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Elliptic curve. y?> = x3 + Ax+ B
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Points on an elliptic curve form a group (with group law +).
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From [s]P = P+ ...+ P and P, it is difficult to recover s.
———

s times
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From [s]P = P+ ...+ P and P, it is difficult to recover s.
———

s times
Diffie-Hellman key exchange.
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From [s]P = P+ ...+ P and P, it is difficult to recover s.
———

s times
Diffie-Hellman key exchange.

O O

a € 7 secret b € Z secret
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From [s]P = P+ ...+ P and P, it is difficult to recover s.
———

s times
Diffie-Hellman key exchange.

O = 2

a € 7 secret b € Z secret

[a]P
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From [s]P = P+ ...+ P and P, it is difficult to recover s.
———

s times
Diffie-Hellman key exchange.

O = 2

a € 7 secret b € Z secret
[a][b]P = = [b][a]P

[a]P
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() WhatsApp

Terms

Public Key Types

+ Identity Key Pair — Along-term GUFVE25519 key pair,
generated at install time.

- Signed Pre Key - Amedium-term Curve25519 key pair,
generated at install time, signed by the Identity Key, and rotated
on a periodic timed basis.

+ One-Time Pre Keys — A queue of Curve25519 key pairs for one
time use, generated at install time, and replenished as needed.

Session Key Types

+ Root Key — A 32-byte value that is used to create Chain Keys

+ Chain Key - A 32-byte value that is used to create Mess;
Keys.

Key - An 80-byte value that is used to encrypt message
contents. 32 bytes are used for an AES-256 key, 32 bytes for a
HMAC-SHA256 key, and 16 bytes for an IV.

non Masson

Initiating Session Setup

To communicate with another WhatsApp user, a WhatsApp client
first needs to establish an encrypted session. Once the session

is established, clients do not need to rebuild a new session with

each other until the existing session state is lost through an

external event such as an app reinstall or device change.

To establish a session

1.

The initiating client (“initiator”) requests the public Identity Key,
public Signed Pre Key, and a single public One-Time Pre Key
for the recipient.

The server returns the requested public key values. A One-Time

Pre Key is only used once, so it is removed from server storage
after being requested. If the recipient’s latest batch of One-Time
Pre Keys has been consumed and the recipient has not replenished
them, no One-Time Pre Key will be returned

The initiator saves the recipient’s Identity Key as I , the
Signed Pre Keyas$S ,and the One-Time Pre Keyas
=

The initiator generates an ephemeral Curve25519 key pair, E
The initiator loads its own Identity Keyas I

The initiator calculates a master secret as master_secret =
ECDH(T .S ) || ECDH(E LI
ECDH(E .S ) || ECDH(E 0 )
If there is no One Time Pre Key, the final ECDH is omitted.

The initiator uses HKDF to create a Root Key and Chain Keys
fromthemaster_secret.




Discrete logarithm problem (DLP).
Given [s]P =P+ ...+ P and P, it is hard to recover s if (P) is a large subgroup.
—_——

s times
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Discrete logarithm problem (DLP).
Given [s]P =P+ ...+ P and P, it is hard to recover s if (P) is a large subgroup.
—_———

s times

Subgroup attack.

#E (Fp) =
22 x 5% x 13 x 37 x 18575429 x 505818037 X 10897499371578763791778093615151768824360936005521891580808300080405508061745073,

someone can choose a point on a small subgroup instead of the big one. Discrete
logarithm problem is easy there !
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Discrete logarithm problem (DLP).
Given [s]P =P+ ...+ P and P, it is hard to recover s if (P) is a large subgroup.
—_———

s times

Subgroup attack.

#E (Fp) =
22 x 5% x 13 x 37 x 18575429 x 505818037 X 10897499371578763791778093615151768824360936005521891580808300080405508061745073,

someone can choose a point on a small subgroup instead of the big one. Discrete
logarithm problem is easy there !
Counter the attack.

o Checking that P is of order 108...073:
[108...073]P = 0, [22 x 5% x 13 x 37 x 18575429 x 505818037]P # 0 and P # 0.

@ Choosing a curve with #E(F,) with no small factor.
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If gcd(r7 p) — 1 (think r = 10897499371578763791778093615151768824360936005521891580808300080405508061745073),

E(Fp] =~ 2/rZ < 2L

Gy G2
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If gcd(r7 p) — 1 (think r = 10897499371578763791778093615151768824360936005521891580808300080405508061745073),

E(Fp] =~ 2/rZ < 2L

Gy G2

o Gi: over Fp, one part of the [r]-torsion (r | E(Fp))
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If gcd(r7 p) — 1 (think r = 10897499371578763791778093615151768824360936005521891580808300080405508061745073),

E(Fp] =~ 2/rZ < 2L

Gy G2

o Gi: over Fp, one part of the [r]-torsion (r | E(Fp))

@ Gy: the full [r]-torsion is defined over an extension of [Fp.
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If gcd(r7 p) — 1 (think r = 10897499371578763791778093615151768824360936005521891580808300080405508061745073),

E(Fp] =~ 2/rZ < 2L

Gy G2

o Gi: over Fp, one part of the [r]-torsion (r | E(Fp))

@ Gy: the full [r]-torsion is defined over an extension of [Fp.

Definition (embedding degree)

The embedding degree of E w.r.t. r (coprime to p) is the smallest integer k such that
E[r] is defined over IF .
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Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k
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Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

For some particular P, Q € E[r] and a, b € Z,

e(aP, bQ)
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Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

For some particular P, Q € E[r] and a, b € Z,

e(aP,bQ) = e(P,bQ)? = e(P, Q)ab
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Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

For some particular P, Q € E[r] and a, b € Z,

e(aP,bQ) = e(P,bQ)? = e(P, Q)ab

elliptic curve
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Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

For some particular P, Q € E[r] and a, b € Z,

e(aP,bQ) = e(P,bQ)? = e(P, Q)ab

pairing-friendly elliptic curve
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Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

For some particular P, Q € E[r] and a, b € Z,

e(aP,bQ) = e(P,bQ)? = e(P, Q)ab

Secure pairing-friendly elliptic curve
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Pairings on elliptic curves

Definition

A pairing on an elliptic curve E is a bilinear non-degenerate application
e:EXE— F:k

For some particular P, Q € E[r] and a, b € Z,

e(aP,bQ) = e(P,bQ)? = e(P, Q)ab

Secure pairing-friendly elliptic curve with an efficient pairing
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Application 1. Tripartite one round key exchange. (Joux 2000)
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Application 1. Tripartite one round key exchange. (Joux 2000)
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Application 1. Tripartite one round key exchange. (Joux 2000)

b secret
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a secret C secret
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Application 1. Tripartite one round key exchange. (Joux 2000)

b secre

t
@ [b]P, [b] @

[a]P. [a]Q / \ [c]P, [c]Q
' 2

a secret C secret
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Application 1. Tripartite one round key exchange. (Joux 2000)

b secre

t
@ [b]P, [P]@

[a]P, [a]Q %Q)a’”:\ [c]P,[c]@
& e

a secret C secret
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Application 1. Tripartite one round key exchange. (Joux 2000)

b secre

t
@ [b]P, [P]@

[a]P, [a]Q %Q)a’”:\ [c]P,[c]@
& e

a secret C secret

e([b]P, [c]Q)? = e(P, Q)bca
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Application 2. BLS signature
H : {0,1}* — (P) is a hash function, with P € E(F,) of prime order r.

Simon Masson Cocks—Pinch curves with efficient ate pairing



Application 2. BLS signature

H : {0,1}* — (P) is a hash function, with P € E(F,) of prime order r.
Secret key: s, € {2,...,r —1}.

Public key: Py = [sk]|P.
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Application 2. BLS signature

H : {0,1}* — (P) is a hash function, with P € E(F,) of prime order r.
Secret key: s, € {2,...,r —1}.

Public key: Py = [sk]|P.

Signing a message M € {0,1}*: o = [s,]H(M).

Verifying the signature: e(Py, H(M)) z e(P,o).
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Application 2. BLS signature

H : {0,1}* — (P) is a hash function, with P € E(F,) of prime order r.
Secret key: s, € {2,...,r —1}.

Public key: Py = [sk]|P.

Signing a message M € {0,1}*: o = [s,]H(M).

Verifying the signature: e(Py, H(M)) z e(P,o).

e(Pr, H(M)) = e([sk]P, H(M)) = e(P, [sk] H(M)) = e(P, o)
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Many other applications:
o Blind signature
o ldentity-based encryption
e Post-quantum cryptography compressions (eprint 2017/1143)
@ Short group signature (eprint 2018/1115)
@ Verifiable delay functions (eprint 2019/166)

@ etc.
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Tate and ate pairing Miller loop step

onentiation step

Tate and ate pairing

@ Tate and ate pairing
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Tate and ate pairing

Miller loop step
Final exponentiation step

The Tate and ate pairings are computed in two steps:
@ Evaluating a function at a point of the curve (Miller loop)

@ Exponentiating to the power (pX — 1)/r (final exponentiation).
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Tate and ate pairing

The Tate and ate pairings are computed in two steps:
@ Evaluating a function at a point of the curve (Miller loop)

@ Exponentiating to the power (pX — 1)/r (final exponentiation).

Definition
For P € Gl = E(]Fp)[r], Q< G2 = E(Fpk)[r],

Tate(P, Q) := £, p(Q)P /" ate(P, Q) := fi_1 o(P)P ~1/r
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Tate and ate pairing

Miller loop step
Final exponentiation step

Miller loop step.

Simon Masson Cocks—Pi rves with efficient ate pairin



Tate and ate pairing

Miller loop step

Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function f; @ such that Q is a zero of order s, and [s]@Q
is a pole of order 1, i.e

div(fs,Q) = s(Q) — ([s]Q) — (s - 1)O
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Tate and ate pairing

Miller loop step
Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function f; @ such that Q is a zero of order s, and [s]@Q
is a pole of order 1, i.e

div(fs,Q) = s(Q) — ([s]Q) — (s - 1)O

Miller loop for Tate.
Compute x = f, p(Q) with P € E(Fp)[r] and Q € E(FF ,)[r].
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Tate and ate pairing

Miller loop step

Final exponentiation step

Miller loop step.

Definition

The Miller loop computes the function f; @ such that Q is a zero of order s, and [s]@Q
is a pole of order 1, i.e

div(fs,Q) = s(Q) — ([s]Q) — (s - 1)O

Miller loop for Tate.
Compute x = f, p(Q) with P € E(Fp)[r] and Q € E(FF ,)[r].

Miller loop for ate.
For ate: compute x = f, 1 (P) with P € E(F,)[r] and Q € E(F ,)][r].
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Tate and ate pairing

Miller loop step
Final exponentiation step

Algorithm: MiLLERLOOP(s, P, Q) — Compute f; o(P).

f+1
S+ Q
for b bit of s from second MSB to LSB do
f«+ f2 . 5575(P)/V25(P)
S+ [2]S
if b=1 then
f f-ls,q(P)/vsia(P)
S+ S+Q
end if
end for
return f such that div(f @) = s(Q) — ([s]Q) — (s — 1)O
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Tate and ate pairing

Miller loop step

Final onentiation step

Example: f5 o(P).
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Tate and ate pairing

Miller loop step

onentiation step

Example: f5 o(P).
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Tate and ate pairing Miller loop step

Final onentiation step

Example: f5 o(P).
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Tate and ate pairing Miller loop step

Final onentiation step

Example: f5 o(P).

urves with efficient ate pairi
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Tate and ate pairing

Miller loop step

Final nentiation step

Example: f5 o(P).

s=5=10J

f=1%Lo,q(P)/v2q(P)
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Tate and ate pairing

Miller loop step
Final exponentiation step

Example: f5 o(P).

5:5:102

f= (1% Lg.q(P)/vaq(P))’
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Tate and ate pairing

Miller loop step

Final exponentiation step

Example: f5 o(P).

5:5:102

f = (12 £g,0(P)/v2q(P))* - £20,2q(P)/vaq(P)
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Tate and ate pairing

Miller loop step
Final exponentiation step

Example: f5 o(P).

5:5:102

f= (12 £g,0(P)/v2q(P))* - £20,20(P)/vaq(P) - taq.o(P)/vsq(P)
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Tate and ate pairing

Miller loop step
Final exponentiation step

Example: f5 o(P).

f=(12-0g,q(P)/v2q(P))’ - t2020(P)/vaq(P) - tag.a(P)/vsq(P)
Divisor:

4(Q)+2(—2Q)
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Tate and ate pairing

Miller loop step

Final exponentiation step

Example: f5 o(P).
s=5=101

f= (12 q,q(P)/v2q(P))* - t2020(P)/vaq(P) - tag.a(P)/vsq(P)
Divisor:

4(Q)+2(—2Q) +2(2Q) + (—4Q)
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Tate and ate pairing

Miller loop step
Final exponentiation step

Example: f5 o(P).

f=(12-£q,0(P)/v2q(P))? - t20.20(P)/vaq(P) - t40.0(P)/ vsq(P)

Divisor:

4(Q) +2(-2Q) +2(2Q) + (—4Q) + (Q) + (4Q) + (-5Q)
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Tate and ate pairing

Miller loop step
Final exponentiation step

Example: f5 o(P).

f = (12 £q.a(P)/v2a(P))’ - t20.20(P)/vaq(P) - tag.a(P)/vsa(P)

Divisor:
4(Q) +2(—2Q) +2(2Q) + (—4Q) + (Q) + (4Q) + (-5Q)
—2(2Q) — 2(—2Q) — 2(0)
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Tate and ate pairing

Miller loop step

Final exponentiation step

Example: f5 o(P).

f = (12 q,q(P)/v2q(P))’ - t2020(P)/vaq(P) - tag.o(P)/vsq(P)

Divisor:
4(Q) +2(-2Q) +2(2Q) + (—4Q) + (Q) + (4Q) + (-5Q)
—2(2Q) —2(—2Q) — 2(0)—(4Q) — (—4Q) — (0)
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Example: f5 o(P).

f= (12 q,q(P)/v2q(P))* - t2020(P)/vaq(P) - tag.a(P)/vso(P)

Divisor:
4(Q) +2(—2Q) +2(2Q) + (—4Q) + (Q) + (4Q) + (-5Q)
—2(2Q) = 2(-2Q) — 2(0) — (4Q) — (—4Q) — (0)-(5Q) — (-5Q) — (0)
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Miller loop step

Final exponentiation step

Example: f5 o(P).

f= (12 £g,0(P)/v2q(P))* - £20,2q(P)/vaq(P) - taq.o(P)/vsq(P)

Divisor:
4(Q) +2(-2Q) +2(2Q) + (—4Q) + (Q) + (4Q) + (-5Q)

~2(2Q) - 2(-2Q) - 2(0) - (4Q) - (~4Q) - (0) - (5Q) - (~5Q) - (0)
div(f) = 5(Q) — (5Q) — 4(0)
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Tate and ate pairing Viller loop step

Final exponentiation step

Final exponentiation step.
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Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
f,.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset representative by elevating to the power (pX —1)/r.
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Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
f,.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset representative by elevating to the power (pX —1)/r.

pPF—1_p -1 &p)
r ®r(p) r
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Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
f,.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset representative by elevating to the power (pX —1)/r.

pPF—1_p -1 &p)
r ®r(p) r

. .. pk—1
@ First exponentiation: o (p)
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Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
f,.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset representative by elevating to the power (pX —1)/r.

pPF—1_p -1 &p)
r ®r(p) r

e First exponentiation: gi(pl).Polynomial in p with very small coefficients.
Very efficent with Frobenius: if F« = Fp[x]/(x* — ),

k=1 _ i\P k=1 _ _j ;
aP = ( i=0 aiX'> =) i—o aix'P and x'P can be precomputed.
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Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
f,.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset representative by elevating to the power (pX —1)/r.

pPF—1_p -1 &p)
r ®r(p) r

. o k_ i . .
@ First exponentiation: gk(pl).PonnomlaI in p with very small coefficients.

Very efficent with Frobenius: if F« = Fp[x]/(x* — ),

k—1
i=0

A Frobenius costs k — 1 multiplications over [Fp,.

A P K—1 . .
aP = aix') = Zi:o a;ix'P and x'P can be precomputed.
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Tate and ate pairing Miller loop step

Final exponentiation step

Final exponentiation step.
f,.p(Q) and f;_1 o(P) are r-th roots of unity.
We obtain a unique coset representative by elevating to the power (pX —1)/r.

pk—1_pk—1 &(p)

ro Op) r
e First exponentiation: gi(pl).Polynomial in p with very small coefficients.
Very efficent with Frobenius: if F« = Fp[x]/(x* — ),
aP = o aix") =>4y aix"” and x'P can be precomputed.

A Frobenius costs k — 1 multiplications over [Fp,.

@ Second exponentiation: more expensive. Possible optimizations.
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Definition of a pairi iendly curve

- . . . Generation of curves
_ 2
Pairing-friendly curves for 128 bits of security e eemE 6 B

Generation of STNFS tant curves

Pairing-friendly curves for 128 bits of security

© Pairing-friendly curves for 128 bits of security
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Definition of a pairing-friendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameters of pairing-friendly curves.
An elliptic curve E defined over I, of trace t and discriminant D is pairing-friendly of
embedding degree k if

@ p, r are primes and t is relatively prime to p
o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k
@ 4p — t?> = Dy? for a sufficiently small positive integer D and an integer y.
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Definition of a pairing-friendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameters of pairing-friendly curves.
An elliptic curve E defined over I, of trace t and discriminant D is pairing-friendly of
embedding degree k if

@ p, r are primes and t is relatively prime to p

o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k

@ 4p — t?> = Dy? for a sufficiently small positive integer D and an integer y.
Equation of the curve. (Complex multiplication method).
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Deflnltlon of a pairing-friendly curve

Pairing-friendly curves for 128 bits of security

ant curves

Parameters of pairing-friendly curves.
An elliptic curve E defined over I, of trace t and discriminant D is pairing-friendly of
embedding degree k if

@ p, r are primes and t is relatively prime to p

o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k

@ 4p — t? = Dy? for a sufficiently small positive integer D and an integer y.
Equation of the curve. (Complex multiplication method).

@ Compute the discriminant D of the curve : t> — 4p = —Dy? with D square-free.
sage: (t**2-4xp).squarefree _part()
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Pairing-friendly curves for 128 bits of security

Parameters of pairing-friendly curves.
An elliptic curve E defined over I, of trace t and discriminant D is pairing-friendly of
embedding degree k if

@ p, r are primes and t is relatively prime to p

o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k

@ 4p — t?> = Dy? for a sufficiently small positive integer D and an integer y.
Equation of the curve. (Complex multiplication method).

@ Compute the discriminant D of the curve : t> — 4p = —Dy? with D square-free.
sage: (t**2-4xp).squarefree _part()

@ Compute the Hilbert class polynomial Hp(X) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert_class_polynomial(D)
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Pairing-friendly curves for 128 bits of security

Parameters of pairing-friendly curves.
An elliptic curve E defined over I, of trace t and discriminant D is pairing-friendly of
embedding degree k if
@ p, r are primes and t is relatively prime to p
o r divides p+1 — t and pX — 1 but does not divide p' — 1 for 1 < i < k
@ 4p — t?> = Dy? for a sufficiently small positive integer D and an integer y.
Equation of the curve. (Complex multiplication method).
@ Compute the discriminant D of the curve : t> — 4p = —Dy? with D square-free.
sage: (t**2-4xp).squarefree _part()
@ Compute the Hilbert class polynomial Hp(X) whose roots are the j-invariants of
curves with discriminant D.
sage: hilbert_class_polynomial(D)
© Compute a curve whose j-invariant is one of these roots.
sage: EllipticCurve_from_j(jO).
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Definition of a pairing-friendly curve

Pairing-friendly curves for 128 bits of security

ant curves

Generation of curves with given prime k, and square-free D.

Algorithm: Cocks-PiNCH(k, D) — Compute a pairing-friendly curve E/F, of trace t
with a subgroup of order r, such that t?> — Dy? = 4p.

Set a prime r such that k | r — 1 and v/—D € I,

Set T such that r | ®,(T)

t«— T+1

y <+ (t-2)/V-D

Lift t,y € Z such that t?> + Dy?> =0 mod 4

p < (t?> + Dy?)/4

if p is prime then return [p,t,y, r| else Repeat with another r.

Simon Masson Cocks—Pinch curves with efficient ate pairing



Definition of a pairing-friendly curve

Pairing-friendly curves for 128 bits of security

ant curves

Generation of curves with given prime k, and square-free D.

Algorithm: Cocks-PiNCH(k, D) — Compute a pairing-friendly curve E/F, of trace t
with a subgroup of order r, such that t?> — Dy? = 4p.

Set a prime r such that k | r — 1 and v/—D € I,

Set T such that r | ®,(T)

t«— T+1

y <+ (t-2)/V-D

Lift t,y € Z such that t?> + Dy?> =0 mod 4

p < (t?> + Dy?)/4

if p is prime then return [p,t,y, r| else Repeat with another r.

Large trace t = the ate pairing is not very efficient @
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Definition of a pairing-friendly curve
Generation of curves

The example of BN curves
Generation of STNFS tant curves

Pairing-friendly curves for 128 bits of security

Brezing-Weng families.
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Definition of a pairing-friendly curve
Generation of curves

The example of BN curves
Generation of STNFS stant curves

Pairing-friendly curves for 128 bits of security

Brezing-Weng families.

@ Find r(x) € Z[x] such that K := Q[x]/(r(x)) is a number field containing /—D
and Q(¢x) for a chosen primitive k-th root (k.
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Definition of a pairi iendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Brezing-Weng families.
@ Find r(x) € Z[x] such that K := Q[x]/(r(x)) is a number field containing /—D
and Q(¢x) for a chosen primitive k-th root (k.

@ Let t(x),y(x) € Q[x] mapping respectively to (x +1 € K, ({x —1)//—D € K.
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Definition of a

Generation of cf

The example o

Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Brezing-Weng families.
@ Find r(x) € Z[x] such that K := Q[x]/(r(x)) is a number field containing v/—D
and Q(¢x) for a chosen primitive k-th root (k.
@ Let t(x), y(x) € Q[x] mapping respectively to ¢, +1 € K, (¢ —1)/v/—D € K.
© Let p(x) € Q[x] be given by (t(x)? + Dy(x)?)/4.
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Definition of a
Generation of cf
The example o

Pairing-friendly curves for 128 bits of security

Generation of STNFS-resistant curves

Brezing-Weng families.
@ Find r(x) € Z[x] such that K := Q[x]/(r(x)) is a number field containing v/—D
and Q(¢x) for a chosen primitive k-th root (k.
@ Let t(x), y(x) € Q[x] mapping respectively to ¢, +1 € K, (¢ —1)/v/—D € K.
© Let p(x) € Q[x] be given by (t(x)? + Dy(x)?)/4.
Choose xp € Z such that p = p(xp), t = t(xo) and r = r(xp) lead to a pairing friendly
curve of embedding degree k of discriminant D.
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Definition of a
Generation of cf
The example o

Pairing-friendly curves for 128 bits of security

Generation of STNFS-resistant curves

Brezing-Weng families.
@ Find r(x) € Z[x] such that K := Q[x]/(r(x)) is a number field containing v/—D
and Q(¢x) for a chosen primitive k-th root (k.
@ Let t(x), y(x) € Q[x] mapping respectively to ¢, +1 € K, (¢ —1)/v/—D € K.
© Let p(x) € Q[x] be given by (t(x)? + Dy(x)?)/4.
Choose xp € Z such that p = p(xp), t = t(xo) and r = r(xp) lead to a pairing friendly
curve of embedding degree k of discriminant D.
Example (BN curves).
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Pairing-friendly curves for 128 bits of security

Brezing-Weng families.
@ Find r(x) € Z[x] such that K := Q[x]/(r(x)) is a number field containing v/—D
and Q(¢x) for a chosen primitive k-th root (k.
@ Let t(x), y(x) € Q[x] mapping respectively to ¢, +1 € K, (¢ —1)/v/—D € K.
© Let p(x) € Q[x] be given by (t(x)? + Dy(x)?)/4.
Choose xp € Z such that p = p(xp), t = t(xo) and r = r(xp) lead to a pairing friendly
curve of embedding degree k of discriminant D.
Example (BN curves). Barreto-Naehrig curves are elliptic curves of embedding

degree k = 12 with
p = 36x3 + 36x5 + 24x3 + 6x0 + 1

r = 36x35 + 36x3 4+ 18x3 + 6x0 + 1
t =6x5+ 1
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Definition of a pairing-friendly curve

Py . . . aenera O f /ES
Pairing-friendly curves for 128 bits of security et ¢ Qs

The example of BN curves
Generation of STNFS-resistant curves

BN Miller loop.
Compression for G.
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Definition of a pairing-friendly curve

.. . . . seneration of /e
Pairing-friendly curves for 128 bits of security Cameien @i @iy

The example of BN curves
Generation of STNFS-resistant curves

BN Miller loop.
Compression for G.
When k is even, for u € F, non-square,

~

v2=x3+Ax+B:EJF, — 'E/Fp:uy’=x>+Ax+B
(xy) — (V)
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Definition of a pairi riendly curve

.. . . . seneration of /
Pairing-friendly curves for 128 bits of security Cameien @i @iy

The example of BN curves
Generation of STNFS-resistant curves

BN Miller loop.
Compression for G.
When k is even, for u € F, non-square,

~

v2=x3+Ax+B:EJF, — 'E/Fp:uy’=x>+Ax+B
(xy) — (V)

E(F pi2)[r] ~ *E(F 0)[r]
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Definition of a pairing-friendly curve

.. . . . senera f
Pairing-friendly curves for 128 bits of security et ¢ Qs

The example of BN curves
Generation of STNFS-resistant curves

BN Miller loop.
Compression for G.
When k is even, for u € F, non-square,

~

v2=x3+Ax+B:EJF, — 'E/Fp:uy’=x>+Ax+B
(xy) — (V)

E(F pi2)[r] ~ *E(F 0)[r]

More automorphisms for j = 0 and 1728 curves. Compression by a factor 4 or 6.
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Definition of a pa

.. . . . senera f /
Pairing-friendly curves for 128 bits of security Cameien @i @iy

The example of BN curves

Generation of STNFS-resistant curves

BN Miller loop.
Compression for G.
When k is even, for u € F, non-square,

~

v2=x3+Ax+B:EJF, — 'E/Fp:uy’=x>+Ax+B
(xy) — (V)

E(F pi2)[r] ~ *E(F 0)[r]

More automorphisms for j = 0 and 1728 curves. Compression by a factor 4 or 6.

f=(12-£g,0(P)/v2q(P))* - £20,2q(P)/vaa(P) - tag.a(P)/vsa(P)
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Definition of a pa

.. . . . senera f /
Pairing-friendly curves for 128 bits of security Cameien @i @iy

The example of BN curves

Generation of STNFS-resistant curves

BN Miller loop.
Compression for G.
When k is even, for u € F, non-square,

~

v2=x3+Ax+B:EJF, — 'E/Fp:uy’=x>+Ax+B
(xy) — (V)
E(F pi2)[r] ~ "E(F )[r]

More automorphisms for j = 0 and 1728 curves. Compression by a factor 4 or 6.

f=(12-£g,0(P)/v2q(P))* - £20,2q(P)/vaa(P) - tag.a(P)/vsa(P)

pk—1 pk—1 pk—1

v2Q(P) 7 = wvae(P) 7 = wso(P) ~

=1
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Definition of a pairi iendly curve

.. . . . senera f /es
Pairing-friendly curves for 128 bits of security et ¢ Qs

The example of BN curves
Generation of STNFS-resistant curves

BN Miller loop.
Compression for G.
When k is even, for u € F, non-square,

~

v2=x3+Ax+B:EJF, — 'E/Fp:uy’=x>+Ax+B
(xy) — (V)

E(F pi2)[r] ~ *E(F 0)[r]

More automorphisms for j = 0 and 1728 curves. Compression by a factor 4 or 6.

f = (12 0q.q(P))" - f20.20(P) - faq.a(P)
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Definition of a pairing-friendly curve

.. . . . seneration of es
Pairing-friendly curves for 128 bits of security et ¢ Qs

The example of BN curves
Generation of STNFS-resistant curves

BN final exponentiation.

12 _1q P4—P2+1
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Definition of a pairi iendly curve

.. . . . senera f
Pairing-friendly curves for 128 bits of security et ¢ Qs

The example of BN curves
Generation of STNFS-resistant curves

BN final exponentiation.

y = (xP*"1)P*+1 is easy with Frobenius powers.
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Definition of a pairing-friendly curve

.. . . . senera f /
Pairing-friendly curves for 128 bits of security Cameien @i @iy

The example of BN curves
Generation of STNFS-resistant curves

BN final exponentiation.

y = (xP*"1)P*+1 is easy with Frobenius powers.

% is specific because p = p(xp) and r = r(xp).
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Definition of a pairing-friendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

BN final exponentiation.

12_1 4 2 1
%Z(Pﬁfl)(pzﬂ)%

y = (xP*"1)P*+1 is easy with Frobenius powers.

% is specific because p = p(xp) and r = r(xp).

p(x)* —p(xg)?+1
y = yP HA2(x0)P’+A1(x0)P+20(x0): few exponentiations by xo.
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Definition of a pairing-friendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

BN final exponentiation.

p12_1

4 2 1
— = (- + )

6 2 . . .
y = (xP’~1)P"*1 is easy with Frobenius powers.
“_ 2 .
P =Pt s specific because p = p(xg) and r = r(xo).
p(x0)* —p(x)° +1
y o) = yP HA2(x0)P’+A1(x0)P+20(x0): few exponentiations by xo.

Efficient pairing. @‘ But how secure are these curves ?
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Definition of a pairing-friendly curve

Py . . . era O f /ES
Pairing-friendly curves for 128 bits of security eration of curves

The example of BN curves
Generation of STNFS-resistant curves

Security of pairing curves.

e: E(Fp) x E(Fp) — Fp
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Definition of a pairing-friendly curve

.. . . . senera f /
Pairing-friendly curves for 128 bits of security Cameien @i @iy

The example of BN curves
Generation of STNFS-resistant curves

Security of pairing curves.

e: E(Fp) x E(Fp) — Fp

@ Security against DLP in elliptic curve: best attack in O(v/r).
log,(r) = 256 for 128 bits of security.
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Definition of a |
Pairing-friendly curves for 128 bits of security Canaiten @i @

endly curve

Generation of STNFS-resistant curves

Security of pairing curves.

e: E(Fp) x E(Fp) — Fp

@ Security against DLP in elliptic curve: best attack in O(v/r).
log,(r) = 256 for 128 bits of security.

@ Security against DLP in F,«: Number Field Sieve attacks in progress.
special prime p —> 1993: Special NFS attack

k>1 — 2015: Tower NFS attack
composite k and special p = 2016: STNFS attack

Simon Masson
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Definition of a | endly curve

Pairing-friendly curves for 128 bits of security

Generation of STNFS-resistant curves

Security of pairing curves.

e: E(Fp) x E(Fp) — Fp

@ Security against DLP in elliptic curve: best attack in O(v/r).
log,(r) = 256 for 128 bits of security.
@ Security against DLP in F,«: Number Field Sieve attacks in progress.
special prime p —> 1993: Special NFS attack
k>1 = 2015: Tower NFS attack
composite k and special p = 2016: STNFS attack
BN curves are threatened by STNFS... @
Need a 5500 bits field 12 to get 128 bits of security.

Simon Masson
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Definition of a pairing-friendly curve
Generation of cu

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Curves of embedding degree 1. [eprint 2016/403]

e:Gle2—>FP
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Definition of a pairi iendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Curves of embedding degree 1. [eprint 2016/403]

e:Gle2—>FP

No NFS variants on F, : |Fp| a2 23072 is small 2
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Definition of a pa endly curve

Pairing-friendly curves for 128 bits of security Generation of cur

The example of BN curves
Generation of STNFS-resistant curves

Curves of embedding degree 1. [eprint 2016/403]

e:Gle2—>FP

No NFS variants on F, : |Fp| a2 23072 is small 2

p is very large, only the Tate pairing on these curves: not efficient @
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endly curve

Pairing-friendly curves for 128 bits of security .

sistant curves

Generation of curves with given prime k, square-free D and no structure on p.

Algorithm: Cocks-PINCH(k, D) — Compute a pairing-friendly curve E/F, of trace t
with a subgroup of order r, such that t?> — Dy? = 4p.

Set a prime r such that k | r — 1 and /=D € F,

Set T such that r | ®,(T)

t+—T+1

y « (t—2)/v=D

Lift t,y € Z such that t2+ Dy? =0 mod 4

p < (t?> + Dy?)/4

if pis prime then return [p,t,y,r] else Repeat with another r.
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endly curve

Pairing-friendly curves for 128 bits of security

s
istant curves

Generation of curves with given prime k, square-free D and no structure on p.

Algorithm: Cocks-PINCH(k, D) — Compute a pairing-friendly curve E/F, of trace t
with a subgroup of order r, such that t?> — Dy? = 4p.

Set a prime r such that k | r — 1 and /=D € F,

Set T such that r | ®,(T)

t+—T+1

y « (t—2)/v=D

Lift t,y € Z such that t2+ Dy? =0 mod 4

p < (t?> + Dy?)/4

if pis prime then return [p,t,y,r] else Repeat with another r.

Large trace t = the ate pairing is not very efficient @
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endly curve

Pairing-friendly curves for 128 bits of security

s
istant curves

Generation of curves with given prime k, square-free D and no structure on p.

Algorithm: Cocks-PINCH(k, D) — Compute a pairing-friendly curve E/F, of trace t
with a subgroup of order r, such that t?> — Dy? = 4p.

Set asmall T

Set a prime r such that k | r — 1, /=D € F, and r | ®x(T)
t«—T+1

y+ (t—2)/v/-D

Lift t,y € Z such that t2+ Dy? =0 mod 4

p < (t?> + Dy?)/4

if pis prime then return [p,t,y,r] else Repeat with another r.

Large trace t = the ate pairing is not very efficient @’
Fix: first fix a small T and then choose r. t = T 4+ 1 is small @
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endly curve

Pairing-friendly curves for 128 bits of security

s
istant curves

Generation of curves with given prime k, square-free D and no structure on p.

Algorithm: Cocks-PINCH(k, D) — Compute a pairing-friendly curve E/F, of trace t
with a subgroup of order r, such that t?> — Dy? = 4p.

Set asmall T

Set a prime r such that k | r — 1, /=D € F, and r | ®x(T)

t—T+1

y+ (t=2)/vV-D

Lift t,y € Z such that t> 4+ Dy?> =0 mod 4

p < (t2+ Dy?)/4

if p is prime and p =1 mod k then return [p,t,y,r] else Repeat with another r.

Large trace t = the ate pairing is not very efficient @
Fix: first fix a small T and then choose r. t = T + 1 is small @Fpk = Fplu]/(uk — )
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Definition of a pairing-friendly curve
ation of curves
mple of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
e k=5:
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Definition of a pairing-friendly curve
Generation of cu

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
e k=5 D~ 1019,
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Definition of a pairi iendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
o k=5 D~10%, &, (T)=r = log,(T) = 256/p(k) (sparse)
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Definition of a pairing-friendly curve
Generation of curv

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
o k=5 D~10%, &, (T)=r = log,(T) = 256/p(k) (sparse)
NFS: |Fs| ~ 23318 — log,(p) = 664
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Definition of a p: iendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
o k=5 D~10%, &, (T)=r = log,(T) = 256/p(k) (sparse)
NFS: |Fs| ~ 23318 — log,(p) = 664

2063 <~ (¢4 hy-r)2+ D(y + hy - r)?) < 260

FNJ-
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Definition of a p: iendly curve
Generation of curves
The example of BN curves

Pairing-friendly curves for 128 bits of security

Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.
o k=5 D~10%, &, (T)=r = log,(T) = 256/p(k) (sparse)
NFS: |Fs| ~ 23318 — log,(p) = 664

2063 <~ (¢4 hy-r)2+ D(y + hy - r)?) < 260

FNJ-
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Definition of a pairing-friendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
o k=5 D~10%, &, (T)=r = log,(T) = 256/p(k) (sparse)
NFS: |Fs| ~ 23318 — log,(p) = 664

2063 <~ (¢4 hy-r)2+ D(y + hy - r)?) < 260

FNJ-

Choose log,(hy,) = 61 so log,(p) = 664. hy
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Definition of a iendly curve

Pairing-friendly curves for 128 bits of security

The S

Generation o -resistant curves

Parameter choices for 128 bits of security.
o k=5 D~10%, &, (T)=r = log,(T) = 256/p(k) (sparse)
NFS: |Fs| ~ 23318 — log,(p) = 664

1
2003 < 4 ((t+ he - r)? + D(y + h, - r)2) < 2064

Choose log,(hy,) = 61 so log,(p) = 664. hy

Large discriminant, small finite field Fpk
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endly curve

Pairing-friendly curves for 128 bits of security .

sistant curves

Parameter choices for 128 bits of security.
o k=5 D~10%, &, (T)=r = log,(T) = 256/p(k) (sparse)
NFS: |Fs| ~ 23318 — log,(p) = 664

2063 <~ (¢4 hy-r)2+ D(y + hy - r)?) < 260

FNJ-

Choose log,(hy,) = 61 so log,(p) = 664. hy
Large discriminant, small finite field Fpk

Large p, no compression for G; @
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Definition of a pairing-friendly curve
ation of curves
mple of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
e k=T
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Definition of a pairi iendly curve

Pairing-friendly curves for 128 bits of security eneration of cur

The example of BN curves
Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.
@ k=7T7:logy(T)=256/p(7) =43
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Definition of a pairing-friendly curve
Generation of curv

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
@ k=1T7:logy(T)=256/p(7) =43
NFS: |F 7| ~ 2384 — log,(p) = 512
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Definition of a pa endly curve

Pairing-friendly curves for 128 bits of security Generation of cur

The example of BN curves
Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.
@ k=1T7:logy(T)=256/p(7) =43
NFS: |F 7| ~ 2384 — log,(p) = 512
Small D because log,(y?) ~ 512.
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Definition of a pa endly curve
Generation of cur

Pairing-friendly curves for 128 bits of security e eems 6 F‘Nrrur Jes
Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.
@ k=7T7:logy(T)=256/p(7) =43
NFS: |F 7| ~ 2384 — log,(p) = 512
Small D because log,(y?) ~ 512.
512-bit p, small finite field Fpk, small Miller length @
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Definition of a pa endly curve

Pairing-friendly curves for 128 bits of security Generation of cur

The example of BN curves
Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.
@ k=7T7:logy(T)=256/p(7) =43
NFS: |F 7| ~ 2384 — log,(p) = 512
Small D because log,(y?) ~ 512.
512-bit p, small finite field Fpk, small Miller length @

No compression for G2, not efficient @
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Definition of a pa endly curve

Pairing-friendly curves for 128 bits of security Generation of cur

The example of BN curves
Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.
@ k=7T7:logy(T)=256/p(7) =43
NFS: |F 7| ~ 2384 — log,(p) = 512
Small D because log,(y?) ~ 512.
512-bit p, small finite field Fpk, small Miller length @

No compression for G2, not efficient @
e k=6:
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Definition of a pa endly curve

Pairing-friendly curves for 128 bits of security Generation of cur

The example of BN curves
Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.
@ k=7T7:logy(T)=256/p(7) =43
NFS: |F 7| ~ 2384 — log,(p) = 512
Small D because log,(y?) ~ 512.
512-bit p, small finite field Fpk, small Miller length @

No compression for G2, not efficient @
e k=6: D=3,
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Definition of a p: iendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
@ k=7T7:logy(T)=256/p(7) =43
NFS: |F 7| ~ 2384 — log,(p) = 512
Small D because log,(y?) ~ 512.
512-bit p, small finite field Fpk, small Miller length @

No compression for G2, not efficient @
@ k=6: D=3, logy(T)=128
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Definition of a | 1ly curve

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
@ k=7T7:logy(T)=256/p(7) =43
NFS: |F | ~ 2384 — |og2( ) =512
Small D because log,(y?) ~ 512.

512-bit p, small finite field Fpk, small Miller length @

No compression for G2, not efficient @

@ k=6: D=3, logy(T)=128
(TINFS: [Fpo| =~ 2032 — log,(p) = 672
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endly curve

Pairing-friendly curves for 128 bits of security

s
istant curves

Parameter choices for 128 bits of security.
@ k=7T7:logy(T)=256/p(7) =43
NFS: |F 7| ~ 2384 — log,(p) = 512
Small D because log,(y?) ~ 512.
512-bit p, small finite field Fpk, small Miller length @

No compression for G2, not efficient @

@ k=6: D=3, logy(T)=128
(TINFS: [Fpo| =~ 2032 — log,(p) = 672

Factor 6 compression for Go: Q € ®E(F,) 2

Simon Masson Cocks—Pinch curves with efficient ate pairing



Definition of a

Generation of ¢

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
@ k=7T7:logy(T)=256/p(7) =43
NFS: |F 7| ~ 2384 — log,(p) = 512
Small D because log,(y?) ~ 512.
512-bit p, small finite field Fpk, small Miller length @

No compression for G2, not efficient @

@ k=6: D=3, logy(T)=128
(TINFS: [Fpo| =~ 2032 — log,(p) = 672

Factor 6 compression for Go: Q € ®E(F,) 2
Large p, large Miller length @
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Definition of a pairing-friendly curve
ation of curves
mple of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
e k=28:
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Definition of a pairing-friendly curve
ation of curves
mple of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
e k=8: D=4,
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Definition of a pairing-friendly curve
Generation of cu

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
@ k=8 D =24,log,(T)=064
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Definition of a pairing-friendly curve
Generation of curv

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
@ k=8 D =24,log,(T)=064
vV—D = /=4 =2y/—1 and T is a 8-th root of unity so 272 = +/—D mod r.
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endly curve

Pairing-friendly curves for 128 bits of security

istant curves

Parameter choices for 128 bits of security.
@ k=8 D =24,log,(T)=064
vV—D = /=4 =2y/—1 and T is a 8-th root of unity so 272 = +/—D mod r.
y=(T-2)/V-D=(T-2)/@2T%) =—(T-2)-T?/)2

After lifting in Z, p is a polynomial in T, h; and h,. If h;,h, € {0,1,—1}, pisa
univariate polynomial in T and STNFS can exploit this property !
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Definition of a
Generation of ¢
The example of BN curves

Pairing-friendly curves for 128 bits of security

Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.
@ k=8 D =24,log,(T)=064
vV—D = /=4 =2y/—1 and T is a 8-th root of unity so 272 = +/—D mod r.

y=(T=2)/V-D=(T-2)/(2T?*) = ~(T -2) - T?/2

After lifting in Z, p is a polynomial in T, h; and h,. If h;,h, € {0,1,—1}, pisa
univariate polynomial in T and STNFS can exploit this property !
We lift y <— y + hy, - r with log,(h,) = 16 so that SNFS cannot exploit it.
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Definition of a
Pairing-friendly curves for 128 bits of security Cameiiien ¢ ¢

The example of BN curves
Generation of STNFS-resistant curves

Parameter choices for 128 bits of security.
@ k=8 D =24,log,(T)=064
vV—D = /=4 =2y/—1 and T is a 8-th root of unity so 272 = +/—D mod r.

y=(T=2)/V-D=(T-2)/(2T?*) = ~(T -2) - T?/2

After lifting in Z, p is a polynomial in T, h; and h,. If h;,h, € {0,1,—1}, pisa
univariate polynomial in T and STNFS can exploit this property !

We lift y <— y + hy, - r with log,(h,) = 16 so that SNFS cannot exploit it.
(TINFS: |F | = 2*3% — log,(p) = 544
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Pairing-friendly curves for 128 bits of security

Parameter choices for 128 bits of security.
@ k=8 D =24,log,(T)=064
vV—D = /=4 =2y/—1 and T is a 8-th root of unity so 272 = +/—D mod r.

y=(T=2)/V-D=(T-2)/(2T?*) = ~(T -2) - T?/2

After lifting in Z, p is a polynomial in T, h; and h,. If h;,h, € {0,1,—1}, pisa
univariate polynomial in T and STNFS can exploit this property !

We lift y <— y + hy, - r with log,(h,) = 16 so that SNFS cannot exploit it.
(TINFS: |F | = 2*3% — log,(p) = 544

Factor 4 compression: @ € t4E(IFp2) 8
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Definition of a pairing-friendly curve
Generation of curves

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Example of generation for k = 8.
Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.
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Definition of a pairing-friendly curve

.. . . . seneration of
Pairing-friendly curves for 128 bits of security Camaeien 6if @

The example of BN curves
Generation of STNFS-resistant curves

Example of generation for k = 8.
Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.
D = 4 (automorphism of degree 4)
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Definition of a pairi riendly curve
Generation of cu

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Example of generation for k = 8.

Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.
D = 4 (automorphism of degree 4)

log,(T) = 64 with small Hamming weight
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Definition of a pa endly curve
Generation of cur

The example of BN curves
Generation of STNFS-resistant curves

Pairing-friendly curves for 128 bits of security

Example of generation for k = 8.

Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.
D = 4 (automorphism of degree 4)

log,(T) = 64 with small Hamming weight

Lift t and y with 16-bit h; and hy, and restrict on log,(p) = 544
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Definition of a pa endly curve

Pairing-friendly curves for 128 bits of security Generation of cur

The example of BN curves
Generation of STNFS-resistant curves

Example of generation for k = 8.

Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.
D = 4 (automorphism of degree 4)

log,(T) = 64 with small Hamming weight

Lift t and y with 16-bit h; and hy, and restrict on log,(p) = 544

Accept small cofactors for E(IF,), E(FF,5)

Check subgroup-security and twist-subgroup-security.
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Pairing-friendly curves for 128 bits of security

Generation of STNFS resistant curves

Example of generation for k = 8.

Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.
D = 4 (automorphism of degree 4)

log,(T) = 64 with small Hamming weight

Lift t and y with 16-bit h; and hy, and restrict on log,(p) = 544

Accept small cofactors for E(IF,), E(FF,5)

Check subgroup-security and twist-subgroup-security.

CocksPinchVariantResult(
k=8,D=4,T=0xffffffffeff7c200,i=5,ht=5,hy=-0xd700,
allowed_cofactor=420,allowed_size_cofactor=10,
max_B1=600
)
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Pairing-friendly curves for 128 bits of security

Generation of STNFS resistant curves

Example of generation for k = 8.

Code is available at https://gitlab.inria.fr/smasson/cocks-pinch-variant.
D = 4 (automorphism of degree 4)

log,(T) = 64 with small Hamming weight

Lift t and y with 16-bit h; and hy, and restrict on log,(p) = 544

Accept small cofactors for E(IF,), E(FF,5)

Check subgroup-security and twist-subgroup-security.

CocksPinchVariantResult(
k=8,D=4,T=0xffffffffeff7c200,i=5,ht=5,hy=-0xd700,
allowed_cofactor=420,allowed_size_cofactor=10,
max_B1=600
)

Subgroup- and twist-subgroup- secure curves found for k =5, 6, 7 and 8 !
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Fp multiplication timing
P{l‘ i
Timings and comparisons Comy

Timings and comparisons

© Timings and comparisons
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Fp multiplication timing

timation
Timings and comparisons Comparison of curves

RELIC.[D. Aranha] available on github.com
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https://github.com/relic-toolkit/relic.git

Timings and comparisons

RELIC.[D. Aranha] available on github.com
Efficient library for cryptography, state of the art for pairing computation.
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ion timing

Timings and comparisons

RELIC.[D. Aranha] available on github.com
Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves
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ion timing

Timings and comparisons Comparison of curves

RELIC.[D. Aranha] available on github.com

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast I, arithmetic in assembly instructions for some given p.
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ion timing

Timings and comparisons Comparison of curves

RELIC.[D. Aranha] available on github.com

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast I, arithmetic in assembly instructions for some given p.

How to compare curves.
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ion timing

Timings and comparisons Comparison of curves

RELIC.[D. Aranha] available on github.com

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast I, arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench [F,, arithmetic for different sizes of prime p
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ion timing

Timings and comparisons Comparison of curves

RELIC.[D. Aranha] available on github.com

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast I, arithmetic in assembly instructions for some given p.

How to compare curves.
1. Bench [F,, arithmetic for different sizes of prime p
2. Count the number of I, multiplications for a pairing computation on each curve
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Timings and comparisons

RELIC.[D. Aranha] available on github.com

Efficient library for cryptography, state of the art for pairing computation.
Implementation for BN and BLS curves

Fast I, arithmetic in assembly instructions for some given p.

How to compare curves.

1. Bench [F,, arithmetic for different sizes of prime p

2. Count the number of I, multiplications for a pairing computation on each curve
3. Compare the estimated costs between the different curves.
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Timings and comparisons

Curve 64-bit words for p [, mult. timing
BN-462 [OOOOOOOO
BLS12-461 OOOOOOOO
k=5 [OOO0O0000OOd
k=6 OODOO0OOOOOO
k=7 OOOO0O0O0OO
k=38 [DOOOO0ooOoO
k=1 [0Ox48

Simon Masson Cocks—Pinch curves with efficient ate pairing



Timings and comparisons

Curve
BN-462
BLS12-461
k=5
k=6
k=17
k=28
k=1

64-bit words for p
o o o
I o

F, mult. timing

120ns
120ns

A
A

o
o
O x 48

120ns

Simon Masson

242

200 -

162

time (ns)

128 |-
98 -
2

50 |-
32

@ RELIC benchmark

T R S R SR R
4 5 6 7 8 9 10 11
w number of 64-bit machine words
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Timings and comparisons

Curve 64-bit words for p  F, mult. timing e et

BN-462 0000000 120ns |
BLS12-461 OO 120ns €

k=5 00000000000 230ns* g

k=6 00000000000 230ns* a

k=7 00000000 120ns 2

k = 8 DDDDDDDDD 154ns* w n:mbzr Df664—zit rr?ach?ne ]\;\?ortilsl

k=1 [0Ox48

* Interpolation from the graph
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Timings and comparisons

Curve 64-bit words for p
BN-462 [OOOOOOOO
BLS12-461 OOOOOOOO
k=5 0O0O0OO0O0O000OOd
k=6 OOOOOOOOOOO
=7 OOOOOOOO
k=38 0O0OO0O0Ood
k=1 [0Ox48

* Interpolation from the graph
**Benchmark with GMP.

Simon Masson

F, mult. timing
120ns

120ns

230ns*

230ns*

120ns

154ns*

4882ns**

time (ns)

242

200

162
1281
98
7t

50 |-
32

eRELIC benchmark | |
e nterpolation t = 2w?

T R S R SR R
4 5 6 7 8 9 10 11
w number of 64-bit machine words
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Fp multiplication timing
Pairing cost estimation

Timings and comparisons Comparison of curves

Pairing computation on BLS and BN curves.
o Automorphism of degree 6: G, ~ E(F )
Miller length: 117-bit for BN, 77-bit for BLS

Efficient final exponentiation using p = p(xp) and r = r(xp)

Cyclotomic squarings
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Fp multiplication timing

Timings and comparisons

Pairing computation on BLS and BN curves.
Automorphism of degree 6: G, ~ " E(F )
Miller length: 117-bit for BN, 77-bit for BLS

Efficient final exponentiation using p = p(xp) and r = r(xp)

Cyclotomic squarings

Curve T, mult. count Estimated time
BN 17871 2.2ms
BLS 13878 1.6ms
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Timings and comparisons

Pairing computation on BLS and BN curves.
o Automorphism of degree 6: G, ~ E(F )
o Miller length: 117-bit for BN, 77-bit for BLS
e Efficient final exponentiation using p = p(xp) and r = r(xp)
@ Cyclotomic squarings

Curve T, mult. count Estimated time
BN 17871 2.2ms
BLS 13878 1.6ms

Benchmarks with RELIC: ~ 10% of error @
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Fp multiplication timing
Pairing cost estimation

Timings and comparisons Comparison of curves

Pairing computation on kK =5 and k = 7 curves.
o No compression: very large G ~ E(FF )
e Miller length: log,(T) = 64 or 43.

e Expensive final exponentiation (no structure on p). See gitlab.inria.fr.
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Fp multiplication timing
Pairing cost estimation

Timings and comparisons Comparison of curves

Pairing computation on kK =5 and k = 7 curves.
o No compression: very large G ~ E(FF )
e Miller length: log,(T) = 64 or 43.

e Expensive final exponentiation (no structure on p). See gitlab.inria.fr.

Curve F, mult. count Estimated time
k=5 24373 5.6ms
k=7 31793 3.8ms
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Fp multiplication timing
Pairing cost estimation

Timings and comparisons Comparison of curves

Pairing computation on kK =5 and k = 7 curves.
o No compression: very large G ~ E(FF )
e Miller length: log,(T) = 64 or 43.

e Expensive final exponentiation (no structure on p). See gitlab.inria.fr.

Curve F, mult. count Estimated time
k=5 24373 5.6ms
k=7 31793 3.8ms

Pairing estimations: very expensive @
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Fp multiplication timing
Pairing cost estimation

Timings and comparisons Comparison of curves

Pairing computation on k = 6 curves.
@ Automorphism of degree 6: G» defined over I,
e Large Miller length: log,(T) = 128

e Final exponentiation faster than k =5 and 7 (structure on p, cyclotomic
squaring). See gitlab.inria.fr.
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Fp multiplication timing

Timings and comparisons

Pairing computation on k = 6 curves.
@ Automorphism of degree 6: G» defined over I,
o Large Miller length: log,(T) = 128
e Final exponentiation faster than k =5 and 7 (structure on p, cyclotomic
squaring). See gitlab.inria.fr.
Pairing computation on k = 8 curves.
@ Automorphism of degree 4: G, defined over F
o Structure on p: p=+((t+ he-r)2+4(y + hy - r)?) = p(T, he, hy)
Cyclotomic squaring
Fast final exponentiation. See gitlab.inria.fr.
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Timings and comparisons

Pairing computation on k = 6 curves.
@ Automorphism of degree 6: G» defined over I,
o Large Miller length: log,(T) = 128
e Final exponentiation faster than k =5 and 7 (structure on p, cyclotomic
squaring). See gitlab.inria.fr.
Pairing computation on k = 8 curves.
@ Automorphism of degree 4: G, defined over F
o Structure on p: p=+((t+ he-r)2+4(y + hy - r)?) = p(T, he, hy)
Cyclotomic squaring
Fast final exponentiation. See gitlab.inria.fr.

Curve T, mult. count Estimated time
k=6 8472 2.0ms
k=28 11636 1.8ms
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Fp multiplication timing

Timings and comparisons

Pairing computation on k = 6 curves.
@ Automorphism of degree 6: G» defined over I,
o Large Miller length: log,(T) = 128
e Final exponentiation faster than k =5 and 7 (structure on p, cyclotomic
squaring). See gitlab.inria.fr.
Pairing computation on k = 8 curves.
@ Automorphism of degree 4: G, defined over F
o Structure on p: p=+((t+ he-r)2+4(y + hy - r)?) = p(T, he, hy)
Cyclotomic squaring
Fast final exponentiation. See gitlab.inria.fr.

Curve T, mult. count Estimated time
k=6 8472 2.0ms
k=28 11636 1.8ms

Pairing estimations: competitive @
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Timings and comparisons

mation
Comparison of curves

Curve | MiIIer. Ioop E.xponer.1tiat.ion .time.
time estimation | time estimation | estimation
k=5 3.3ms 2.3ms 5.6ms
k= 1.1ms 0.9ms 2.0ms
k = 2.2ms 1.6ms 3.8ms
k=38 0.7ms 1.1ms 1.8ms
BN 1.5ms 0.7ms 2.2ms
BLS12 0.9ms 0.7ms 1.6ms
k=1 22.7ms 20.0ms 42.7ms

Simon Masson
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Timings and comparisons

Curve | MiIIer. Ioop E.xponer.1tiat.ion .time.
time estimation | time estimation | estimation
k = 3.3ms 2.3ms 5.6ms
k= 1.1ms 0.9ms 2.0ms
k = 2.2ms 1.6ms 3.8ms
k = 0.7ms 1.1ms 1.8ms
BN 1.5ms 0.7ms 2.2ms
BLS12 0.9ms 0.7ms 1.6ms
=1 22.7ms 20.0ms 42.7ms

Thank you for your attention.

&
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