420,allowed_size_cofactor=10,max_B1=600)

k −D NFS TNFS log(pk) log(p) Twist G2 size

5 34-bit yes slower 3315 663 no 3315

6 −3 yes faster 4032 672 yes 672

7 −20 yes slower 3584 512 no 3584

8 −4 yes faster 4352 544 yes 1088

https://gitlab.inria.fr/smasson/cocks-pinch-variant
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Pairing time Comparison

At the 128-bit security level

Curve
Miller loop

time estimation
Exponentiation
time estimation

time
estimation

RELIC
Measurement

k = 5

2.6ms 1.8ms 4.4ms

k = 6

0.8ms 0.7ms 1.5ms

k = 7

1.9ms 1.4ms 3.4ms

k = 8

0.6ms 0.9ms 1.5ms

BN

1.0ms 0.5ms 1.4ms

BLS12

0.7ms 0.7ms 1.3ms 1.4ms

KSS16

0.5ms 1.2ms 1.7ms

k = 1

17.7ms 15.6ms 33.3ms
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Isogeny-based cryptography

1 Finite fields

2 Elliptic curves

3 Pairings

4 Isogeny-based cryptography

5 Verifiable delay functions
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Isogeny of elliptic curve

Definition

An isogeny is a morphism ϕ : E → E ′ between elliptic curves such that ϕ(0E ) = 0E ′ .

We focus here on cyclic separable isogenies.

A generator of ker(ϕ) defines the isogeny.

deg(ϕ) ≈ # ker(ϕ). Efficient for small degrees.

An isogeny ϕ : E → E ′ has a dual ϕ̂ : E ′ → E s.t. ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [degϕ].
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The SIDH key exchange

E supersingular curve defined over Fp2 .
E [2n] = 〈P2,Q2〉, E [3m] = 〈P3,Q3〉.

E

EA
ϕA

ϕA(P3) ϕA(Q3)

EB

ϕB

ϕB(P2) ϕB(Q2)

EAB

ϕB

ϕA

Security assumption.

It is hard to compute ϕA given E , EA, ϕA(P3) and ϕA(Q3)

even with a quantum computer

.

(stronger) Given E , E ′, it is hard to find an isogeny E → E ′ of given degree

even with a quantum computer

.

(stronger) It is hard to compute the endomorphism ring of EA

even with a quantum computer

.
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Endomorphism ring of supersingular curves

Proposition

The endomorphism ring of a supersingular curve is a maximal order of a quaternion
algebra.

Quaternion algebra: non-commutative dimension-4 Q-algebras.
Here, we consider for primes p and q the quaternion algebra
H−q,−p = Q1 + Qi + Qj + Qij where i2 = −q and j2 = −p.

Order: full rank lattice which is a subring of H−q,−p.

Maximal order: no order contain this order.
Maximal orders are not unique!
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Example of endomorphism ring

Let p = 3 mod 4.
The curve E : y2 = x3 + x defined over Fp2 is supersingular.

π : (x , y) 7→ (xp, yp) is an endomorphism of E .

ψ : (x , y) 7→ (−x ,
√
−1y) is an endomorphism of E .

Let q = 3, and consider H−q,−p,

End(E ) = Z + Zi + Z
1 + j

2
+ Z

i + k

2
= Z[1] + Zψ + Z

[1] + π

2
+ Z

ψ + ψ ◦ π
2

Endomorphism ring is easy to compute because it is a particular curve: reduction of a
Q-curve of discriminant −D = −4.
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Computing endomorphism rings

Small discriminant curves: easy.

y2 = x3 + x : discriminant −D = −4 (latter example).
y2 = x3 + 1: discriminant −D = −3 (similar).

Random supersingular curve: hard.

Curve + isogeny from a small disc. curve: (theoretically).

Here, we focus on computing endomorphism rings given the knowledge of an isogeny
(in a practical point of view).
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Endomorphism ring through isogenies

E0y2 = x3 + x : Eϕ : (x , y) 7→
(
x2−1
x , y x2+1

x2

)
kerϕ = 〈P〉, degϕ = 2

O0 OZ〈1, i, 1+j
2 ,

i+k
2 〉 =

I = O0 · 2 +O0 · α

The endomorphism α can be written α = n11 + n2i + n3
1+j
2 + n4

i+k
2 .

We solve n11(P) + n2i(P) + n3(1 + j)/2(P) + n4(i + k)/2(P) = 0E0 .

I = O0 · 2 +O0 · α = Z
〈
1+i+j+3k

2 , i + k, j + k, 2k
〉

and End(E ) ' O = OR(I).

https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.

https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies
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Verifiable delay functions

1 Finite fields

2 Elliptic curves

3 Pairings

4 Isogeny-based cryptography

5 Verifiable delay functions



36/46

Definition

Definition

A verifiable delay function (VDF) is a function f : X −→ Y such that

1 it takes T steps to evaluate, even with massive amounts of parallelism

2 the output can be verified efficiently.

Setup(λ,T ) −→ public parameters pp

Eval(pp, x) −→ output y such that y = f (x), and a proof π (requires T steps)

Verify(pp, x , y , π) −→ yes or no.
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VDF based on RSA

Setup. Z/NZ where N is a RSA modulus

Evaluation. y = x2T mod N.

Verification. The evaluator also sends a proof π to convince the verifier.

Wesolowski verification. [Eurocrypt ’19]
π is short
Verification is fast.
Pietrzak verification. [ITCS ’19]
π computation is more efficient
Verification is slower.

Different security assumptions.
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Generalization of the RSA VDF

If one knows the factorization of N, the evaluation can be computed using

x2T ≡ x2T mod ϕ(N) mod N

Need a trusted setup to choose N.

This VDF also works in another group of unknown order.
Generalization to the class group VDF. Let K = Q(

√
−D) and OK its ring of

integers.
ClassGroup(D) = Ideals(OK )/PrincipalIdeals(OK )

This group is finite and it is hard to compute #ClassGroup(D).

VDF pro con

RSA fast verification
trusted setup

not post-quantum

Class group small parameters
slow verification

not post-quantum
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VDF constructions with isogenies and pairings

L. De Feo, S. Masson, C. Petit, and A Sanso, Asiacrypt’19.

Idea:

Evaluation. Evaluate T isogenies sequentially at a point.

Verification. Compute pairings on the domain and the codomain curve.

Two constructions: isogenies over Fp or over Fp2 .

Not post-quantum because of pairings.
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VDF over Fp2 supersingular curves

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Another version with isogenies defined over Fp in the paper.
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Security

What means the VDF is secure ?

One cannot evaluate in less than T steps.

Attacking the DLP in Fp2 .
Writing G2 = 〈G 〉, find x such that e(P,G )x = e(ϕ(P),Q).
Solution: choose a large prime p (1500 bits) such that DLP is hard in Fp2 .

Find a shortcut.
Find a way to compute the isogeny in less than T steps.
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Isogeny shortcut

If E has a known endomorphism ring, a shortcut can be
found.

Convert the isogeny into an ideal of End(E );

Find an equivalent ideal J of different (smaller)
norm;

Convert J into another isogeny ψ of smaller degree.

y2 = x3 + x

E ′

ψ

Conclusion: do not use a curve with a known endomorphism ring!
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The need of trusted setup

Do we know curves with an unknown endomorphism
ring?

Pairing-friendly CM
ordinary curves supersingular curves

no no

Trusted setup (supersingular case).

Start from a well known supersingular curve,

Do a random walk,

Forget it.

E has an unknown endomorphism ring.

E0

E
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Implementation of the VDF

Proof of concept in SageMath : https://github.com/isogenies-vdf.

Parameters chosen for 128 bits of security

Arithmetic of Montgomery curves

Isogeny computation with recursive strategy

Tate pairing computation.

Step ek size Time Throughput

Fp graph
Setup 238 kb 90s 0.75isog/ms

Evaluation – 89s 0.75isog/ms
Verification – 0.3s –

Fp2 VDF
Setup 491 kb 193s 0.35isog/ms

Evaluation – 297s 0.23isog/ms
Verification – 4s –

Table: Benchmarks for our VDFs, on a Intel Core i7-8700 @ 3.20GHz, T ≈ 216

https://github.com/isogenies-vdf
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Comparison of the VDFs

VDF pro con

RSA fast verification trusted setup

Class group
no trusted setup

slow verification
small parameters

Isogenies
Fast verification

trusted setup
over Fp long setup

Isogenies Quantum-annoying trusted setup
over Fp2 Fast verification long setup

Open problems.

Hash to the supersingular set (in order to remove the trusted setup);

Find a fully post-quantum VDF.



45/46

Comparison of the VDFs

VDF pro con

RSA fast verification trusted setup

Class group
no trusted setup

slow verification
small parameters

Isogenies
Fast verification

trusted setup
over Fp long setup

Isogenies Quantum-annoying trusted setup
over Fp2 Fast verification long setup

Open problems.

Hash to the supersingular set (in order to remove the trusted setup);

Find a fully post-quantum VDF.



45/46

Comparison of the VDFs

VDF pro con

RSA fast verification trusted setup

Class group
no trusted setup

slow verification
small parameters

Isogenies
Fast verification

trusted setup
over Fp long setup

Isogenies Quantum-annoying trusted setup
over Fp2 Fast verification long setup

Open problems.

Hash to the supersingular set (in order to remove the trusted setup);

Find a fully post-quantum VDF.



46/46

Conclusion

Construction of new pairing-friendly curves resistant to NFS variants, with an
efficient optimal pairing.
Aurore Guillevic, Simon Masson, and Emmanuel Thomé.
Designs, Codes and Cryptography (2020).

Implementation of endomorphism rings through isogenies.
Magma code available at
https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.

Constuction of two verifiable delay functions based on isogenies and pairings.
Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso
Asiacrypt 2019.

Thank you for your attention.
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