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Definition
A verifiable delay function (VDF) is a function f : X −→ Y such that

1. it takes T steps to evaluate, even with massive amounts of parallelism

2. the output can be verified efficiently.

I Setup(λ,T ) −→ public parameters pp

I Eval(pp, x) −→ output y such that y = f (x), and a proof π (requires T steps)

I Verify(pp, x , y , π) −→ yes or no.
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Application. Distributed randomness

R = ra ⊕ rb ⊕ rc ⊕ rd ⊕ re seems to be random...

but someone can control the randomness !

Idea: slow things down by adding delay.

h(R) ∈ X

f (h(R))

VDF
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VDF based on RSA.

Setup. Z/NZ where N is a RSA modulus

Evaluation. y = x2T mod N.

Verification. The evaluator also sends a proof π to convince the verifier.

I Wesolowski verification. [Eurocrypt ’19]
π is short
Verification is fast.

I Pietrzak verification. [ITCS ’19]
π computation is more efficent
Verification is slower.

Different security assumptions.
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VDF based on RSA.
If one knows the factorization of N, the evaluation can be computed using

h(x)2T ≡ h(x)2T mod ϕ(N) mod N

Need a trusted setup to choose N.

This VDF also works in another group of unknown order.
VDF based on class group. Let K = Q(

√
−D) and OK its ring of integers.

ClassGroup(D) = Ideals(OK )/PrincipalIdeals(OK )

This group is finite and it is hard to compute #ClassGroup(D).

VDF pro con

RSA fast verification
trusted setup

not post-quantum

Class group small parameters
slow verification

not post-quantum
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Our new verifiable delay functions.

1. Use isogenies to compute the evaluation step.

2. Use a pairing equation to verify the evaluation.

I What is an isogeny ?

I What is a pairing ?
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Pairing-friendly elliptic curves.

Definition
A pairing is a bilinear non-degenerate application

e : G1 ×G2 −→ G3

where Gi are groups of prime order r .

For an elliptic curve, we can choose G1 = 〈P〉 and G2 = 〈Q〉 with P,Q points of the
curve of order r .
A curve is pairing-friendly if P and Q are efficiently computable.
Applications. BLS signature, identity-based encryption, etc.
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Isogenies of elliptic curves.

Definition (Isogeny)

An isogeny between two elliptic curves E and E ′ is an algebraic map ϕ such that
ϕ(0E ) = 0E ′ .

I Isogenies of elliptic curves are also group morphisms.

I In our case, the degree of an isogeny is the size of its kernel.

I Isogenies of small degree are efficiently computable.

Example. E : y 2 = x3 − x and K = (1, 0) of order 2.

ϕ : E −→ E/〈K 〉
(x , y) 7−→

(
x2−x+2
x−1 , y x2−2x−1

x2−2x+1

)
From ϕ : E → E ′, there always exists a dual isogeny ϕ̂ : E ′ → E such that
ϕ ◦ ϕ̂ = [degϕ].

e(ϕ(P),Q) = e(P, ϕ̂(Q))
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Two types of elliptic curves:

Ordinary curves End(E ) is an order in Q(
√
−D).

Supersingular curves End(E ) is a maximal order in the quaternion algebra Qp,∞.
Supersingular curves can be defined over Fp2 .
Looking only curves defined over Fp, Endp(E ) is an order in Q(

√
−p).

•

•

E ′

E

••

•

•

•
•

•

•
•

•••
•

•
•

•

•
•

• • •
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VDF over Fp2 supersingular curves.

Setup A public walk in the isogeny graph.

Evaluation For Q ∈ E ′, compute ϕ̂(Q) (the backtracking walk).

Verification Check that e(P, ϕ̂(Q)) = e(ϕ(P),Q).

•

•

••

•

•

•

•

•P ∈ EP ∈ E

ϕ1

•
ϕ2

•

ϕ3

•ϕ(P) ∈ E ′
Q ∈ E ′

ϕ̂3

•

ϕ̂2

•
ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

ϕ1

•
ϕ2•

ϕ3

•

ϕ4

ϕ(P) ∈ E ′
•

Q ∈ E ′

ϕ̂4

•

ϕ̂3

•
ϕ̂2 •

ϕ̂1

P ∈ E , ϕ̂(Q) ∈ E

Not post-quantum, but also no proof of evaluation needed!
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Isogeny shortcut.

If E has a known endomorphism ring, a shortcut can be
found!
Unknown endomorphism ring.

I Ordinary curves. Pairing friendly → small
discriminant → known End(E ).

I Supersingular curves.
Open problem: compute a supersingular elliptic
curve of unknown endomorphism ring.

Trusted setup.

I Start from a well known supersingular curve,

I Do a random walk,

I Forget it.

E has an unknown endomorphism ring.

y 2 = x3 + x

E ′

ψ E
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Isogenies over Fp and class group.

E1 E2

ϕ1

Endp(E1) Endp(E2)
I1

E3

Endp(E3)

ϕ2

I2

ϕ2 ◦ ϕ1

I1I2

Security of our VDF.

I Our VDFs are secure on a classical computer.
I The Fp VDF is insecure on a quantum computer:

I Once the setup is done, compute #Cl(D).
I Evaluate the Fp VDF with ideal multiplications faster than isogenies.

I The Fp2 VDF is insecure on a quantum computer.
It is quantum-annoying in the sense that you need to run Shor’s algorithm for
each evaluation of the VDF.
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Implementation and comparison

Definition and examples

VDF based on isogenies and pairings

Implementation and comparison
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Computing isogenies.

I Method 1. Degree 2 isogenies using 2-torsion points:

•E • • • • • • • • • • • • •
E1 E2 E3 E4 E5 E6 E7 E8 ET−1 E ′. . .

Time complexity: T isogenies of degree 2.
Storage complexity: O(T ).

I Method 2. Degree 2n isogenies using 2n-torsion point:

• • • . . . • •E E4 E8

Time complexity: T/n isogenies of degree 2n ≈ T log2(n) degree 2 isogenies.
Storage complexity: O(T/n).
In practice (for large T ), log2(n) is small and it can be useful to reduce the
storage.
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Choice of parameters.
#E (Fp) = p + 1

I DLP over the curves.
P and Q of order r with log2(r) ≈ 256. so we set p = fr − 1 with f a cofactor.

I DLP over the finite field Fp2 .
NFS over Fp2 : log2(p) ≈ 1500. We need a cofactor of size log2(f ) ≈ 1250.

I From a point of order 2n, we can compute a degree 2n isogeny in O(n log2(n))
degree 2 isogenies.

fbits of p : r f21244 f

p = r · 21244 · f − 1
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Implementation.

I Proof of concept in SageMath : https://github.com/isogenies-vdf.

I Parameters chosen for 128 bits of security

I Arithmetic of Montgomery curves

I Isogeny computation with recursive strategy

I Tate pairing computation.

Protocol Step ek size Time Throughput

Fp graph
Setup 238 kb – 0.75isog/ms

Evaluation – – 0.75isog/ms
Verification – 0.3 s –

Fp2 graph
Setup 491 kb – 0.35isog/ms

Evaluation – – 0.23isog/ms
Verification – 4 s –

Table: Benchmarks for our VDFs, on a Intel Core i7-8700 @ 3.20GHz, T ≈ 216

https://github.com/isogenies-vdf
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https://github.com/isogenies-vdf
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VDF pro con

RSA fast verification trusted setup

Class group
no trusted setup

slow verification
small parameters

Isogenies
Fast verification trusted setup

over Fp

Isogenies Quantum-annoying
trusted setup

over Fp2 Fast verification

Open problems.

I Hash to the supersingular set (in order to remove the trusted setup)

I Find a fully post-quantum VDF
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Thank you for your attention.


