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Definition
A werifiable delay function (VDF) is a function f : X — Y such that

1. it takes T steps to evaluate, even with massive amounts of parallelism

2. the output can be verified efficiently.

» Setup(\,7) — public parameters pp
» Eval(pp,x) — output y such that y = f(x), and a proof 7 (requires T steps)
» Verify(pp, x,y, ™) — yes or no.
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VDF based on RSA.
Setup. Z/NZ where N is a RSA modulus
2" mod N.

Verification. The evaluator also sends a proof 7 to convince the verifier.

Evaluation. y =«

» Wesolowski verification. [Eurocrypt ’19]
7 is short
Verification is fast.
» Pietrzak verification. [ITCS ’19]
7 computation is more efficent
Verification is slower.

Different security assumptions.
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VDF based on RSA.
If one knows the factorization of N, the evaluation can be computed using

T T
2 g2 wod o) pod N

Need a trusted setup to choose IN.
This VDF also works in another group of unknown order.
VDF based on class group. Let K = Q(v/—D) and Oy its ring of integers.

ClassGroup(D) = Ideals(O)/Principalldeals(Ok)

This group is finite and it is hard to compute #ClassGroup(D).

VDF pro con
trusted setup
not post-quantum

RSA fast verification

slow verification

Cl 11 t
ass group | small parameters | post-quantum
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1. Use isogenies to compute the evaluation step.
2. Use a pairing equation to verify the evaluation.
> What is an isogeny 7
> What is a pairing ?
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Pairing-friendly elliptic curves.

A pairing is a bilinear non-degenerate application e : Gy x Go — G3 where G; are
groups of prime order 7.

For an elliptic curve E, we can choose G and Gy two groups of points of F, and
Gs a multiplicative subgroup of a finite field.

A curve is pairing-friendly if the G; are efficiently computable.

Isogenies of elliptic curves.
An isogeny between two elliptic curves E and E’ is an algebraic map

0:E—FE

such that ¢(0g) = 0pr.
From ¢ : E — FE’, there always exists a dual isogeny ¢ : E' — E such that
pop=|[degy]. For P € Gy on E and Q € Gy on F,
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Two types of elliptic curves:

Ordinary curves End(E) is an order in Q(v/—D).

Supersingular curves End(F) is a maximal order in a quaternion algebra.
Supersingular curves can be defined over F ..
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Evaluation For @ € E’, compute $(Q) (the backtracking walk).
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VDF over F,: supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For @ € E’, compute $(Q) (the backtracking walk).
Verification Check that e(P, ¢(Q)) = e(p(P), Q).

p(P) € pet=l .

AT

. ePeE,p(Q)€E

Nl

Another version with isogenies defined over F,, in the paper.
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Security.
What means the VDF is secure ?
One cannot evaluate in less than T steps.
> Attacking the DLP in F.
Writing G2 = (G), find x such that e(P,G)* = e(¢(P), Q).
Solution: choose a large prime p (1500 bits) such that DLP is hard in F ..

» Find a shortcut.
Find a way to compute the isogeny in less than T steps.
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Isogeny shortcut.
If E has a known endomorphism ring, a shortcut can
be found.




Isogeny shortcut.
If E has a known endomorphism ring, a shortcut can
be found.
» Convert the isogeny into an ideal of End(E);
» Find an equivalent ideal J of different (smaller)
norm;
» Convert J into another isogeny 1 of smaller
degree.
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Example. p = 3 mod 4.
ker p = (P),deg ¢ = 2

////////”#_Zf\ij\\\\\\
<x 1 ac+1)

=23+ E @ (z,y) = (v

E

IT=0p-24+0g -«

The endomorphism « can be written o = n11 + nsi + ng +J + ny ‘*k

We solve

1 (P) + noi(P) + ng ( 2+J> (P) + n4 <i;k> (P) = 0.

a:ul—l—u;:,—i-m:%and

1+i+j+3k

IIOO'Q+OO'(X:Z< 5

,i+k,j+k,2k>.
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Algorithms based on quaternion computations provide an equivalent ideal J = I8
of norm coprime to 2.
It corresponds to an isogeny of degree N(.J).
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Implementation in Magma
https://gitlab.inria.fr/smasson/endomorphismsthroughisogenies.
Conclusion: do not use a curve with a known endomorphism ring!
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Do we known curves with an unknown
endomorphism ring?

Pairing-friendly Special
ordinary curves supersingular curves
no no

Trusted setup (supersingular case).
» Start from a well known supersingular curve,
» Do a random walk,
» Forget it.

F has an unknown endomorphism ring.
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Implementation of the VDF.
» Proof of concept in SageMath : https://github.

Parameters chosen for 128 bits of security

Arithmetic of Montgomery curves

>
>
» Isogeny computation with recursive strategy
>

Tate pairing computation.

com/isogenies-vdf.

Step e size Time | Throughput

Setup 238 kb - 0.75isog/ms

[F, graph Evaluation - - 0.75is0g/ms
Verification - 0.3s -

Setup 491 kb - 0.35isog/ms

F,. VDF Evaluation - - 0.23isog/ms
Verification - 4s -

Table: Benchmarks for our VDFs, on a Intel Core i7-8700 @ 3.20GHz, T ~ 216
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Comparison.

VDF pro con

RSA fast verification trusted setup

no trusted setup

slow verification
small parameters

Class group

Isogenies o . trusted setup
© Fast verification I
over I, long setup

Isogenies Quantum-annoying trusted setup
over [ » Fast verification long setup

Open problems.
» Hash to the supersingular set (in order to remove the trusted setup);
» Find a fully post-quantum VDF.

Thank you for your attention.



