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Definition
A verifiable delay function (VDF) is a function f : X −→ Y such that

1. it takes T steps to evaluate, even with massive amounts of parallelism

2. the output can be verified efficiently.

I Setup(λ, T ) −→ public parameters pp

I Eval(pp, x) −→ output y such that y = f(x), and a proof π (requires T steps)

I Verify(pp, x, y, π) −→ yes or no.
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VDF based on RSA.

Setup. Z/NZ where N is a RSA modulus

Evaluation. y = x2
T

mod N .

Verification. The evaluator also sends a proof π to convince the verifier.

I Wesolowski verification. [Eurocrypt ’19]
π is short
Verification is fast.

I Pietrzak verification. [ITCS ’19]
π computation is more efficent
Verification is slower.

Different security assumptions.
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VDF based on RSA.
If one knows the factorization of N , the evaluation can be computed using

x2
T ≡ x2T mod ϕ(N) mod N

Need a trusted setup to choose N .

This VDF also works in another group of unknown order.
VDF based on class group. Let K = Q(

√
−D) and OK its ring of integers.

ClassGroup(D) = Ideals(OK)/PrincipalIdeals(OK)

This group is finite and it is hard to compute #ClassGroup(D).

VDF pro con

RSA fast verification
trusted setup

not post-quantum

Class group small parameters
slow verification

not post-quantum
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Our new verifiable delay functions.

1. Use isogenies to compute the evaluation step.

2. Use a pairing equation to verify the evaluation.

I What is an isogeny ?

I What is a pairing ?
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Pairing-friendly elliptic curves.
A pairing is a bilinear non-degenerate application e : G1 ×G2 −→ G3 where Gi are
groups of prime order r.

For an elliptic curve E, we can choose G1 and G2 two groups of points of E, and
G3 a multiplicative subgroup of a finite field.
A curve is pairing-friendly if the Gi are efficiently computable.

Isogenies of elliptic curves.
An isogeny between two elliptic curves E and E′ is an algebraic map

ϕ : E −→ E′

such that ϕ(0E) = 0E′ .
From ϕ : E → E′, there always exists a dual isogeny ϕ̂ : E′ → E such that
ϕ ◦ ϕ̂ = [degϕ]. For P ∈ G1 on E and Q ∈ G2 on E′,

e(ϕ(P ), Q) = e(P, ϕ̂(Q))
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Two types of elliptic curves:

Ordinary curves End(E) is an order in Q(
√
−D).

Supersingular curves End(E) is a maximal order in a quaternion algebra.
Supersingular curves can be defined over Fp2 .

•

•

E′

E
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VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P ), Q).

•

•

••

•

•

•

•

•P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P ) ∈ E′
Q ∈ E′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E, ϕ̂(Q) ∈ E

Another version with isogenies defined over Fp in the paper.
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Security.
What means the VDF is secure ?

One cannot evaluate in less than T steps.

I Attacking the DLP in Fp2 .
Writing G2 = 〈G〉, find x such that e(P,G)x = e(ϕ(P ), Q).
Solution: choose a large prime p (1500 bits) such that DLP is hard in Fp2 .

I Find a shortcut.
Find a way to compute the isogeny in less than T steps.
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Isogeny shortcut.

If E has a known endomorphism ring, a shortcut can
be found.

I Convert the isogeny into an ideal of End(E);

I Find an equivalent ideal J of different (smaller)
norm;

I Convert J into another isogeny ψ of smaller
degree.

y2 = x3 + x

E′

ψ
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Example. p = 3 mod 4.

E0y2 = x3 + x : Eϕ : (x, y) 7→
(
x2−1
x , y x2+1

x2

)
kerϕ = 〈P 〉,degϕ = 2

O0 OZ〈1, i, 1+j
2 , i+k

2 〉 =
I = O0 · 2 +O0 · α

The endomorphism α can be written α = n11 + n2i + n3
1+j
2 + n4

i+k
2 .

We solve

n11(P ) + n2i(P ) + n3

(
1 + j

2

)
(P ) + n4

(
i + k

2

)
(P ) = 0E0 .

α = u1 + u3 + u4 = 3+i+j+k
2 and

I = O0 · 2 +O0 · α = Z
〈

1 + i + j + 3k

2
, i + k, j + k, 2k

〉
.
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Algorithms based on quaternion computations provide an equivalent ideal J = Iβ
of norm coprime to 2.
It corresponds to an isogeny of degree N(J).

E0 E

ϕ

ϕ̃

O0 O
I

J

Implementation in Magma
https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.
Conclusion: do not use a curve with a known endomorphism ring!

https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies
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Do we known curves with an unknown
endomorphism ring?

Pairing-friendly Special
ordinary curves supersingular curves

no no

Trusted setup (supersingular case).

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

E0

E
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Implementation and comparison

Definition and examples

VDF based on isogenies and pairings

Security considerations

Implementation and comparison
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Implementation of the VDF.

I Proof of concept in SageMath : https://github.com/isogenies-vdf.

I Parameters chosen for 128 bits of security

I Arithmetic of Montgomery curves

I Isogeny computation with recursive strategy

I Tate pairing computation.

Step ek size Time Throughput

Fp graph
Setup 238 kb – 0.75isog/ms

Evaluation – – 0.75isog/ms
Verification – 0.3 s –

Fp2 VDF
Setup 491 kb – 0.35isog/ms

Evaluation – – 0.23isog/ms
Verification – 4 s –

Table: Benchmarks for our VDFs, on a Intel Core i7-8700 @ 3.20GHz, T ≈ 216

https://github.com/isogenies-vdf
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Comparison.

VDF pro con

RSA fast verification trusted setup

Class group
no trusted setup

slow verification
small parameters

Isogenies
Fast verification

trusted setup
over Fp long setup

Isogenies Quantum-annoying trusted setup
over Fp2 Fast verification long setup

Open problems.

I Hash to the supersingular set (in order to remove the trusted setup);

I Find a fully post-quantum VDF.

Thank you for your attention.
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