Verifiable delay functions from elliptic curve cryptography

Simon Masson
Joint work with L. De Feo, C. Petit and A. Sanso
Thales - LORIA

July 4th, 2019

Definition

A verifiable delay function (VDF) is a function that

1. takes T steps to evaluate, even with unbounded parallelism
2. the output can be verified efficiently.

Definition

A verifiable delay function (VDF) is a function that

1. takes T steps to evaluate, even with unbounded parallelism
2. the output can be verified efficiently.

- Setup $(\lambda, T) \longrightarrow$ public parameters $p p$
- Eval $(p p, x) \longrightarrow$ output y, proof π (requires T steps)
- Verify $(p p, x, y, \pi) \longrightarrow$ yes or no.

Definition

A verifiable delay function (VDF) is a function that

1. takes T steps to evaluate, even with unbounded parallelism
2. the output can be verified efficiently.

- Setup $(\lambda, T) \longrightarrow$ public parameters $p p$
- Eval $(p p, x) \longrightarrow$ output y, proof π (requires T steps)
- Verify $(p p, x, y, \pi) \longrightarrow$ yes or no.

Uniqueness If $\operatorname{Verify}(p p, x, y, \pi)=\operatorname{Verify}\left(p p, x, y^{\prime}, \pi^{\prime}\right)=$ yes, then $y=y^{\prime}$.
Correctness The verification will always succeed if Eval has been computed honestly.
Soundness A lying evaluator will always fail the verification.
Sequentiality It is impossible to correctly evaluate the VDF in time less than $T-o(T)$, even when using poly (T) parallel processors.

Application. How to generate randomness in the real world ?

Application. How to generate randomness in the real world ?
Fail1 from a physical value.

Application. How to generate randomness in the real world ?
Fail1 from a physical value.

Application. How to generate randomness in the real world ?
Fail1 from a physical value.

Application. How to generate randomness in the real world ?
Fail1 from a physical value.

Fail2 Distributed generation.

Application. How to generate randomness in the real world ?
Fail1 from a physical value.

Fail2 Distributed generation.

$$
r_{a} \oplus r_{b} \oplus r_{c} \oplus r_{d} \oplus r_{e} \text { seems random... }
$$

Application. How to generate randomness in the real world ?

Fail1 from a physical value.

Fail2 Distributed generation.

$r_{a} \oplus r_{b} \oplus r_{c} \oplus r_{d} \oplus r_{e}$ seems random... but Eve controls the randomness !

Application. How to generate randomness in the real world ?
Fail1 from a physical value.

Fail2 Distributed generation.

$r_{a} \oplus r_{b} \oplus r_{c} \oplus r_{d} \oplus r_{e}$ seems random... but Eve controls the randomness !

Idea: slow things down by adding delay.

- VDF without "delay": public-key cryptography.
－VDF without＂delay＂：public－key cryptography．

$$
\forall x \in\langle g\rangle, \quad f(x)=\log _{g}(x)
$$

Verification is easy：$g^{f(x)} \stackrel{?}{=} x$ ．
You can parallelize to compute $f(x)$ ．

- VDF without "delay": public-key cryptography.

$$
\forall x \in\langle g\rangle, \quad f(x)=\log _{g}(x)
$$

Verification is easy: $g^{f(x)} \stackrel{?}{=} x$.
You can parallelize to compute $f(x)$.

- VDF without "verifiability": composition of hash functions.
- VDF without "delay": public-key cryptography.

$$
\forall x \in\langle g\rangle, \quad f(x)=\log _{g}(x)
$$

Verification is easy: $g^{f(x)} \stackrel{?}{=} x$.
You can parallelize to compute $f(x)$.

- VDF without "verifiability": composition of hash functions.

$$
f(x)=h^{(T)}(x)
$$

You need to recompute $f(x)$ to verify.

- VDF without "delay": public-key cryptography.

$$
\forall x \in\langle g\rangle, \quad f(x)=\log _{g}(x)
$$

Verification is easy: $g^{f(x)} \stackrel{?}{=} x$.
You can parallelize to compute $f(x)$.

- VDF without "verifiability": composition of hash functions.

$$
f(x)=h^{(T)}(x)
$$

You need to recompute $f(x)$ to verify.

- VDF without "no parallelization": pre-image of a hash function.
- VDF without "delay": public-key cryptography.

$$
\forall x \in\langle g\rangle, \quad f(x)=\log _{g}(x)
$$

Verification is easy: $g^{f(x)} \stackrel{?}{=} x$.
You can parallelize to compute $f(x)$.

- VDF without "verifiability": composition of hash functions.

$$
f(x)=h^{(T)}(x)
$$

You need to recompute $f(x)$ to verify.

- VDF without "no parallelization": pre-image of a hash function.

$$
f(x)=h^{-1}(x)
$$

Verification is easy: $h(f(x)) \stackrel{?}{=} x$.
Computation is faster as long as you parallelize.

VDF based on RSA．

Setup．N is a RSA modulus，public parameters：$\left(\mathbb{Z} / N \mathbb{Z}, H:\{0,1\}^{*} \rightarrow \mathbb{Z} / N \mathbb{Z}\right)$ ．

VDF based on RSA.

Setup. N is a RSA modulus, public parameters: $\left(\mathbb{Z} / N \mathbb{Z}, H:\{0,1\}^{*} \rightarrow \mathbb{Z} / N \mathbb{Z}\right)$. Evaluation. $y=H(x)^{2^{T}} \bmod N$, and π a proof.

VDF based on RSA.

Setup. N is a RSA modulus, public parameters: $\left(\mathbb{Z} / N \mathbb{Z}, H:\{0,1\}^{*} \rightarrow \mathbb{Z} / N \mathbb{Z}\right)$.
Evaluation. $y=H(x)^{2^{T}} \bmod N$, and π a proof.
Verification. Proof of a correct exponentiation.

VDF based on RSA.

Setup. N is a RSA modulus, public parameters: $\left(\mathbb{Z} / N \mathbb{Z}, H:\{0,1\}^{*} \rightarrow \mathbb{Z} / N \mathbb{Z}\right)$.
Evaluation. $y=H(x)^{2^{T}} \bmod N$, and π a proof.
Verification. Proof of a correct exponentiation.
Wesolowski proof.

- Verifier challenges with a small prime ℓ

VDF based on RSA.

Setup. N is a RSA modulus, public parameters: $\left(\mathbb{Z} / N \mathbb{Z}, H:\{0,1\}^{*} \rightarrow \mathbb{Z} / N \mathbb{Z}\right)$.
Evaluation. $y=H(x)^{2^{T}} \bmod N$, and π a proof.
Verification. Proof of a correct exponentiation.
Wesolowski proof.

- Verifier challenges with a small prime ℓ
- Evaluator computes q, r such that $2^{T}=q \ell+r$ and send $\pi=H(x)^{q}$.

VDF based on RSA.

Setup. N is a RSA modulus, public parameters: $\left(\mathbb{Z} / N \mathbb{Z}, H:\{0,1\}^{*} \rightarrow \mathbb{Z} / N \mathbb{Z}\right)$.
Evaluation. $y=H(x)^{2^{T}} \bmod N$, and π a proof.
Verification. Proof of a correct exponentiation.

Wesolowski proof.

- Verifier challenges with a small prime ℓ
- Evaluator computes q, r such that $2^{T}=q \ell+r$ and send $\pi=H(x)^{q}$.
- Verifier checks $y \stackrel{?}{=} \pi^{\ell} \cdot H(x)^{r}$.

VDF based on RSA.

Setup. N is a RSA modulus, public parameters: $\left(\mathbb{Z} / N \mathbb{Z}, H:\{0,1\}^{*} \rightarrow \mathbb{Z} / N \mathbb{Z}\right)$.
Evaluation. $y=H(x)^{2^{T}} \bmod N$, and π a proof.
Verification. Proof of a correct exponentiation.
Wesolowski proof.

- Verifier challenges with a small prime ℓ
- Evaluator computes q, r such that $2^{T}=q \ell+r$ and send $\pi=H(x)^{q}$.
- Verifier checks $y \stackrel{?}{=} \pi^{\ell} \cdot H(x)^{r}$.

Turned to non-interactive using Fiat-Shamir π is short
Verification is fast.

VDF based on RSA.
Setup. N is a RSA modulus, public parameters: $\left(\mathbb{Z} / N \mathbb{Z}, H:\{0,1\}^{*} \rightarrow \mathbb{Z} / N \mathbb{Z}\right)$.
Evaluation. $y=H(x)^{2^{T}} \bmod N$, and π a proof.
Verification. Proof of a correct exponentiation.

Wesolowski proof.

- Verifier challenges with a small prime ℓ
- Evaluator computes q, r such that $2^{T}=q \ell+r$ and send $\pi=H(x)^{q}$.
- Verifier checks $y \stackrel{?}{=} \pi^{\ell} \cdot H(x)^{r}$.

Turned to non-interactive using Fiat-Shamir
π is short
Verification is fast.

- If one knows the factorization of N, the evaluation can be computed using

$$
H(x)^{2^{T}} \equiv H(x)^{2^{T} \bmod \varphi(N)} \quad \bmod N
$$

Need a trusted setup to choose N.

- If one can compute a root $\bmod N$, the VDF is unsound: Choose w and compute $\sqrt[\ell]{w} .(y, \pi)$ and $(w y, \sqrt[\ell]{w} \pi)$ are two correct outputs!
- If one can compute a root $\bmod N$, the VDF is unsound: Choose w and compute $\sqrt[\ell]{w} .(y, \pi)$ and $(w y, \sqrt[\ell]{w} \pi)$ are two correct outputs!
- We need the assumption that computing a root is hard. This holds in a RSA setup, as well as in another group of unknown order.
- If one can compute a root $\bmod N$, the VDF is unsound: Choose w and compute $\sqrt[\ell]{w} .(y, \pi)$ and $(w y, \sqrt[\ell]{w} \pi)$ are two correct outputs !
- We need the assumption that computing a root is hard. This holds in a RSA setup, as well as in another group of unknown order.
- It works in class group: Let $K=\mathbb{Q}(\sqrt{-D})$ and O_{K} its ring of integers.

$$
\operatorname{ClassGroup}(D)=\operatorname{Ideals}\left(O_{K}\right) / \text { Principalldeals }\left(O_{K}\right)
$$

This group is finite and it is hard to compute \#ClassGroup (D).

- If one can compute a root $\bmod N$, the VDF is unsound: Choose w and compute $\sqrt[\ell]{w} .(y, \pi)$ and $(w y, \sqrt[\ell]{w} \pi)$ are two correct outputs !
- We need the assumption that computing a root is hard. This holds in a RSA setup, as well as in another group of unknown order.
- It works in class group: Let $K=\mathbb{Q}(\sqrt{-D})$ and O_{K} its ring of integers.

$$
\operatorname{ClassGroup}(D)=\operatorname{Ideals}\left(O_{K}\right) / \operatorname{Principalldeals}\left(O_{K}\right)
$$

This group is finite and it is hard to compute \#ClassGroup(D).

- It is not post-quantum...

Let E be an elliptic curve defined over \mathbb{F}_{p}.
Suppose that we have N a large prime integer and k a small integer such that

- $N \mid \# E\left(\mathbb{F}_{p}\right)$
- All the N-torsion points are defined over $\mathbb{F}_{p^{k}}$.

Let E be an elliptic curve defined over \mathbb{F}_{p}.
Suppose that we have N a large prime integer and k a small integer such that

- $N \mid \# E\left(\mathbb{F}_{p}\right)$
- All the N-torsion points are defined over $\mathbb{F}_{p^{k}}$.

The N-torsion points is a dimension 2 vector space $\mathbb{G}_{1} \times \mathbb{G}_{2}$ where $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{p^{k}}\right)$.

Let E be an elliptic curve defined over \mathbb{F}_{p}.
Suppose that we have N a large prime integer and k a small integer such that

- $N \mid \# E\left(\mathbb{F}_{p}\right)$
- All the N-torsion points are defined over $\mathbb{F}_{p^{k}}$.

The N-torsion points is a dimension 2 vector space $\mathbb{G}_{1} \times \mathbb{G}_{2}$ where $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{p^{k}}\right)$.

Definition

A pairing on E is a bilinear non-degenerate application $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{F}_{p^{k}}^{\times}$

Let E be an elliptic curve defined over \mathbb{F}_{p}.
Suppose that we have N a large prime integer and k a small integer such that

- $N \mid \# E\left(\mathbb{F}_{p}\right)$
- All the N-torsion points are defined over $\mathbb{F}_{p^{k}}$.

The N-torsion points is a dimension 2 vector space $\mathbb{G}_{1} \times \mathbb{G}_{2}$ where $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{p^{k}}\right)$.

Definition

A pairing on E is a bilinear non-degenerate application $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{F}_{p^{k}}^{\times}$
Application. The BLS signature.
Let E an elliptic curve and $P \in E\left(\mathbb{F}_{p}\right)$ a point of order N.

Let E be an elliptic curve defined over \mathbb{F}_{p}.
Suppose that we have N a large prime integer and k a small integer such that

- $N \mid \# E\left(\mathbb{F}_{p}\right)$
- All the N-torsion points are defined over $\mathbb{F}_{p^{k}}$.

The N-torsion points is a dimension 2 vector space $\mathbb{G}_{1} \times \mathbb{G}_{2}$ where $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{p^{k}}\right)$.

Definition

A pairing on E is a bilinear non-degenerate application $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{F}_{p^{k}}^{\times}$
Application. The BLS signature.
Let E an elliptic curve and $P \in E\left(\mathbb{F}_{p}\right)$ a point of order N.

- Secret key: s an integer
- Public key: $P_{K}=[s] P$.

Let E be an elliptic curve defined over \mathbb{F}_{p}.
Suppose that we have N a large prime integer and k a small integer such that

- $N \mid \# E\left(\mathbb{F}_{p}\right)$
- All the N-torsion points are defined over $\mathbb{F}_{p^{k}}$.

The N-torsion points is a dimension 2 vector space $\mathbb{G}_{1} \times \mathbb{G}_{2}$ where $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{p^{k}}\right)$.

Definition

A pairing on E is a bilinear non-degenerate application $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{F}_{p^{k}}^{\times}$
Application. The BLS signature.
Let E an elliptic curve and $P \in E\left(\mathbb{F}_{p}\right)$ a point of order N.

- Secret key: s an integer
- Public key: $P_{K}=[s] P$.

Sign Hash the message m into \mathbb{G}_{2} and the signature is $\sigma=[s] H(m)$.
Verify Check that $e(P, \sigma)=e\left(P_{K}, H(m)\right)$.

Let E be an elliptic curve defined over \mathbb{F}_{p}.
Suppose that we have N a large prime integer and k a small integer such that

- $N \mid \# E\left(\mathbb{F}_{p}\right)$
- All the N-torsion points are defined over $\mathbb{F}_{p^{k}}$.

The N-torsion points is a dimension 2 vector space $\mathbb{G}_{1} \times \mathbb{G}_{2}$ where $\mathbb{G}_{1} \subset E\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E\left(\mathbb{F}_{p^{k}}\right)$.

Definition

A pairing on E is a bilinear non-degenerate application $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{F}_{p^{k}}^{\times}$
Application. The BLS signature.
Let E an elliptic curve and $P \in E\left(\mathbb{F}_{p}\right)$ a point of order N.

- Secret key: s an integer
- Public key: $P_{K}=[s] P$.

Sign Hash the message m into \mathbb{G}_{2} and the signature is $\sigma=[s] H(m)$.
Verify Check that $e(P, \sigma)=e\left(P_{K}, H(m)\right)$.

$$
e(P, \sigma)=e(P,[s] H(m))=e([s] P, H(m))=e\left(P_{K}, H(m)\right) .
$$

Definition（Isogeny）

An isogeny between two elliptic curves E and E^{\prime} is an algebraic map φ such that $\varphi\left(0_{E}\right)=0_{E^{\prime}}$.

Definition (Isogeny)

An isogeny between two elliptic curves E and E^{\prime} is an algebraic map φ such that $\varphi\left(0_{E}\right)=0_{E^{\prime}}$.

Example (Frobenius)
For $A, B \in \overline{\mathbb{F}}_{p}$,

$$
\begin{aligned}
\pi_{p}: E: y^{2}=x^{3}+A x+B & \longrightarrow E^{(p)}: y^{2}=x^{3}+A^{p} x+B^{p} \\
(x, y) & \longmapsto\left(x^{p}, y^{p}\right)
\end{aligned}
$$

Definition (Isogeny)

An isogeny between two elliptic curves E and E^{\prime} is an algebraic map φ such that $\varphi\left(0_{E}\right)=0_{E^{\prime}}$.

Example (Frobenius)
For $A, B \in \overline{\mathbb{F}}_{p}$,

$$
\begin{aligned}
\pi_{p}: E: y^{2}=x^{3}+A x+B & \longrightarrow E^{(p)}: y^{2}=x^{3}+A^{p} x+B^{p} \\
(x, y) & \longmapsto\left(x^{p}, y^{p}\right)
\end{aligned}
$$

Vélu's formulas. For $P \in E\left(\overline{\mathbb{F}}_{p}\right)$ of order ℓ coprime with p, we have formulas for computing an isogeny φ of kernel $\langle P\rangle$. The degrees of the polynomials defining φ is $O(\ell)$.

Definition (Isogeny)

An isogeny between two elliptic curves E and E^{\prime} is an algebraic map φ such that $\varphi\left(0_{E}\right)=0_{E^{\prime}}$.

Example (Frobenius)

For $A, B \in \overline{\mathbb{F}}_{p}$,

$$
\begin{aligned}
\pi_{p}: E: y^{2}=x^{3}+A x+B & \longrightarrow E^{(p)}: y^{2}=x^{3}+A^{p} x+B^{p} \\
(x, y) & \longmapsto\left(x^{p}, y^{p}\right)
\end{aligned}
$$

Vélu's formulas. For $P \in E\left(\overline{\mathbb{F}}_{p}\right)$ of order ℓ coprime with p, we have formulas for computing an isogeny φ of kernel $\langle P\rangle$. The degrees of the polynomials defining φ is $O(\ell)$.
In practice, Vélu's formulas are efficient for very small kernel.

Definition（Isogeny）

An isogeny between two elliptic curves E and E^{\prime} is an algebraic map φ such that $\varphi\left(0_{E}\right)=0_{E^{\prime}}$.

Example（Frobenius）

For $A, B \in \overline{\mathbb{F}}_{p}$ ，

$$
\begin{aligned}
\pi_{p}: E: y^{2}=x^{3}+A x+B & \longrightarrow E^{(p)}: y^{2}=x^{3}+A^{p} x+B^{p} \\
(x, y) & \longmapsto\left(x^{p}, y^{p}\right)
\end{aligned}
$$

Vélu＇s formulas．For $P \in E\left(\overline{\mathbb{F}}_{p}\right)$ of order ℓ coprime with p ，we have formulas for computing an isogeny φ of kernel $\langle P\rangle$ ．The degrees of the polynomials defining φ is $O(\ell)$ ．
In practice，Vélu＇s formulas are efficient for very small kernel．
From $\varphi: E \rightarrow E^{\prime}$ ，there exists $\hat{\varphi}: E^{\prime} \rightarrow E$ such that $\varphi \circ \hat{\varphi}=\hat{\varphi} \circ \varphi=[\operatorname{deg} \varphi]$ ．

Definition (Isogeny)

An isogeny between two elliptic curves E and E^{\prime} is an algebraic map φ such that $\varphi\left(0_{E}\right)=0_{E^{\prime}}$.

Example (Frobenius)

For $A, B \in \overline{\mathbb{F}}_{p}$,

$$
\begin{aligned}
\pi_{p}: E: y^{2}=x^{3}+A x+B & \longrightarrow E^{(p)}: y^{2}=x^{3}+A^{p} x+B^{p} \\
(x, y) & \longmapsto\left(x^{p}, y^{p}\right)
\end{aligned}
$$

Vélu's formulas. For $P \in E\left(\overline{\mathbb{F}}_{p}\right)$ of order ℓ coprime with p, we have formulas for computing an isogeny φ of kernel $\langle P\rangle$. The degrees of the polynomials defining φ is $O(\ell)$.
In practice, Vélu's formulas are efficient for very small kernel.
From $\varphi: E \rightarrow E^{\prime}$, there exists $\hat{\varphi}: E^{\prime} \rightarrow E$ such that $\varphi \circ \hat{\varphi}=\hat{\varphi} \circ \varphi=[\operatorname{deg} \varphi]$.

$$
e(\varphi(P), \varphi(Q))=e(P, Q)^{\operatorname{deg}(\varphi)}
$$

Two types of elliptic curves:

Two types of elliptic curves:
Ordinary curves End (E) is an order in $\mathbb{Q}(\sqrt{-D})$.

Two types of elliptic curves:
Ordinary curves $\operatorname{End}(E)$ is an order in $\mathbb{Q}(\sqrt{-D})$. Isogeny graph is a volcano.

Two types of elliptic curves:
Ordinary curves End (E) is an order in $\mathbb{Q}(\sqrt{-D})$. Isogeny graph is a volcano.

Two types of elliptic curves:
Ordinary curves $\operatorname{End}(E)$ is an order in $\mathbb{Q}(\sqrt{-D})$. Isogeny graph is a volcano. Supersingular curves $\operatorname{End}(E)$ is a maximal order in the quaternion algebra $\mathbb{Q}_{p, \infty}$. Isogeny graph is expander.

Two types of elliptic curves:
Ordinary curves $\operatorname{End}(E)$ is an order in $\mathbb{Q}(\sqrt{-D})$. Isogeny graph is a volcano. Supersingular curves $\operatorname{End}(E)$ is a maximal order in the quaternion algebra $\mathbb{Q}_{p, \infty}$. Isogeny graph is expander. Supersingular curves are defined over $\mathbb{F}_{p^{2}}$.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.
Setup A public walk in the isogeny graph.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.
Setup A public walk in the isogeny graph.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.
Setup A public walk in the isogeny graph.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.
Setup A public walk in the isogeny graph.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtrack walk).

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtrack walk).

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtrack walk).

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtrack walk).

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtrack walk).
Verification Check that $e(P, \hat{\varphi}(Q))=e(\varphi(P), Q)$.

VDF over $\mathbb{F}_{p^{2}}$ supersingular curves.
Setup A public walk in the isogeny graph.
Evaluation For $Q \in E^{\prime}$, compute $\hat{\varphi}(Q)$ (the backtrack walk).
Verification Check that $e(P, \hat{\varphi}(Q))=e(\varphi(P), Q)$.

Not post-quantum, but also no proof needed!

VDF over \mathbb{F}_{p} supersingular curves.

Consider only the curves and isogenies defined over \mathbb{F}_{p}.

VDF over \mathbb{F}_{p} supersingular curves.

Consider only the curves and isogenies defined over \mathbb{F}_{p}.
Setup Choose a curve E on the crater. Choose $P \in E\left(\mathbb{F}_{p}\right)[N]$.

VDF over \mathbb{F}_{p} supersingular curves．

Consider only the curves and isogenies defined over \mathbb{F}_{p} ．
Setup Choose a curve E on the crater．
Choose $P \in E\left(\mathbb{F}_{p}\right)[N]$ ．
Choose a direction for the isogeny and compute $\varphi(P) \in E^{\prime}\left(\mathbb{F}_{p}\right)[N]$ ．

VDF over \mathbb{F}_{p} supersingular curves.

Consider only the curves and isogenies defined over \mathbb{F}_{p}.
Setup Choose a curve E on the crater.
Choose $P \in E\left(\mathbb{F}_{p}\right)[N]$.
Choose a direction for the isogeny and compute $\varphi(P) \in E^{\prime}\left(\mathbb{F}_{p}\right)[N]$.
Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)[N]$.

VDF over \mathbb{F}_{p} supersingular curves．

Consider only the curves and isogenies defined over \mathbb{F}_{p} ．
Setup Choose a curve E on the crater．
Choose $P \in E\left(\mathbb{F}_{p}\right)[N]$ ．
Choose a direction for the isogeny and compute $\varphi(P) \in E^{\prime}\left(\mathbb{F}_{p}\right)[N]$ ．
Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)[N]$.
Verification Check that $e(P, \hat{\varphi}(Q))=e(\varphi(P), Q) \neq 1$ ．

VDF over \mathbb{F}_{p} supersingular curves.

Consider only the curves and isogenies defined over \mathbb{F}_{p}.
Setup Choose a curve E on the crater.
Choose $P \in E\left(\mathbb{F}_{p}\right)[N]$.
Choose a direction for the isogeny and compute $\varphi(P) \in E^{\prime}\left(\mathbb{F}_{p}\right)[N]$.
Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)[N]$.
Verification Check that $e(P, \hat{\varphi}(Q))=e(\varphi(P), Q) \neq 1$.

Similarity with the class group VDF:

VDF over \mathbb{F}_{p} supersingular curves.

Consider only the curves and isogenies defined over \mathbb{F}_{p}.
Setup Choose a curve E on the crater.
Choose $P \in E\left(\mathbb{F}_{p}\right)[N]$.
Choose a direction for the isogeny and compute $\varphi(P) \in E^{\prime}\left(\mathbb{F}_{p}\right)[N]$.
Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)[N]$.
Verification Check that $e(P, \hat{\varphi}(Q))=e(\varphi(P), Q) \neq 1$.

Similarity with the class group VDF:

$$
E_{1} \xrightarrow{f} E_{2} \xrightarrow{g} E_{3}
$$

VDF over \mathbb{F}_{p} supersingular curves.

Consider only the curves and isogenies defined over \mathbb{F}_{p}.
Setup Choose a curve E on the crater.
Choose $P \in E\left(\mathbb{F}_{p}\right)[N]$.
Choose a direction for the isogeny and compute $\varphi(P) \in E^{\prime}\left(\mathbb{F}_{p}\right)[N]$.
Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)[N]$.
Verification Check that $e(P, \hat{\varphi}(Q))=e(\varphi(P), Q) \neq 1$.

Similarity with the class group VDF:

$$
\begin{array}{rlcll}
E_{1} & \xrightarrow{f} & E_{2} & \xrightarrow{g} & E_{3} \\
\operatorname{End}\left(E_{1}\right) & \xrightarrow{l} & \operatorname{End}\left(E_{2}\right) & \xrightarrow{J} & \operatorname{End}\left(E_{3}\right)
\end{array}
$$

VDF over \mathbb{F}_{p} supersingular curves.

Consider only the curves and isogenies defined over \mathbb{F}_{p}.
Setup Choose a curve E on the crater.
Choose $P \in E\left(\mathbb{F}_{p}\right)[N]$.
Choose a direction for the isogeny and compute $\varphi(P) \in E^{\prime}\left(\mathbb{F}_{p}\right)[N]$.
Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)[N]$.
Verification Check that $e(P, \hat{\varphi}(Q))=e(\varphi(P), Q) \neq 1$.

Similarity with the class group VDF:

$$
\begin{array}{rlll}
E_{1} & & \xrightarrow{\text { gof }} & \\
E_{3} \\
\operatorname{End}\left(E_{1}\right) & \xrightarrow{\prime} & \operatorname{End}\left(E_{2}\right) & \xrightarrow{J} \\
\operatorname{End}\left(E_{3}\right)
\end{array}
$$

VDF over \mathbb{F}_{p} supersingular curves.

Consider only the curves and isogenies defined over \mathbb{F}_{p}.
Setup Choose a curve E on the crater.
Choose $P \in E\left(\mathbb{F}_{p}\right)[N]$.
Choose a direction for the isogeny and compute $\varphi(P) \in E^{\prime}\left(\mathbb{F}_{p}\right)[N]$.
Evaluation Compute $\hat{\varphi}(Q)$ for a given $Q \in E^{\prime}\left(\mathbb{F}_{p^{2}}\right)[N]$.
Verification Check that $e(P, \hat{\varphi}(Q))=e(\varphi(P), Q) \neq 1$.

Similarity with the class group VDF:

$$
\begin{array}{rll}
E_{1} & \xrightarrow{\text { gof }} & E_{3} \\
\operatorname{End}\left(E_{1}\right) & \xrightarrow{l J} & \operatorname{End}\left(E_{3}\right)
\end{array}
$$

Attacks on the VDF.

- DLP over the curves.
P and Q of order N with $\log _{2}(N) \approx 256$.

$$
\# E\left(\mathbb{F}_{p}\right)=p+1
$$

so we set $p=h N-1$ with h a cofactor.

Attacks on the VDF.

- DLP over the curves.
P and Q of order N with $\log _{2}(N) \approx 256$.

$$
\# E\left(\mathbb{F}_{p}\right)=p+1
$$

so we set $p=h N-1$ with h a cofactor.

- DLP over the finite field $\mathbb{F}_{p^{2}}$. NFS over $\mathbb{F}_{p^{2}}: \log _{2}(p) \approx 1500$. We need a cofactor of size $\log _{2}(h) \approx 1250$.

Attacks on the VDF.

- DLP over the curves.
P and Q of order N with $\log _{2}(N) \approx 256$.

$$
\# E\left(\mathbb{F}_{p}\right)=p+1
$$

so we set $p=h N-1$ with h a cofactor.

- DLP over the finite field $\mathbb{F}_{p^{2}}$. NFS over $\mathbb{F}_{p^{2}}: \log _{2}(p) \approx 1500$. We need a cofactor of size $\log _{2}(h) \approx 1250$.
- Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

$$
E \quad \xrightarrow{\varphi} \quad E^{\prime}
$$

Attacks on the VDF.

- DLP over the curves.
P and Q of order N with $\log _{2}(N) \approx 256$.

$$
\# E\left(\mathbb{F}_{p}\right)=p+1
$$

so we set $p=h N-1$ with h a cofactor.

- DLP over the finite field $\mathbb{F}_{p^{2}}$. NFS over $\mathbb{F}_{p^{2}}: \log _{2}(p) \approx 1500$. We need a cofactor of size $\log _{2}(h) \approx 1250$.
- Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

$$
\begin{array}{rll}
E & \xrightarrow{\varphi} & E^{\prime} \\
\uparrow & & \imath \\
\operatorname{End}(E)=\mathcal{O} & \xrightarrow{\prime} & \mathcal{O}^{\prime}=\operatorname{End}\left(E^{\prime}\right)
\end{array}
$$

Attacks on the VDF.

- DLP over the curves.
P and Q of order N with $\log _{2}(N) \approx 256$.

$$
\# E\left(\mathbb{F}_{p}\right)=p+1
$$

so we set $p=h N-1$ with h a cofactor.

- DLP over the finite field $\mathbb{F}_{p^{2}}$. NFS over $\mathbb{F}_{p^{2}}: \log _{2}(p) \approx 1500$. We need a cofactor of size $\log _{2}(h) \approx 1250$.
- Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

$$
\begin{array}{rll}
E & \xrightarrow{\varphi} & E^{\prime} \\
\mathfrak{\imath} & & \downarrow \\
\operatorname{End}(E)=\mathcal{O} & \xrightarrow{\jmath} & \mathcal{O}^{\prime}=\operatorname{End}\left(E^{\prime}\right)
\end{array}
$$

Attacks on the VDF.

- DLP over the curves.
P and Q of order N with $\log _{2}(N) \approx 256$.

$$
\# E\left(\mathbb{F}_{p}\right)=p+1
$$

so we set $p=h N-1$ with h a cofactor.

- DLP over the finite field $\mathbb{F}_{p^{2}}$. NFS over $\mathbb{F}_{p^{2}}: \log _{2}(p) \approx 1500$. We need a cofactor of size $\log _{2}(h) \approx 1250$.
- Isogeny shortcut.

If E have a particular endomorphism ring, a shortcut can be found:

Random endomorphism ring curves.

Random endomorphism ring curves.

- Ordinary curves. Pairing friendly \longrightarrow small discrimnant \longrightarrow known End (E).

Random endomorphism ring curves.

- Ordinary curves. Pairing friendly \longrightarrow small discrimnant \longrightarrow known End (E).

- Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.

Random endomorphism ring curves.

- Ordinary curves. Pairing friendly \longrightarrow small discrimnant \longrightarrow known End (E).
- Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.
Use a trusted setup to avoid isogeny shortcut:

Random endomorphism ring curves．

－Ordinary curves．Pairing friendly \longrightarrow small discrimnant \longrightarrow known End (E) ．
－Supersingular curves．
Open problem：compute a supersingular elliptic curve of unknown endomorphism ring．
Use a trusted setup to avoid isogeny shortcut：

Random endomorphism ring curves．

－Ordinary curves．Pairing friendly \longrightarrow small discrimnant \longrightarrow known End (E) ．

－Supersingular curves．
Open problem：compute a supersingular elliptic curve of unknown endomorphism ring．
Use a trusted setup to avoid isogeny shortcut：

Random endomorphism ring curves.

- Ordinary curves. Pairing friendly \longrightarrow small discrimnant \longrightarrow known End (E).
- Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.
Use a trusted setup to avoid isogeny shortcut:

Random endomorphism ring curves．

－Ordinary curves．Pairing friendly \longrightarrow small discrimnant \longrightarrow known End (E) ．
－Supersingular curves．
Open problem：compute a supersingular elliptic curve of unknown endomorphism ring．
Use a trusted setup to avoid isogeny shortcut：

Random endomorphism ring curves.

- Ordinary curves. Pairing friendly \longrightarrow small discrimnant \longrightarrow known End (E).
- Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.
Use a trusted setup to avoid isogeny shortcut:

Random endomorphism ring curves.

- Ordinary curves. Pairing friendly \longrightarrow small discrimnant \longrightarrow known End (E).
- Supersingular curves.

Open problem: compute a supersingular elliptic curve of unknown endomorphism ring.
Use a trusted setup to avoid isogeny shortcut:

Efficient isogeny.

Suppose we have a point P of order 2^{T} defined over \mathbb{F}_{p}. It defines an isogeny of degree 2^{T} :

Efficient isogeny.

Suppose we have a point P of order 2^{T} defined over \mathbb{F}_{p}. It defines an isogeny of degree 2^{T} :

$$
\operatorname{deg}(\varphi)=2^{T}
$$

Efficient isogeny.

Suppose we have a point P of order 2^{T} defined over \mathbb{F}_{p}. It defines an isogeny of degree 2^{T} :

$$
\operatorname{deg}(\varphi)=2^{T}
$$

[2] |
[2] |
[2]
[2]

Efficient isogeny.

Suppose we have a point P of order 2^{T} defined over \mathbb{F}_{p}. It defines an isogeny of degree 2^{T} :

Efficient isogeny.

Suppose we have a point P of order 2^{T} defined over \mathbb{F}_{p}. It defines an isogeny of degree 2^{T} :

Efficient isogeny.

Suppose we have a point P of order 2^{T} defined over \mathbb{F}_{p}. It defines an isogeny of degree 2^{T} :

Efficient isogeny.

Suppose we have a point P of order 2^{T} defined over \mathbb{F}_{p}. It defines an isogeny of degree 2^{T} :

Efficient isogeny.

Suppose we have a point P of order 2^{T} defined over \mathbb{F}_{p}. It defines an isogeny of degree 2^{T} :

Efficient isogeny.

Suppose we have a point P of order 2^{T} defined over \mathbb{F}_{p}. It defines an isogeny of degree 2^{T} :

Complexity: $O\left(T^{2}\right)$. It can be turned into $O\left(T \log _{2}(T)\right)$ with a recursive strategy.

In practice, we cannot find a point of order 2^{T} (it is too large).
We choose curves such that $2^{n} \mid \# E\left(\mathbb{F}_{p}\right)$ with n as large as possible.

In practice, we cannot find a point of order 2^{T} (it is too large).
We choose curves such that $2^{n} \mid \# E\left(\mathbb{F}_{p}\right)$ with n as large as possible.

In practice, we cannot find a point of order 2^{T} (it is too large).
We choose curves such that $2^{n} \mid \# E\left(\mathbb{F}_{p}\right)$ with n as large as possible.

$$
\begin{gathered}
\# E\left(\mathbb{F}_{p}\right)=p+1 \\
p=2^{n} f N-1 \\
\log _{2}(p)=1500
\end{gathered}
$$

Proof-of-concept available on https://github.com/isogeny-vdf.

In practice, we cannot find a point of order 2^{T} (it is too large).
We choose curves such that $2^{n} \mid \# E\left(\mathbb{F}_{p}\right)$ with n as large as possible.

$$
\begin{gathered}
\# E\left(\mathbb{F}_{p}\right)=p+1 \\
p=2^{n} f N-1 \\
\log _{2}(p)=1500
\end{gathered}
$$

Proof-of-concept available on https://github.com/isogeny-vdf.

In practice，we cannot find a point of order 2^{T}（it is too large）．
We choose curves such that $2^{n} \mid \# E\left(\mathbb{F}_{p}\right)$ with n as large as possible．

$$
\begin{gathered}
\# E\left(\mathbb{F}_{p}\right)=p+1 \\
p=2^{n} f N-1 \\
\log _{2}(p)=1500
\end{gathered}
$$

Proof－of－concept available on https：／／github．com／isogeny－vdf．

In practice, we cannot find a point of order 2^{T} (it is too large).
We choose curves such that $2^{n} \mid \# E\left(\mathbb{F}_{p}\right)$ with n as large as possible.

$$
\begin{gathered}
\# E\left(\mathbb{F}_{p}\right)=p+1 \\
p=2^{n} f N-1
\end{gathered}
$$

$$
\log _{2}(p)=1500
$$

Proof-of-concept available on https://github.com/isogeny-vdf.

Post-quantum security.

- Our VDF is not post-quantum (discrete log problem).

Post-quantum security.

- Our VDF is not post-quantum (discrete log problem).
- Our VDF over $\mathbb{F}_{p^{2}}$ is quantum-annoying: once the setup is done, a quantum computer need to break the DLP for each evaluation of the VDF.

Post-quantum security.

- Our VDF is not post-quantum (discrete log problem).
- Our VDF over $\mathbb{F}_{p^{2}}$ is quantum-annoying: once the setup is done, a quantum computer need to break the DLP for each evaluation of the VDF.
- Our VDF over \mathbb{F}_{p} is not quantum-annoying: once the setup is done, a quantum computer can compute the class number $\mathrm{Cl}(-D)$ and then find a faster isogeny (similar to Wesolowski group-class VDF).

A generalization of the BLS signature.

A generalization of the BLS signature.

Let E an elliptic curve and $P \in E\left(\mathbb{F}_{p}\right)$ a point of order N.

- Secret key: s an integer
- Public key: $P_{K}=\varphi(P)$.

Sign Hash the message m into \mathbb{G}_{2} and the signature is $\sigma=[s] H(m)$.
Verify Check that $e(P, \sigma)=e\left(P_{K}, H(m)\right)$.

A generalization of the BLS signature.

Let E an elliptic curve and $P \in E\left(\mathbb{F}_{p}\right)$ a point of order N.

- Secret key: φ an isogeny $E \rightarrow E^{\prime}$
- Public key: $P_{K}=\varphi(P)$.

Sign Hash the message m into \mathbb{G}_{2} (on E^{\prime}) and the signature is $\sigma=\hat{\varphi}(H(m))$.
Verify Check that $e(P, \sigma)=\tilde{e}\left(P_{K}, H(m)\right)$.

A generalization of the BLS signature．

Let E an elliptic curve and $P \in E\left(\mathbb{F}_{p}\right)$ a point of order N ．
－Secret key：φ an isogeny $E \rightarrow E^{\prime}$
－Public key：$P_{K}=\varphi(P)$ ．
Sign Hash the message m into \mathbb{G}_{2}（on E^{\prime} ）and the signature is $\sigma=\hat{\varphi}(H(m))$ ．
Verify Check that $e(P, \sigma)=\tilde{e}\left(P_{K}, H(m)\right)$ ．
Patented by Broker，Charles，and Lauter in 2012 （different implementation，not efficient）．

A generalization of the BLS signature.

Let E an elliptic curve and $P \in E\left(\mathbb{F}_{p}\right)$ a point of order N.

- Secret key: φ an isogeny $E \rightarrow E^{\prime}$
- Public key: $P_{K}=\varphi(P)$.

Sign Hash the message m into \mathbb{G}_{2} (on E^{\prime}) and the signature is $\sigma=\hat{\varphi}(H(m))$.
Verify Check that $e(P, \sigma)=\tilde{e}\left(P_{K}, H(m)\right)$.
Patented by Broker, Charles, and Lauter in 2012 (different implementation, not efficient).

We obtain an identification protocol where the secret can be sub-exponentially larger than the proof. But it is not zero-knowledge.

A generalization of the BLS signature.

Let E an elliptic curve and $P \in E\left(\mathbb{F}_{p}\right)$ a point of order N.

- Secret key: φ an isogeny $E \rightarrow E^{\prime}$
- Public key: $P_{K}=\varphi(P)$.

Sign Hash the message m into \mathbb{G}_{2} (on E^{\prime}) and the signature is $\sigma=\hat{\varphi}(H(m))$.
Verify Check that $e(P, \sigma)=\tilde{e}\left(P_{K}, H(m)\right)$.
Patented by Broker, Charles, and Lauter in 2012 (different implementation, not efficient).

We obtain an identification protocol where the secret can be sub-exponentially larger than the proof. But it is not zero-knowledge.

Now looking for an accumulator... But we failed!

Thank you for your attention.

