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Thales – LORIA

June 21, 2019

Simon Masson Cocks–Pinch curves with efficient ate pairing



2/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Elliptic curve. y2 = x3 + Ax + B

P
Q

P + Q

P

2P

P

−P

Points on an elliptic curve form a group (with group law +).

Simon Masson Cocks–Pinch curves with efficient ate pairing



2/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Elliptic curve. y2 = x3 + Ax + B

P
Q

P + Q

P

2P

P

−P

Points on an elliptic curve form a group (with group law +).

Simon Masson Cocks–Pinch curves with efficient ate pairing



2/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Elliptic curve. y2 = x3 + Ax + B

P
Q

P + Q

P

2P

P

−P

Points on an elliptic curve form a group (with group law +).

Simon Masson Cocks–Pinch curves with efficient ate pairing



2/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Elliptic curve. y2 = x3 + Ax + B

P
Q

P + Q

P

2P

P

−P

Points on an elliptic curve form a group (with group law +).

Simon Masson Cocks–Pinch curves with efficient ate pairing



2/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Elliptic curve. y2 = x3 + Ax + B

P
Q

P + Q

P

2P

P

−P

Points on an elliptic curve form a group (with group law +).

Simon Masson Cocks–Pinch curves with efficient ate pairing



3/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

From [s]P = P + . . .+ P︸ ︷︷ ︸
s times

and P, it is difficult to recover s.

Diffie-Hellman key exchange.

a ∈ Z secret b ∈ Z secret

[a]P

[b]P

[a][b]P = = [b][a]P
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Discrete logarithm problem (DLP).
Given [s]P = P + . . .+ P︸ ︷︷ ︸

s times

and P, it is hard to recover s if 〈P〉 is a large subgroup.

Subgroup attack.
#E(Fp) =

22 × 55 × 13 × 37 × 18575429 × 505818037 × 10897499371578763791778093615151768824360936005521891580808300080405508061745073,
someone can choose a point on a small subgroup instead of the big one. Discrete
logarithm problem is easy there !
Counter the attack.

Checking that P is of order 108...073:
[108...073]P = 0, [22 × 55 × 13× 37× 18575429× 505818037]P 6= 0 and P 6= 0.

Choosing a curve with #E (Fp) with no small factor.

Simon Masson Cocks–Pinch curves with efficient ate pairing



5/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Discrete logarithm problem (DLP).
Given [s]P = P + . . .+ P︸ ︷︷ ︸

s times

and P, it is hard to recover s if 〈P〉 is a large subgroup.

Subgroup attack.
#E(Fp) =

22 × 55 × 13 × 37 × 18575429 × 505818037 × 10897499371578763791778093615151768824360936005521891580808300080405508061745073,
someone can choose a point on a small subgroup instead of the big one. Discrete
logarithm problem is easy there !

Counter the attack.

Checking that P is of order 108...073:
[108...073]P = 0, [22 × 55 × 13× 37× 18575429× 505818037]P 6= 0 and P 6= 0.

Choosing a curve with #E (Fp) with no small factor.

Simon Masson Cocks–Pinch curves with efficient ate pairing



5/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Discrete logarithm problem (DLP).
Given [s]P = P + . . .+ P︸ ︷︷ ︸

s times

and P, it is hard to recover s if 〈P〉 is a large subgroup.

Subgroup attack.
#E(Fp) =

22 × 55 × 13 × 37 × 18575429 × 505818037 × 10897499371578763791778093615151768824360936005521891580808300080405508061745073,
someone can choose a point on a small subgroup instead of the big one. Discrete
logarithm problem is easy there !
Counter the attack.

Checking that P is of order 108...073:
[108...073]P = 0, [22 × 55 × 13× 37× 18575429× 505818037]P 6= 0 and P 6= 0.

Choosing a curve with #E (Fp) with no small factor.

Simon Masson Cocks–Pinch curves with efficient ate pairing



6/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

If gcd(r , p) = 1 (think r = 10897499371578763791778093615151768824360936005521891580808300080405508061745073),

E (Fp)[r ] ' Z/rZ︸ ︷︷ ︸
G1

×Z/rZ︸ ︷︷ ︸
G2

G1: over Fp, one part of the [r]-torsion (r | E (Fp))

G2: the full [r]-torsion is defined over an extension of Fp.

Definition (embedding degree)

The embedding degree of E w.r.t. r (coprime to p) is the smallest integer k such that
E [r ] is defined over Fpk .
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Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e : E × E −→ F×

pk

For some particular P,Q ∈ E [r ] and a, b ∈ Z,

e(aP, bQ) = e(P, bQ)a = e(P,Q)ab

Secure pairing-friendly elliptic curve with an efficient pairing
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Application 1. Tripartite one round key exchange. (Joux 2000)

a secret

b secret

c secret

[a]P, [a]Q

[b]P, [b]Q

[c]P, [c]Q
e(P,Q)abc =

e([b]P, [c]Q)a = e(P,Q)bca
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Application 2. BLS signature
H : {0, 1}∗ → 〈P〉 is a hash function, with P ∈ E (Fp) of prime order r .

Secret key: sk ∈ {2, . . . , r − 1}.
Public key: Pk = [sk ]P.
Signing a message M ∈ {0, 1}∗: σ = [sk ]H(M).

Verifying the signature: e(Pk ,H(M))
?
= e(P, σ).

e(Pk ,H(M)) = e([sk ]P,H(M)) = e(P, [sk ]H(M)) = e(P, σ)
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Many other applications:

Blind signature

Identity-based encryption

Post-quantum cryptography compressions (eprint 2017/1143)

Short group signature (eprint 2018/1115)

Verifiable delay functions (eprint 2019/166)

etc.
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Tate and ate pairing

1 Tate and ate pairing

2 Pairing-friendly curves for 128 bits of security

3 Timings and comparisons
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Miller loop step
Final exponentiation step

The Tate and ate pairings are computed in two steps:

1 Evaluating a function at a point of the curve (Miller loop)

2 Exponentiating to the power (pk − 1)/r (final exponentiation).

Definition

For P ∈ G1 = E (Fp)[r ],Q ∈ G2 = E (Fpk )[r ],

Tate(P,Q) := fr ,P(Q)(pk−1)/r ate(P,Q) := ft−1,Q(P)(pk−1)/r

Simon Masson Cocks–Pinch curves with efficient ate pairing



12/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

The Tate and ate pairings are computed in two steps:

1 Evaluating a function at a point of the curve (Miller loop)

2 Exponentiating to the power (pk − 1)/r (final exponentiation).

Definition

For P ∈ G1 = E (Fp)[r ],Q ∈ G2 = E (Fpk )[r ],

Tate(P,Q) := fr ,P(Q)(pk−1)/r ate(P,Q) := ft−1,Q(P)(pk−1)/r

Simon Masson Cocks–Pinch curves with efficient ate pairing



13/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Miller loop step
Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function fs,Q such that Q is a zero of order s, and [s]Q
is a pole of order 1, i.e

div(fs,Q) = s(Q)− ([s]Q)− (s − 1)O

Miller loop for Tate.
Compute x = fr ,P(Q) with P ∈ E (Fp)[r ] and Q ∈ E (Fpk )[r ].

Miller loop for ate.
For ate: compute x = ft−1,Q(P) with P ∈ E (Fp)[r ] and Q ∈ E (Fpk )[r ].
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Miller loop step
Final exponentiation step

Algorithm: MillerLoop(s,P,Q) – Compute fs,Q(P).

f ← 1
S ← Q
for b bit of s from second MSB to LSB do

f ← f 2 · `S ,S(P)/v2S(P)
S ← [2]S
if b = 1 then

f ← f · `S ,Q(P)/vS+Q(P)
S ← S + Q

end if
end for
return f such that div(fs,Q) = s(Q)− ([s]Q)− (s − 1)O

Simon Masson Cocks–Pinch curves with efficient ate pairing



15/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security
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Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 101
2
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Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 1 01
2

f = 1
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Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 1 0 1
2

f = 12
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Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 1 0 1
2

f = 12 · `Q,Q(P)/v2Q(P)
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Miller loop step
Final exponentiation step

Example: f5,Q(P).

s = 5 = 10 1
2

f =
(
12 · `Q,Q(P)/v2Q(P)

)2
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Timings and comparisons

Miller loop step
Final exponentiation step

Final exponentiation step.

fr ,P(Q) and ft−1,Q(P) are r -th roots of unity.
We obtain a unique coset representative by elevating to the power (pk − 1)/r .

pk − 1

r
=

pk − 1

Φk(p)
· Φk(p)

r

First exponentiation: pk−1
Φk (p) .Polynomial in p with very small coefficients.

Very efficent with Frobenius: if Fpk = Fp[x ]/(xk − α),

ap =
(∑k−1

i=0 aix
i
)p

=
∑k−1

i=0 aix
ip and x ip can be precomputed.

A Frobenius costs k − 1 multiplications over Fp.

Second exponentiation: more expensive. Possible optimizations.
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Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Parameters of pairing-friendly curves.
An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy2 for a sufficiently small positive integer D and an integer y .

Equation of the curve. (Complex multiplication method).

1 Compute the discriminant D of the curve : t2 − 4p = −Dy2 with D square-free.
sage: (t**2-4*p).squarefree part()

2 Compute the Hilbert class polynomial HD(X ) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert class polynomial(D)

3 Compute a curve whose j-invariant is one of these roots.
sage: EllipticCurve from j(j0).

Simon Masson Cocks–Pinch curves with efficient ate pairing



18/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Parameters of pairing-friendly curves.
An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy2 for a sufficiently small positive integer D and an integer y .

Equation of the curve. (Complex multiplication method).

1 Compute the discriminant D of the curve : t2 − 4p = −Dy2 with D square-free.
sage: (t**2-4*p).squarefree part()

2 Compute the Hilbert class polynomial HD(X ) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert class polynomial(D)

3 Compute a curve whose j-invariant is one of these roots.
sage: EllipticCurve from j(j0).

Simon Masson Cocks–Pinch curves with efficient ate pairing



18/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Parameters of pairing-friendly curves.
An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy2 for a sufficiently small positive integer D and an integer y .

Equation of the curve. (Complex multiplication method).

1 Compute the discriminant D of the curve : t2 − 4p = −Dy2 with D square-free.
sage: (t**2-4*p).squarefree part()

2 Compute the Hilbert class polynomial HD(X ) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert class polynomial(D)

3 Compute a curve whose j-invariant is one of these roots.
sage: EllipticCurve from j(j0).

Simon Masson Cocks–Pinch curves with efficient ate pairing



18/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Parameters of pairing-friendly curves.
An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy2 for a sufficiently small positive integer D and an integer y .

Equation of the curve. (Complex multiplication method).

1 Compute the discriminant D of the curve : t2 − 4p = −Dy2 with D square-free.
sage: (t**2-4*p).squarefree part()

2 Compute the Hilbert class polynomial HD(X ) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert class polynomial(D)

3 Compute a curve whose j-invariant is one of these roots.
sage: EllipticCurve from j(j0).

Simon Masson Cocks–Pinch curves with efficient ate pairing



18/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Parameters of pairing-friendly curves.
An elliptic curve E defined over Fp, of trace t and discriminant D is pairing-friendly of
embedding degree k if

p, r are primes and t is relatively prime to p

r divides p + 1− t and pk − 1 but does not divide pi − 1 for 1 ≤ i < k

4p − t2 = Dy2 for a sufficiently small positive integer D and an integer y .

Equation of the curve. (Complex multiplication method).

1 Compute the discriminant D of the curve : t2 − 4p = −Dy2 with D square-free.
sage: (t**2-4*p).squarefree part()

2 Compute the Hilbert class polynomial HD(X ) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert class polynomial(D)

3 Compute a curve whose j-invariant is one of these roots.
sage: EllipticCurve from j(j0).

Simon Masson Cocks–Pinch curves with efficient ate pairing



19/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Generation of curves with given prime k , and square-free D.

Algorithm: Cocks-Pinch(k ,D) – Compute a pairing-friendly curve E/Fp of trace t
with a subgroup of order r , such that t2 − Dy2 = 4p.

Set a prime r such that k | r − 1 and
√
−D ∈ Fr

Set T such that r | Φk(T )
t ← T + 1
y ← (t − 2)/

√
−D

Lift t, y ∈ Z such that t2 + Dy2 ≡ 0 mod 4
p ← (t2 + Dy2)/4
if p is prime then return [p, t, y , r ] else Repeat with another r .

Large trace t =⇒ the ate pairing is not very efficient
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Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Brezing-Weng families.

1 Find r(x) ∈ Z[x ] such that K := Q[x ]/(r(x)) is a number field containing
√
−D

and Q(ζk) for a chosen primitive k-th root ζk .

2 Let t(x), y(x) ∈ Q[x ] mapping respectively to ζk + 1 ∈ K , (ζk − 1)/
√
−D ∈ K .

3 Let p(x) ∈ Q[x ] be given by (t(x)2 + Dy(x)2)/4.

Choose x0 ∈ Z such that p = p(x0), t = t(x0) and r = r(x0) lead to a pairing friendly
curve of embedding degree k of discriminant D.
Example (BN curves). Barreto-Naehrig curves are elliptic curves of embedding
degree k = 12 with

p = 36x4
0 + 36x3

0 + 24x2
0 + 6x0 + 1

r = 36x4
0 + 36x3

0 + 18x2
0 + 6x0 + 1

t = 6x2
0 + 1
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0 + 36x3

0 + 18x2
0 + 6x0 + 1

t = 6x2
0 + 1
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Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

BN Miller loop.
Compression for G2.

When k is even, for u ∈ Fp non-square,

y2 = x3 + Ax + B : E/Fp
∼−→ tE/Fp : uy2 = x3 + Ax + B

(x , y) 7−→ (x ,
√
uy)

E (Fp12)[r ] ' tE (Fp6)[r ]

More automorphisms for j = 0 and 1728 curves. Compression by a factor 4 or 6.
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f =
(
12 · `Q,Q(P)/v2Q(P)

)2 · `2Q,2Q(P)/v4Q(P) · `4Q,Q(P)/v5Q(P)
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f =
(
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pk−1
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Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

BN final exponentiation.

p12 − 1

r
= (p6 − 1)(p2 + 1)

p4 − p2 + 1

r

y = (xp
6−1)p

2+1 is easy with Frobenius powers.
p4−p2+1

r is specific because p = p(x0) and r = r(x0).

y
p(x0)4−p(x0)2+1

r(x0) = yp
3+λ2(x0)p2+λ1(x0)p+λ0(x0): few exponentiations by x0.

Efficient pairing. But how secure are these curves ?
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Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Security of pairing curves.

e : E (Fp)× E (Fpk ) −→ Fpk

Security against DLP in elliptic curve: best attack in O(
√
r).

log2(r) = 256 for 128 bits of security.

Security against DLP in Fpk : Number Field Sieve attacks in progress.

special prime p =⇒ 1993: Special NFS attack
k > 1 =⇒ 2015: Tower NFS attack
composite k and special p =⇒ 2016: STNFS attack

BN curves are threatened by STNFS...
Need a 5500 bits field Fp12 to get 128 bits of security.
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Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Curves of embedding degree 1. [eprint 2016/403]

e : G1 ×G2 −→ Fp

No NFS variants on Fp : |Fp| ≈ 23072 is small

p is very large, only the Tate pairing on these curves: not efficient
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Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Generation of curves with given prime k , square-free D and no structure on p.

Algorithm: Cocks-Pinch(k ,D) – Compute a pairing-friendly curve E/Fp of trace t
with a subgroup of order r , such that t2 − Dy2 = 4p.

Set a prime r such that k | r − 1 and
√
−D ∈ Fr

Set T such that r | Φk(T )
t ← T + 1
y ← (t − 2)/

√
−D

Lift t, y ∈ Z such that t2 + Dy2 ≡ 0 mod 4
p ← (t2 + Dy2)/4
if p is prime then return [p, t, y , r ] else Repeat with another r .

Large trace t =⇒ the ate pairing is not very efficient

Fix: first fix a small T and then choose r . t = T + 1 is small
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√
−D

Lift t, y ∈ Z such that t2 + Dy2 ≡ 0 mod 4
p ← (t2 + Dy2)/4
if p is prime and p = 1 mod k then return [p, t, y , r ] else Repeat with another r .

Large trace t =⇒ the ate pairing is not very efficient

Fix: first fix a small T and then choose r . t = T + 1 is small Fpk = Fp[u]/(uk − α)
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Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.

k = 5:

D ' 1010, Φk(T ) = r =⇒ log2(T ) = 256/ϕ(k) (sparse)
NFS: |Fp5 | ≈ 23318 =⇒ log2(p) = 664

2663 ≤ 1

4

(
(t + ht · r)2 + D(y + hy · r)2

)
< 2664

Choose log2(hy ) = 61 so log2(p) = 664.

Large discriminant, small finite field Fpk

Large p, no compression for G2

ht

hy
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Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.

k = 7:

log2(T ) = 256/ϕ(7) = 43
NFS: |Fp7 | ≈ 23584 =⇒ log2(p) = 512
Small D because log2(y2) ≈ 512.

512-bit p, small finite field Fpk , small Miller length

No compression for G2, not efficient

k = 6: D = 3, log2(T ) = 128
(T)NFS: |Fp6 | ≈ 24032 =⇒ log2(p) = 672

Factor 6 compression for G2: Q ∈ t6E (Fp)

Large p, large Miller length
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Parameter choices for 128 bits of security.

k = 8:

D = 4, log2(T ) = 64√
−D =

√
−4 = 2

√
−1 and T is a 8-th root of unity so 2T 2 =

√
−D mod r .

y = (T − 2)/
√
−D = (T − 2)/(2T 2) = −(T − 2) · T 2/2

After lifting in Z, p is a polynomial in T , ht and hy . If ht , hy ∈ {0, 1,−1}, p is a
univariate polynomial in T and STNFS can exploit this property !
We lift y ← y + hy · r with log2(hy ) = 16 so that SNFS cannot exploit it.
(T)NFS: |Fp8 | ≈ 24349 =⇒ log2(p) = 544

Factor 4 compression: Q ∈ t4E (Fp2)

Simon Masson Cocks–Pinch curves with efficient ate pairing
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Pairing-friendly curves for 128 bits of security

Timings and comparisons

Definition of a pairing-friendly curve
Generation of curves
The example of BN curves
Generation of STNFS-resistant curves

Example of generation for k = 8.
Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.

D = 4 (automorphism of degree 4)
log2(T ) = 64 with small Hamming weight
Lift t and y with 16-bit ht and hy , and restrict on log2(p) = 544
Accept small cofactors for E (Fp), E (Fp8)
Check subgroup-security and twist-subgroup-security.

CocksPinchVariantResult(

k=8,D=4,T=0xffffffffeff7c200,i=5,ht=5,hy=-0xd700,

allowed_cofactor=420,allowed_size_cofactor=10,

max_B1=600

)

Subgroup- and twist-subgroup- secure curves found for k = 5, 6, 7 and 8 !

Simon Masson Cocks–Pinch curves with efficient ate pairing

https://gitlab.inria.fr/smasson/cocks-pinch-variant
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Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Fp multiplication timing
Pairing cost estimation
Comparison of curves

RELIC.[D. Aranha] available on github.com

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic for different sizes of prime p
2. Count the number of Fp multiplications for a pairing computation on each curve
3. Compare the estimated costs between the different curves.

Simon Masson Cocks–Pinch curves with efficient ate pairing

https://github.com/relic-toolkit/relic.git


31/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Fp multiplication timing
Pairing cost estimation
Comparison of curves

RELIC.[D. Aranha] available on github.com
Efficient library for cryptography, state of the art for pairing computation.

Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic for different sizes of prime p
2. Count the number of Fp multiplications for a pairing computation on each curve
3. Compare the estimated costs between the different curves.

Simon Masson Cocks–Pinch curves with efficient ate pairing

https://github.com/relic-toolkit/relic.git


31/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Fp multiplication timing
Pairing cost estimation
Comparison of curves

RELIC.[D. Aranha] available on github.com
Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic for different sizes of prime p
2. Count the number of Fp multiplications for a pairing computation on each curve
3. Compare the estimated costs between the different curves.

Simon Masson Cocks–Pinch curves with efficient ate pairing

https://github.com/relic-toolkit/relic.git


31/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Fp multiplication timing
Pairing cost estimation
Comparison of curves

RELIC.[D. Aranha] available on github.com
Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic for different sizes of prime p
2. Count the number of Fp multiplications for a pairing computation on each curve
3. Compare the estimated costs between the different curves.

Simon Masson Cocks–Pinch curves with efficient ate pairing

https://github.com/relic-toolkit/relic.git


31/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Fp multiplication timing
Pairing cost estimation
Comparison of curves

RELIC.[D. Aranha] available on github.com
Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.

1. Bench Fp arithmetic for different sizes of prime p
2. Count the number of Fp multiplications for a pairing computation on each curve
3. Compare the estimated costs between the different curves.

Simon Masson Cocks–Pinch curves with efficient ate pairing

https://github.com/relic-toolkit/relic.git


31/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Fp multiplication timing
Pairing cost estimation
Comparison of curves

RELIC.[D. Aranha] available on github.com
Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic for different sizes of prime p

2. Count the number of Fp multiplications for a pairing computation on each curve
3. Compare the estimated costs between the different curves.

Simon Masson Cocks–Pinch curves with efficient ate pairing

https://github.com/relic-toolkit/relic.git


31/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Fp multiplication timing
Pairing cost estimation
Comparison of curves

RELIC.[D. Aranha] available on github.com
Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic for different sizes of prime p
2. Count the number of Fp multiplications for a pairing computation on each curve

3. Compare the estimated costs between the different curves.

Simon Masson Cocks–Pinch curves with efficient ate pairing

https://github.com/relic-toolkit/relic.git


31/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Fp multiplication timing
Pairing cost estimation
Comparison of curves

RELIC.[D. Aranha] available on github.com
Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
Fast Fp arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench Fp arithmetic for different sizes of prime p
2. Count the number of Fp multiplications for a pairing computation on each curve
3. Compare the estimated costs between the different curves.

Simon Masson Cocks–Pinch curves with efficient ate pairing

https://github.com/relic-toolkit/relic.git


32/36

Tate and ate pairing
Pairing-friendly curves for 128 bits of security

Timings and comparisons

Fp multiplication timing
Pairing cost estimation
Comparison of curves

Curve 64-bit words for p Fp mult. timing
BN-462 ��������

120ns

BLS12-461 ��������
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k = 5 �����������
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k = 6 �����������
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k = 7 ��������

120ns

k = 8 ���������
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k = 1 �× 48

4882ns**

* Interpolation from the graph
**Benchmark with GMP.
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Fp multiplication timing
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Pairing computation on BLS and BN curves.

Automorphism of degree 6: G2 ' t6E (Fp2)

Miller length: 117-bit for BN, 77-bit for BLS

Efficient final exponentiation using p = p(x0) and r = r(x0)

Cyclotomic squarings

Curve Fp mult. count Estimated time
BN 17871 2.2ms
BLS 13878 1.6ms

Benchmarks with RELIC: ≈ 10% of error
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Pairing computation on k = 5 and k = 7 curves.

No compression: very large G2 ' E (Fpk )

Miller length: log2(T ) = 64 or 43.

Expensive final exponentiation (no structure on p). See gitlab.inria.fr.

Curve Fp mult. count Estimated time
k = 5 24373 5.6ms
k = 7 31793 3.8ms

Pairing estimations: very expensive

Simon Masson Cocks–Pinch curves with efficient ate pairing

https://gitlab.inria.fr/smasson/cocks-pinch-variant
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Pairing computation on k = 6 curves.

Automorphism of degree 6: G2 defined over Fp

Large Miller length: log2(T ) = 128
Final exponentiation faster than k = 5 and 7 (structure on p, cyclotomic
squaring). See gitlab.inria.fr.

Pairing computation on k = 8 curves.

Automorphism of degree 4: G2 defined over Fp2

Structure on p: p = 1
4 ((t + ht · r)2 + 4(y + hy · r)2) = p(T , ht , hy )

Cyclotomic squaring
Fast final exponentiation. See gitlab.inria.fr.

Curve Fp mult. count Estimated time
k = 6 8472 2.0ms
k = 8 11636 1.8ms

Pairing estimations: competitive
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Curve
Miller loop

time estimation
Exponentiation
time estimation

time
estimation

k = 5 3.3ms 2.3ms 5.6ms
k = 6 1.1ms 0.9ms 2.0ms
k = 7 2.2ms 1.6ms 3.8ms
k = 8 0.7ms 1.1ms 1.8ms

BN 1.5ms 0.7ms 2.2ms
BLS12 0.9ms 0.7ms 1.6ms
k = 1 22.7ms 20.0ms 42.7ms

Thank you for your attention.
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