Cocks—Pinch curves with efficient ate pairing

Simon Masson
Joint work with A. Guillevic, E. Thomé

Thales — LORIA

December 11, 2018

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

Simon Masson Cocks—Pi curves with efficient ate pairing

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

For some particular P, Q@ € E and a,b € Z,

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

For some particular P, Q@ € E and a,b € Z,

e(aP, bQ)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

For some particular P, Q@ € E and a,b € Z,

e(aP,bQ) = e(P, bQ)?

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

For some particular P, Q@ € E and a,b € Z,

e(aP,bQ) = e(P,bQ)* = e(P, Q)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 1. Tripartite one round key exchange. (Joux 2000)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 1. Tripartite one round key exchange. (Joux 2000)

&

s s

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 1. Tripartite one round key exchange. (Joux 2000)

b secret

&

i

a secret C secret

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 1. Tripartite one round key exchange. (Joux 2000)

& S,

a secret C secret

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 1. Tripartite one round key exchange. (Joux 2000)

béetbp
aP % P)abe ;\, P
& S

a secret C secret

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 2. BLS signature
H:{0,1}* — (P) is a hash function, with P € E(F,) of prime order n.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 2. BLS signature

H:{0,1}* — (P) is a hash function, with P € E(F,) of prime order n.
Secret key: s, € {2,...,n—1}.

Public key: Py = [sk]P.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 2. BLS signature

H:{0,1}* — (P) is a hash function, with P € E(F,) of prime order n.
Secret key: s, € {2,...,n—1}.

Public key: Py = [sk]P.

Signing a message M € {0,1}*: o = [sk]H(M).

Verifying the signature: e(Py, H(M)) L e(P,o).

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 2. BLS signature

H:{0,1}* — (P) is a hash function, with P € E(F,) of prime order n.
Secret key: s, € {2,...,n—1}.

Public key: Py = [sk]P.

Signing a message M € {0,1}*: o = [sk]H(M).

Verifying the signature: e(Py, H(M)) L e(P,o).

e(Px, HM)) = e([sk]P, H(M)) = e(P, [sk]H(M)) = e(P, o)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 2. BLS signature

H:{0,1}* — (P) is a hash function, with P € E(F,) of prime order n.
Secret key: s, € {2,...,n—1}.

Public key: Py = [sk]P.

Signing a message M € {0,1}*: o = [sk]H(M).

Verifying the signature: e(Py, H(M)) L e(P,o).

e(Px, HM)) = e([sk]P, H(M)) = e(P, [sk]H(M)) = e(P, o)

Application 3. Blind Signature An authority has secret key s, and public key P, = [si]P as before.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 2. BLS signature

H:{0,1}* — (P) is a hash function, with P € E(F,) of prime order n.
Secret key: s, € {2,...,n—1}.

Public key: Py = [sk]P.

Signing a message M € {0,1}*: o = [sk]H(M).

Verifying the signature: e(Py, H(M)) L e(P,o).

e(Px, HM)) = e([sk]P, H(M)) = e(P, [sk| H(M)) = e(P, o)

Application 3. Blind Signature An authority has secret key s, and public key P, = [si]P as before.
Compute H(M) and send Q = H(M) + [r]P for r €g {2,...,n— 1} to the authority.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 2. BLS signature

H:{0,1}* — (P) is a hash function, with P € E(F,) of prime order n.
Secret key: s, € {2,...,n—1}.

Public key: Py = [sk]P.

Signing a message M € {0,1}*: o = [sk]H(M).

Verifying the signature: e(Py, H(M)) L e(P,o).

e(Px, HM)) = e([sk]P, H(M)) = e(P, [sk| H(M)) = e(P, o)

Application 3. Blind Signature An authority has secret key s, and public key P, = [si]P as before.
Compute H(M) and send Q = H(M) + [r]P for r €g {2,...,n— 1} to the authority.
Autorithy answer: A = [s4]Q.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 2. BLS signature

H:{0,1}* — (P) is a hash function, with P € E(F,) of prime order n.
Secret key: s, € {2,...,n—1}.

Public key: Py = [sk]P.

Signing a message M € {0,1}*: o = [sk]H(M).

Verifying the signature: e(Py, H(M)) L e(P,o).

e(Px, HM)) = e([sk]P, H(M)) = e(P, [sk| H(M)) = e(P, o)

Application 3. Blind signature An authority has secret key s, and public key Py = [s,]P as before.

Compute H(M) and send Q = H(M) + [r]P for r €g {2,...,n— 1} to the authority.
Autorithy answer: A = [s4]Q.

Blind (BLS) signature: 0 = A — [r]Px = [sk]H(M).

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 2. BLS signature

H:{0,1}* — (P) is a hash function, with P € E(F,) of prime order n.
Secret key: s, € {2,...,n—1}.

Public key: Py = [sk]P.

Signing a message M € {0,1}*: o = [sk]H(M).

Verifying the signature: e(Py, H(M)) L e(P,o).

e(Px, HM)) = e([sk]P, H(M)) = e(P, [sk| H(M)) = e(P, o)

Application 3. Blind signature An authority has secret key s, and public key Py = [s,]P as before.

Compute H(M) and send Q = H(M) + [r]P for r €g {2,...,n— 1} to the authority.
Autorithy answer: A = [s4]Q.

Blind (BLS) signature: 0 = A — [r]Px = [sk]H(M).

Verification: same as for BLS.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 4. ldentity based encryption

Hy:{0,1}* — E and Ha : Fp« — {0,1}" are hash functions.
The PKG has a secret key s and a public key P, = [s]P.

Qia = Hi(id) and Siq = [s]Qiq is obtained from the PKG.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 4. ldentity based encryption

Hy:{0,1}* — E and Ha : Fp« — {0,1}" are hash functions.
The PKG has a secret key s and a public key P, = [s]P.

Qia = Hi(id) and Siq = [s]Qiq is obtained from the PKG.

e Encryption

Setreg{2,...,n—1}

Compute gq = e(Qid, Px)

Send (u,v) = ([r]P, m @ Hx(gy))-

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 4. ldentity based encryption

Hy:{0,1}* — E and Ha : Fp« — {0,1}" are hash functions.
The PKG has a secret key s and a public key P, = [s]P.

Qia = Hi(id) and Siq = [s]Qiq is obtained from the PKG.

e Encryption

Setreg{2,...,n—1}

Compute gq = e(Qid, Px)

Send (u,v) = ([r]P, m @ Hx(gy))-

e Decryption

Recover m = v & Ha(e(Siq, u)).

Simon Masson Cocks—Pinch curves with efficient ate pairing

Application 4. ldentity based encryption

Hy:{0,1}* — E and Ha : Fp« — {0,1}" are hash functions.
The PKG has a secret key s and a public key P, = [s]P.

Qia = Hi(id) and Siq = [s]Qiq is obtained from the PKG.

e Encryption

Setreg{2,...,n—1}

Compute gq = e(Qid, Px)

Send (u,v) = ([r]P, m @ Hx(gy))-

e Decryption

Recover m = v & Ha(e(Siq, u)).

e(S;df U) = 6([S]QidA [I’]P) = e(Qid‘ P)rs = e(Qidf Pk)r

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing

Tate and ate pairing

@ Tate and ate pairing

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop ste

Final exponentiation step

The Tate and ate pairings are computed in two steps:
@ Evaluating a function at a point of the curve (Miller loop)

@ Exponentiating to the power (p% — 1)/r (final exponentiation).

Simon Masson Cocks—Pi curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

The Tate and ate pairings are computed in two steps:
@ Evaluating a function at a point of the curve (Miller loop)

@ Exponentiating to the power (p% — 1)/r (final exponentiation).

Definition

For P, @ € E[r] such that 7,(P) = P, mp(Q) = [p] @,

Tate(P, Q) := fryp(Q)(Pk—l)/r ate(P, Q) := ft—l,Q(P)(pk_l)/r

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Miller loop step.

Simon Masson Cocks—Pi rves with efficient ate pairin

Tate and ate pairing

Miller loop step
Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function fs ¢ such that @ is a zero of order s, and [s]Q
is a pole of order 1, i.e

div(fs,@) = s(Q) — ([s]Q) — (s - 1)O

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing

Miller loop step
Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function fs ¢ such that @ is a zero of order s, and [s]Q
is a pole of order 1, i.e

div(fs,@) = s(Q) — ([s]Q) — (s - 1)O

Miller loop for Tate.
Compute x = f, p(Q) with P € E(Fp)[r] and Q € E(F ,)[r].

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing

Miller loop step
Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function fs ¢ such that @ is a zero of order s, and [s]Q
is a pole of order 1, i.e

div(fs,@) = s(Q) — ([s]Q) — (s - 1)O

Miller loop for Tate.
Compute x = f, p(Q) with P € E(Fp)[r] and Q € E(F ,)[r].

Miller loop for ate.
For ate: compute x = f; 1 (P) with P € E(F,)[r] and @ € E(F)[r].

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Algorithm: MILLERLOOP(s, P, Q) — Compute f; o(P).

f+1
S5+ Q
for b bit of s from second MSB to LSB do
f < - lss(P)/vas(P)
S+ [2]S
if b=1 then
ff-Llsq(P)/vsio(P)
S+5+Q
end if
end for
return f such that div(fs @) = s(Q) — ([s]QR) — (s — 1)O

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).

Simon Masson i urves with efficient ate pairi

Tate and ate pairing

Miller loop step

Final exponentiation step

Example: f5 o(P).

Simon Masson

urves with efficient ate pairi

Tate and ate pairing

Miller loop step

Final exponentiation step

Example: f5 o(P).

Simon Masson

urves with efficient ate pairi

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).

urves with efficient ate pairi

Simon Masson

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).

s=5=10)I

f=1%-£qg,q(P)/v2q(P)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).

s=5=101]

f = (1% £q,q(P)/v2q(P))?

Simon Masson Cocks—Pi curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).

s=5=101]

f = (1% £q,q(P)/v2q(P))’ - t2020(P)/vaq(P)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).

s=5=101]

f=(12-£g,0(P)/v2q(P))* - £20,20(P)/vaq(P) - tag.o(P)/vsq(P)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).
s=5=101"

f=(12-00,0(P)/v2q(P))° - t2020(P)/vaq(P) - tag.a(P)/vsq(P)
Divisor:

4(Q) +2(—2Q)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).
s=5=101"

f= (12 q,q(P)/v2q(P))° - t2020(P)/vaq(P) - tag.a(P)/vsq(P)
Divisor:

4(Q)+2(—2Q) +2(2Q) + (—4Q)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).

f= (12 q,q(P)/v2q(P))* - t2020(P)/vaq(P) - tag.o(P)/vsq(P)

Divisor:

4(Q) +2(-2Q) +2(2Q) + (—4Q) + (Q) + (4Q) + (-5Q)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).

f=(12-£g,0(P)/v2q(P))* - £20,20(P)/vaq(P) - taq.o(P)/vsq(P)

Divisor:
4(Q) +2(-2Q) +2(2Q) + (—4Q) + (Q) + (4Q) + (-5Q)
—-2(2Q) — 2(—2Q) — 2(0)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).

f=(12-£g,0(P)/v2q(P))* - £20,20(P)/vaa(P) - tag.o(P)/vsq(P)

Divisor:
4(Q) +2(-2Q) +2(2Q) + (—4Q) + (Q) + (4Q) + (-5Q)
—2(2Q) — 2(—2Q) — 2(0)-(4Q) — (-4Q) — (0)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).

f=(12-£g,0(P)/v2q(P))* - £20,20(P)/vaq(P) - taq.a(P)/vsa(P)

Divisor:
4(Q) +2(-2Q) +2(2Q) + (—4Q) + (Q) + (4Q) + (-5Q)
—2(2Q) = 2(—2Q) — 2(0) — (4Q) — (-4Q) — (0)-(5Q) — (-5Q) — (0)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Example: f5 o(P).
s=5=101"

f= (12 £g,0(P)/v2q(P))* - £20,2q(P)/vaq(P) - taq.o(P)/vsq(P)

Divisor:
4(Q) +2(—2Q) +2(2Q) + (—4Q) + (Q) + (4Q) + (-5Q)

~2(2Q) ~ 2(~2Q) - 2(0) -~ (4Q) - (~4Q) -~ (0) - (5Q) - (~5Q) - (0)
div(f) = 5(Q) - (5Q) — 4(0)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.

Simon Masson i urves with efficient ate pairi

Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
fr.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset elevating to the power (pX —1)/r.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
fr.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset elevating to the power (pX —1)/r.

k

(fr_P(Q)Ur)(p 1)/r _ fr.P(Q)(pk 1)/rupk 1_ frAP(Q)('Dk 1)/r

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
fr.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset elevating to the power (pX —1)/r.

k

(fr_P(Q)Ur)(p 1)/r _ fr.P(Q)(pk 1)/rupk 1_ frAP(Q)('Dk 1)/r

(p* —1)/r is very large so the exponentiation is expensive.@

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
fr.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset elevating to the power (pX —1)/r.

k

(fr_P(Q)Ur)(p 1)/r _ fr.P(Q)(pk 1)/rupk 1_ frAP(Q)('Dk 1)/r

(p* —1)/r is very large so the exponentiation is expensive.@

Proposition

k_
For x in a subfield ofIF:k, X =1

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
fr.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset elevating to the power (pX —1)/r.

k

(fr_P(Q)Ur)(p 1)/r _ fr.P(Q)(pk 1)/rupk 1_ frAP(Q)('Dk 1)/r

(p* —1)/r is very large so the exponentiation is expensive.@

Proposition

k_
For x in a subfield ofIF:k, X =1

Factors in subfields do not need to be computed ! @

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

o When k is even, say F e = F /2(v/@).
Quadratic twist :
El = E
3
(x,y) — (ax,/a’y)
The isomorphism is defined over F,« and E has full r-torsion defined over FF .
Q € E(Fp)[r] is seen as twist(@) with Q with two coordinates in F e/

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

o When k is even, say F e = F /2(v/@).
Quadratic twist :
El = E
3
(x,y) — (ax,/a’y)
The isomorphism is defined over F,« and E has full r-torsion defined over FF .
Q € E(Fp)[r] is seen as twist(@) with Q with two coordinates in F e/

Vertical lines vs(P) = xs — xp € F /2 because xs € F /2 and P € E(F)). 2

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

o When k is even, say F e = F /2(v/@).

Quadratic twist :

El = E
3
(xy) — (ax,va'y)

The isomorphism is defined over F,« and E has full r-torsion defined over FF .

Q € E(Fp)[r] is seen as twist(@) with Q with two coordinates in F /2.

Vertical lines vs(P) = xs — xp € F /2 because xs € F /2 and P € E(F)). 2
@ When 4 | kand b=0or 6| k and a = 0, the curve has a quartic or a sextic twist.

Q € E(F k) =~ E'(Fu/4) or E'(F,/6). Line computations are more efficient. 2

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

o When k is even, say Fpx = F 2(v/).

Quadratic twist :

El = E
3
(x,y) — (ax,V/a’y)

The isomorphism is defined over F« and E has full r-torsion defined over FF .

Q € E(F)[r] is seen as twist(@) with Q with two coordinates in F p/2.

Vertical lines vs(P) = xs — xp € F /2 because xs € F x> and P € E(F)). 2
@ When 4| kand b=0or 6| k and a = 0, the curve has a quartic or a sextic twist.

Q € E(F k) =~ E'(F,4) or E'(F /6). Line computations are more efficient. 2

f= (12 £g,0(P)/v2q(P))* - £20,20(P)/vaq(P) - taq.o(P)/vsq(P)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

o When k is even, say Fpx = F 2(v/).

Quadratic twist :

El = E
3
(x,y) — (ax,y/a’y)

The isomorphism is defined over F« and E has full r-torsion defined over FF .

Q € E(F)[r] is seen as twist(@) with Q with two coordinates in F p/2.

Vertical lines vs(P) = xs — xp € /> because xs € F x> and P € E(F)). 2
@ When 4| kand b=0or 6| k and a = 0, the curve has a quartic or a sextic twist.

Q € E(F k) =~ E'(F,4) or E'(F /6). Line computations are more efficient. 2

f=(12-£g,0(P)/v2q(P))* - £20,20(P)/vaa(P) - tag.a(P)/vsa(P)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

o When k is even, say Fpx = F 2(v/).

Quadratic twist :

El = E
3
(x,y) — (ax,V/a’y)

The isomorphism is defined over F« and E has full r-torsion defined over FF .

Q € E(F)[r] is seen as twist(@) with Q with two coordinates in F p/2.

Vertical lines vs(P) = xs — xp € F /2 because xs € F x> and P € E(F)). 2
@ When 4| kand b=0or 6| k and a = 0, the curve has a quartic or a sextic twist.

Q € E(F k) =~ E'(F,4) or E'(F /6). Line computations are more efficient. 2

f = (12 Lq.a(P))" - f20.20(P) - faq.a(P)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

o When k is even, say Fpx = F 2(v/).

Quadratic twist :

El = E
3
(x,y) — (ax,y/a’y)

The isomorphism is defined over F« and E has full r-torsion defined over FF .

Q € E(F)[r] is seen as twist(@) with Q with two coordinates in F p/2.

Vertical lines vs(P) = xs — xp € F /2 because xs € F x> and P € E(F)). 2
@ When 4| kand b=0or 6| k and a = 0, the curve has a quartic or a sextic twist.

Q € E(F k) = E'(F,4) or E'(F ,/6). Line computations are more efficient. 2

f=(12Lo.a(P))? tr020(P) - tag.q(P)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

® When k is even, say F i« = F (/).

Quadratic twist :

El = E
3
(xy) — (ax,va'y)

The isomorphism is defined over F,« and E has full r-torsion defined over F .

Q € E(FF)[r] is seen as twist(Q) with @ with two coordinates in F 2.

Vertical lines vs(P) = xs — xp € F /2 because xs € F 2 and P € E(Fp). 2
@ When 4 | kand b=0or 6| k and a = 0, the curve has a quartic or a sextic twist.

Q € E(Fyx) =~ E'(F/s) or E'(F,/6). Line computations are more efficient. 2

f =10,0(P)*t20,20(P)lsq,o(P)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing

Miller loop step
Final exponentiation step

Simon Masson i urves with efficient ate pairi

Tate and ate pairing Miller loop step

Final exponentiation step

pPF—1_p -1 &p)
r ok (p) r
pk—1

O is a polynomial in p with very small coefficients.

Easy exponentiation with Frobenius when I, = Fplx]/(x* — a):

Simon Masson Cocks—Pi curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

pk—1 :pk—l_d)k(p)
r ok (p) r

gi(_pl) is a polynomial in p with very small coefficients.
Easy exponentiation with Frobenius when Fx = F o[X]/(xF — a):

k—1 P k—1
aP = (Z o ai x> =D igai x'P and xP can be precomputed.

Simon Masson Cocks—Pi curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

pPF—1_p -1 &p)
r ok (p) r

is a polynomial in p with very small coefficients.

pk—1
®«(p)
Easy exponentiation with Frobenius when F . =T o[X]/(xF — a):
aP = Zk 01 aix' Z 0 a;x'P and x’P can be precomputed.

A Frobenius costs k — 1 multiplications over [Fp,.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

pk—1_pk—1 &(p)
r CDk() r

q‘;i(_pl) is a polynomial in p with very small coefficients.
Easy exponentiation with Frobenius when I, = Fplx]/(x* — a):
aP = Zk 01 aix > = Z 0 a;xP and x’P can be precomputed.

A Frobenius costs k — 1 multiplications over [Fp,.

Lz‘ast part —<=: more expensive, decompose into polynomials and compute efficiently
with Horner rule:

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

pPF—1_p -1 &p)
r ok (p) r

is a polynomial in p with very small coefficients.

pk—1
Pk(p)
Easy exponentiation with Frobenius when I, = Fplx]/(x* — a):
aP = Zk 01 aix') = Z 0 a;x'P and x’P can be precomputed.
A Frobenius costs k — 1 multiplications over [Fp,.

Last part —<=*: more expensive, decompose into polynomials and compute efficiently

with Horner rule: ,
=0 XiP' ((((22)P)a)Pa*)P 2

Simon Masson Cocks—Pinch curves with efficient ate pairing

Tate and ate pairing Miller loop step

Final exponentiation step

pk—1_pk—1 &(p)
r CDk() r

q‘;i(_pl) is a polynomial in p with very small coefficients.

Easy exponentiation with Frobenius when I, = Fplx]/(x* — a):

aP = Zk 01 aix > = Z 0 a;xP and x’P can be precomputed.

A Frobenius costs k — 1 multiplications over [Fp,.

Last part M: more expensive, decompose into polynomials and compute efficiently

with Horner rule: ,
aXot = ((((a°)F)a)Par o

Few exponentiations by x;, multiplications and Frobenius.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Pairing-friendly curves for 128 bits of security

@ Pairing-friendly curves for 128 bits of security

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

An elliptic curve E defined over [, of trace t and discriminant D is pairing-friendly of
embedding degree k if

@ p, r are primes and t is relatively prime to p
o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k
@ 4p — t?> = Dy? for a sufficiently small positive integer D and an integer y.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

An elliptic curve E defined over [, of trace t and discriminant D is pairing-friendly of
embedding degree k if

@ p, r are primes and t is relatively prime to p
o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k
@ 4p — t?> = Dy? for a sufficiently small positive integer D and an integer y.

Cyclotomic families.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

An elliptic curve E defined over [, of trace t and discriminant D is pairing-friendly of
embedding degree k if

@ p, r are primes and t is relatively prime to p

o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k

@ 4p — t?> = Dy? for a sufficiently small positive integer D and an integer y.
Cyclotomic families.

@ Find r(x) € Z[x] such that K := Q[x]/(r(x)) is a number field containing /—D
and Q((x) for a chosen primitive k-th root (.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

An elliptic curve E defined over [, of trace t and discriminant D is pairing-friendly of
embedding degree k if

@ p, r are primes and t is relatively prime to p
o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k
@ 4p — t?> = Dy? for a sufficiently small positive integer D and an integer y.
Cyclotomic families.
O Find r(x) € Z[x] such that K := Q[x]/(r(x)) is a number field containing /—D
and Q((x) for a chosen primitive k-th root (.
@ Let t(x), y(x) € Q[x] mapping respectively to (x +1 € K,({x — 1)/v/—D € K.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

An elliptic curve E defined over [, of trace t and discriminant D is pairing-friendly of
embedding degree k if

@ p, r are primes and t is relatively prime to p

o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k

@ 4p — t?> = Dy? for a sufficiently small positive integer D and an integer y.
Cyclotomic families.

O Find r(x) € Z[x] such that K := Q[x]/(r(x)) is a number field containing /—D

and Q((x) for a chosen primitive k-th root (.
@ Let t(x), y(x) € Q[x] mapping respectively to (x +1 € K,({x — 1)/v/—D € K.
O Let p(x) € Q[x] be given by (t(x)? + Dy(x)?)/4.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

An elliptic curve E defined over [, of trace t and discriminant D is pairing-friendly of
embedding degree k if

@ p, r are primes and t is relatively prime to p

o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k

@ 4p — t?> = Dy? for a sufficiently small positive integer D and an integer y.
Cyclotomic families.

O Find r(x) € Z[x] such that K := Q[x]/(r(x)) is a number field containing /—D

and Q((x) for a chosen primitive k-th root (.

@ Let t(x), y(x) € Q[x] mapping respectively to (x +1 € K,({x — 1)/v/—D € K.

O Let p(x) € Q[x] be given by (t(x)? + Dy(x)?)/4.
If p(x) represents primes, choosing xp € Z such that y(xp) € Z gives a pairing-friendly

elliptic curve of embedding degree k, defined over [, of trace t(xp), with a
subgroup of order r(xp) and discriminant D.

p(xo

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

How to get the equation of the curve ? (Complex multiplication method).

Simon Masson Cocks—Pi curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

How to get the equation of the curve ? (Complex multiplication method).
1. Compute the discriminant D of the curve : p +1 — t = —Dy? with D square-free.
sage: (p+1-t).square_free part()

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

How to get the equation of the curve ? (Complex multiplication method).

1. Compute the discriminant D of the curve : p +1 — t = —Dy? with D square-free.
sage: (p+1-t).square_free part()

2. Compute the Hilbert class polynomial Hp(X) whose roots are the j-invariants of
curves with discriminant D.

sage: hilbert_class_polynomial(D)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

How to get the equation of the curve ? (Complex multiplication method).

1. Compute the discriminant D of the curve : p +1 — t = —Dy? with D square-free.
sage: (p+1-t).square_free part()

2. Compute the Hilbert class polynomial Hp(X) whose roots are the j-invariants of
curves with discriminant D.

sage: hilbert_class_polynomial(D)

3. Compute a curve whose j-invariant is one of these roots.

sage: EllipticCurve_ from_j(jO).

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Example.

Simon Masson i rves with efficient ate pairi

Pairing-friendly curves for 128 bits of security

Example.
Barreto-Naehrig curves are elliptic curves of embedding degree k = 12, parametrized by

p(x) = 36x* +36x> + 24x% 4+ 6x + 1
r(x) = 36x* + 36x3 4+ 18x% + 6x + 1
t(x) = 6x*>+1

For some integer xp, (p(x0), r(xo), t(xo)) parametrizes a pairing-friendly elliptic curve.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Example.
Barreto-Naehrig curves are elliptic curves of embedding degree k = 12, parametrized by

p(x) = 36x* +36x> + 24x% 4+ 6x + 1

r(x) = 36x* + 36x3 4+ 18x% + 6x + 1
t(x) = 6x*>+1

For some integer xp, (p(x0), r(xo), t(xo)) parametrizes a pairing-friendly elliptic curve.

What about efficiency of the pairing computation 7

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Miller loop.
k is even = no vertical lines.
6| k and D = 3 = twist of degree 6: E(F12)[r] ~ E'(F2)[r].

Simon Masson Cocks—Pi curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Miller loop.

k is even = no vertical lines.

6| k and D = 3 = twist of degree 6: E(F12)[r] ~ E'(F2)[r].
Final exponentiation.

4 2
— 1
== (-

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Miller loop.

k is even = no vertical lines.

6| k and D = 3 = twist of degree 6: E(F12)[r] ~ E'(F2)[r].
Final exponentiation.

4 2
p— p"—p-+1
=" -0+

y = (x”ﬁ_l)’J2+1 is easy with Frobenius powers.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Miller loop.

k is even = no vertical lines.

6| k and D = 3 = twist of degree 6: E(F12)[r] ~ E'(F2)[r].

Final exponentiation.

p? —1 pt—p®+1

e G R
r r

y = (x”ﬁ_l)’J2+1 is easy with Frobenius powers.

”4%”2“ is specific because p = p(xp) and r = r(xo).

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Miller loop.

k is even = no vertical lines.

6| k and D = 3 = twist of degree 6: E(F12)[r] ~ E'(F2)[r].
Final exponentiation.

4 2
p— p"—p-+1
=" -0+

y = (x”ﬁ_l)’J2+1 is easy with Frobenius powers.

4201 . -
prﬂ is specific because p = P(XO) and r = r(Xo).

p(x0)* —p(x)*+1
y 00 = yP3+/\2(x0)p2+)\1(Xo)P-H\o(XO); few exponentiations by xp.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Miller loop.

k is even = no vertical lines.

6| k and D = 3 = twist of degree 6: E(F12)[r] ~ E'(F2)[r].
Final exponentiation.

4 2
— 1
== (-

y = (x”ﬁ_l)’J2+1 is easy with Frobenius powers.

4201 . -
prﬂ is specific because p = P(XO) and r = r(Xo).

p(x0)* —p(x)*+1
y 00 = yP3+/\2(x0)p2+)\1(Xo)P-H\o(XO); few exponentiations by xp.

Efficient pairing. @ But how secure are these curves ?

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Security of pairing curves.

e: E(F,) x E(Fp) — F

Simon Masson Cocks—Pi curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Security of pairing curves.

e: E(F,) x E(Fp) — F

@ Security against DLP in elliptic curve: best attack in O(+/r).
log,(r) = 256 for 128 bits of security.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Security of pairing curves.

e: E(F,) x E(Fp) — F

@ Security against DLP in elliptic curve: best attack in O(+/r).
log,(r) = 256 for 128 bits of security.
@ Security against DLP in F,«: Number Field Sieve attacks in progress.

special prime p = 1993: Special NFS attack
k>1 = 2015: Tower NFS attack
composite k and special p = 2016: STNFS attack

Simon Masson

Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Security of pairing curves.

e: E(F,) x E(Fp) — F

@ Security against DLP in elliptic curve: best attack in O(+/r).
log,(r) = 256 for 128 bits of security.
@ Security against DLP in F,«: Number Field Sieve attacks in progress.
special prime p = 1993: Special NFS attack
k>1 = 2015: Tower NFS attack
composite k and special p = 2016: STNFS attack

BN curves are threatened by STNFS... @
Need a 5500 bits field F 12 to get 128 bits of security.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Generation of curves with given prime k, square-free D and no structure on p.

Algorithm: Cocks-PiNCH(k, D) — Compute a pairing-friendly curve E/F, of trace t
with a subgroup of order r, such that t?> — Dy? = 4p.

Set a prime r such that k | r — 1 and vV/—D € I,

Set T such that r | ®,(T)

t—T+1

y <+ (t-2)/V-D

Lift t,y € Z such that t?> + Dy> =0 mod 4

p < (t2+ Dy?)/4

if p is prime then return [p,t,y, r] else Repeat with another r.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Generation of curves with given prime k, square-free D and no structure on p.

Algorithm: Cocks-PiNCH(k, D) — Compute a pairing-friendly curve E/F, of trace t
with a subgroup of order r, such that t?> — Dy? = 4p.

Set a prime r such that k | r — 1 and vV/—D € I,

Set T such that r | ®,(T)

t—T+1

y <+ (t-2)/V-D

Lift t,y € Z such that t?> + Dy> =0 mod 4

p < (t2+ Dy?)/4

if p is prime then return [p,t,y, r] else Repeat with another r.

Large trace t = the ate pairing is not very efficient @

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Generation of curves with given prime k, square-free D and no structure on p.

Algorithm: Cocks-PiNCH(k, D) — Compute a pairing-friendly curve E/F, of trace t
with a subgroup of order r, such that t?> — Dy? = 4p.

Set asmall T

Set a prime r such that k | r — 1, /=D € F, and r | ®x(T)
t—T+1

y <+ (t-2)/v-D

Lift t,y € Z such that t?> + Dy> =0 mod 4

p + (t?> + Dy?)/4

if p is prime then return [p,t,y, r] else Repeat with another r.

Large trace t = the ate pairing is not very efficient @
Fix: first fix a small T and then choose r. t = T 4+ 1 is small @

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Generation of curves with given prime k, square-free D and no structure on p.

Algorithm: Cocks-PINCH(k, D) — Compute a pairing-friendly curve E/F, of trace t
with a subgroup of order r, such that t> — Dy? = 4p.

Setasmall T

Set a prime r such that k | r — 1, /=D € F, and r | ¢(T)

t«—T+1

y+ (t—2)/v/-D

Lift t,y € Z such that t> 4 Dy> =0 mod 4

p < (t? + Dy?)/4

if pis prime and p =1 mod k then return [p,t,y,r] else Repeat with another r.

Large trace t = the ate pairing is not very efficient @
Fix: first fix a small T and then choose r. t = T + 1 is small @Fpk = Fplu]/(uk —)

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security:
@ Sizeof T.

Simon Masson Cocks—Pi curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security:
@ Sizeof T.
log,(r) = logy(Px(T)) = w(k)logy(T) = logy(T) = 256/p(k).

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security:
@ Sizeof T.
log,(r) = logy(Px(T)) = w(k)logy(T) = logy(T) = 256/p(k).

k= 57 |Og2(T) = 64 k = 67 |Og2(T) =52

k=T7,logy(T) =43 k = 8,logy(T) =37

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security:
@ Sizeof T.
log,(r) = logy(Px(T)) = w(k)logy(T) = logy(T) = 256/p(k).

k= 57 |Og2(T) = 64 k = 67 |Og2(T) =52

k=T7,logy(T) =43 k = 8,logy(T) =37

@ Low hamming weight of T (Miller loop).

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security:
@ Sizeof T.
log,(r) = logy(Px(T)) = w(k)logy(T) = logy(T) = 256/p(k).

k =5,log,(T) = 64 k =6,logy(T) =52
k=T7,logy(T) =43 k = 8,logy(T) =37
@ Low hamming weight of T (Miller loop).
@ When lifting in Z, add a multiple of r in y
y=y+hy-r

such that p is large enough to resist NFS attacks.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

128-bit security for finite field extensions.

Simon Masson Cocks—Pi curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

128-bit security for finite field extensions.

Our variant of COCKS-PINCH generates pairing-friendly curves with a “non-special”
prime: p is not parametrized by a (one variable) polynomial with small coefficents.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

128-bit security for finite field extensions.

Our variant of COCKS-PINCH generates pairing-friendly curves with a “non-special”
prime: p is not parametrized by a (one variable) polynomial with small coefficents.

Sometimes (for instance k = 8) p is parametrized by a two-variables polynomial:
p € Z[T, h,], but today NFS-variants do not use this property.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Pairing-friendly curves for 128 bits of security

128-bit security for finite field extensions.

Our variant of COCKS-PINCH generates pairing-friendly curves with a “non-special”
prime: p is not parametrized by a (one variable) polynomial with small coefficents.

Sometimes (for instance k = 8) p is parametrized by a two-variables polynomial:
p € Z[T, h,], but today NFS-variants do not use this property.

) Field size needed .
Field | DL attack for 128-bit security log,(p) induced
F s TNFS 3320 664
Fe | exTNFS 4032 672
F,y | TNFS 3584 512
Fps | exTNFS 4352 544

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

Timings and comparisons

© Timings and comparisons

Simon Masson Cocks—Pi curves with efficient ate pairing

Timings and comparisons

R E L I C « https://github.com/relic-toolkit/relic.git

Simon Masson rves with efficient ate pairin

Timings and comparisons

R E L I C « https://github.com/relic-toolkit/relic.git

Efficient library for cryptography

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

R E L I C « https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.

Simon Masson Cocks—Pi curves with efficient ate pairing

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git
Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Simon Masson Cocks—Pi curves with efficient ate pairing

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast I, arithmetic in assembly instructions for some given p.

Simon Masson Cocks—Pi curves with efficient ate pairing

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast I, arithmetic in assembly instructions for some given p.

How to compare curves.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast I, arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench F, arithmetic and pairing computation for new BN and BLS primes.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast I, arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench F, arithmetic and pairing computation for new BN and BLS primes.
2. Bench F, arithmetic for our non-special primes of different sizes.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast I, arithmetic in assembly instructions for some given p.

How to compare curves.

1. Bench F, arithmetic and pairing computation for new BN and BLS primes.
2. Bench F, arithmetic for our non-special primes of different sizes.

3. Count the number of I, multiplications to get an estimation of the cost.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5,6,7 and 8 with the previous algorithm.

Curve this work BN BLS -

k 5 6 7 8 12 12 1
Fsize 3320 4032 3584 | 4352 5544 5532 3072
log,(p) 664 672 512 544 462 461 3072

Fp, mul. 230ns | 230ns | 130ns | 154ns | 130ns | 130ns | 4882ns

Miller length | 64-bit | 128-bit | 43-bit | 64-bit | 117-bit | 77-bit | 256-bit
Mill. field 3320 672 3584 | 1088 924 922 3072
Miller step | 3.4ms | 1.1ms | 2.1ms | 0.7ms | 1.6ms | 1.0ms | 22.7ms

| Expo. step [2.6ms | 0.9ms | 1.9ms [1.0ms [0.7ms | 0.8ms | 20.0ms |
’ Total ‘ 5.9ms ‘ 2.0ms ‘ 4.0ms ‘ 1.7ms ‘ 2.3ms ‘ 1.8ms ‘ 42.7ms ‘

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5,6,7 and 8 with the previous algorithm.

Curve this work BN BLS -

k 5 6 7 8 12 12 1
Fsize 3320 4032 3584 | 4352 5544 5532 3072
log,(p) 664 672 512 544 462 461 3072

Fp, mul. 230ns | 230ns | 130ns | 154ns | 130ns | 130ns | 4882ns

Miller length | 64-bit | 128-bit | 43-bit | 64-bit | 117-bit | 77-bit | 256-bit
Mill. field 3320 672 3584 | 1088 924 922 3072
Miller step | 3.4ms | 1.1ms | 2.1ms | 0.7ms | 1.6ms | 1.0ms | 22.7ms

| Expo. step [2.6ms | 0.9ms | 1.9ms [1.0ms [0.7ms | 0.8ms | 20.0ms |
’ Total ‘ 5.9ms ‘ 2.0ms ‘ 4.0ms ‘ 1.7ms ‘ 2.3ms ‘ 1.8ms ‘ 42.7ms ‘

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5,6,7 and 8 with the previous algorithm.

Curve this work BN BLS -

k 5 6 7 8 12 12 1
Fsize 3320 4032 3584 | 4352 5544 5532 3072
log,(p) 664 672 512 544 462 461 3072

Fp, mul. 230ns | 230ns | 130ns | 154ns | 130ns | 130ns | 4882ns

Miller length | 64-bit | 128-bit | 43-bit | 64-bit | 117-bit | 77-bit | 256-bit
Mill. field 3320 672 3584 | 1088 924 922 3072
Miller step | 3.4ms | 1.1ms | 2.1ms | 0.7ms | 1.6ms | 1.0ms | 22.7ms

| Expo. step [2.6ms | 0.9ms | 1.9ms [1.0ms [0.7ms | 0.8ms | 20.0ms |
’ Total ‘ 5.9ms ‘ 2.0ms ‘ 4.0ms ‘ 1.7ms ‘ 2.3ms ‘ 1.8ms ‘ 42.7ms ‘

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5,6,7 and 8 with the previous algorithm.

Curve this work BN BLS -

k 5 6 7 8 12 12 1
Fsize 3320 4032 3584 | 4352 5544 5532 3072
log,(p) 664 672 512 544 462 461 3072

Fp, mul. 230ns | 230ns | 130ns | 154ns | 130ns | 130ns | 4882ns

Miller length | 64-bit | 128-bit | 43-bit | 64-bit | 117-bit | 77-bit | 256-bit
Mill. field 3320 672 3584 | 1088 924 922 3072
Miller step | 3.4ms | 1.1ms | 2.1ms | 0.7ms | 1.6ms | 1.0ms | 22.7ms

] Expo. step \ 2.5ms \ 0.9ms \ 1.9ms \ 1.0ms \ 0.7ms \ 0.8ms \ 20.0ms ‘
’ Total ‘ 5.9ms ‘ 2.0ms ‘ 4.0ms ‘ 1.7ms ‘ 2.3ms ‘ 1.8ms ‘ 42.7ms ‘

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5,6,7 and 8 with the previous algorithm.

Curve this work BN BLS -

k 5 6 7 8 12 12 1
Fsize 3320 4032 3584 | 4352 5544 5532 3072
log,(p) 664 672 512 544 462 461 3072

Fp, mul. 230ns | 230ns | 130ns | 154ns | 130ns | 130ns | 4882ns

Miller length | 64-bit | 128-bit | 43-bit | 64-bit | 117-bit | 77-bit | 256-bit
Mill. field 3320 672 3584 | 1088 924 922 3072
Miller step | 3.4ms | 1.1ms | 2.1ms | 0.7ms | 1.6ms | 1.0ms | 22.7ms

] Expo. step \ 2.5ms \ 0.9ms \ 1.9ms \ 1.0ms \ 0.7ms \ 0.8ms \ 20.0ms ‘
’ Total ‘ 5.9ms ‘ 2.0ms ‘ 4.0ms ‘ 1.7ms ‘ 2.3ms ‘ 1.8ms ‘ 42.7ms ‘

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5,6,7 and 8 with the previous algorithm.

Curve this work BN BLS -

k 5 6 7 8 12 12 1
Fsize 3320 4032 3584 | 4352 5544 5532 3072
log,(p) 664 672 512 544 462 461 3072

Fp, mul. 230ns | 230ns | 130ns | 154ns | 130ns | 130ns | 4882ns

Miller length | 64-bit | 128-bit | 43-bit | 64-bit | 117-bit | 77-bit | 256-bit
Mill. field 3320 672 3584 | 1088 924 922 3072
Miller step | 3.4ms | 1.1ms | 2.1ms | 0.7ms | 1.6ms | 1.0ms | 22.7ms

] Expo. step \ 2.5ms \ 0.9ms \ 1.9ms \ 1.0ms \ 0.7ms \ 0.8ms \ 20.0ms ‘
’ Total ‘ 5.9ms ‘ 2.0ms ‘ 4.0ms ‘ 1.7ms ‘ 2.3ms ‘ 1.8ms ‘ 42.7ms ‘

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5,6,7 and 8 with the previous algorithm.

Curve this work BN BLS -

k 5 6 7 8 12 12 1
Fsize 3320 4032 3584 | 4352 5544 5532 3072
log,(p) 664 672 512 544 462 461 3072

Fp, mul. 230ns | 230ns | 130ns | 154ns | 130ns | 130ns | 4882ns

Miller length | 64-bit | 128-bit | 43-bit | 64-bit | 117-bit | 77-bit | 256-bit
Mill. field 3320 672 3584 | 1088 924 922 3072
Miller step | 3.4ms | 1.1ms | 2.1ms | 0.7ms | 1.6ms | 1.0ms | 22.7ms

] Expo. step \ 2.5ms \ 0.9ms \ 1.9ms \ 1.0ms \ 0.7ms \ 0.8ms \ 20.0ms ‘
’ Total ‘ 5.9ms ‘ 2.0ms ‘ 4.0ms ‘ 1.7ms ‘ 2.3ms ‘ 1.8ms ‘ 42.7ms ‘

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5,6,7 and 8 with the previous algorithm.

Curve this work BN BLS -

k 5 6 7 8 12 12 1
Fsize 3320 4032 3584 | 4352 5544 5532 3072
log,(p) 664 672 512 544 462 461 3072

Fp, mul. 230ns | 230ns | 130ns | 154ns | 130ns | 130ns | 4882ns

Miller length | 64-bit | 128-bit | 43-bit | 64-bit | 117-bit | 77-bit | 256-bit
Mill. field 3320 672 3584 | 1088 924 922 3072
Miller step | 3.4ms | 1.1ms | 2.1ms | 0.7ms | 1.6ms | 1.0ms | 22.7ms

] Expo. step ‘ 2.5ms ‘ 0.9ms ‘ 1.9ms ‘ 1.0ms ‘ 0.7ms ‘ 0.8ms ‘ 20.0ms
Total | 59ms | 2.0ms | 40ms | 1.7ms | 2.3ms | 1.8ms [42.7ms |

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

Thank you for your attention.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

Thank you for your attention.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

Thank you for your attention.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

Thank you for your attention.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

Thank you for your attention.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

Thank you for your attention.

Simon Masson Cocks—Pinch curves with efficient ate pairing

Timings and comparisons

Thank you for your attention.

2
Curve this work BN BLS KSS -
k 5 6 7 8 12 12 16 1
Fksize 3320 4032 3584 | 4352 5544 5532 | 5424 3072
log,(p) 664 672 512 544 462 461 339 3072

Fp mul. 230ns | 230ns | 130ns | 154ns | 130ns | 130ns | 69ns | 4882ns
Miller length | 64-bit | 128-bit | 43-bit | 64-bit | 117-bit | 77-bit | 35-bit | 256-bit
Mill. field 3320 672 3584 | 1088 924 922 1356 3072
Miller step | 3.4ms | 1.1ms | 2.1ms | 0.7ms | 1.6ms | 1.0ms | 0.5ms | 22.7ms

] Expo. step ‘ 2.5ms ‘ 0.9ms ‘ 1.9ms ‘ 1.0ms ‘ 0.7ms ‘ 0.8ms ‘ 1.3ms ‘ 20.0ms ‘
] Total ‘ 5.9ms ‘ 2.0ms ‘ 4.0ms ‘ 1.7ms ‘ 2.3ms ‘ 1.8ms ‘ 1.8ms ‘ 42.7ms ‘

Simon Masson Cocks—Pinch curves with efficient ate pairing

