Verifiable Delay Functions from Supersingular Isogenies and Pairings

Luca De Feo¹ Simon Masson² Christophe Petit³ Antonio Sanso⁴

 1 IBM Research Zürich

² Thales and Université de Lorraine, Nancy

³ University of Birmingham

 4 Adobe Inc. and Ruhr Universität Bochum

November 2nd, 2020

Definition and examples

Definition and examples

VDF based on isogenies and pairings

Security considerations

Implementation and comparison

Definition

- A verifiable delay function (VDF) is a function $f: X \longrightarrow Y$ such that
 - 1. it takes T steps to evaluate, even with massive amounts of parallelism

◆□▶ < @ ▶ < E ▶ < E ▶ ○ Q @ 3/19</p>

2. the output can be verified efficiently.

Definition

- A verifiable delay function (VDF) is a function $f: X \longrightarrow Y$ such that
 - 1. it takes T steps to evaluate, even with massive amounts of parallelism
 - 2. the output can be verified efficiently.
 - Setup $(\lambda, T) \longrightarrow$ public parameters pp
 - Eval $(pp, x) \longrightarrow$ output y such that y = f(x), and a proof π (requires T steps)

◆□ → ◆□ → ◆ ■ → ▲ ■ ・ ○ へ ○ 3/19

▶ Verify $(pp, x, y, \pi) \longrightarrow$ yes or no.

Setup. $\mathbb{Z}/N\mathbb{Z}$ where N is a RSA modulus

Setup. $\mathbb{Z}/N\mathbb{Z}$ where N is a RSA modulus Evaluation. $y = x^{2^T} \mod N$.

Setup. $\mathbb{Z}/N\mathbb{Z}$ where N is a RSA modulus

Evaluation. $y = x^{2^T} \mod N$.

Verification. The evaluator also sends a proof π to convince the verifier.

Setup. $\mathbb{Z}/N\mathbb{Z}$ where N is a RSA modulus

Evaluation. $y = x^{2^T} \mod N$.

Verification. The evaluator also sends a proof π to convince the verifier.

- Wesolowski verification. [Eurocrypt '19]
 π is short
 Verification is fast.
- Pietrzak verification. [ITCS '19] π computation is more efficient Verification is slower.

Different security assumptions.

If one knows the factorization of N, the evaluation can be computed using

$$x^{2^T} \equiv x^{2^T \mod \varphi(N)} \mod N$$

Need a *trusted setup* to choose N.

If one knows the factorization of N, the evaluation can be computed using

$$x^{2^T} \equiv x^{2^T \mod \varphi(N)} \mod N$$

Need a *trusted setup* to choose N.

This VDF also works in another group of unknown order.

If one knows the factorization of N, the evaluation can be computed using

$$x^{2^T} \equiv x^{2^T \mod \varphi(N)} \mod N$$

Need a trusted setup to choose N.

This VDF also works in another group of unknown order.

VDF based on class group. Let $K = \mathbb{Q}(\sqrt{-D})$ and O_K its ring of integers.

 $ClassGroup(D) = Ideals(O_K)/PrincipalIdeals(O_K)$

This group is finite and it is hard to compute #ClassGroup(D).

If one knows the factorization of N, the evaluation can be computed using

$$x^{2^T} \equiv x^{2^T \mod \varphi(N)} \mod N$$

Need a trusted setup to choose N.

This VDF also works in another group of unknown order.

VDF based on class group. Let $K = \mathbb{Q}(\sqrt{-D})$ and O_K its ring of integers.

 $ClassGroup(D) = Ideals(O_K)/PrincipalIdeals(O_K)$

This group is finite and it is hard to compute #ClassGroup(D).

VDF	\mathbf{pro}	con
RSA	fast verification	trusted setup
		not post-quantum
Class group	small parameters	slow verification
		not post-quantum

VDF based on isogenies and pairings

Definition and examples

VDF based on isogenies and pairings

Security considerations

Implementation and comparison

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ∧ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ <

Our new verifiable delay functions.

- 1. Use isogenies to compute the evaluation step.
- 2. Use a pairing equation to verify the evaluation.

<□ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ ? < ?/19

Our new verifiable delay functions.

- 1. Use isogenies to compute the evaluation step.
- 2. Use a pairing equation to verify the evaluation.

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ⑦ < ♡ 7/19</p>

- ▶ What is an isogeny ?
- ▶ What is a pairing ?

A pairing is a bilinear non-degenerate application $e : \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_3$ where \mathbb{G}_i are groups of prime order r.

A pairing is a bilinear non-degenerate application $e : \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_3$ where \mathbb{G}_i are groups of prime order r.

For an elliptic curve E, we can choose \mathbb{G}_1 and \mathbb{G}_2 two groups of points of E, and \mathbb{G}_3 a multiplicative subgroup of a finite field.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

A curve is *pairing-friendly* if the \mathbb{G}_i are efficiently computable.

A pairing is a bilinear non-degenerate application $e : \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_3$ where \mathbb{G}_i are groups of prime order r.

For an elliptic curve E, we can choose \mathbb{G}_1 and \mathbb{G}_2 two groups of points of E, and \mathbb{G}_3 a multiplicative subgroup of a finite field.

A curve is *pairing-friendly* if the \mathbb{G}_i are efficiently computable.

Isogenies of elliptic curves.

An isogeny between two elliptic curves E and E' is an algebraic map

$$\varphi: E \longrightarrow E'$$

such that $\varphi(0_E) = 0_{E'}$.

A pairing is a bilinear non-degenerate application $e : \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_3$ where \mathbb{G}_i are groups of prime order r.

For an elliptic curve E, we can choose \mathbb{G}_1 and \mathbb{G}_2 two groups of points of E, and \mathbb{G}_3 a multiplicative subgroup of a finite field.

A curve is *pairing-friendly* if the \mathbb{G}_i are efficiently computable.

Isogenies of elliptic curves.

An isogeny between two elliptic curves E and E' is an algebraic map

$$\varphi: E \longrightarrow E'$$

such that $\varphi(0_E) = 0_{E'}$. From $\varphi: E \to E'$, there always exists a dual isogeny $\hat{\varphi}: E' \to E$ such that $\varphi \circ \hat{\varphi} = [\deg \varphi]$.

A pairing is a bilinear non-degenerate application $e : \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_3$ where \mathbb{G}_i are groups of prime order r.

For an elliptic curve E, we can choose \mathbb{G}_1 and \mathbb{G}_2 two groups of points of E, and \mathbb{G}_3 a multiplicative subgroup of a finite field.

A curve is *pairing-friendly* if the \mathbb{G}_i are efficiently computable.

Isogenies of elliptic curves.

An isogeny between two elliptic curves E and E' is an algebraic map

$$\varphi: E \longrightarrow E'$$

such that $\varphi(0_E) = 0_{E'}$. From $\varphi: E \to E'$, there always exists a dual isogeny $\hat{\varphi}: E' \to E$ such that $\varphi \circ \hat{\varphi} = [\deg \varphi]$. For $P \in \mathbb{G}_1$ on E and $Q \in \mathbb{G}_2$ on E',

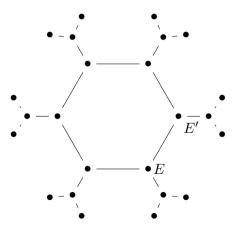
$$e(\varphi(P),Q) = e(P,\hat{\varphi}(Q))$$

Two types of elliptic curves:

•*E*

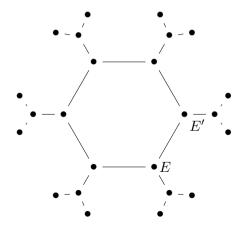
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two types of elliptic curves: Ordinary curves End(E) is an order in $\mathbb{Q}(\sqrt{-D})$.

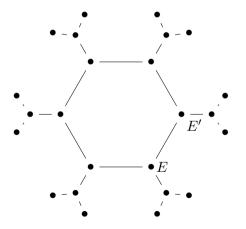


↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ▶ ↓ ■ ♪ ♀ ♀ 9/19

Two types of elliptic curves: Ordinary curves End(E) is an order in $\mathbb{Q}(\sqrt{-D})$.



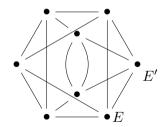
Two types of elliptic curves: Ordinary curves End(E) is an order in $\mathbb{Q}(\sqrt{-D})$.



Two types of elliptic curves:

Ordinary curves End(E) is an order in $\mathbb{Q}(\sqrt{-D})$.

Supersingular curves End(E) is a maximal order in a quaternion algebra.

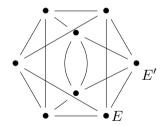


◆□ ▶ < 酉 ▶ < ≡ ▶ < ≡ ▶ ≡ ♡ < ♡ < 9/19</p>

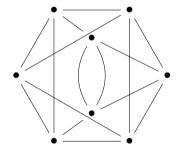
Two types of elliptic curves:

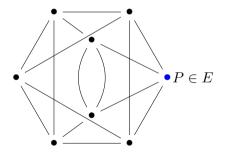
Ordinary curves End(E) is an order in $\mathbb{Q}(\sqrt{-D})$.

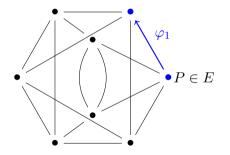
Supersingular curves End(E) is a maximal order in a quaternion algebra. Supersingular curves can be defined over \mathbb{F}_{p^2} .

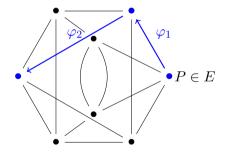


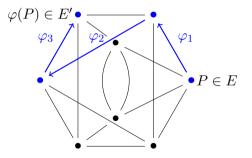
◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <





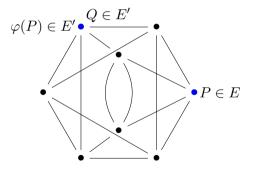






↓ □ ▶ ↓ ● ▶ ↓ ■ ▶ ↓ ■ ⑦ Q ○ 10/19

Setup A **public** walk in the isogeny graph.



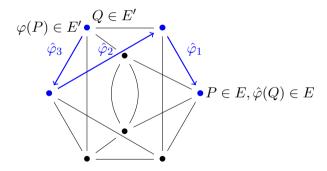
Setup A **public** walk in the isogeny graph.



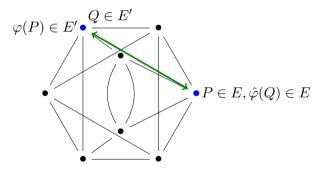
Setup A **public** walk in the isogeny graph.



Setup A **public** walk in the isogeny graph.

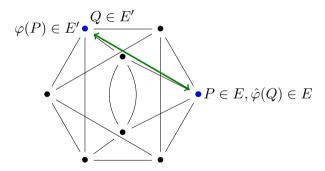


Setup A **public** walk in the isogeny graph. Evaluation For $Q \in E'$, compute $\hat{\varphi}(Q)$ (the backtracking walk). Verification Check that $e(P, \hat{\varphi}(Q)) = e(\varphi(P), Q)$.



VDF over \mathbb{F}_{p^2} supersingular curves.

Setup A **public** walk in the isogeny graph. Evaluation For $Q \in E'$, compute $\hat{\varphi}(Q)$ (the backtracking walk). Verification Check that $e(P, \hat{\varphi}(Q)) = e(\varphi(P), Q)$.



Another version with isogenies defined over \mathbb{F}_p in the paper.

Security considerations

Definition and examples

VDF based on isogenies and pairings

Security considerations

Implementation and comparison

<□ > < @ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \

Security. What means the VDF is secure ?

◆□ → ◆母 → ◆ = → ◆ = ・ つ へ ○ 12/19

Security. What means the VDF is secure ? One cannot evaluate in less than T steps.

Security.

What means the VDF is secure ?

One cannot evaluate in less than T steps.

• Attacking the DLP in \mathbb{F}_{p^2} . Writing $\mathbb{G}_2 = \langle G \rangle$, find x such that $e(P,G)^x = e(\varphi(P),Q)$. Solution: choose a large prime p (1500 bits) such that DLP is hard in \mathbb{F}_{p^2} .

◆□ ▶ < @ ▶ < E ▶ < E ▶ E の < 0 12/19</p>

Security.

What means the VDF is secure ?

One cannot evaluate in less than T steps.

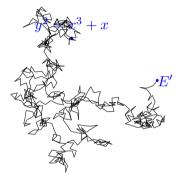
• Attacking the DLP in \mathbb{F}_{p^2} . Writing $\mathbb{G}_2 = \langle G \rangle$, find x such that $e(P,G)^x = e(\varphi(P),Q)$. Solution: choose a large prime p (1500 bits) such that DLP is hard in \mathbb{F}_{p^2} .

◆□ ▶ < @ ▶ < E ▶ < E ▶ E の < 0 12/19</p>

▶ Find a shortcut.

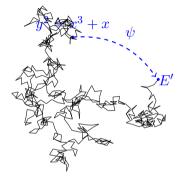
Find a way to compute the isogeny in less than T steps.

< □ > < ■ > < ≣ > < ≣ > E の へ ⊂ 13/19



< □ → < @ → < Ξ → < Ξ → Ξ の Q ^Q 13/19

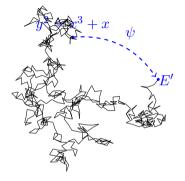
If E has a *known* endomorphism ring, a shortcut can be found.



< □ → < @ → < Ξ → < Ξ → Ξ の Q ^Q 13/19

If E has a known endomorphism ring, a shortcut can be found.

- Convert the isogeny into an ideal of $\operatorname{End}(E)$;
- Find an equivalent ideal J of different (smaller) norm;
- Convert J into another isogeny ψ of smaller degree.



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\ker \varphi = \langle P \rangle, \deg \varphi = 2$$

$$y^2 = x^3 + x : E_0 \qquad \varphi : (x, y) \mapsto \left(\frac{x^2 - 1}{x}, y \frac{x^2 + 1}{x^2}\right) \qquad E$$

$$\ker \varphi = \langle P \rangle, \deg \varphi = 2$$

$$y^2 = x^3 + x : E_0 \qquad \varphi : (x, y) \mapsto \left(\frac{x^2 - 1}{x}, y \frac{x^2 + 1}{x^2}\right) \qquad E$$

 \mathcal{O}_0

 \mathcal{O}

$$\ker \varphi = \langle P \rangle, \deg \varphi = 2$$

$$y^2 = x^3 + x: E_0 \qquad \varphi: (x, y) \mapsto \left(\frac{x^2 - 1}{x}, y \frac{x^2 + 1}{x^2}\right) \qquad E$$

$$\mathbb{Z}\langle \mathbf{1},\mathbf{i},rac{\mathbf{1}+\mathbf{j}}{2},rac{\mathbf{i}+\mathbf{k}}{2}
angle =\mathcal{O}_{0}$$
 \mathcal{O}

$$\ker \varphi = \langle P \rangle, \deg \varphi = 2$$

$$y^2 = x^3 + x : E_0 \qquad \varphi : (x, y) \mapsto \left(\frac{x^2 - 1}{x}, y \frac{x^2 + 1}{x^2}\right) \qquad E$$

$$\mathbb{Z}\langle \mathbf{1}, \mathbf{i}, \frac{\mathbf{1}+\mathbf{j}}{2}, \frac{\mathbf{i}+\mathbf{k}}{2} \rangle = \mathcal{O}_0 \longleftrightarrow \mathcal{I} = \mathcal{O}_0 \cdot 2 + \mathcal{O}_0 \cdot \alpha \longrightarrow \mathcal{O}$$

◆□ → ◆母 → ◆ = → ◆ = ・ つ へ ? 14/19

$$\ker \varphi = \langle P \rangle, \deg \varphi = 2$$

$$y^2 = x^3 + x: E_0 \qquad \varphi: (x, y) \mapsto \left(\frac{x^2 - 1}{x}, y \frac{x^2 + 1}{x^2}\right) \qquad E$$

$$\mathbb{Z}\langle \mathbf{1}, \mathbf{i}, \frac{\mathbf{1}+\mathbf{j}}{2}, \frac{\mathbf{i}+\mathbf{k}}{2} \rangle = \mathcal{O}_0 \longleftrightarrow \mathcal{I} = \mathcal{O}_0 \cdot 2 + \mathcal{O}_0 \cdot \alpha \longrightarrow \mathcal{O}$$

The endomorphism α can be written $\alpha = n_1 \mathbf{1} + n_2 \mathbf{i} + n_3 \frac{\mathbf{1} + \mathbf{j}}{2} + n_4 \frac{\mathbf{i} + \mathbf{k}}{2}$.

$$\ker \varphi = \langle P \rangle, \deg \varphi = 2$$

$$y^2 = x^3 + x : E_0 \qquad \varphi : (x, y) \mapsto \left(\frac{x^2 - 1}{x}, y \frac{x^2 + 1}{x^2}\right) \qquad E$$

$$\mathbb{Z}\langle \mathbf{1}, \mathbf{i}, \frac{\mathbf{1}+\mathbf{j}}{2}, \frac{\mathbf{i}+\mathbf{k}}{2} \rangle = \mathcal{O}_0 \longleftrightarrow \mathcal{I} = \mathcal{O}_0 \cdot 2 + \mathcal{O}_0 \cdot \alpha \longrightarrow \mathcal{O}$$

The endomorphism α can be written $\alpha = n_1 \mathbf{1} + n_2 \mathbf{i} + n_3 \frac{\mathbf{1} + \mathbf{j}}{2} + n_4 \frac{\mathbf{i} + \mathbf{k}}{2}$. We solve

$$n_1 \mathbf{1}(P) + n_2 \mathbf{i}(P) + n_3 \left(\frac{\mathbf{1} + \mathbf{j}}{2}\right)(P) + n_4 \left(\frac{\mathbf{i} + \mathbf{k}}{2}\right)(P) = 0_{E_0}.$$

$$\ker \varphi = \langle P \rangle, \deg \varphi = 2$$

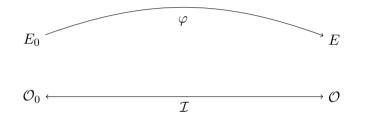
$$y^2 = x^3 + x : E_0 \qquad \varphi : (x, y) \mapsto \left(\frac{x^2 - 1}{x}, y \frac{x^2 + 1}{x^2}\right) \qquad E$$

$$\mathbb{Z}\langle \mathbf{1}, \mathbf{i}, \frac{\mathbf{1}+\mathbf{j}}{2}, \frac{\mathbf{i}+\mathbf{k}}{2} \rangle = \mathcal{O}_0 \longleftrightarrow \mathcal{I} = \mathcal{O}_0 \cdot 2 + \mathcal{O}_0 \cdot \alpha \longrightarrow \mathcal{O}$$

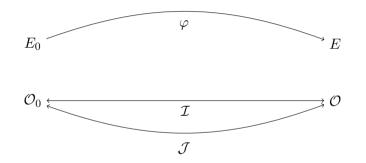
The endomorphism α can be written $\alpha = n_1 \mathbf{1} + n_2 \mathbf{i} + n_3 \frac{\mathbf{1} + \mathbf{j}}{2} + n_4 \frac{\mathbf{i} + \mathbf{k}}{2}$. We solve

$$n_1 \mathbf{1}(P) + n_2 \mathbf{i}(P) + n_3 \left(\frac{\mathbf{1} + \mathbf{j}}{2}\right)(P) + n_4 \left(\frac{\mathbf{i} + \mathbf{k}}{2}\right)(P) = 0_{E_0}.$$

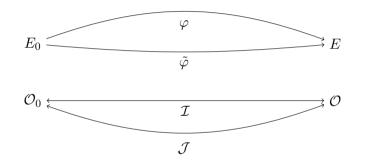
 $\alpha = u_1 + u_3 + u_4 = \frac{3 + \mathbf{i} + \mathbf{j} + \mathbf{k}}{2} \text{ and}$ $\mathcal{I} = \mathcal{O}_0 \cdot 2 + \mathcal{O}_0 \cdot \alpha = \mathbb{Z} \left\langle \frac{\mathbf{1} + \mathbf{i} + \mathbf{j} + 3\mathbf{k}}{2}, \mathbf{i} + \mathbf{k}, \mathbf{j} + \mathbf{k}, 2\mathbf{k} \right\rangle.$



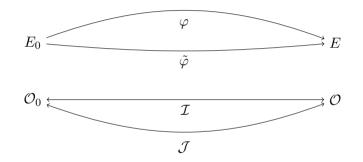
◆□ → ◆母 → ◆ = → ◆ = ・ つ へ ? 15/19



It corresponds to an isogeny of degree N(J).



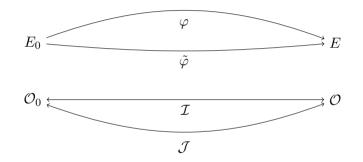
It corresponds to an isogeny of degree N(J).



Implementation in Magma

https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.

It corresponds to an isogeny of degree N(J).



Implementation in Magma

https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies. Conclusion: do not use a curve with a known endomorphism ring!

<□ > < @ > < \ > < \ > \ \ = の \ ♥ 16/19

Pairing-friendly ordinary curves **no**

Pairing-friendly Special ordinary curves supersingular curves **no no**

Pairing-friendly Special ordinary curves supersingular curves **no no**

◆□ ▶ < @ ▶ < E ▶ < E ▶ E の < 0 16/19</p>

Trusted setup (supersingular case).

Pairing-friendly Special ordinary curves supersingular curves **no no** $E_0 \bullet$

◆□ ▶ < 酉 ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 16/19</p>

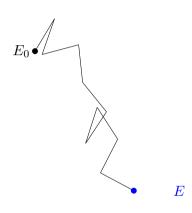
Trusted setup (supersingular case).

▶ Start from a well known supersingular curve,

Pairing-friendly Special ordinary curves supersingular curves **no no**

Trusted setup (supersingular case).

- ▶ Start from a well known supersingular curve,
- ▶ Do a random walk,



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pairing-friendly Special ordinary curves supersingular curves **no no**

Trusted setup (supersingular case).

- ▶ Start from a well known supersingular curve,
- ▶ Do a random walk,
- ► Forget it.

E

◆□ ▶ < 酉 ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 16/19</p>

Pairing-friendly Special ordinary curves supersingular curves **no no**

Trusted setup (supersingular case).

- ▶ Start from a well known supersingular curve,
- ▶ Do a random walk,
- ► Forget it.

E has an unknown endomorphism ring.

Implementation and comparison

Definition and examples

VDF based on isogenies and pairings

Security considerations

Implementation and comparison

↓ □ ▶ ↓ ● ▶ ↓ ■ ▶ ↓ ■ ⑦ Q ○ 17/19

◆□ → ◆母 → ◆ = → ◆ = ・ つへで 18/19

Proof of concept in SageMath : https://github.com/isogenies-vdf.

- Proof of concept in SageMath : https://github.com/isogenies-vdf.
- ▶ Parameters chosen for 128 bits of security

- Proof of concept in SageMath : https://github.com/isogenies-vdf.
- ▶ Parameters chosen for 128 bits of security
- ► Arithmetic of Montgomery curves

- Proof of concept in SageMath : https://github.com/isogenies-vdf.
- ▶ Parameters chosen for 128 bits of security
- ► Arithmetic of Montgomery curves
- ▶ Isogeny computation with recursive strategy

- Proof of concept in SageMath : https://github.com/isogenies-vdf.
- ▶ Parameters chosen for 128 bits of security
- ► Arithmetic of Montgomery curves
- ▶ Isogeny computation with recursive strategy
- ▶ Tate pairing computation.

- Proof of concept in SageMath : https://github.com/isogenies-vdf.
- ▶ Parameters chosen for 128 bits of security
- ► Arithmetic of Montgomery curves
- ▶ Isogeny computation with recursive strategy
- ► Tate pairing computation.

	Step	$\mathbf{e}_k \mathbf{size}$	Time	Throughput
	Setup	238 kb	_	0.75isog/ms
\mathbb{F}_p graph	Evaluation	_	_	0.75isog/ms
	Verification	_	$0.3 \mathrm{\ s}$	_
	Setup	491 kb	_	0.35isog/ms
\mathbb{F}_{p^2} VDF	Evaluation	_	_	0.23isog/ms
-	Verification	_	$4 \mathrm{s}$	_

Table: Benchmarks for our VDFs, on a Intel Core i 7-8700 @ 3.20GHz, $T\approx 2^{16}$

VDF	pro	con
RSA	fast verification	trusted setup
Class group	no trusted setup small parameters	slow verification
Isogenies over \mathbb{F}_p	Fast verification	trusted setup long setup
$\begin{array}{c} \text{Isogenies} \\ \text{over } \mathbb{F}_{p^2} \end{array}$	Quantum-annoying Fast verification	trusted setup long setup

VDF	pro	con
RSA	fast verification	trusted setup
Class group	no trusted setup small parameters	slow verification
Isogenies over \mathbb{F}_p	Fast verification	trusted setup long setup
Isogenies	Quantum-annoying	trusted setup
over \mathbb{F}_{p^2}	Fast verification	long setup

Open problems.

▶ Hash to the supersingular set (in order to remove the trusted setup);

VDF	pro	con
RSA	fast verification	trusted setup
Class group	no trusted setup small parameters	slow verification
Isogenies over \mathbb{F}_p	Fast verification	trusted setup long setup
Isogenies	Quantum-annoying	trusted setup
over \mathbb{F}_{p^2}	Fast verification	long setup

Open problems.

- ▶ Hash to the supersingular set (in order to remove the trusted setup);
- ▶ Find a fully post-quantum VDF.

VDF	pro	con
RSA	fast verification	trusted setup
Class group	no trusted setup small parameters	slow verification
Isogenies over \mathbb{F}_p	Fast verification	trusted setup long setup
Isogenies	Quantum-annoying	trusted setup
over \mathbb{F}_{p^2}	Fast verification	long setup

Open problems.

- ▶ Hash to the supersingular set (in order to remove the trusted setup);
- ▶ Find a fully post-quantum VDF.

Thank you for your attention.