
1/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Cocks–Pinch curves with efficient ate pairing

Simon Masson
Joint work with A. Guillevic, E. Thomé

Thales – LORIA

December 11, 2018

Simon Masson Cocks–Pinch curves with efficient ate pairing

2/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e : E × E −→ F×

pk

For some particular P,Q ∈ E and a, b ∈ Z,

e(aP, bQ) = e(P, bQ)a = e(P,Q)ab

Simon Masson Cocks–Pinch curves with efficient ate pairing

2/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e : E × E −→ F×

pk

For some particular P,Q ∈ E and a, b ∈ Z,

e(aP, bQ) = e(P, bQ)a = e(P,Q)ab

Simon Masson Cocks–Pinch curves with efficient ate pairing

2/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e : E × E −→ F×

pk

For some particular P,Q ∈ E and a, b ∈ Z,

e(aP, bQ)

= e(P, bQ)a = e(P,Q)ab

Simon Masson Cocks–Pinch curves with efficient ate pairing

2/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e : E × E −→ F×

pk

For some particular P,Q ∈ E and a, b ∈ Z,

e(aP, bQ) = e(P, bQ)a

= e(P,Q)ab

Simon Masson Cocks–Pinch curves with efficient ate pairing

2/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e : E × E −→ F×

pk

For some particular P,Q ∈ E and a, b ∈ Z,

e(aP, bQ) = e(P, bQ)a = e(P,Q)ab

Simon Masson Cocks–Pinch curves with efficient ate pairing

3/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 1. Tripartite one round key exchange. (Joux 2000)

a secret

b secret

c secret

aP

bP

cP
e(P,P)abc =

Simon Masson Cocks–Pinch curves with efficient ate pairing

3/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 1. Tripartite one round key exchange. (Joux 2000)

a secret

b secret

c secret

aP

bP

cP
e(P,P)abc =

Simon Masson Cocks–Pinch curves with efficient ate pairing

3/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 1. Tripartite one round key exchange. (Joux 2000)

a secret

b secret

c secret

aP

bP

cP
e(P,P)abc =

Simon Masson Cocks–Pinch curves with efficient ate pairing

3/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 1. Tripartite one round key exchange. (Joux 2000)

a secret

b secret

c secret

aP

bP

cP

e(P,P)abc =

Simon Masson Cocks–Pinch curves with efficient ate pairing

3/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 1. Tripartite one round key exchange. (Joux 2000)

a secret

b secret

c secret

aP

bP

cP
e(P,P)abc =

Simon Masson Cocks–Pinch curves with efficient ate pairing

4/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 2. BLS signature
H : {0, 1}∗ → 〈P〉 is a hash function, with P ∈ E (Fp) of prime order n.

Secret key: sk ∈ {2, . . . , n − 1}.
Public key: Pk = [sk]P.
Signing a message M ∈ {0, 1}∗: σ = [sk]H(M).

Verifying the signature: e(Pk ,H(M))
?
= e(P, σ).

e(Pk ,H(M)) = e([sk]P,H(M)) = e(P, [sk]H(M)) = e(P, σ)

Application 3. Blind signature An authority has secret key sk and public key Pk = [sk]P as before.

Compute H(M) and send Q = H(M) + [r]P for r ∈R {2, . . . , n − 1} to the authority.
Autorithy answer: A = [sk]Q.
Blind (BLS) signature: σ = A− [r]Pk = [sk]H(M).
Verification: same as for BLS.

Simon Masson Cocks–Pinch curves with efficient ate pairing

4/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 2. BLS signature
H : {0, 1}∗ → 〈P〉 is a hash function, with P ∈ E (Fp) of prime order n.
Secret key: sk ∈ {2, . . . , n − 1}.
Public key: Pk = [sk]P.

Signing a message M ∈ {0, 1}∗: σ = [sk]H(M).

Verifying the signature: e(Pk ,H(M))
?
= e(P, σ).

e(Pk ,H(M)) = e([sk]P,H(M)) = e(P, [sk]H(M)) = e(P, σ)

Application 3. Blind signature An authority has secret key sk and public key Pk = [sk]P as before.

Compute H(M) and send Q = H(M) + [r]P for r ∈R {2, . . . , n − 1} to the authority.
Autorithy answer: A = [sk]Q.
Blind (BLS) signature: σ = A− [r]Pk = [sk]H(M).
Verification: same as for BLS.

Simon Masson Cocks–Pinch curves with efficient ate pairing

4/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 2. BLS signature
H : {0, 1}∗ → 〈P〉 is a hash function, with P ∈ E (Fp) of prime order n.
Secret key: sk ∈ {2, . . . , n − 1}.
Public key: Pk = [sk]P.
Signing a message M ∈ {0, 1}∗: σ = [sk]H(M).

Verifying the signature: e(Pk ,H(M))
?
= e(P, σ).

e(Pk ,H(M)) = e([sk]P,H(M)) = e(P, [sk]H(M)) = e(P, σ)

Application 3. Blind signature An authority has secret key sk and public key Pk = [sk]P as before.

Compute H(M) and send Q = H(M) + [r]P for r ∈R {2, . . . , n − 1} to the authority.
Autorithy answer: A = [sk]Q.
Blind (BLS) signature: σ = A− [r]Pk = [sk]H(M).
Verification: same as for BLS.

Simon Masson Cocks–Pinch curves with efficient ate pairing

4/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 2. BLS signature
H : {0, 1}∗ → 〈P〉 is a hash function, with P ∈ E (Fp) of prime order n.
Secret key: sk ∈ {2, . . . , n − 1}.
Public key: Pk = [sk]P.
Signing a message M ∈ {0, 1}∗: σ = [sk]H(M).

Verifying the signature: e(Pk ,H(M))
?
= e(P, σ).

e(Pk ,H(M)) = e([sk]P,H(M)) = e(P, [sk]H(M)) = e(P, σ)

Application 3. Blind signature An authority has secret key sk and public key Pk = [sk]P as before.

Compute H(M) and send Q = H(M) + [r]P for r ∈R {2, . . . , n − 1} to the authority.
Autorithy answer: A = [sk]Q.
Blind (BLS) signature: σ = A− [r]Pk = [sk]H(M).
Verification: same as for BLS.

Simon Masson Cocks–Pinch curves with efficient ate pairing

4/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 2. BLS signature
H : {0, 1}∗ → 〈P〉 is a hash function, with P ∈ E (Fp) of prime order n.
Secret key: sk ∈ {2, . . . , n − 1}.
Public key: Pk = [sk]P.
Signing a message M ∈ {0, 1}∗: σ = [sk]H(M).

Verifying the signature: e(Pk ,H(M))
?
= e(P, σ).

e(Pk ,H(M)) = e([sk]P,H(M)) = e(P, [sk]H(M)) = e(P, σ)

Application 3. Blind signature An authority has secret key sk and public key Pk = [sk]P as before.

Compute H(M) and send Q = H(M) + [r]P for r ∈R {2, . . . , n − 1} to the authority.
Autorithy answer: A = [sk]Q.
Blind (BLS) signature: σ = A− [r]Pk = [sk]H(M).
Verification: same as for BLS.

Simon Masson Cocks–Pinch curves with efficient ate pairing

4/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 2. BLS signature
H : {0, 1}∗ → 〈P〉 is a hash function, with P ∈ E (Fp) of prime order n.
Secret key: sk ∈ {2, . . . , n − 1}.
Public key: Pk = [sk]P.
Signing a message M ∈ {0, 1}∗: σ = [sk]H(M).

Verifying the signature: e(Pk ,H(M))
?
= e(P, σ).

e(Pk ,H(M)) = e([sk]P,H(M)) = e(P, [sk]H(M)) = e(P, σ)

Application 3. Blind signature An authority has secret key sk and public key Pk = [sk]P as before.

Compute H(M) and send Q = H(M) + [r]P for r ∈R {2, . . . , n − 1} to the authority.

Autorithy answer: A = [sk]Q.
Blind (BLS) signature: σ = A− [r]Pk = [sk]H(M).
Verification: same as for BLS.

Simon Masson Cocks–Pinch curves with efficient ate pairing

4/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 2. BLS signature
H : {0, 1}∗ → 〈P〉 is a hash function, with P ∈ E (Fp) of prime order n.
Secret key: sk ∈ {2, . . . , n − 1}.
Public key: Pk = [sk]P.
Signing a message M ∈ {0, 1}∗: σ = [sk]H(M).

Verifying the signature: e(Pk ,H(M))
?
= e(P, σ).

e(Pk ,H(M)) = e([sk]P,H(M)) = e(P, [sk]H(M)) = e(P, σ)

Application 3. Blind signature An authority has secret key sk and public key Pk = [sk]P as before.

Compute H(M) and send Q = H(M) + [r]P for r ∈R {2, . . . , n − 1} to the authority.
Autorithy answer: A = [sk]Q.

Blind (BLS) signature: σ = A− [r]Pk = [sk]H(M).
Verification: same as for BLS.

Simon Masson Cocks–Pinch curves with efficient ate pairing

4/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 2. BLS signature
H : {0, 1}∗ → 〈P〉 is a hash function, with P ∈ E (Fp) of prime order n.
Secret key: sk ∈ {2, . . . , n − 1}.
Public key: Pk = [sk]P.
Signing a message M ∈ {0, 1}∗: σ = [sk]H(M).

Verifying the signature: e(Pk ,H(M))
?
= e(P, σ).

e(Pk ,H(M)) = e([sk]P,H(M)) = e(P, [sk]H(M)) = e(P, σ)

Application 3. Blind signature An authority has secret key sk and public key Pk = [sk]P as before.

Compute H(M) and send Q = H(M) + [r]P for r ∈R {2, . . . , n − 1} to the authority.
Autorithy answer: A = [sk]Q.
Blind (BLS) signature: σ = A− [r]Pk = [sk]H(M).

Verification: same as for BLS.

Simon Masson Cocks–Pinch curves with efficient ate pairing

4/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 2. BLS signature
H : {0, 1}∗ → 〈P〉 is a hash function, with P ∈ E (Fp) of prime order n.
Secret key: sk ∈ {2, . . . , n − 1}.
Public key: Pk = [sk]P.
Signing a message M ∈ {0, 1}∗: σ = [sk]H(M).

Verifying the signature: e(Pk ,H(M))
?
= e(P, σ).

e(Pk ,H(M)) = e([sk]P,H(M)) = e(P, [sk]H(M)) = e(P, σ)

Application 3. Blind signature An authority has secret key sk and public key Pk = [sk]P as before.

Compute H(M) and send Q = H(M) + [r]P for r ∈R {2, . . . , n − 1} to the authority.
Autorithy answer: A = [sk]Q.
Blind (BLS) signature: σ = A− [r]Pk = [sk]H(M).
Verification: same as for BLS.

Simon Masson Cocks–Pinch curves with efficient ate pairing

5/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 4. Identity based encryption
H1 : {0, 1}∗ → E and H2 : Fpk → {0, 1}n are hash functions.
The PKG has a secret key s and a public key Pk = [s]P.
Qid = H1(id) and Sid = [s]Qid is obtained from the PKG.

• Encryption
Set r ∈R {2, . . . , n − 1}
Compute gid = e(Qid,Pk)
Send (u, v) = ([r]P,m ⊕ H2(g r

id)).
• Decryption
Recover m = v ⊕ H2(e(Sid, u)).

e(Sid, u) = e([s]Qid, [r]P) = e(Qid,P)rs = e(Qid,Pk)r

Simon Masson Cocks–Pinch curves with efficient ate pairing

5/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 4. Identity based encryption
H1 : {0, 1}∗ → E and H2 : Fpk → {0, 1}n are hash functions.
The PKG has a secret key s and a public key Pk = [s]P.
Qid = H1(id) and Sid = [s]Qid is obtained from the PKG.
• Encryption
Set r ∈R {2, . . . , n − 1}
Compute gid = e(Qid,Pk)
Send (u, v) = ([r]P,m ⊕ H2(g r

id)).

• Decryption
Recover m = v ⊕ H2(e(Sid, u)).

e(Sid, u) = e([s]Qid, [r]P) = e(Qid,P)rs = e(Qid,Pk)r

Simon Masson Cocks–Pinch curves with efficient ate pairing

5/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 4. Identity based encryption
H1 : {0, 1}∗ → E and H2 : Fpk → {0, 1}n are hash functions.
The PKG has a secret key s and a public key Pk = [s]P.
Qid = H1(id) and Sid = [s]Qid is obtained from the PKG.
• Encryption
Set r ∈R {2, . . . , n − 1}
Compute gid = e(Qid,Pk)
Send (u, v) = ([r]P,m ⊕ H2(g r

id)).
• Decryption
Recover m = v ⊕ H2(e(Sid, u)).

e(Sid, u) = e([s]Qid, [r]P) = e(Qid,P)rs = e(Qid,Pk)r

Simon Masson Cocks–Pinch curves with efficient ate pairing

5/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Application 4. Identity based encryption
H1 : {0, 1}∗ → E and H2 : Fpk → {0, 1}n are hash functions.
The PKG has a secret key s and a public key Pk = [s]P.
Qid = H1(id) and Sid = [s]Qid is obtained from the PKG.
• Encryption
Set r ∈R {2, . . . , n − 1}
Compute gid = e(Qid,Pk)
Send (u, v) = ([r]P,m ⊕ H2(g r

id)).
• Decryption
Recover m = v ⊕ H2(e(Sid, u)).

e(Sid, u) = e([s]Qid, [r]P) = e(Qid,P)rs = e(Qid,Pk)r

Simon Masson Cocks–Pinch curves with efficient ate pairing

6/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Tate and ate pairing

1 Tate and ate pairing

2 Pairing-friendly curves for 128 bits of security

3 Timings and comparisons

Simon Masson Cocks–Pinch curves with efficient ate pairing

7/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

The Tate and ate pairings are computed in two steps:

1 Evaluating a function at a point of the curve (Miller loop)

2 Exponentiating to the power (pk − 1)/r (final exponentiation).

Definition

For P,Q ∈ E [r] such that πp(P) = P, πp(Q) = [p]Q,

Tate(P,Q) := fr ,P(Q)(pk−1)/r ate(P,Q) := ft−1,Q(P)(pk−1)/r

Simon Masson Cocks–Pinch curves with efficient ate pairing

7/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

The Tate and ate pairings are computed in two steps:

1 Evaluating a function at a point of the curve (Miller loop)

2 Exponentiating to the power (pk − 1)/r (final exponentiation).

Definition

For P,Q ∈ E [r] such that πp(P) = P, πp(Q) = [p]Q,

Tate(P,Q) := fr ,P(Q)(pk−1)/r ate(P,Q) := ft−1,Q(P)(pk−1)/r

Simon Masson Cocks–Pinch curves with efficient ate pairing

8/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function fs,Q such that Q is a zero of order s, and [s]Q
is a pole of order 1, i.e

div(fs,Q) = s(Q)− ([s]Q)− (s − 1)O

Miller loop for Tate.
Compute x = fr ,P(Q) with P ∈ E (Fp)[r] and Q ∈ E (Fpk)[r].

Miller loop for ate.
For ate: compute x = ft−1,Q(P) with P ∈ E (Fp)[r] and Q ∈ E (Fpk)[r].

Simon Masson Cocks–Pinch curves with efficient ate pairing

8/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function fs,Q such that Q is a zero of order s, and [s]Q
is a pole of order 1, i.e

div(fs,Q) = s(Q)− ([s]Q)− (s − 1)O

Miller loop for Tate.
Compute x = fr ,P(Q) with P ∈ E (Fp)[r] and Q ∈ E (Fpk)[r].

Miller loop for ate.
For ate: compute x = ft−1,Q(P) with P ∈ E (Fp)[r] and Q ∈ E (Fpk)[r].

Simon Masson Cocks–Pinch curves with efficient ate pairing

8/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function fs,Q such that Q is a zero of order s, and [s]Q
is a pole of order 1, i.e

div(fs,Q) = s(Q)− ([s]Q)− (s − 1)O

Miller loop for Tate.
Compute x = fr ,P(Q) with P ∈ E (Fp)[r] and Q ∈ E (Fpk)[r].

Miller loop for ate.
For ate: compute x = ft−1,Q(P) with P ∈ E (Fp)[r] and Q ∈ E (Fpk)[r].

Simon Masson Cocks–Pinch curves with efficient ate pairing

8/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function fs,Q such that Q is a zero of order s, and [s]Q
is a pole of order 1, i.e

div(fs,Q) = s(Q)− ([s]Q)− (s − 1)O

Miller loop for Tate.
Compute x = fr ,P(Q) with P ∈ E (Fp)[r] and Q ∈ E (Fpk)[r].

Miller loop for ate.
For ate: compute x = ft−1,Q(P) with P ∈ E (Fp)[r] and Q ∈ E (Fpk)[r].

Simon Masson Cocks–Pinch curves with efficient ate pairing

9/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Algorithm: MillerLoop(s,P,Q) – Compute fs,Q(P).

f ← 1
S ← Q
for b bit of s from second MSB to LSB do

f ← f 2 · `S ,S(P)/v2S(P)
S ← [2]S
if b = 1 then

f ← f · `S ,Q(P)/vS+Q(P)
S ← S + Q

end if
end for
return f such that div(fs,Q) = s(Q)− ([s]Q)− (s − 1)O

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 101
2

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 1 01
2

f = 1

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 1 0 1
2

f = 1

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 1 0 1
2

f = 12

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 1 0 1
2

f = 12 · `Q,Q(P)/v2Q(P)

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 10 1
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 10 1
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P)

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 10 1
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 101
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Divisor:
4(Q) + 2(−2Q)

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 101
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Divisor:
4(Q) + 2(−2Q) + 2(2Q) + (−4Q)

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 101
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Divisor:

4(Q) + 2(−2Q) + 2(2Q) + (−4Q) + (Q) + (4Q) + (−5Q)

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 101
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Divisor:

4(Q) + 2(−2Q) + 2(2Q) + (−4Q) + (Q) + (4Q) + (−5Q)

−2(2Q)− 2(−2Q)− 2(O)

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 101
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Divisor:

4(Q) + 2(−2Q) + 2(2Q) + (−4Q) + (Q) + (4Q) + (−5Q)

−2(2Q)− 2(−2Q)− 2(O)−(4Q)− (−4Q)− (O)

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 101
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Divisor:

4(Q) + 2(−2Q) + 2(2Q) + (−4Q) + (Q) + (4Q) + (−5Q)

−2(2Q)− 2(−2Q)− 2(O)− (4Q)− (−4Q)− (O)−(5Q)− (−5Q)− (O)

Simon Masson Cocks–Pinch curves with efficient ate pairing

10/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 101
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Divisor:

4(Q) + 2(−2Q) + 2(2Q) + (−4Q) + (Q) + (4Q) + (−5Q)

−2(2Q)− 2(−2Q)− 2(O)− (4Q)− (−4Q)− (O)− (5Q)− (−5Q)− (O)

div(f) = 5(Q)− (5Q)− 4(O)

Simon Masson Cocks–Pinch curves with efficient ate pairing

11/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Final exponentiation step.

fr ,P(Q) and ft−1,Q(P) are r -th roots of unity.
We obtain a unique coset elevating to the power (pk − 1)/r .

(fr ,P(Q)ur)(pk−1)/r = fr ,P(Q)(pk−1)/rupk−1 = fr ,P(Q)(pk−1)/r

(pk − 1)/r is very large so the exponentiation is expensive.

Proposition

For x in a subfield of F×
pk

, x
pk−1

r = 1.

Factors in subfields do not need to be computed !

Simon Masson Cocks–Pinch curves with efficient ate pairing

11/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Final exponentiation step.
fr ,P(Q) and ft−1,Q(P) are r -th roots of unity.
We obtain a unique coset elevating to the power (pk − 1)/r .

(fr ,P(Q)ur)(pk−1)/r = fr ,P(Q)(pk−1)/rupk−1 = fr ,P(Q)(pk−1)/r

(pk − 1)/r is very large so the exponentiation is expensive.

Proposition

For x in a subfield of F×
pk

, x
pk−1

r = 1.

Factors in subfields do not need to be computed !

Simon Masson Cocks–Pinch curves with efficient ate pairing

11/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Final exponentiation step.
fr ,P(Q) and ft−1,Q(P) are r -th roots of unity.
We obtain a unique coset elevating to the power (pk − 1)/r .

(fr ,P(Q)ur)(pk−1)/r = fr ,P(Q)(pk−1)/rupk−1 = fr ,P(Q)(pk−1)/r

(pk − 1)/r is very large so the exponentiation is expensive.

Proposition

For x in a subfield of F×
pk

, x
pk−1

r = 1.

Factors in subfields do not need to be computed !

Simon Masson Cocks–Pinch curves with efficient ate pairing

11/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Final exponentiation step.
fr ,P(Q) and ft−1,Q(P) are r -th roots of unity.
We obtain a unique coset elevating to the power (pk − 1)/r .

(fr ,P(Q)ur)(pk−1)/r = fr ,P(Q)(pk−1)/rupk−1 = fr ,P(Q)(pk−1)/r

(pk − 1)/r is very large so the exponentiation is expensive.

Proposition

For x in a subfield of F×
pk

, x
pk−1

r = 1.

Factors in subfields do not need to be computed !

Simon Masson Cocks–Pinch curves with efficient ate pairing

11/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Final exponentiation step.
fr ,P(Q) and ft−1,Q(P) are r -th roots of unity.
We obtain a unique coset elevating to the power (pk − 1)/r .

(fr ,P(Q)ur)(pk−1)/r = fr ,P(Q)(pk−1)/rupk−1 = fr ,P(Q)(pk−1)/r

(pk − 1)/r is very large so the exponentiation is expensive.

Proposition

For x in a subfield of F×
pk

, x
pk−1

r = 1.

Factors in subfields do not need to be computed !

Simon Masson Cocks–Pinch curves with efficient ate pairing

11/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Final exponentiation step.
fr ,P(Q) and ft−1,Q(P) are r -th roots of unity.
We obtain a unique coset elevating to the power (pk − 1)/r .

(fr ,P(Q)ur)(pk−1)/r = fr ,P(Q)(pk−1)/rupk−1 = fr ,P(Q)(pk−1)/r

(pk − 1)/r is very large so the exponentiation is expensive.

Proposition

For x in a subfield of F×
pk

, x
pk−1

r = 1.

Factors in subfields do not need to be computed !

Simon Masson Cocks–Pinch curves with efficient ate pairing

12/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

When k is even, say Fpk = Fpk/2(
√
α).

Quadratic twist :
E ′

∼−→ E

(x , y) 7−→ (αx ,
√
α

3
y)

The isomorphism is defined over Fpk and E has full r -torsion defined over Fpk .

Q ∈ E (Fpk)[r] is seen as twist(Q̃) with Q̃ with two coordinates in Fpk/2 .

Vertical lines because xS ∈ Fpk/2 and P ∈ E (Fp).

When 4 | k and b = 0 or 6 | k and a = 0, the curve has a quartic or a sextic twist.

Q ∈ E (Fpk) ' E ′(Fpk/4) or E ′(Fpk/6).

Simon Masson Cocks–Pinch curves with efficient ate pairing

12/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

When k is even, say Fpk = Fpk/2(
√
α).

Quadratic twist :
E ′

∼−→ E

(x , y) 7−→ (αx ,
√
α

3
y)

The isomorphism is defined over Fpk and E has full r -torsion defined over Fpk .

Q ∈ E (Fpk)[r] is seen as twist(Q̃) with Q̃ with two coordinates in Fpk/2 .

Vertical lines vS(P) = xS − xP ∈ Fpk/2 because xS ∈ Fpk/2 and P ∈ E (Fp).

When 4 | k and b = 0 or 6 | k and a = 0, the curve has a quartic or a sextic twist.

Q ∈ E (Fpk) ' E ′(Fpk/4) or E ′(Fpk/6).

Simon Masson Cocks–Pinch curves with efficient ate pairing

12/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

When k is even, say Fpk = Fpk/2(
√
α).

Quadratic twist :
E ′

∼−→ E

(x , y) 7−→ (αx ,
√
α

3
y)

The isomorphism is defined over Fpk and E has full r -torsion defined over Fpk .

Q ∈ E (Fpk)[r] is seen as twist(Q̃) with Q̃ with two coordinates in Fpk/2 .

Vertical lines vS(P) = xS − xP ∈ Fpk/2 because xS ∈ Fpk/2 and P ∈ E (Fp).

When 4 | k and b = 0 or 6 | k and a = 0, the curve has a quartic or a sextic twist.

Q ∈ E (Fpk) ' E ′(Fpk/4) or E ′(Fpk/6). Line computations are more efficient.

Simon Masson Cocks–Pinch curves with efficient ate pairing

12/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

When k is even, say Fpk = Fpk/2(
√
α).

Quadratic twist :
E ′

∼−→ E

(x , y) 7−→ (αx ,
√
α

3
y)

The isomorphism is defined over Fpk and E has full r -torsion defined over Fpk .

Q ∈ E (Fpk)[r] is seen as twist(Q̃) with Q̃ with two coordinates in Fpk/2 .

Vertical lines vS(P) = xS − xP ∈ Fpk/2 because xS ∈ Fpk/2 and P ∈ E (Fp).

When 4 | k and b = 0 or 6 | k and a = 0, the curve has a quartic or a sextic twist.

Q ∈ E (Fpk) ' E ′(Fpk/4) or E ′(Fpk/6). Line computations are more efficient.

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Simon Masson Cocks–Pinch curves with efficient ate pairing

12/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

When k is even, say Fpk = Fpk/2(
√
α).

Quadratic twist :
E ′

∼−→ E

(x , y) 7−→ (αx ,
√
α

3
y)

The isomorphism is defined over Fpk and E has full r -torsion defined over Fpk .

Q ∈ E (Fpk)[r] is seen as twist(Q̃) with Q̃ with two coordinates in Fpk/2 .

Vertical lines vS(P) = xS − xP ∈ Fpk/2 because xS ∈ Fpk/2 and P ∈ E (Fp).

When 4 | k and b = 0 or 6 | k and a = 0, the curve has a quartic or a sextic twist.

Q ∈ E (Fpk) ' E ′(Fpk/4) or E ′(Fpk/6). Line computations are more efficient.

f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)

Simon Masson Cocks–Pinch curves with efficient ate pairing

12/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

When k is even, say Fpk = Fpk/2(
√
α).

Quadratic twist :
E ′

∼−→ E

(x , y) 7−→ (αx ,
√
α

3
y)

The isomorphism is defined over Fpk and E has full r -torsion defined over Fpk .

Q ∈ E (Fpk)[r] is seen as twist(Q̃) with Q̃ with two coordinates in Fpk/2 .

Vertical lines vS(P) = xS − xP ∈ Fpk/2 because xS ∈ Fpk/2 and P ∈ E (Fp).

When 4 | k and b = 0 or 6 | k and a = 0, the curve has a quartic or a sextic twist.

Q ∈ E (Fpk) ' E ′(Fpk/4) or E ′(Fpk/6). Line computations are more efficient.

f =
(
12 · `Q,Q(P)

)2 · `2Q,2Q(P) · `4Q,Q(P)

Simon Masson Cocks–Pinch curves with efficient ate pairing

12/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

When k is even, say Fpk = Fpk/2(
√
α).

Quadratic twist :
E ′

∼−→ E

(x , y) 7−→ (αx ,
√
α

3
y)

The isomorphism is defined over Fpk and E has full r -torsion defined over Fpk .

Q ∈ E (Fpk)[r] is seen as twist(Q̃) with Q̃ with two coordinates in Fpk/2 .

Vertical lines vS(P) = xS − xP ∈ Fpk/2 because xS ∈ Fpk/2 and P ∈ E (Fp).

When 4 | k and b = 0 or 6 | k and a = 0, the curve has a quartic or a sextic twist.

Q ∈ E (Fpk) ' E ′(Fpk/4) or E ′(Fpk/6). Line computations are more efficient.

f =
(
12 · `Q,Q(P)

)2 · `2Q,2Q(P) · `4Q,Q(P)

Simon Masson Cocks–Pinch curves with efficient ate pairing

12/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

When k is even, say Fpk = Fpk/2(
√
α).

Quadratic twist :
E ′

∼−→ E

(x , y) 7−→ (αx ,
√
α

3
y)

The isomorphism is defined over Fpk and E has full r -torsion defined over Fpk .

Q ∈ E (Fpk)[r] is seen as twist(Q̃) with Q̃ with two coordinates in Fpk/2 .

Vertical lines vS(P) = xS − xP ∈ Fpk/2 because xS ∈ Fpk/2 and P ∈ E (Fp).

When 4 | k and b = 0 or 6 | k and a = 0, the curve has a quartic or a sextic twist.

Q ∈ E (Fpk) ' E ′(Fpk/4) or E ′(Fpk/6). Line computations are more efficient.

f = `Q,Q(P)2`2Q,2Q(P)`4Q,Q(P)

Simon Masson Cocks–Pinch curves with efficient ate pairing

13/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

pk−1
Φk (p) is a polynomial in p with very small coefficients.

Easy exponentiation with Frobenius when Fpk = Fp[x]/(xk − α):

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

A Frobenius costs k − 1 multiplications over Fp.

Last part Φk (p)
r : more expensive, decompose into polynomials and compute efficiently

with Horner rule:
a
∑3

i=0 xip
i

= ((((ax3)p)ax2)pax1)pax0

Few exponentiations by xi , multiplications and Frobenius.

Simon Masson Cocks–Pinch curves with efficient ate pairing

13/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

pk−1
Φk (p) is a polynomial in p with very small coefficients.

Easy exponentiation with Frobenius when Fpk = Fp[x]/(xk − α):

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

A Frobenius costs k − 1 multiplications over Fp.

Last part Φk (p)
r : more expensive, decompose into polynomials and compute efficiently

with Horner rule:
a
∑3

i=0 xip
i

= ((((ax3)p)ax2)pax1)pax0

Few exponentiations by xi , multiplications and Frobenius.

Simon Masson Cocks–Pinch curves with efficient ate pairing

13/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

pk−1
Φk (p) is a polynomial in p with very small coefficients.

Easy exponentiation with Frobenius when Fpk = Fp[x]/(xk − α):

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

A Frobenius costs k − 1 multiplications over Fp.

Last part Φk (p)
r : more expensive, decompose into polynomials and compute efficiently

with Horner rule:
a
∑3

i=0 xip
i

= ((((ax3)p)ax2)pax1)pax0

Few exponentiations by xi , multiplications and Frobenius.

Simon Masson Cocks–Pinch curves with efficient ate pairing

13/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

pk−1
Φk (p) is a polynomial in p with very small coefficients.

Easy exponentiation with Frobenius when Fpk = Fp[x]/(xk − α):

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

A Frobenius costs k − 1 multiplications over Fp.

Last part Φk (p)
r : more expensive, decompose into polynomials and compute efficiently

with Horner rule:
a
∑3

i=0 xip
i

= ((((ax3)p)ax2)pax1)pax0

Few exponentiations by xi , multiplications and Frobenius.

Simon Masson Cocks–Pinch curves with efficient ate pairing

13/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

pk−1
Φk (p) is a polynomial in p with very small coefficients.

Easy exponentiation with Frobenius when Fpk = Fp[x]/(xk − α):

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

A Frobenius costs k − 1 multiplications over Fp.

Last part Φk (p)
r : more expensive, decompose into polynomials and compute efficiently

with Horner rule:

a
∑3

i=0 xip
i

= ((((ax3)p)ax2)pax1)pax0

Few exponentiations by xi , multiplications and Frobenius.

Simon Masson Cocks–Pinch curves with efficient ate pairing

13/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

pk−1
Φk (p) is a polynomial in p with very small coefficients.

Easy exponentiation with Frobenius when Fpk = Fp[x]/(xk − α):

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

A Frobenius costs k − 1 multiplications over Fp.

Last part Φk (p)
r : more expensive, decompose into polynomials and compute efficiently

with Horner rule:
a
∑3

i=0 xip
i

= ((((ax3)p)ax2)pax1)pax0

Few exponentiations by xi , multiplications and Frobenius.

Simon Masson Cocks–Pinch curves with efficient ate pairing

13/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

pk−1
Φk (p) is a polynomial in p with very small coefficients.

Easy exponentiation with Frobenius when Fpk = Fp[x]/(xk − α):

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

A Frobenius costs k − 1 multiplications over Fp.

Last part Φk (p)
r : more expensive, decompose into polynomials and compute efficiently

with Horner rule:
a
∑3

i=0 xip
i

= ((((ax3)p)ax2)pax1)pax0

Few exponentiations by xi , multiplications and Frobenius.

Simon Masson Cocks–Pinch curves with efficient ate pairing

14/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Pairing-friendly curves for 128 bits of security

1 Tate and ate pairing

2 Pairing-friendly curves for 128 bits of security

3 Timings and comparisons

Simon Masson Cocks–Pinch curves with efficient ate pairing

15/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy 2 for a sufficiently small positive integer D and an integer y .

Cyclotomic families.

1 Find r(x) ∈ Z[x] such that K := Q[x]/(r(x)) is a number field containing
√
−D

and Q(ζk) for a chosen primitive k-th root ζk .

2 Let t(x), y(x) ∈ Q[x] mapping respectively to ζk + 1 ∈ K , (ζk − 1)/
√
−D ∈ K .

3 Let p(x) ∈ Q[x] be given by (t(x)2 + Dy(x)2)/4.

If p(x) represents primes, choosing x0 ∈ Z such that y(x0) ∈ Z gives a pairing-friendly
elliptic curve of embedding degree k, defined over Fp(x0), of trace t(x0), with a
subgroup of order r(x0) and discriminant D.

Simon Masson Cocks–Pinch curves with efficient ate pairing

15/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy 2 for a sufficiently small positive integer D and an integer y .

Cyclotomic families.

1 Find r(x) ∈ Z[x] such that K := Q[x]/(r(x)) is a number field containing
√
−D

and Q(ζk) for a chosen primitive k-th root ζk .

2 Let t(x), y(x) ∈ Q[x] mapping respectively to ζk + 1 ∈ K , (ζk − 1)/
√
−D ∈ K .

3 Let p(x) ∈ Q[x] be given by (t(x)2 + Dy(x)2)/4.

If p(x) represents primes, choosing x0 ∈ Z such that y(x0) ∈ Z gives a pairing-friendly
elliptic curve of embedding degree k, defined over Fp(x0), of trace t(x0), with a
subgroup of order r(x0) and discriminant D.

Simon Masson Cocks–Pinch curves with efficient ate pairing

15/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy 2 for a sufficiently small positive integer D and an integer y .

Cyclotomic families.

1 Find r(x) ∈ Z[x] such that K := Q[x]/(r(x)) is a number field containing
√
−D

and Q(ζk) for a chosen primitive k-th root ζk .

2 Let t(x), y(x) ∈ Q[x] mapping respectively to ζk + 1 ∈ K , (ζk − 1)/
√
−D ∈ K .

3 Let p(x) ∈ Q[x] be given by (t(x)2 + Dy(x)2)/4.

If p(x) represents primes, choosing x0 ∈ Z such that y(x0) ∈ Z gives a pairing-friendly
elliptic curve of embedding degree k, defined over Fp(x0), of trace t(x0), with a
subgroup of order r(x0) and discriminant D.

Simon Masson Cocks–Pinch curves with efficient ate pairing

15/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy 2 for a sufficiently small positive integer D and an integer y .

Cyclotomic families.

1 Find r(x) ∈ Z[x] such that K := Q[x]/(r(x)) is a number field containing
√
−D

and Q(ζk) for a chosen primitive k-th root ζk .

2 Let t(x), y(x) ∈ Q[x] mapping respectively to ζk + 1 ∈ K , (ζk − 1)/
√
−D ∈ K .

3 Let p(x) ∈ Q[x] be given by (t(x)2 + Dy(x)2)/4.

If p(x) represents primes, choosing x0 ∈ Z such that y(x0) ∈ Z gives a pairing-friendly
elliptic curve of embedding degree k, defined over Fp(x0), of trace t(x0), with a
subgroup of order r(x0) and discriminant D.

Simon Masson Cocks–Pinch curves with efficient ate pairing

15/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy 2 for a sufficiently small positive integer D and an integer y .

Cyclotomic families.

1 Find r(x) ∈ Z[x] such that K := Q[x]/(r(x)) is a number field containing
√
−D

and Q(ζk) for a chosen primitive k-th root ζk .

2 Let t(x), y(x) ∈ Q[x] mapping respectively to ζk + 1 ∈ K , (ζk − 1)/
√
−D ∈ K .

3 Let p(x) ∈ Q[x] be given by (t(x)2 + Dy(x)2)/4.

If p(x) represents primes, choosing x0 ∈ Z such that y(x0) ∈ Z gives a pairing-friendly
elliptic curve of embedding degree k, defined over Fp(x0), of trace t(x0), with a
subgroup of order r(x0) and discriminant D.

Simon Masson Cocks–Pinch curves with efficient ate pairing

15/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy 2 for a sufficiently small positive integer D and an integer y .

Cyclotomic families.

1 Find r(x) ∈ Z[x] such that K := Q[x]/(r(x)) is a number field containing
√
−D

and Q(ζk) for a chosen primitive k-th root ζk .

2 Let t(x), y(x) ∈ Q[x] mapping respectively to ζk + 1 ∈ K , (ζk − 1)/
√
−D ∈ K .

3 Let p(x) ∈ Q[x] be given by (t(x)2 + Dy(x)2)/4.

If p(x) represents primes, choosing x0 ∈ Z such that y(x0) ∈ Z gives a pairing-friendly
elliptic curve of embedding degree k, defined over Fp(x0), of trace t(x0), with a
subgroup of order r(x0) and discriminant D.

Simon Masson Cocks–Pinch curves with efficient ate pairing

16/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

How to get the equation of the curve ? (Complex multiplication method).

1. Compute the discriminant D of the curve : p + 1− t = −Dy 2 with D square-free.
sage: (p+1-t).square free part()

2. Compute the Hilbert class polynomial HD(X) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert class polynomial(D)

3. Compute a curve whose j-invariant is one of these roots.
sage: EllipticCurve from j(j0).

Simon Masson Cocks–Pinch curves with efficient ate pairing

16/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

How to get the equation of the curve ? (Complex multiplication method).
1. Compute the discriminant D of the curve : p + 1− t = −Dy 2 with D square-free.
sage: (p+1-t).square free part()

2. Compute the Hilbert class polynomial HD(X) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert class polynomial(D)

3. Compute a curve whose j-invariant is one of these roots.
sage: EllipticCurve from j(j0).

Simon Masson Cocks–Pinch curves with efficient ate pairing

16/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

How to get the equation of the curve ? (Complex multiplication method).
1. Compute the discriminant D of the curve : p + 1− t = −Dy 2 with D square-free.
sage: (p+1-t).square free part()

2. Compute the Hilbert class polynomial HD(X) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert class polynomial(D)

3. Compute a curve whose j-invariant is one of these roots.
sage: EllipticCurve from j(j0).

Simon Masson Cocks–Pinch curves with efficient ate pairing

16/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

How to get the equation of the curve ? (Complex multiplication method).
1. Compute the discriminant D of the curve : p + 1− t = −Dy 2 with D square-free.
sage: (p+1-t).square free part()

2. Compute the Hilbert class polynomial HD(X) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert class polynomial(D)

3. Compute a curve whose j-invariant is one of these roots.
sage: EllipticCurve from j(j0).

Simon Masson Cocks–Pinch curves with efficient ate pairing

17/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Example.

Barreto-Naehrig curves are elliptic curves of embedding degree k = 12, parametrized by

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1

r(x) = 36x4 + 36x3 + 18x2 + 6x + 1

t(x) = 6x2 + 1

For some integer x0, (p(x0), r(x0), t(x0)) parametrizes a pairing-friendly elliptic curve.

What about efficiency of the pairing computation ?

Simon Masson Cocks–Pinch curves with efficient ate pairing

17/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Example.
Barreto-Naehrig curves are elliptic curves of embedding degree k = 12, parametrized by

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1

r(x) = 36x4 + 36x3 + 18x2 + 6x + 1

t(x) = 6x2 + 1

For some integer x0, (p(x0), r(x0), t(x0)) parametrizes a pairing-friendly elliptic curve.

What about efficiency of the pairing computation ?

Simon Masson Cocks–Pinch curves with efficient ate pairing

17/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Example.
Barreto-Naehrig curves are elliptic curves of embedding degree k = 12, parametrized by

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1

r(x) = 36x4 + 36x3 + 18x2 + 6x + 1

t(x) = 6x2 + 1

For some integer x0, (p(x0), r(x0), t(x0)) parametrizes a pairing-friendly elliptic curve.

What about efficiency of the pairing computation ?

Simon Masson Cocks–Pinch curves with efficient ate pairing

18/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop.
k is even =⇒ no vertical lines.
6 | k and D = 3 =⇒ twist of degree 6: E (Fp12)[r] ' E ′(Fp2)[r].

Final exponentiation.

p12 − 1

r
= (p6 − 1)(p2 + 1)

p4 − p2 + 1

r

y = (xp6−1)p
2+1 is easy with Frobenius powers.

p4−p2+1
r is specific because p = p(x0) and r = r(x0).

y
p(x0)4−p(x0)2+1

r(x0) = yp3+λ2(x0)p2+λ1(x0)p+λ0(x0): few exponentiations by x0.

Efficient pairing. But how secure are these curves ?

Simon Masson Cocks–Pinch curves with efficient ate pairing

18/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop.
k is even =⇒ no vertical lines.
6 | k and D = 3 =⇒ twist of degree 6: E (Fp12)[r] ' E ′(Fp2)[r].
Final exponentiation.

p12 − 1

r
= (p6 − 1)(p2 + 1)

p4 − p2 + 1

r

y = (xp6−1)p
2+1 is easy with Frobenius powers.

p4−p2+1
r is specific because p = p(x0) and r = r(x0).

y
p(x0)4−p(x0)2+1

r(x0) = yp3+λ2(x0)p2+λ1(x0)p+λ0(x0): few exponentiations by x0.

Efficient pairing. But how secure are these curves ?

Simon Masson Cocks–Pinch curves with efficient ate pairing

18/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop.
k is even =⇒ no vertical lines.
6 | k and D = 3 =⇒ twist of degree 6: E (Fp12)[r] ' E ′(Fp2)[r].
Final exponentiation.

p12 − 1

r
= (p6 − 1)(p2 + 1)

p4 − p2 + 1

r

y = (xp6−1)p
2+1 is easy with Frobenius powers.

p4−p2+1
r is specific because p = p(x0) and r = r(x0).

y
p(x0)4−p(x0)2+1

r(x0) = yp3+λ2(x0)p2+λ1(x0)p+λ0(x0): few exponentiations by x0.

Efficient pairing. But how secure are these curves ?

Simon Masson Cocks–Pinch curves with efficient ate pairing

18/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop.
k is even =⇒ no vertical lines.
6 | k and D = 3 =⇒ twist of degree 6: E (Fp12)[r] ' E ′(Fp2)[r].
Final exponentiation.

p12 − 1

r
= (p6 − 1)(p2 + 1)

p4 − p2 + 1

r

y = (xp6−1)p
2+1 is easy with Frobenius powers.

p4−p2+1
r is specific because p = p(x0) and r = r(x0).

y
p(x0)4−p(x0)2+1

r(x0) = yp3+λ2(x0)p2+λ1(x0)p+λ0(x0): few exponentiations by x0.

Efficient pairing. But how secure are these curves ?

Simon Masson Cocks–Pinch curves with efficient ate pairing

18/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop.
k is even =⇒ no vertical lines.
6 | k and D = 3 =⇒ twist of degree 6: E (Fp12)[r] ' E ′(Fp2)[r].
Final exponentiation.

p12 − 1

r
= (p6 − 1)(p2 + 1)

p4 − p2 + 1

r

y = (xp6−1)p
2+1 is easy with Frobenius powers.

p4−p2+1
r is specific because p = p(x0) and r = r(x0).

y
p(x0)4−p(x0)2+1

r(x0) = yp3+λ2(x0)p2+λ1(x0)p+λ0(x0): few exponentiations by x0.

Efficient pairing. But how secure are these curves ?

Simon Masson Cocks–Pinch curves with efficient ate pairing

18/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop.
k is even =⇒ no vertical lines.
6 | k and D = 3 =⇒ twist of degree 6: E (Fp12)[r] ' E ′(Fp2)[r].
Final exponentiation.

p12 − 1

r
= (p6 − 1)(p2 + 1)

p4 − p2 + 1

r

y = (xp6−1)p
2+1 is easy with Frobenius powers.

p4−p2+1
r is specific because p = p(x0) and r = r(x0).

y
p(x0)4−p(x0)2+1

r(x0) = yp3+λ2(x0)p2+λ1(x0)p+λ0(x0): few exponentiations by x0.

Efficient pairing. But how secure are these curves ?

Simon Masson Cocks–Pinch curves with efficient ate pairing

19/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Security of pairing curves.

e : E (Fp)× E (Fpk) −→ Fpk

Security against DLP in elliptic curve: best attack in O(
√

r).
log2(r) = 256 for 128 bits of security.

Security against DLP in Fpk : Number Field Sieve attacks in progress.

special prime p =⇒ 1993: Special NFS attack
k > 1 =⇒ 2015: Tower NFS attack
composite k and special p =⇒ 2016: STNFS attack

BN curves are threatened by STNFS...
Need a 5500 bits field Fp12 to get 128 bits of security.

Simon Masson Cocks–Pinch curves with efficient ate pairing

19/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Security of pairing curves.

e : E (Fp)× E (Fpk) −→ Fpk

Security against DLP in elliptic curve: best attack in O(
√

r).
log2(r) = 256 for 128 bits of security.

Security against DLP in Fpk : Number Field Sieve attacks in progress.

special prime p =⇒ 1993: Special NFS attack
k > 1 =⇒ 2015: Tower NFS attack
composite k and special p =⇒ 2016: STNFS attack

BN curves are threatened by STNFS...
Need a 5500 bits field Fp12 to get 128 bits of security.

Simon Masson Cocks–Pinch curves with efficient ate pairing

19/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Security of pairing curves.

e : E (Fp)× E (Fpk) −→ Fpk

Security against DLP in elliptic curve: best attack in O(
√

r).
log2(r) = 256 for 128 bits of security.

Security against DLP in Fpk : Number Field Sieve attacks in progress.

special prime p =⇒ 1993: Special NFS attack
k > 1 =⇒ 2015: Tower NFS attack
composite k and special p =⇒ 2016: STNFS attack

BN curves are threatened by STNFS...
Need a 5500 bits field Fp12 to get 128 bits of security.

Simon Masson Cocks–Pinch curves with efficient ate pairing

19/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Security of pairing curves.

e : E (Fp)× E (Fpk) −→ Fpk

Security against DLP in elliptic curve: best attack in O(
√

r).
log2(r) = 256 for 128 bits of security.

Security against DLP in Fpk : Number Field Sieve attacks in progress.

special prime p =⇒ 1993: Special NFS attack
k > 1 =⇒ 2015: Tower NFS attack
composite k and special p =⇒ 2016: STNFS attack

BN curves are threatened by STNFS...
Need a 5500 bits field Fp12 to get 128 bits of security.

Simon Masson Cocks–Pinch curves with efficient ate pairing

20/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Generation of curves with given prime k , square-free D and no structure on p.

Algorithm: Cocks-Pinch(k ,D) – Compute a pairing-friendly curve E/Fp of trace t
with a subgroup of order r , such that t2 − Dy 2 = 4p.

Set a prime r such that k | r − 1 and
√
−D ∈ Fr

Set T such that r | Φk(T)
t ← T + 1
y ← (t − 2)/

√
−D

Lift t, y ∈ Z such that t2 + Dy 2 ≡ 0 mod 4
p ← (t2 + Dy 2)/4
if p is prime then return [p, t, y , r] else Repeat with another r .

Large trace t =⇒ the ate pairing is not very efficient

Fix: first fix a small T and then choose r . t = T + 1 is small

Simon Masson Cocks–Pinch curves with efficient ate pairing

20/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Generation of curves with given prime k , square-free D and no structure on p.

Algorithm: Cocks-Pinch(k ,D) – Compute a pairing-friendly curve E/Fp of trace t
with a subgroup of order r , such that t2 − Dy 2 = 4p.

Set a prime r such that k | r − 1 and
√
−D ∈ Fr

Set T such that r | Φk(T)
t ← T + 1
y ← (t − 2)/

√
−D

Lift t, y ∈ Z such that t2 + Dy 2 ≡ 0 mod 4
p ← (t2 + Dy 2)/4
if p is prime then return [p, t, y , r] else Repeat with another r .

Large trace t =⇒ the ate pairing is not very efficient

Fix: first fix a small T and then choose r . t = T + 1 is small

Simon Masson Cocks–Pinch curves with efficient ate pairing

20/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Generation of curves with given prime k , square-free D and no structure on p.

Algorithm: Cocks-Pinch(k ,D) – Compute a pairing-friendly curve E/Fp of trace t
with a subgroup of order r , such that t2 − Dy 2 = 4p.

Set a small T
Set a prime r such that k | r − 1,

√
−D ∈ Fr and r | Φk(T)

t ← T + 1
y ← (t − 2)/

√
−D

Lift t, y ∈ Z such that t2 + Dy 2 ≡ 0 mod 4
p ← (t2 + Dy 2)/4
if p is prime then return [p, t, y , r] else Repeat with another r .

Large trace t =⇒ the ate pairing is not very efficient

Fix: first fix a small T and then choose r . t = T + 1 is small

Simon Masson Cocks–Pinch curves with efficient ate pairing

20/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Generation of curves with given prime k , square-free D and no structure on p.

Algorithm: Cocks-Pinch(k ,D) – Compute a pairing-friendly curve E/Fp of trace t
with a subgroup of order r , such that t2 − Dy 2 = 4p.

Set a small T
Set a prime r such that k | r − 1,

√
−D ∈ Fr and r | ϕk(T)

t ← T + 1
y ← (t − 2)/

√
−D

Lift t, y ∈ Z such that t2 + Dy 2 ≡ 0 mod 4
p ← (t2 + Dy 2)/4
if p is prime and p = 1 mod k then return [p, t, y , r] else Repeat with another r .

Large trace t =⇒ the ate pairing is not very efficient

Fix: first fix a small T and then choose r . t = T + 1 is small Fpk = Fp[u]/(uk − α)

Simon Masson Cocks–Pinch curves with efficient ate pairing

21/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Parameter choices for 128 bits of security:

Size of T .

log2(r) ≈ log2(Φk(T)) = ϕ(k) log2(T) =⇒ log2(T) = 256/ϕ(k).

k = 5, log2(T) = 64 k = 6, log2(T) = 52

k = 7, log2(T) = 43 k = 8, log2(T) = 37

Low hamming weight of T (Miller loop).

When lifting in Z, add a multiple of r in y

y = y + hy · r

such that p is large enough to resist NFS attacks.

Simon Masson Cocks–Pinch curves with efficient ate pairing

21/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Parameter choices for 128 bits of security:

Size of T .
log2(r) ≈ log2(Φk(T)) = ϕ(k) log2(T) =⇒ log2(T) = 256/ϕ(k).

k = 5, log2(T) = 64 k = 6, log2(T) = 52

k = 7, log2(T) = 43 k = 8, log2(T) = 37

Low hamming weight of T (Miller loop).

When lifting in Z, add a multiple of r in y

y = y + hy · r

such that p is large enough to resist NFS attacks.

Simon Masson Cocks–Pinch curves with efficient ate pairing

21/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Parameter choices for 128 bits of security:

Size of T .
log2(r) ≈ log2(Φk(T)) = ϕ(k) log2(T) =⇒ log2(T) = 256/ϕ(k).

k = 5, log2(T) = 64 k = 6, log2(T) = 52

k = 7, log2(T) = 43 k = 8, log2(T) = 37

Low hamming weight of T (Miller loop).

When lifting in Z, add a multiple of r in y

y = y + hy · r

such that p is large enough to resist NFS attacks.

Simon Masson Cocks–Pinch curves with efficient ate pairing

21/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Parameter choices for 128 bits of security:

Size of T .
log2(r) ≈ log2(Φk(T)) = ϕ(k) log2(T) =⇒ log2(T) = 256/ϕ(k).

k = 5, log2(T) = 64 k = 6, log2(T) = 52

k = 7, log2(T) = 43 k = 8, log2(T) = 37

Low hamming weight of T (Miller loop).

When lifting in Z, add a multiple of r in y

y = y + hy · r

such that p is large enough to resist NFS attacks.

Simon Masson Cocks–Pinch curves with efficient ate pairing

21/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Parameter choices for 128 bits of security:

Size of T .
log2(r) ≈ log2(Φk(T)) = ϕ(k) log2(T) =⇒ log2(T) = 256/ϕ(k).

k = 5, log2(T) = 64 k = 6, log2(T) = 52

k = 7, log2(T) = 43 k = 8, log2(T) = 37

Low hamming weight of T (Miller loop).

When lifting in Z, add a multiple of r in y

y = y + hy · r

such that p is large enough to resist NFS attacks.

Simon Masson Cocks–Pinch curves with efficient ate pairing

22/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

128-bit security for finite field extensions.

Our variant of Cocks-Pinch generates pairing-friendly curves with a “non-special”
prime: p is not parametrized by a (one variable) polynomial with small coefficents.

Remark

Sometimes (for instance k = 8) p is parametrized by a two-variables polynomial:
p ∈ Z[T , hy], but today NFS-variants do not use this property.

Field DL attack
Field size needed

for 128-bit security
log2(p) induced

Fp5 TNFS 3320 664

Fp6 exTNFS 4032 672

Fp7 TNFS 3584 512

Fp8 exTNFS 4352 544

Simon Masson Cocks–Pinch curves with efficient ate pairing

22/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

128-bit security for finite field extensions.

Our variant of Cocks-Pinch generates pairing-friendly curves with a “non-special”
prime: p is not parametrized by a (one variable) polynomial with small coefficents.

Remark

Sometimes (for instance k = 8) p is parametrized by a two-variables polynomial:
p ∈ Z[T , hy], but today NFS-variants do not use this property.

Field DL attack
Field size needed

for 128-bit security
log2(p) induced

Fp5 TNFS 3320 664

Fp6 exTNFS 4032 672

Fp7 TNFS 3584 512

Fp8 exTNFS 4352 544

Simon Masson Cocks–Pinch curves with efficient ate pairing

22/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

128-bit security for finite field extensions.

Our variant of Cocks-Pinch generates pairing-friendly curves with a “non-special”
prime: p is not parametrized by a (one variable) polynomial with small coefficents.

Remark

Sometimes (for instance k = 8) p is parametrized by a two-variables polynomial:
p ∈ Z[T , hy], but today NFS-variants do not use this property.

Field DL attack
Field size needed

for 128-bit security
log2(p) induced

Fp5 TNFS 3320 664

Fp6 exTNFS 4032 672

Fp7 TNFS 3584 512

Fp8 exTNFS 4352 544

Simon Masson Cocks–Pinch curves with efficient ate pairing

22/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

128-bit security for finite field extensions.

Our variant of Cocks-Pinch generates pairing-friendly curves with a “non-special”
prime: p is not parametrized by a (one variable) polynomial with small coefficents.

Remark

Sometimes (for instance k = 8) p is parametrized by a two-variables polynomial:
p ∈ Z[T , hy], but today NFS-variants do not use this property.

Field DL attack
Field size needed

for 128-bit security
log2(p) induced

Fp5 TNFS 3320 664

Fp6 exTNFS 4032 672

Fp7 TNFS 3584 512

Fp8 exTNFS 4352 544

Simon Masson Cocks–Pinch curves with efficient ate pairing

23/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Timings and comparisons

1 Tate and ate pairing

2 Pairing-friendly curves for 128 bits of security

3 Timings and comparisons

Simon Masson Cocks–Pinch curves with efficient ate pairing

24/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic and pairing computation for new BN and BLS primes.
2. Bench Fp arithmetic for our non-special primes of different sizes.
3. Count the number of Fp multiplications to get an estimation of the cost.

Simon Masson Cocks–Pinch curves with efficient ate pairing

24/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography

, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic and pairing computation for new BN and BLS primes.
2. Bench Fp arithmetic for our non-special primes of different sizes.
3. Count the number of Fp multiplications to get an estimation of the cost.

Simon Masson Cocks–Pinch curves with efficient ate pairing

24/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.

Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic and pairing computation for new BN and BLS primes.
2. Bench Fp arithmetic for our non-special primes of different sizes.
3. Count the number of Fp multiplications to get an estimation of the cost.

Simon Masson Cocks–Pinch curves with efficient ate pairing

24/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic and pairing computation for new BN and BLS primes.
2. Bench Fp arithmetic for our non-special primes of different sizes.
3. Count the number of Fp multiplications to get an estimation of the cost.

Simon Masson Cocks–Pinch curves with efficient ate pairing

24/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic and pairing computation for new BN and BLS primes.
2. Bench Fp arithmetic for our non-special primes of different sizes.
3. Count the number of Fp multiplications to get an estimation of the cost.

Simon Masson Cocks–Pinch curves with efficient ate pairing

24/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.

1. Bench Fp arithmetic and pairing computation for new BN and BLS primes.
2. Bench Fp arithmetic for our non-special primes of different sizes.
3. Count the number of Fp multiplications to get an estimation of the cost.

Simon Masson Cocks–Pinch curves with efficient ate pairing

24/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic and pairing computation for new BN and BLS primes.

2. Bench Fp arithmetic for our non-special primes of different sizes.
3. Count the number of Fp multiplications to get an estimation of the cost.

Simon Masson Cocks–Pinch curves with efficient ate pairing

24/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic and pairing computation for new BN and BLS primes.
2. Bench Fp arithmetic for our non-special primes of different sizes.

3. Count the number of Fp multiplications to get an estimation of the cost.

Simon Masson Cocks–Pinch curves with efficient ate pairing

24/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

RELIC. https://github.com/relic-toolkit/relic.git

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic and pairing computation for new BN and BLS primes.
2. Bench Fp arithmetic for our non-special primes of different sizes.
3. Count the number of Fp multiplications to get an estimation of the cost.

Simon Masson Cocks–Pinch curves with efficient ate pairing

25/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5, 6, 7 and 8 with the previous algorithm.

Curve this work BN BLS –

k 5 6 7 8 12 12 1

Fpk size 3320 4032 3584 4352 5544 5532 3072

log2(p) 664 672 512 544 462 461 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

25/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5, 6, 7 and 8 with the previous algorithm.

Curve this work BN BLS –

k 5 6 7 8 12 12 1

Fpk size 3320 4032 3584 4352 5544 5532 3072

log2(p) 664 672 512 544 462 461 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

25/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5, 6, 7 and 8 with the previous algorithm.

Curve this work BN BLS –

k 5 6 7 8 12 12 1

Fpk size 3320 4032 3584 4352 5544 5532 3072

log2(p) 664 672 512 544 462 461 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

25/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5, 6, 7 and 8 with the previous algorithm.

Curve this work BN BLS –

k 5 6 7 8 12 12 1

Fpk size 3320 4032 3584 4352 5544 5532 3072

log2(p) 664 672 512 544 462 461 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

25/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5, 6, 7 and 8 with the previous algorithm.

Curve this work BN BLS –

k 5 6 7 8 12 12 1

Fpk size 3320 4032 3584 4352 5544 5532 3072

log2(p) 664 672 512 544 462 461 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

25/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5, 6, 7 and 8 with the previous algorithm.

Curve this work BN BLS –

k 5 6 7 8 12 12 1

Fpk size 3320 4032 3584 4352 5544 5532 3072

log2(p) 664 672 512 544 462 461 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

25/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5, 6, 7 and 8 with the previous algorithm.

Curve this work BN BLS –

k 5 6 7 8 12 12 1

Fpk size 3320 4032 3584 4352 5544 5532 3072

log2(p) 664 672 512 544 462 461 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

25/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

New curves for 128 bits of security.
We generate curves of embedding degree 5, 6, 7 and 8 with the previous algorithm.

Curve this work BN BLS –

k 5 6 7 8 12 12 1

Fpk size 3320 4032 3584 4352 5544 5532 3072

log2(p) 664 672 512 544 462 461 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

26/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Thank you for your attention.

Curve this work BN BLS KSS –

k 5 6 7 8 12 12 16 1

Fpk size 3320 4032 3584 4352 5544 5532 5424 3072

log2(p) 664 672 512 544 462 461 339 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 69ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 35-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 1356 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 0.5ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 1.3ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

26/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Thank you for your attention.

Curve this work BN BLS KSS –

k 5 6 7 8 12 12 16 1

Fpk size 3320 4032 3584 4352 5544 5532 5424 3072

log2(p) 664 672 512 544 462 461 339 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 69ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 35-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 1356 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 0.5ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 1.3ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

26/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Thank you for your attention.

Curve this work BN BLS KSS –

k 5 6 7 8 12 12 16 1

Fpk size 3320 4032 3584 4352 5544 5532 5424 3072

log2(p) 664 672 512 544 462 461 339 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 69ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 35-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 1356 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 0.5ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 1.3ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

26/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Thank you for your attention.

Curve this work BN BLS KSS –

k 5 6 7 8 12 12 16 1

Fpk size 3320 4032 3584 4352 5544 5532 5424 3072

log2(p) 664 672 512 544 462 461 339 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 69ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 35-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 1356 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 0.5ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 1.3ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

26/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Thank you for your attention.

Curve this work BN BLS KSS –

k 5 6 7 8 12 12 16 1

Fpk size 3320 4032 3584 4352 5544 5532 5424 3072

log2(p) 664 672 512 544 462 461 339 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 69ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 35-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 1356 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 0.5ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 1.3ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

26/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Thank you for your attention.

Curve this work BN BLS KSS –

k 5 6 7 8 12 12 16 1

Fpk size 3320 4032 3584 4352 5544 5532 5424 3072

log2(p) 664 672 512 544 462 461 339 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 69ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 35-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 1356 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 0.5ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 1.3ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

26/26

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Thank you for your attention.

Curve this work BN BLS KSS –

k 5 6 7 8 12 12 16 1

Fpk size 3320 4032 3584 4352 5544 5532 5424 3072

log2(p) 664 672 512 544 462 461 339 3072

Fp mul. 230ns 230ns 130ns 154ns 130ns 130ns 69ns 4882ns

Miller length 64-bit 128-bit 43-bit 64-bit 117-bit 77-bit 35-bit 256-bit

Mill. field 3320 672 3584 1088 924 922 1356 3072

Miller step 3.4ms 1.1ms 2.1ms 0.7ms 1.6ms 1.0ms 0.5ms 22.7ms

Expo. step 2.5ms 0.9ms 1.9ms 1.0ms 0.7ms 0.8ms 1.3ms 20.0ms

Total 5.9ms 2.0ms 4.0ms 1.7ms 2.3ms 1.8ms 1.8ms 42.7ms

Simon Masson Cocks–Pinch curves with efficient ate pairing

