
1/20

Verifiable Delay Functions
from Supersingular Isogenies and Pairings

Luca De Feo1 Simon Masson2 Christophe Petit3 Antonio Sanso4

1IBM Research Zürich, CH.

2Thales and Université de Lorraine, Nancy, FR.

3University of Birmingham, UK.

4Adobe Inc. and Ruhr Universität Bochum, DE.

December 9th, 2019



2/20

Definition and examples

Definition and examples

VDF based on isogenies and pairings

Implementation and comparison



3/20

Definition
A verifiable delay function (VDF) is a function f : X −→ Y such that

1. it takes T steps to evaluate, even with massive amounts of parallelism

2. the output can be verified efficiently.

I Setup(λ,T ) −→ public parameters pp

I Eval(pp, x) −→ output y such that y = f (x), and a proof π (requires T steps)

I Verify(pp, x , y , π) −→ yes or no.



3/20

Definition
A verifiable delay function (VDF) is a function f : X −→ Y such that

1. it takes T steps to evaluate, even with massive amounts of parallelism

2. the output can be verified efficiently.

I Setup(λ,T ) −→ public parameters pp

I Eval(pp, x) −→ output y such that y = f (x), and a proof π (requires T steps)

I Verify(pp, x , y , π) −→ yes or no.



4/20

Application. Distributed randomness

R = ra ⊕ rb ⊕ rc ⊕ rd ⊕ re seems to be random...

but someone can control the randomness !

Idea: slow things down by adding delay.

h(R) ∈ X

f (h(R))

VDF



4/20

Application. Distributed randomness

R = ra ⊕ rb ⊕ rc ⊕ rd ⊕ re seems to be random...

but someone can control the randomness !

Idea: slow things down by adding delay.

h(R) ∈ X

f (h(R))

VDF



4/20

Application. Distributed randomness

R = ra ⊕ rb ⊕ rc ⊕ rd ⊕ re

seems to be random...

but someone can control the randomness !

Idea: slow things down by adding delay.

h(R) ∈ X

f (h(R))

VDF



4/20

Application. Distributed randomness

R = ra ⊕ rb ⊕ rc ⊕ rd ⊕ re seems to be random...

but someone can control the randomness !

Idea: slow things down by adding delay.

h(R) ∈ X

f (h(R))

VDF



4/20

Application. Distributed randomness

R = ra ⊕ rb ⊕ rc ⊕ rd ⊕ re seems to be random...

but someone can control the randomness !

Idea: slow things down by adding delay.

h(R) ∈ X

f (h(R))

VDF



4/20

Application. Distributed randomness

R = ra ⊕ rb ⊕ rc ⊕ rd ⊕ re seems to be random...

but someone can control the randomness !

Idea: slow things down by adding delay.

h(R) ∈ X

f (h(R))

VDF



4/20

Application. Distributed randomness

R = ra ⊕ rb ⊕ rc ⊕ rd ⊕ re seems to be random...

but someone can control the randomness !

Idea: slow things down by adding delay.

h(R) ∈ X

f (h(R))

VDF



5/20

VDF based on RSA.

Setup. Z/NZ where N is a RSA modulus

Evaluation. y = x2T mod N.

Verification. The evaluator also sends a proof π to convince the verifier.

I Wesolowski verification. [Eurocrypt ’19]
π is short
Verification is fast.

I Pietrzak verification. [ITCS ’19]
π computation is more efficent
Verification is slower.

Different security assumptions.



5/20

VDF based on RSA.

Setup. Z/NZ where N is a RSA modulus

Evaluation. y = x2T mod N.

Verification. The evaluator also sends a proof π to convince the verifier.

I Wesolowski verification. [Eurocrypt ’19]
π is short
Verification is fast.

I Pietrzak verification. [ITCS ’19]
π computation is more efficent
Verification is slower.

Different security assumptions.



5/20

VDF based on RSA.

Setup. Z/NZ where N is a RSA modulus

Evaluation. y = x2T mod N.

Verification. The evaluator also sends a proof π to convince the verifier.

I Wesolowski verification. [Eurocrypt ’19]
π is short
Verification is fast.

I Pietrzak verification. [ITCS ’19]
π computation is more efficent
Verification is slower.

Different security assumptions.



5/20

VDF based on RSA.

Setup. Z/NZ where N is a RSA modulus

Evaluation. y = x2T mod N.

Verification. The evaluator also sends a proof π to convince the verifier.

I Wesolowski verification. [Eurocrypt ’19]
π is short
Verification is fast.

I Pietrzak verification. [ITCS ’19]
π computation is more efficent
Verification is slower.

Different security assumptions.



6/20

VDF based on RSA.
If one knows the factorization of N, the evaluation can be computed using

h(x)2T ≡ h(x)2T mod ϕ(N) mod N

Need a trusted setup to choose N.

This VDF also works in another group of unknown order.
VDF based on class group. Let K = Q(

√
−D) and OK its ring of integers.

ClassGroup(D) = Ideals(OK )/PrincipalIdeals(OK )

This group is finite and it is hard to compute #ClassGroup(D).

VDF pro con

RSA fast verification
trusted setup

not post-quantum

Class group small parameters
slow verification

not post-quantum



6/20

VDF based on RSA.
If one knows the factorization of N, the evaluation can be computed using

h(x)2T ≡ h(x)2T mod ϕ(N) mod N

Need a trusted setup to choose N.
This VDF also works in another group of unknown order.

VDF based on class group. Let K = Q(
√
−D) and OK its ring of integers.

ClassGroup(D) = Ideals(OK )/PrincipalIdeals(OK )

This group is finite and it is hard to compute #ClassGroup(D).

VDF pro con

RSA fast verification
trusted setup

not post-quantum

Class group small parameters
slow verification

not post-quantum



6/20

VDF based on RSA.
If one knows the factorization of N, the evaluation can be computed using

h(x)2T ≡ h(x)2T mod ϕ(N) mod N

Need a trusted setup to choose N.
This VDF also works in another group of unknown order.
VDF based on class group. Let K = Q(

√
−D) and OK its ring of integers.

ClassGroup(D) = Ideals(OK )/PrincipalIdeals(OK )

This group is finite and it is hard to compute #ClassGroup(D).

VDF pro con

RSA fast verification
trusted setup

not post-quantum

Class group small parameters
slow verification

not post-quantum



6/20

VDF based on RSA.
If one knows the factorization of N, the evaluation can be computed using

h(x)2T ≡ h(x)2T mod ϕ(N) mod N

Need a trusted setup to choose N.
This VDF also works in another group of unknown order.
VDF based on class group. Let K = Q(

√
−D) and OK its ring of integers.

ClassGroup(D) = Ideals(OK )/PrincipalIdeals(OK )

This group is finite and it is hard to compute #ClassGroup(D).

VDF pro con

RSA fast verification
trusted setup

not post-quantum

Class group small parameters
slow verification

not post-quantum



7/20

VDF based on isogenies and pairings

Definition and examples

VDF based on isogenies and pairings

Implementation and comparison



8/20

Our new verifiable delay functions.

1. Use isogenies to compute the evaluation step.

2. Use a pairing equation to verify the evaluation.

I What is an isogeny ?

I What is a pairing ?



8/20

Our new verifiable delay functions.

1. Use isogenies to compute the evaluation step.

2. Use a pairing equation to verify the evaluation.

I What is an isogeny ?

I What is a pairing ?



9/20

Pairing-friendly elliptic curves.

Definition
A pairing is a bilinear non-degenerate application

e : G1 ×G2 −→ G3

where Gi are groups of prime order r .

For an elliptic curve, we can choose G1 = 〈P〉 and G2 = 〈Q〉 with P,Q points of the
curve of order r .
A curve is pairing-friendly if P and Q are efficiently computable.
Applications. BLS signature, identity-based encryption, etc.



9/20

Pairing-friendly elliptic curves.

Definition
A pairing is a bilinear non-degenerate application

e : G1 ×G2 −→ G3

where Gi are groups of prime order r .

For an elliptic curve, we can choose G1 = 〈P〉 and G2 = 〈Q〉 with P,Q points of the
curve of order r .
A curve is pairing-friendly if P and Q are efficiently computable.

Applications. BLS signature, identity-based encryption, etc.



9/20

Pairing-friendly elliptic curves.

Definition
A pairing is a bilinear non-degenerate application

e : G1 ×G2 −→ G3

where Gi are groups of prime order r .

For an elliptic curve, we can choose G1 = 〈P〉 and G2 = 〈Q〉 with P,Q points of the
curve of order r .
A curve is pairing-friendly if P and Q are efficiently computable.
Applications. BLS signature, identity-based encryption, etc.



10/20

Isogenies of elliptic curves.

Definition (Isogeny)

An isogeny between two elliptic curves E and E ′ is an algebraic map ϕ such that
ϕ(0E ) = 0E ′ .

I Isogenies of elliptic curves are also group morphisms.

I In our case, the degree of an isogeny is the size of its kernel.

I Isogenies of small degree are efficiently computable.

Example. E : y 2 = x3 − x and K = (1, 0) of order 2.

ϕ : E −→ E/〈K 〉
(x , y) 7−→

(
x2−x+2
x−1 , y x2−2x−1

x2−2x+1

)
From ϕ : E → E ′, there always exists a dual isogeny ϕ̂ : E ′ → E such that
ϕ ◦ ϕ̂ = [degϕ].

e(ϕ(P),Q) = e(P, ϕ̂(Q))



10/20

Isogenies of elliptic curves.

Definition (Isogeny)

An isogeny between two elliptic curves E and E ′ is an algebraic map ϕ such that
ϕ(0E ) = 0E ′ .

I Isogenies of elliptic curves are also group morphisms.

I In our case, the degree of an isogeny is the size of its kernel.

I Isogenies of small degree are efficiently computable.

Example. E : y 2 = x3 − x and K = (1, 0) of order 2.

ϕ : E −→ E/〈K 〉
(x , y) 7−→

(
x2−x+2
x−1 , y x2−2x−1

x2−2x+1

)
From ϕ : E → E ′, there always exists a dual isogeny ϕ̂ : E ′ → E such that
ϕ ◦ ϕ̂ = [degϕ].

e(ϕ(P),Q) = e(P, ϕ̂(Q))



10/20

Isogenies of elliptic curves.

Definition (Isogeny)

An isogeny between two elliptic curves E and E ′ is an algebraic map ϕ such that
ϕ(0E ) = 0E ′ .

I Isogenies of elliptic curves are also group morphisms.

I In our case, the degree of an isogeny is the size of its kernel.

I Isogenies of small degree are efficiently computable.

Example. E : y 2 = x3 − x and K = (1, 0) of order 2.

ϕ : E −→ E/〈K 〉
(x , y) 7−→

(
x2−x+2
x−1 , y x2−2x−1

x2−2x+1

)

From ϕ : E → E ′, there always exists a dual isogeny ϕ̂ : E ′ → E such that
ϕ ◦ ϕ̂ = [degϕ].

e(ϕ(P),Q) = e(P, ϕ̂(Q))



10/20

Isogenies of elliptic curves.

Definition (Isogeny)

An isogeny between two elliptic curves E and E ′ is an algebraic map ϕ such that
ϕ(0E ) = 0E ′ .

I Isogenies of elliptic curves are also group morphisms.

I In our case, the degree of an isogeny is the size of its kernel.

I Isogenies of small degree are efficiently computable.

Example. E : y 2 = x3 − x and K = (1, 0) of order 2.

ϕ : E −→ E/〈K 〉
(x , y) 7−→

(
x2−x+2
x−1 , y x2−2x−1

x2−2x+1

)
From ϕ : E → E ′, there always exists a dual isogeny ϕ̂ : E ′ → E such that
ϕ ◦ ϕ̂ = [degϕ].

e(ϕ(P),Q) = e(P, ϕ̂(Q))



10/20

Isogenies of elliptic curves.

Definition (Isogeny)

An isogeny between two elliptic curves E and E ′ is an algebraic map ϕ such that
ϕ(0E ) = 0E ′ .

I Isogenies of elliptic curves are also group morphisms.

I In our case, the degree of an isogeny is the size of its kernel.

I Isogenies of small degree are efficiently computable.

Example. E : y 2 = x3 − x and K = (1, 0) of order 2.

ϕ : E −→ E/〈K 〉
(x , y) 7−→

(
x2−x+2
x−1 , y x2−2x−1

x2−2x+1

)
From ϕ : E → E ′, there always exists a dual isogeny ϕ̂ : E ′ → E such that
ϕ ◦ ϕ̂ = [degϕ].

e(ϕ(P),Q) = e(P, ϕ̂(Q))



11/20

Two types of elliptic curves:

Ordinary curves End(E ) is an order in Q(
√
−D).

Supersingular curves End(E ) is a maximal order in the quaternion algebra Qp,∞.
Supersingular curves can be defined over Fp2 .
Looking only curves defined over Fp, Endp(E ) is an order in Q(

√
−p).

•

•

E ′

E

••

•

•

•
•

•

•
•

•••
•

•
•

•

•
•

• • •
•

•

•



11/20

Two types of elliptic curves:

Ordinary curves End(E ) is an order in Q(
√
−D).

Supersingular curves End(E ) is a maximal order in the quaternion algebra Qp,∞.
Supersingular curves can be defined over Fp2 .
Looking only curves defined over Fp, Endp(E ) is an order in Q(

√
−p).

•

•

E ′

E

••

•

•

•
•

•

•
•

•••
•

•
•

•

•
•

• • •
•

•

•



11/20

Two types of elliptic curves:

Ordinary curves End(E ) is an order in Q(
√
−D).

Supersingular curves End(E ) is a maximal order in the quaternion algebra Qp,∞.
Supersingular curves can be defined over Fp2 .
Looking only curves defined over Fp, Endp(E ) is an order in Q(

√
−p).

•

•

E ′

E

••

•

•

•
•

•

•
•

•••
•

•
•

•

•
•

• • •
•

•

•



11/20

Two types of elliptic curves:

Ordinary curves End(E ) is an order in Q(
√
−D).

Supersingular curves End(E ) is a maximal order in the quaternion algebra Qp,∞.
Supersingular curves can be defined over Fp2 .
Looking only curves defined over Fp, Endp(E ) is an order in Q(

√
−p).

•

•

E ′

E

••

•

•

•
•

•

•
•

•••
•

•
•

•

•
•

• • •
•

•

•



11/20

Two types of elliptic curves:

Ordinary curves End(E ) is an order in Q(
√
−D).

Supersingular curves End(E ) is a maximal order in the quaternion algebra Qp,∞.

Supersingular curves can be defined over Fp2 .
Looking only curves defined over Fp, Endp(E ) is an order in Q(

√
−p).

•

•

E ′

E

••

•

•

•
•

•

•
•

•••
•

•
•

•

•
•

• • •
•

•

•



11/20

Two types of elliptic curves:

Ordinary curves End(E ) is an order in Q(
√
−D).

Supersingular curves End(E ) is a maximal order in the quaternion algebra Qp,∞.
Supersingular curves can be defined over Fp2 .

Looking only curves defined over Fp, Endp(E ) is an order in Q(
√
−p).

•

•

E ′

E

••

•

•

•
•

•

•
•

•••
•

•
•

•

•
•

• • •
•

•

•



11/20

Two types of elliptic curves:

Ordinary curves End(E ) is an order in Q(
√
−D).

Supersingular curves End(E ) is a maximal order in the quaternion algebra Qp,∞.
Supersingular curves can be defined over Fp2 .
Looking only curves defined over Fp, Endp(E ) is an order in Q(

√
−p).

•

•

E ′

E

••

•

•

•
•

•

•
•

•••
•

•
•

•

•
•

• • •
•

•

•



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•P ∈ EP ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•P ∈ E

P ∈ E

ϕ1

•

ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′

Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ EP ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ EP ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ EP ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp

2

supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•

ϕ2•
ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp

2

supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp

2

supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp

2

supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp

2

supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp

2

supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp

2

supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•

ϕ̂2 •
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp

2

supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ E

P ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp

2

supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ EP ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



12/20

VDF over Fp

2

supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•

P ∈ EP ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!



13/20

Isogeny shortcut.

If E has a known endomorphism ring, a shortcut can be
found!
Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ E



13/20

Isogeny shortcut.

If E has a known endomorphism ring, a shortcut can be
found!
Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ E



13/20

Isogeny shortcut.
If E has a known endomorphism ring, a shortcut can be
found!

Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ

E



13/20

Isogeny shortcut.
If E has a known endomorphism ring, a shortcut can be
found!
Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ

E



13/20

Isogeny shortcut.
If E has a known endomorphism ring, a shortcut can be
found!
Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ

E



13/20

Isogeny shortcut.
If E has a known endomorphism ring, a shortcut can be
found!
Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ E



13/20

Isogeny shortcut.
If E has a known endomorphism ring, a shortcut can be
found!
Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ E



13/20

Isogeny shortcut.
If E has a known endomorphism ring, a shortcut can be
found!
Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ

E



13/20

Isogeny shortcut.
If E has a known endomorphism ring, a shortcut can be
found!
Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ

E



13/20

Isogeny shortcut.
If E has a known endomorphism ring, a shortcut can be
found!
Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ

E



14/20

Isogenies over Fp and class group.

E1 E2

ϕ1

Endp(E1) Endp(E2)
I1

E3

Endp(E3)

ϕ2

I2

ϕ2 ◦ ϕ1

I1I2

Security of our VDF.

I Our VDFs are secure on a classical computer.
I The Fp VDF is insecure on a quantum computer:

I Once the setup is done, compute #Cl(D).
I Evaluate the Fp VDF with ideal multiplications faster than isogenies.

I The Fp2 VDF is insecure on a quantum computer.
It is quantum-annoying in the sense that you need to run Shor’s algorithm for
each evaluation of the VDF.



14/20

Isogenies over Fp and class group.

E1 E2

ϕ1

Endp(E1) Endp(E2)
I1

E3

Endp(E3)

ϕ2

I2

ϕ2 ◦ ϕ1

I1I2

Security of our VDF.

I Our VDFs are secure on a classical computer.
I The Fp VDF is insecure on a quantum computer:

I Once the setup is done, compute #Cl(D).
I Evaluate the Fp VDF with ideal multiplications faster than isogenies.

I The Fp2 VDF is insecure on a quantum computer.
It is quantum-annoying in the sense that you need to run Shor’s algorithm for
each evaluation of the VDF.



14/20

Isogenies over Fp and class group.

E1 E2

ϕ1

Endp(E1) Endp(E2)
I1

E3

Endp(E3)

ϕ2

I2

ϕ2 ◦ ϕ1

I1I2

Security of our VDF.

I Our VDFs are secure on a classical computer.
I The Fp VDF is insecure on a quantum computer:

I Once the setup is done, compute #Cl(D).
I Evaluate the Fp VDF with ideal multiplications faster than isogenies.

I The Fp2 VDF is insecure on a quantum computer.
It is quantum-annoying in the sense that you need to run Shor’s algorithm for
each evaluation of the VDF.



14/20

Isogenies over Fp and class group.

E1

E2

ϕ1

Endp(E1)

Endp(E2)
I1

E3

Endp(E3)

ϕ2

I2

ϕ2 ◦ ϕ1

I1I2

Security of our VDF.

I Our VDFs are secure on a classical computer.
I The Fp VDF is insecure on a quantum computer:

I Once the setup is done, compute #Cl(D).
I Evaluate the Fp VDF with ideal multiplications faster than isogenies.

I The Fp2 VDF is insecure on a quantum computer.
It is quantum-annoying in the sense that you need to run Shor’s algorithm for
each evaluation of the VDF.



14/20

Isogenies over Fp and class group.

E1

E2

ϕ1

Endp(E1)

Endp(E2)
I1

E3

Endp(E3)

ϕ2

I2

ϕ2 ◦ ϕ1

I1I2

Security of our VDF.

I Our VDFs are secure on a classical computer.
I The Fp VDF is insecure on a quantum computer:

I Once the setup is done, compute #Cl(D).
I Evaluate the Fp VDF with ideal multiplications faster than isogenies.

I The Fp2 VDF is insecure on a quantum computer.
It is quantum-annoying in the sense that you need to run Shor’s algorithm for
each evaluation of the VDF.



15/20

Implementation and comparison

Definition and examples

VDF based on isogenies and pairings

Implementation and comparison



16/20

Computing isogenies.

I Method 1. Degree 2 isogenies using 2-torsion points:

•E • • • • • • • • • • • • •
E1 E2 E3 E4 E5 E6 E7 E8 ET−1 E ′. . .

Time complexity: T isogenies of degree 2.
Storage complexity: O(T ).

I Method 2. Degree 2n isogenies using 2n-torsion point:

• • • . . . • •E E4 E8

Time complexity: T/n isogenies of degree 2n ≈ T log2(n) degree 2 isogenies.
Storage complexity: O(T/n).
In practice (for large T ), log2(n) is small and it can be useful to reduce the
storage.



16/20

Computing isogenies.

I Method 1. Degree 2 isogenies using 2-torsion points:

•E • • • • • • • • • • • • •
E1 E2 E3 E4 E5 E6 E7 E8 ET−1 E ′. . .

Time complexity: T isogenies of degree 2.
Storage complexity: O(T ).

I Method 2. Degree 2n isogenies using 2n-torsion point:

• • • . . . • •E E4 E8

Time complexity: T/n isogenies of degree 2n ≈ T log2(n) degree 2 isogenies.
Storage complexity: O(T/n).
In practice (for large T ), log2(n) is small and it can be useful to reduce the
storage.



16/20

Computing isogenies.

I Method 1. Degree 2 isogenies using 2-torsion points:

•E • • • • • • • • • • • • •
E1 E2 E3 E4 E5 E6 E7 E8 ET−1 E ′. . .

Time complexity: T isogenies of degree 2.
Storage complexity: O(T ).

I Method 2. Degree 2n isogenies using 2n-torsion point:

• • • . . . • •E E4 E8

Time complexity: T/n isogenies of degree 2n ≈ T log2(n) degree 2 isogenies.
Storage complexity: O(T/n).
In practice (for large T ), log2(n) is small and it can be useful to reduce the
storage.



16/20

Computing isogenies.

I Method 1. Degree 2 isogenies using 2-torsion points:

•E • • • • • • • • • • • • •
E1 E2 E3 E4 E5 E6 E7 E8 ET−1 E ′. . .

Time complexity: T isogenies of degree 2.
Storage complexity: O(T ).

I Method 2. Degree 2n isogenies using 2n-torsion point:

• • • . . . • •E E4 E8

Time complexity: T/n isogenies of degree 2n ≈ T log2(n) degree 2 isogenies.
Storage complexity: O(T/n).
In practice (for large T ), log2(n) is small and it can be useful to reduce the
storage.



17/20

Choice of parameters.
#E (Fp) = p + 1

I DLP over the curves.
P and Q of order r with log2(r) ≈ 256. so we set p = fr − 1 with f a cofactor.

I DLP over the finite field Fp2 .
NFS over Fp2 : log2(p) ≈ 1500. We need a cofactor of size log2(f ) ≈ 1250.

I From a point of order 2n, we can compute a degree 2n isogeny in O(n log2(n))
degree 2 isogenies.

fbits of p : r f21244 f

p = r · 21244 · f − 1



17/20

Choice of parameters.
#E (Fp) = p + 1

I DLP over the curves.
P and Q of order r with log2(r) ≈ 256. so we set p = fr − 1 with f a cofactor.

I DLP over the finite field Fp2 .
NFS over Fp2 : log2(p) ≈ 1500. We need a cofactor of size log2(f ) ≈ 1250.

I From a point of order 2n, we can compute a degree 2n isogeny in O(n log2(n))
degree 2 isogenies.

fbits of p : r

f21244 f

p = r · 21244 · f − 1



17/20

Choice of parameters.
#E (Fp) = p + 1

I DLP over the curves.
P and Q of order r with log2(r) ≈ 256. so we set p = fr − 1 with f a cofactor.

I DLP over the finite field Fp2 .
NFS over Fp2 : log2(p) ≈ 1500. We need a cofactor of size log2(f ) ≈ 1250.

I From a point of order 2n, we can compute a degree 2n isogeny in O(n log2(n))
degree 2 isogenies.

f

bits of p : r f

21244 f

p = r · 21244 · f − 1



17/20

Choice of parameters.
#E (Fp) = p + 1

I DLP over the curves.
P and Q of order r with log2(r) ≈ 256. so we set p = fr − 1 with f a cofactor.

I DLP over the finite field Fp2 .
NFS over Fp2 : log2(p) ≈ 1500. We need a cofactor of size log2(f ) ≈ 1250.

I From a point of order 2n, we can compute a degree 2n isogeny in O(n log2(n))
degree 2 isogenies.

f

bits of p : r

f

21244 f

p = r · 21244 · f − 1



17/20

Choice of parameters.
#E (Fp) = p + 1

I DLP over the curves.
P and Q of order r with log2(r) ≈ 256. so we set p = fr − 1 with f a cofactor.

I DLP over the finite field Fp2 .
NFS over Fp2 : log2(p) ≈ 1500. We need a cofactor of size log2(f ) ≈ 1250.

I From a point of order 2n, we can compute a degree 2n isogeny in O(n log2(n))
degree 2 isogenies.

f

bits of p : r

f

21244 f

p = r · 21244 · f − 1



18/20

Implementation.

I Proof of concept in SageMath : https://github.com/isogenies-vdf.

I Parameters chosen for 128 bits of security

I Arithmetic of Montgomery curves

I Isogeny computation with recursive strategy

I Tate pairing computation.

Protocol Step ek size Time Throughput

Fp graph
Setup 238 kb – 0.75isog/ms

Evaluation – – 0.75isog/ms
Verification – 0.3 s –

Fp2 graph
Setup 491 kb – 0.35isog/ms

Evaluation – – 0.23isog/ms
Verification – 4 s –

Table: Benchmarks for our VDFs, on a Intel Core i7-8700 @ 3.20GHz, T ≈ 216

https://github.com/isogenies-vdf


18/20

Implementation.

I Proof of concept in SageMath : https://github.com/isogenies-vdf.

I Parameters chosen for 128 bits of security

I Arithmetic of Montgomery curves

I Isogeny computation with recursive strategy

I Tate pairing computation.

Protocol Step ek size Time Throughput

Fp graph
Setup 238 kb – 0.75isog/ms

Evaluation – – 0.75isog/ms
Verification – 0.3 s –

Fp2 graph
Setup 491 kb – 0.35isog/ms

Evaluation – – 0.23isog/ms
Verification – 4 s –

Table: Benchmarks for our VDFs, on a Intel Core i7-8700 @ 3.20GHz, T ≈ 216

https://github.com/isogenies-vdf


19/20

VDF pro con

RSA fast verification trusted setup

Class group
no trusted setup

slow verification
small parameters

Isogenies
Fast verification trusted setup

over Fp

Isogenies Quantum-annoying
trusted setup

over Fp2 Fast verification

Open problems.

I Hash to the supersingular set (in order to remove the trusted setup)

I Find a fully post-quantum VDF



19/20

VDF pro con

RSA fast verification trusted setup

Class group
no trusted setup

slow verification
small parameters

Isogenies
Fast verification trusted setup

over Fp

Isogenies Quantum-annoying
trusted setup

over Fp2 Fast verification

Open problems.

I Hash to the supersingular set (in order to remove the trusted setup)

I Find a fully post-quantum VDF



19/20

VDF pro con

RSA fast verification trusted setup

Class group
no trusted setup

slow verification
small parameters

Isogenies
Fast verification trusted setup

over Fp

Isogenies Quantum-annoying
trusted setup

over Fp2 Fast verification

Open problems.

I Hash to the supersingular set (in order to remove the trusted setup)

I Find a fully post-quantum VDF



20/20

Thank you for your attention.


