Verifiable delay functions from elliptic curve cryptography

Simon Masson Joint work with L. De Feo, C. Petit and A. Sanso

Thales – LORIA

July 4th, 2019

◆□ → < @ → < \mathbf{e} → < \mathbf{e} → \mathbf{e} \mathbf{

Definition

A verifiable delay function (VDF) is a function that

- 1. takes T steps to evaluate, even with unbounded parallelism
- 2. the output can be verified efficiently.

Definition

A verifiable delay function (VDF) is a function that

- 1. takes T steps to evaluate, even with unbounded parallelism
- 2. the output can be verified efficiently.
- Setup $(\lambda, T) \longrightarrow$ public parameters *pp*
- Eval $(pp, x) \longrightarrow$ output y, proof π (requires T steps)
- Verify $(pp, x, y, \pi) \longrightarrow$ yes or no.

Definition

A verifiable delay function (VDF) is a function that

- 1. takes T steps to evaluate, even with unbounded parallelism
- 2. the output can be verified efficiently.
- Setup $(\lambda, T) \longrightarrow$ public parameters pp
- Eval $(pp, x) \longrightarrow$ output y, proof π (requires T steps)
- Verify $(pp, x, y, \pi) \longrightarrow$ yes or no.

Uniqueness If $Verify(pp, x, y, \pi) = Verify(pp, x, y', \pi') = yes$, then y = y'.

Correctness The verification will always succeed if Eval has been computed honestly. Soundness A lying evaluator will always fail the verification.

Sequentiality It is impossible to correctly evaluate the VDF in time less than T - o(T), even when using poly(T) parallel processors.

<□> <□> <□> <□> < => < => < => = のQで 3/18

Fail1 from a physical value.

Fail2 Distributed generation.

Fail1 from a physical value.

Fail2 Distributed generation.

<□ > < @ > < E > < E > E のQ 3/18

 $r_a \oplus r_b \oplus r_c \oplus r_d \oplus r_e$ seems random...

Fail1 from a physical value.

Fail2 Distributed generation.

 $r_a \oplus r_b \oplus r_c \oplus r_d \oplus r_e$ seems random... but Eve controls the randomness !

Fail1 from a physical value.

Fail2 Distributed generation.

 $r_a \oplus r_b \oplus r_c \oplus r_d \oplus r_e$ seems random... but Eve controls the randomness !

<□ > < @ > < E > < E > E のQ 3/18

Idea: slow things down by adding delay.

◆□ → < □ → < Ξ → < Ξ → Ξ · の Q · 4/18</p>

$$\forall x \in \langle g \rangle, \qquad f(x) = \log_g(x)$$

Verification is easy: $g^{f(x)} \stackrel{?}{=} x$. You can parallelize to compute f(x).

$$\forall x \in \langle g \rangle, \qquad f(x) = \log_g(x)$$

Verification is easy: $g^{f(x)} \stackrel{?}{=} x$. You can parallelize to compute f(x).

► VDF without "verifiability": composition of hash functions.

$$\forall x \in \langle g \rangle, \qquad f(x) = \log_g(x)$$

Verification is easy: $g^{f(x)} \stackrel{?}{=} x$. You can parallelize to compute f(x).

► VDF without "verifiability": composition of hash functions.

$$f(x) = h^{(T)}(x)$$

You need to recompute f(x) to verify.

$$\forall x \in \langle g \rangle, \qquad f(x) = \log_g(x)$$

Verification is easy: $g^{f(x)} \stackrel{?}{=} x$. You can parallelize to compute f(x).

▶ VDF without "verifiability": composition of hash functions.

$$f(x) = h^{(T)}(x)$$

You need to recompute f(x) to verify.

▶ VDF without "no parallelization": pre-image of a hash function.

$$\forall x \in \langle g \rangle, \qquad f(x) = \log_g(x)$$

Verification is easy: $g^{f(x)} \stackrel{?}{=} x$. You can parallelize to compute f(x).

VDF without "verifiability": composition of hash functions.

$$f(x) = h^{(T)}(x)$$

You need to recompute f(x) to verify.

▶ VDF without "no parallelization": pre-image of a hash function.

$$f(x) = h^{-1}(x)$$

Verification is easy: $h(f(x)) \stackrel{?}{=} x$. Computation is faster as long as you parallelize.

Setup. *N* is a RSA modulus, public parameters: $(\mathbb{Z}/N\mathbb{Z}, H : \{0, 1\}^* \to \mathbb{Z}/N\mathbb{Z})$.

Setup. *N* is a RSA modulus, public parameters: $(\mathbb{Z}/N\mathbb{Z}, H : \{0, 1\}^* \to \mathbb{Z}/N\mathbb{Z})$. Evaluation. $y = H(x)^{2^T} \mod N$, and π a proof.

Setup. *N* is a RSA modulus, public parameters: $(\mathbb{Z}/N\mathbb{Z}, H : \{0, 1\}^* \to \mathbb{Z}/N\mathbb{Z})$. Evaluation. $y = H(x)^{2^T} \mod N$, and π a proof.

Verification. Proof of a correct exponentiation.

Setup. *N* is a RSA modulus, public parameters: $(\mathbb{Z}/N\mathbb{Z}, H : \{0,1\}^* \to \mathbb{Z}/N\mathbb{Z})$. Evaluation. $y = H(x)^{2^{\tau}} \mod N$, and π a proof. Verification. Proof of a correct exponentiation.

Wesolowski proof.

• Verifier challenges with a small prime ℓ

Setup. *N* is a RSA modulus, public parameters: $(\mathbb{Z}/N\mathbb{Z}, H : \{0,1\}^* \to \mathbb{Z}/N\mathbb{Z})$. Evaluation. $y = H(x)^{2^{T}} \mod N$, and π a proof.

Verification. Proof of a correct exponentiation.

Wesolowski proof.

- \blacktriangleright Verifier challenges with a small prime ℓ
- Evaluator computes q, r such that $2^T = q\ell + r$ and send $\pi = H(x)^q$.

Setup. *N* is a RSA modulus, public parameters: $(\mathbb{Z}/N\mathbb{Z}, H : \{0, 1\}^* \to \mathbb{Z}/N\mathbb{Z})$. Evaluation. $y = H(x)^{2^{T}} \mod N$, and π a proof.

Verification. Proof of a correct exponentiation.

Wesolowski proof.

- Verifier challenges with a small prime ℓ
- Evaluator computes q, r such that $2^T = q\ell + r$ and send $\pi = H(x)^q$.

• Verifier checks
$$y \stackrel{?}{=} \pi^{\ell} \cdot H(x)^r$$
.

Setup. *N* is a RSA modulus, public parameters: $(\mathbb{Z}/N\mathbb{Z}, H : \{0,1\}^* \to \mathbb{Z}/N\mathbb{Z})$. Evaluation. $y = H(x)^{2^T} \mod N$, and π a proof.

Verification. Proof of a correct exponentiation.

Wesolowski proof.

- \blacktriangleright Verifier challenges with a small prime ℓ
- Evaluator computes q, r such that $2^T = q\ell + r$ and send $\pi = H(x)^q$.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 5/18</p>

• Verifier checks $y \stackrel{?}{=} \pi^{\ell} \cdot H(x)^{r}$.

Turned to non-interactive using Fiat-Shamir π is short Verification is fast.

Setup. *N* is a RSA modulus, public parameters: $(\mathbb{Z}/N\mathbb{Z}, H : \{0, 1\}^* \to \mathbb{Z}/N\mathbb{Z})$. Evaluation. $y = H(x)^{2^T} \mod N$, and π a proof.

Verification. Proof of a correct exponentiation.

Wesolowski proof.

- \blacktriangleright Verifier challenges with a small prime ℓ
- Evaluator computes q, r such that $2^T = q\ell + r$ and send $\pi = H(x)^q$.

• Verifier checks
$$y \stackrel{?}{=} \pi^{\ell} \cdot H(x)^r$$
.

Turned to non-interactive using Fiat-Shamir π is short Verification is fast.

 \blacktriangleright If one knows the factorization of N, the evaluation can be computed using

$$H(x)^{2^{T}} \equiv H(x)^{2^{T} \mod \varphi(N)} \mod N$$

Need a *trusted setup* to choose N.

If one can compute a root mod N, the VDF is unsound: Choose w and compute ^ℓ√w. (y, π) and (wy, ^ℓ√wπ) are two correct outputs !

◆□ → < □ → < Ξ → < Ξ → Ξ · ○ Q ○ 6/18</p>

- ▶ If one can compute a root mod N, the VDF is **unsound**: Choose w and compute $\sqrt[\ell]{w}$. (y, π) and $(wy, \sqrt[\ell]{w}\pi)$ are two correct outputs !
- We need the assumption that computing a root is hard. This holds in a RSA setup, as well as in another group of unknown order.

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ ○ ○ ○ 6/18</p>

- If one can compute a root mod N, the VDF is unsound: Choose w and compute ^ℓ√w. (y, π) and (wy, ^ℓ√wπ) are two correct outputs !
- We need the assumption that computing a root is hard. This holds in a RSA setup, as well as in another group of unknown order.
- ▶ It works in class group: Let $K = \mathbb{Q}(\sqrt{-D})$ and O_K its ring of integers.

 $ClassGroup(D) = Ideals(O_{\mathcal{K}})/PrincipalIdeals(O_{\mathcal{K}})$

This group is finite and it is hard to compute #ClassGroup(D).

- If one can compute a root mod N, the VDF is unsound: Choose w and compute ^ℓ√w. (y, π) and (wy, ^ℓ√wπ) are two correct outputs !
- We need the assumption that computing a root is hard. This holds in a RSA setup, as well as in another group of unknown order.
- ▶ It works in class group: Let $K = \mathbb{Q}(\sqrt{-D})$ and O_K its ring of integers.

 $ClassGroup(D) = Ideals(O_{\mathcal{K}})/PrincipalIdeals(O_{\mathcal{K}})$

◆□▶ < @▶ < ≧▶ < ≧▶ ≧ のQで 6/18</p>

This group is finite and it is hard to compute #ClassGroup(D).

It is not post-quantum...

Suppose that we have N a large prime integer and k a small integer such that

- ► $N \mid \#E(\mathbb{F}_p)$
- All the *N*-torsion points are defined over \mathbb{F}_{p^k} .

Suppose that we have N a large prime integer and k a small integer such that

► $N \mid \#E(\mathbb{F}_p)$

• All the *N*-torsion points are defined over \mathbb{F}_{p^k} .

The *N*-torsion points is a dimension 2 vector space $\mathbb{G}_1 \times \mathbb{G}_2$ where $\mathbb{G}_1 \subset E(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{p^k})$.

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 ♡ 3 () 7/18</p>

Suppose that we have N a large prime integer and k a small integer such that

- ► $N \mid \#E(\mathbb{F}_p)$
- All the *N*-torsion points are defined over \mathbb{F}_{p^k} .

The *N*-torsion points is a dimension 2 vector space $\mathbb{G}_1 \times \mathbb{G}_2$ where $\mathbb{G}_1 \subset E(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{p^k})$.

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 ♡ 3 () 7/18</p>

Definition

A pairing on *E* is a bilinear non-degenerate application $e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{F}_{p^k}^{\times}$

Suppose that we have N a large prime integer and k a small integer such that

- ► $N \mid \#E(\mathbb{F}_p)$
- All the *N*-torsion points are defined over \mathbb{F}_{p^k} .

The *N*-torsion points is a dimension 2 vector space $\mathbb{G}_1 \times \mathbb{G}_2$ where $\mathbb{G}_1 \subset E(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{p^k})$.

Definition

A pairing on *E* is a bilinear non-degenerate application $e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{F}_{p^k}^{\times}$

Application. The BLS signature.

Let E an elliptic curve and $P \in E(\mathbb{F}_p)$ a point of order N.

Suppose that we have N a large prime integer and k a small integer such that

- ► $N \mid \#E(\mathbb{F}_p)$
- All the *N*-torsion points are defined over \mathbb{F}_{p^k} .

The *N*-torsion points is a dimension 2 vector space $\mathbb{G}_1 \times \mathbb{G}_2$ where $\mathbb{G}_1 \subset E(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{p^k})$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

A pairing on *E* is a bilinear non-degenerate application $e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{F}_{p^k}^{\times}$

Application. The BLS signature.

Let E an elliptic curve and $P \in E(\mathbb{F}_p)$ a point of order N.

- Secret key: s an integer
- Public key: $P_K = [s]P$.

Suppose that we have N a large prime integer and k a small integer such that

- ► $N \mid \#E(\mathbb{F}_p)$
- All the *N*-torsion points are defined over \mathbb{F}_{p^k} .

The *N*-torsion points is a dimension 2 vector space $\mathbb{G}_1 \times \mathbb{G}_2$ where $\mathbb{G}_1 \subset E(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{p^k})$.

Definition

A pairing on E is a bilinear non-degenerate application $e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{F}_{p^k}^{\times}$

Application. The BLS signature.

Let E an elliptic curve and $P \in E(\mathbb{F}_p)$ a point of order N.

- Secret key: s an integer
- Public key: $P_K = [s]P$.

Sign Hash the message *m* into \mathbb{G}_2 and the signature is $\sigma = [s]H(m)$. Verify Check that $e(P, \sigma) = e(P_K, H(m))$. Let *E* be an elliptic curve defined over \mathbb{F}_p .

Suppose that we have N a large prime integer and k a small integer such that

- ► $N \mid \#E(\mathbb{F}_p)$
- All the *N*-torsion points are defined over \mathbb{F}_{p^k} .

The *N*-torsion points is a dimension 2 vector space $\mathbb{G}_1 \times \mathbb{G}_2$ where $\mathbb{G}_1 \subset E(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{p^k})$.

Definition

A pairing on *E* is a bilinear non-degenerate application $e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{F}_{p^k}^{\times}$

Application. The BLS signature.

Let *E* an elliptic curve and $P \in E(\mathbb{F}_p)$ a point of order *N*.

- Secret key: *s* an integer
- Public key: $P_K = [s]P$.

Sign Hash the message *m* into \mathbb{G}_2 and the signature is $\sigma = [s]H(m)$. Verify Check that $e(P, \sigma) = e(P_K, H(m))$. $e(P, \sigma) = e(P, [s]H(m)) = e([s]P, H(m)) = e(P_K, H(m))$.

An isogeny between two elliptic curves E and E' is an algebraic map φ such that $\varphi(0_E) = 0_{E'}$.

An isogeny between two elliptic curves E and E' is an algebraic map φ such that $\varphi(0_E) = 0_{E'}$.

Example (Frobenius) For $A, B \in \overline{\mathbb{F}}_{p}$,

$$\pi_p: E: y^2 = x^3 + Ax + B \longrightarrow E^{(p)}: y^2 = x^3 + A^p x + B^p$$
$$(x, y) \longmapsto (x^p, y^p)$$

An isogeny between two elliptic curves E and E' is an algebraic map φ such that $\varphi(0_E) = 0_{E'}$.

Example (Frobenius)

For $A, B \in \overline{\mathbb{F}}_p$,

$$\pi_p: E: y^2 = x^3 + Ax + B \longrightarrow E^{(p)}: y^2 = x^3 + A^p x + B^p$$

$$(x, y) \longmapsto (x^p, y^p)$$

Vélu's formulas. For $P \in E(\overline{\mathbb{F}}_p)$ of order ℓ coprime with p, we have formulas for computing an isogeny φ of kernel $\langle P \rangle$. The degrees of the polynomials defining φ is $O(\ell)$.

An isogeny between two elliptic curves E and E' is an algebraic map φ such that $\varphi(0_E) = 0_{E'}$.

Example (Frobenius)

For $A, B \in \overline{\mathbb{F}}_p$,

$$\pi_p: E: y^2 = x^3 + Ax + B \longrightarrow E^{(p)}: y^2 = x^3 + A^p x + B^p$$

$$(x, y) \longmapsto (x^p, y^p)$$

Vélu's formulas. For $P \in E(\overline{\mathbb{F}}_p)$ of order ℓ coprime with p, we have formulas for computing an isogeny φ of kernel $\langle P \rangle$. The degrees of the polynomials defining φ is $O(\ell)$.

In practice, Vélu's formulas are efficient for very small kernel.

An isogeny between two elliptic curves E and E' is an algebraic map φ such that $\varphi(0_E) = 0_{E'}$.

Example (Frobenius)

For $A, B \in \overline{\mathbb{F}}_p$,

$$\pi_p: E: y^2 = x^3 + Ax + B \longrightarrow E^{(p)}: y^2 = x^3 + A^p x + B^p$$

$$(x, y) \longmapsto (x^p, y^p)$$

Vélu's formulas. For $P \in E(\overline{\mathbb{F}}_p)$ of order ℓ coprime with p, we have formulas for computing an isogeny φ of kernel $\langle P \rangle$. The degrees of the polynomials defining φ is $O(\ell)$.

In practice, Vélu's formulas are efficient for very small kernel. From $\varphi : E \to E'$, there exists $\hat{\varphi} : E' \to E$ such that $\varphi \circ \hat{\varphi} = \hat{\varphi} \circ \varphi = [\deg \varphi]$.

An isogeny between two elliptic curves E and E' is an algebraic map φ such that $\varphi(0_E) = 0_{E'}$.

Example (Frobenius)

For $A, B \in \overline{\mathbb{F}}_p$,

$$\begin{aligned} \pi_p: & E: y^2 = x^3 + Ax + B & \longrightarrow & E^{(p)}: y^2 = x^3 + A^p x + B^p \\ & (x, y) & \longmapsto & (x^p, y^p) \end{aligned}$$

Vélu's formulas. For $P \in E(\bar{\mathbb{F}}_p)$ of order ℓ coprime with p, we have formulas for computing an isogeny φ of kernel $\langle P \rangle$. The degrees of the polynomials defining φ is $O(\ell)$.

In practice, Vélu's formulas are efficient for very small kernel. From $\varphi : E \to E'$, there exists $\hat{\varphi} : E' \to E$ such that $\varphi \circ \hat{\varphi} = \hat{\varphi} \circ \varphi = [\deg \varphi]$.

$$e(\varphi(P),\varphi(Q))=e(P,Q)^{\mathsf{deg}(\varphi)}$$

◆□ → < @ → < Ξ → < Ξ → Ξ の Q · 8/18</p>

◆□ → < @ → < \mathbf{e} → < \mathbf{e} → \mathbf{e} \mathbf{

Ordinary curves End(E) is an order in $\mathbb{Q}(\sqrt{-D})$.

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 9/18

Ordinary curves End(E) is an order in $\mathbb{Q}(\sqrt{-D})$. Isogeny graph is a volcano.

Ordinary curves End(E) is an order in $\mathbb{Q}(\sqrt{-D})$. Isogeny graph is a volcano.

Ordinary curves End(E) is an order in $\mathbb{Q}(\sqrt{-D})$. Isogeny graph is a volcano. Supersingular curves End(E) is a maximal order in the quaternion algebra $\mathbb{Q}_{p,\infty}$. Isogeny graph is expander.

Ordinary curves End(E) is an order in $\mathbb{Q}(\sqrt{-D})$. Isogeny graph is a volcano. Supersingular curves End(E) is a maximal order in the quaternion algebra $\mathbb{Q}_{p,\infty}$. Isogeny graph is expander. Supersingular curves are defined over \mathbb{F}_{p^2} .

Setup A public walk in the isogeny graph.

Setup A **public** walk in the isogeny graph. Evaluation For $Q \in E'$, compute $\hat{\varphi}(Q)$ (the backtrack walk). Verification Check that $e(P, \hat{\varphi}(Q)) = e(\varphi(P), Q)$.

(ロト (日) (三) (三) (三) (10/18)

Setup A **public** walk in the isogeny graph. Evaluation For $Q \in E'$, compute $\hat{\varphi}(Q)$ (the backtrack walk). Verification Check that $e(P, \hat{\varphi}(Q)) = e(\varphi(P), Q)$.

Not post-quantum, but also no proof needed!

Consider only the curves and isogenies defined over \mathbb{F}_{p} .

<□ > < 母 > < 臣 > < 臣 > 臣 の < ♡ 11/18

Consider only the curves and isogenies defined over \mathbb{F}_p . Setup Choose a curve E on the crater. Choose $P \in E(\mathbb{F}_p)[N]$.

<□ > < 母 > < 臣 > < 臣 > 臣 の < ♡ 11/18

Consider only the curves and isogenies defined over \mathbb{F}_p . Setup Choose a curve E on the crater. Choose $P \in E(\mathbb{F}_p)[N]$. Choose a direction for the isogeny and compute $\varphi(P) \in E'(\mathbb{F}_p)[N]$.

<□ > < 母 > < 臣 > < 臣 > 臣 の < ♡ 11/18

Consider only the curves and isogenies defined over \mathbb{F}_p . Setup Choose a curve E on the crater. Choose $P \in E(\mathbb{F}_p)[N]$. Choose a direction for the isogeny and compute $\varphi(P) \in E'(\mathbb{F}_p)[N]$. Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E'(\mathbb{F}_{p^2})[N]$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consider only the curves and isogenies defined over \mathbb{F}_p . Setup Choose a curve E on the crater. Choose $P \in E(\mathbb{F}_p)[N]$. Choose a direction for the isogeny and compute $\varphi(P) \in E'(\mathbb{F}_p)[N]$. Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E'(\mathbb{F}_{p^2})[N]$. Verification Check that $e(P, \hat{\varphi}(Q)) = e(\varphi(P), Q) \neq 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consider only the curves and isogenies defined over \mathbb{F}_p . Setup Choose a curve E on the crater. Choose $P \in E(\mathbb{F}_p)[N]$. Choose a direction for the isogeny and compute $\varphi(P) \in E'(\mathbb{F}_p)[N]$. Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E'(\mathbb{F}_{p^2})[N]$. Verification Check that $e(P, \hat{\varphi}(Q)) = e(\varphi(P), Q) \neq 1$.

Similarity with the class group VDF:

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q @ 11/18

Consider only the curves and isogenies defined over \mathbb{F}_p . Setup Choose a curve E on the crater. Choose $P \in E(\mathbb{F}_p)[N]$. Choose a direction for the isogeny and compute $\varphi(P) \in E'(\mathbb{F}_p)[N]$. Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E'(\mathbb{F}_{p^2})[N]$. Verification Check that $e(P, \hat{\varphi}(Q)) = e(\varphi(P), Q) \neq 1$.

Similarity with the class group VDF:

$$E_1 \stackrel{f}{\longrightarrow} E_2 \stackrel{g}{\longrightarrow} E_3$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q @ 11/18

Consider only the curves and isogenies defined over \mathbb{F}_p . Setup Choose a curve E on the crater. Choose $P \in E(\mathbb{F}_p)[N]$. Choose a direction for the isogeny and compute $\varphi(P) \in E'(\mathbb{F}_p)[N]$. Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E'(\mathbb{F}_{p^2})[N]$. Verification Check that $e(P, \hat{\varphi}(Q)) = e(\varphi(P), Q) \neq 1$.

Similarity with the class group VDF:

$$\begin{array}{ccccc} E_1 & \stackrel{f}{\longrightarrow} & E_2 & \stackrel{g}{\longrightarrow} & E_3 \\ \operatorname{End}(E_1) & \stackrel{I}{\longrightarrow} & \operatorname{End}(E_2) & \stackrel{J}{\longrightarrow} & \operatorname{End}(E_3) \end{array}$$

Consider only the curves and isogenies defined over \mathbb{F}_p . Setup Choose a curve E on the crater. Choose $P \in E(\mathbb{F}_p)[N]$. Choose a direction for the isogeny and compute $\varphi(P) \in E'(\mathbb{F}_p)[N]$. Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E'(\mathbb{F}_{p^2})[N]$. Verification Check that $e(P, \hat{\varphi}(Q)) = e(\varphi(P), Q) \neq 1$.

Similarity with the class group VDF:

$$\begin{array}{cccc} E_1 & \stackrel{g \circ f}{\longrightarrow} & E_3 \\ \operatorname{End}(E_1) & \stackrel{I}{\longrightarrow} & \operatorname{End}(E_2) & \stackrel{J}{\longrightarrow} & \operatorname{End}(E_3) \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consider only the curves and isogenies defined over \mathbb{F}_p . Setup Choose a curve E on the crater. Choose $P \in E(\mathbb{F}_p)[N]$. Choose a direction for the isogeny and compute $\varphi(P) \in E'(\mathbb{F}_p)[N]$. Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E'(\mathbb{F}_{p^2})[N]$. Verification Check that $e(P, \hat{\varphi}(Q)) = e(\varphi(P), Q) \neq 1$.

Similarity with the class group VDF:

$$\begin{array}{ccc} E_1 & \stackrel{g \circ f}{\longrightarrow} & E_3 \\ \operatorname{End}(E_1) & \stackrel{IJ}{\longrightarrow} & \operatorname{End}(E_3) \end{array}$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q @ 11/18

Attacks on the VDF.

DLP over the curves.

P and *Q* of order *N* with $\log_2(N) \approx 256$.

 $\#E(\mathbb{F}_p)=p+1$

so we set p = hN - 1 with h a cofactor.

Attacks on the VDF.

DLP over the curves.

P and *Q* of order *N* with $\log_2(N) \approx 256$.

$$\#E(\mathbb{F}_p)=p+1$$

so we set p = hN - 1 with h a cofactor.

DLP over the finite field 𝔽_{p²}.
 NFS over 𝔽_{p²}: log₂(p) ≈ 1500. We need a cofactor of size log₂(h) ≈ 1250.

DLP over the curves.

P and *Q* of order *N* with $\log_2(N) \approx 256$.

$$\#E(\mathbb{F}_p)=p+1$$

so we set p = hN - 1 with h a cofactor.

- DLP over the finite field 𝔽_{p²}.
 NFS over 𝔽_{p²}: log₂(p) ≈ 1500. We need a cofactor of size log₂(h) ≈ 1250.
- Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

$$E \xrightarrow{\varphi} E'$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

DLP over the curves.

P and *Q* of order *N* with $\log_2(N) \approx 256$.

$$\#E(\mathbb{F}_p)=p+1$$

so we set p = hN - 1 with h a cofactor.

- DLP over the finite field 𝔽_{p²}.
 NFS over 𝔽_{p²}: log₂(p) ≈ 1500. We need a cofactor of size log₂(h) ≈ 1250.
- Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

$$\begin{array}{cccc} E & \stackrel{\varphi}{\longrightarrow} & E' \\ \uparrow & & \uparrow \\ \operatorname{End}(E) = \mathcal{O} & \stackrel{I}{\longrightarrow} & \mathcal{O}' = \operatorname{End}(E') \end{array}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

DLP over the curves.

P and *Q* of order *N* with $\log_2(N) \approx 256$.

$$\#E(\mathbb{F}_p)=p+1$$

so we set p = hN - 1 with h a cofactor.

- DLP over the finite field 𝔽_{p²}.
 NFS over 𝔽_{p²}: log₂(p) ≈ 1500. We need a cofactor of size log₂(h) ≈ 1250.
- Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

$$\begin{array}{cccc} E & \stackrel{\varphi}{\longrightarrow} & E' \\ \uparrow & & \uparrow \\ \operatorname{End}(E) = \mathcal{O} & \stackrel{I}{\xrightarrow{J}} & \mathcal{O}' = \operatorname{End}(E') \end{array}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

DLP over the curves.

P and *Q* of order *N* with $\log_2(N) \approx 256$.

$$\#E(\mathbb{F}_p)=p+1$$

so we set p = hN - 1 with h a cofactor.

- DLP over the finite field 𝔽_{p²}.
 NFS over 𝔽_{p²}: log₂(p) ≈ 1500. We need a cofactor of size log₂(h) ≈ 1250.
- Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

$$E \xrightarrow{\varphi} E'$$

$$\downarrow \qquad \uparrow$$
End(E) = $\mathcal{O} \xrightarrow{I}_{J} \mathcal{O}' = End(E')$

$$\downarrow \qquad \downarrow$$
E $\xrightarrow{\tilde{\varphi}}_{short deg} E'$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q · 12/18

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 13/18

• Ordinary curves. Pairing friendly \rightarrow small discrimnant \rightarrow known End(*E*).

• Ordinary curves. Pairing friendly \rightarrow small discrimnant \rightarrow known End(*E*).

Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.

• Ordinary curves. Pairing friendly \rightarrow small discrimnant \rightarrow known End(*E*).

Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.

• Ordinary curves. Pairing friendly \rightarrow small discrimnant \rightarrow known End(*E*).

Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.

• Ordinary curves. Pairing friendly \rightarrow small discrimnant \rightarrow known End(*E*).

Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.

• Ordinary curves. Pairing friendly \rightarrow small discrimnant \rightarrow known End(*E*).

Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.

• Ordinary curves. Pairing friendly \rightarrow small discrimnant \rightarrow known End(*E*).

Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.

• Ordinary curves. Pairing friendly \rightarrow small discrimnant \rightarrow known End(*E*).

Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.

• Ordinary curves. Pairing friendly \rightarrow small discrimnant \rightarrow known End(*E*).

Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.

Suppose we have a point P of order 2^{T} defined over \mathbb{F}_{p} . It defines an isogeny of degree 2^{T} :

$$\deg(\varphi) = 2^{T}$$

◆□ → ◆□ → ◆ ■ → ● ● ● ● ● ● 14/18

Suppose we have a point P of order 2^T defined over \mathbb{F}_p . It defines an isogeny of degree 2^T :

Complexity: $O(T^2)$. It can be turned into $O(T \log_2(T))$ with a recursive strategy.

•
$$2^n$$
 • 2^n ... 2^n • 2^n •

Post-quantum security.

• Our VDF is **not** post-quantum (discrete log problem).

Post-quantum security.

- Our VDF is **not** post-quantum (discrete log problem).
- ► Our VDF over 𝔽_{p²} is quantum-annoying: once the setup is done, a quantum computer need to break the DLP for each evaluation of the VDF.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Post-quantum security.

- Our VDF is **not** post-quantum (discrete log problem).
- ► Our VDF over 𝔽_{p²} is quantum-annoying: once the setup is done, a quantum computer need to break the DLP for each evaluation of the VDF.
- Our VDF over \mathbb{F}_p is **not** quantum-annoying: once the setup is done, a quantum computer can compute the class number Cl(-D) and then find a faster isogeny (similar to Wesolowski group-class VDF).

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ · 圖 · のへで 16/18

Let *E* an elliptic curve and $P \in E(\mathbb{F}_p)$ a point of order *N*.

- Secret key: s an integer
- Public key: $P_K = \varphi(P)$.

Sign Hash the message *m* into \mathbb{G}_2 and the signature is $\sigma = [s]H(m)$. Verify Check that $e(P, \sigma) = e(P_K, H(m))$.

Let *E* an elliptic curve and $P \in E(\mathbb{F}_p)$ a point of order *N*.

- Secret key: φ an isogeny $E \rightarrow E'$
- Public key: $P_K = \varphi(P)$.

Sign Hash the message *m* into \mathbb{G}_2 (on *E'*) and the signature is $\sigma = \hat{\varphi}(H(m))$. Verify Check that $e(P, \sigma) = \tilde{e}(P_K, H(m))$.

Let *E* an elliptic curve and $P \in E(\mathbb{F}_p)$ a point of order *N*.

- Secret key: φ an isogeny $E \rightarrow E'$
- Public key: $P_{\mathcal{K}} = \varphi(P)$.

Sign Hash the message *m* into \mathbb{G}_2 (on *E'*) and the signature is $\sigma = \hat{\varphi}(H(m))$. Verify Check that $e(P, \sigma) = \tilde{e}(P_K, H(m))$.

Patented by Broker, Charles, and Lauter in 2012 (different implementation, not efficient).

Let *E* an elliptic curve and $P \in E(\mathbb{F}_p)$ a point of order *N*.

- Secret key: φ an isogeny $E \rightarrow E'$
- Public key: $P_{\mathcal{K}} = \varphi(P)$.

Sign Hash the message *m* into \mathbb{G}_2 (on *E'*) and the signature is $\sigma = \hat{\varphi}(H(m))$. Verify Check that $e(P, \sigma) = \tilde{e}(P_K, H(m))$.

Patented by Broker, Charles, and Lauter in 2012 (different implementation, not efficient).

We obtain an identification protocol where the secret can be sub-exponentially larger than the proof. But it is not zero-knowledge.

Let *E* an elliptic curve and $P \in E(\mathbb{F}_p)$ a point of order *N*.

- Secret key: φ an isogeny $E \rightarrow E'$
- Public key: $P_{\mathcal{K}} = \varphi(P)$.

Sign Hash the message *m* into \mathbb{G}_2 (on *E'*) and the signature is $\sigma = \hat{\varphi}(H(m))$. Verify Check that $e(P, \sigma) = \tilde{e}(P_K, H(m))$.

Patented by Broker, Charles, and Lauter in 2012 (different implementation, not efficient).

We obtain an identification protocol where the secret can be sub-exponentially larger than the proof. But it is not zero-knowledge.

Now looking for an accumulator... But we failed!

Thank you for your attention.

< □ > < @ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \