Fast and Exact Geometric Analysis of Real Algebraic Plane Curves

Michael Sagraloff

Max-Planck-Institut für Informatik
(A. Eigenwillig, M. Kerber and N. Wolpert)

7th February 2007 / signature franco allemande
Outline

1 Introduction to Curve Analysis
2 Curve Analysis Details
3 Application and Further Work
Exact Geometric Computation

Geometric algorithms often
- described in REAL-RAM
- assume non-degeneracy

Real implementations
- must work with real computers
- must handle degenerate inputs

The exact geometric computation paradigm

Commit to return the mathematical true result
- Model REAL-RAM, if necessary
- But: Use numerical calculations whenever possible (controlled approximation)
- (Mainly) solved for straight line objects (LEDA, CGAL)
Exact Geometric Computation

Geometric algorithms often
- described in REAL-RAM
- assume non-degeneracy

Real implementations
- must work with real computers
- must handle degenerate inputs

The exact geometric computation paradigm
Commit to return the mathematical true result
- Model REAL-RAM, if necessary
- But: Use numerical calculations whenever possible (controlled approximation)
- (Mainly) solved for straight line objects (LEDA, CGAL)
What is Curve Analysis?

Algebraic curve given as zero locus of polynomial \(f \in \mathbb{R}[x, y] \)

Example

\[
f = 2x^4 + y^4 - x^3 + xy^2
\]

Curve analysis:
- Detect event points
- Count incident arcs to the left and to the right
What is Curve Analysis?

Algebraic curve given as zero locus of polynomial $f \in \mathbb{R}[x, y]$

Example

$$f = 2x^4 + y^4 - x^3 + xy^2$$

Curve analysis:
- Detect event points
- Count incident arcs to the left and to the right
What is Curve Analysis?

Algebraic curve given as zero locus of polynomial $f \in \mathbb{R}[x, y]$

Example

$f = 2x^4 + y^4 - x^3 + xy^2$

Curve analysis:
- Detect event points
- Count incident arcs to the left and to the right
What is Curve Analysis?

Algebraic curve given as zero locus of polynomial $f \in \mathbb{R}[x, y]$

Example

$$f = 2x^4 + y^4 - x^3 + xy^2$$

Curve analysis:
- Detect event points
- Count incident arcs to the left and to the right
What is Curve Analysis?

Algebraic curve given as zero locus of polynomial $f \in \mathbb{R}[x, y]$

Example

$$f = 2x^4 + y^4 - x^3 + xy^2$$

Curve analysis:
- Detect event points
- Count incident arcs to the left and to the right
What is Curve Analysis?

Algebraic curve given as zero locus of polynomial $f \in \mathbb{R}[x, y]$

Example

$$f = 2x^4 + y^4 - x^3 + xy^2$$

Curve analysis:
- Detect *event points*
- Count *incident arcs* to the left and to the right
What is Curve Analysis?

Algebraic curve given as zero locus of polynomial $f \in \mathbb{R}[x,y]$

Example

$f = 2x^4 + y^4 - x^3 + xy^2$

Curve analysis:
- Detect event points
- Count incident arcs to the left and to the right
The Projection Approach

Example

1. Find (finitely many) x-values α where event points can occur. α is a root of $R := \text{res}(f, \frac{\partial f}{\partial y}, y)$

2. Analyse the curve along each such value, i.e. we have to analyse $f_\alpha(y) := f(\alpha, y)$ and $f_{\alpha \pm \varepsilon}(y)$.
Introduction to Curve Analysis

The Projection Approach

Example

1. Find (finitely many) \(x \)-values \(\alpha \) where event points can occur. \(\alpha \) is a root of \(R := \text{res}(f, \frac{\partial f}{\partial y}, y) \)

2. Analyse the curve along each such value, i.e. we have to analyse \(f_\alpha(y) := f(\alpha, y) \) and \(f_{\alpha \pm \varepsilon}(y) \).
The Projection Approach

Example

1. Find (finitely many) \(x \)-values \(\alpha \) where event points can occur. \(\alpha \) is a root of \(R := \text{res}(f, \frac{\partial f}{\partial y}, y) \).

2. Analyse the curve along each such value, i.e. we have to analyse \(f_\alpha(y) := f(\alpha, y) \) and \(f_{\alpha \pm \epsilon}(y) \).
Definition of Genericity

Definition

A curve is in generic position, if it has

- no vertical asymptote and
- no covertical event points
Analysis on a Certain X-Value

For a curve \(f \) and some \(\alpha \in \mathbb{R} \)

1. Count \# points on the curve with \(x \)-value \(\alpha \)

2. Ensure genericity on \(\alpha \) and compute a candidate index \(i \), all points except the \(i \)th are non-event points
A Closer Look on the Algorithm

Count \# points on the curve with x-value α (\# distinct real roots of \(f_α(y) \)) and compute \(\deg(\gcd(f_α(y), f_α(y)')) \)

- Exact calculation on the real number
- Uses Sturm-Habicht sequences

Ensure genericity on α and compute a candidate index \(i \)

- Uses controlled approximation of α
- Bitstream Descartes method

Example
A Closer Look on the Algorithm

Count # points on the curve with x-value α (# distinct real roots of $f_\alpha(y)$) and compute deg($\gcd(f_\alpha(y), f_\alpha(y)')$)
- Exact calculation on the real number
- Uses Sturm-Habicht sequences

Ensure genericity on α and compute a candidate index i
- Uses controlled approximation of α
- Bitstream Descartes method

Example
A Closer Look on the Algorithm

Count \# points on the curve with \(x \)-value \(\alpha \) (\# distinct real roots of \(f_\alpha(y) \)) and compute \(\text{deg}(\gcd(f_\alpha(y), f_\alpha(y)')) \):
- Exact calculation on the real number
- Uses Sturm-Habicht sequences

Ensure genericity on \(\alpha \) and compute a candidate index \(i \):
- Uses controlled approximation of \(\alpha \)
- Bitstream Descartes method
Completing the Analysis

Count the incident arcs for any point at $\alpha \in \mathbb{R}$:

- Count the number of points at $\alpha - \varepsilon$ and $\alpha + \varepsilon$
- Connect simple arcs
- Connect remaining arcs with the candidate
- Decide whether the candidate is an event point or not
Completing the Analysis

Count the incident arcs for any point at $\alpha \in \mathbb{R}$:

- $\#$ of points and index of the candidate
- $\#$ of points at $\alpha - \varepsilon$ and $\alpha + \varepsilon$
 - connect simple arcs
 - connect remaining arcs with candidate
 - Decide whether the candidate is an event point or not
Completing the Analysis

Count the incident arcs for any point at $\alpha \in \mathbb{R}$:

- # of points and index of the candidate
- # of points at $\alpha - \varepsilon$ and $\alpha + \varepsilon$
- Connect simple arcs
- Connect remaining arcs with candidate
- Decide whether the candidate is an event point or not
Completing the Analysis

Count the incident arcs for any point at $\alpha \in \mathbb{R}$:

- # of points and index of the candidate
- # of points at $\alpha - \varepsilon$ and $\alpha + \varepsilon$
- connect simple arcs
- connect remaining arcs with candidate
- Decide whether the candidate is an event point or not
Completing the Analysis

Count the incident arcs for any point at $\alpha \in \mathbb{R}$:

- # of points and index of the candidate
- # of points at $\alpha - \varepsilon$ and $\alpha + \varepsilon$
- Connect simple arcs
- Connect remaining arcs with candidate
- Decide whether the candidate is an event point or not
If the Curve is Not Generic...

Shear of a curve
Transform the curve such that covertical points become non-covertical

Example

Formally, the transformation is

\[f \mapsto f(x + sy, y) \]

with \(s \in \mathbb{R} \).
If the Curve is Not Generic...

Shear of a curve
Transform the curve such that covertical points become non-covertical

Example

Formally, the transformation is

\[f \mapsto f(x + sy, y) \]

with \(s \in \mathbb{R} \).
If the Curve is Not Generic...

Shear of a curve

Transform the curve such that covertical points become non-covertical.

Example

Formally, the transformation is

\[f \mapsto f(x + sy, y) \]

with \(s \in \mathbb{R} \).
If the Curve is Not Generic...

Shear of a curve

Transform the curve such that covertical points become non-covertical

Example

Formally, the transformation is

\[f \mapsto f(x + sy, y) \]

with \(s \in \mathbb{R} \).
If the Curve is Not Generic...

Shear of a curve
Transform the curve such that covertical points become non-covertical.

Example

Formally, the transformation is

\[f \mapsto f(x + sy, y) \]

with \(s \in \mathbb{R} \).
If the Curve is Not Generic...

Shear of a curve
Transform the curve such that covertical points become non-covertical

Example

Formally, the transformation is

\[f \mapsto f(x + sy, y) \]

with \(s \in \mathbb{R} \).
Arrangements of Algebraic Curves

Example

- curve analysis (Event points)
- curve-pair analysis (Intersection points)
- Transform into combinatorial object
Arrangements of Algebraic Curves

Example

- curve analysis (Event points)
- curve-pair analysis (Intersection points)
- Transform into combinatorial object
Arrangements of Algebraic Curves

Example

- curve analysis (Event points)
- curve-pair analysis (Intersection points)
- Transform into combinatorial object
Arrangements of Algebraic Curves

Example

- curve analysis (Event points)
- curve-pair analysis (Intersection points)
- Transform into combinatorial object
Arrangements of Algebraic Curves

Example

- curve analysis (Event points)
- curve-pair analysis (Intersection points)
- Transform into combinatorial object
Visualisation of Algebraic Curves

Exact Visualisation of single arcs

- user is provided with topological information (the incidence graph)
- selected arcs are drawn exactly with respect to a fixed resolution

Examples

An implicit curve of degree 10
Our solution for curve analysis

- improves previous approaches by a combination of exact and approximated computations (as shown).
- does not impose any genericity condition on the input curve.

Details in:

Projection phase

The algorithm

- Compute $R := \text{res}(f, \frac{df}{dy}, y) \in \mathbb{Z}[x]$.
- Make R square free, i.e. divide through $\gcd(R, R')$.
- Isolate the real roots of R, using the Descartes method.

Isolating interval representation

Each root is given as $\alpha = (R, I)$, where $R \in \mathbb{Z}[x]$ with $R(\alpha) = 0$ and I some interval containing α and no other root of R.

Michael Sagraloff (MPI AG1)
Curve Analysis
Projection phase

The algorithm

- Compute \(R := \text{res}(f, \frac{\partial f}{\partial y}, y) \in \mathbb{Z}[x]. \)
- Make \(R \) square free, i.e. divide through \(\gcd(R, R') \).
- Isolate the real roots of \(R \), using the Descartes method.

Isolating interval representation

Each root is given as \(\alpha = (R, I) \), where \(R \in \mathbb{Z}[x] \) with \(R(\alpha) = 0 \) and \(I \) some interval containing \(\alpha \) and no other root of \(R \).
Extension phase: Symbolic precomputation

Fix some x-coordinate α. Set $f_\alpha(y) := f(\alpha, y)$

Compute the following two integers:

- $m = \# \{ \beta \in \mathbb{R} \mid f_\alpha(\beta) = 0 \}$, the number of curve points over α.
- $k = \deg(\gcd(f_\alpha, f'_\alpha))$

Both numbers are computed with Sturm-Habicht sequences.
Extension phase: Symbolic precomputation

Fix some x-coordinate α. Set $f_\alpha(y) := f(\alpha, y)$

Compute the following two integers:

- $m = \# \{ \beta \in \mathbb{R} \mid f_\alpha(\beta) = 0 \}$, the number of curve points over α.
- $k = \deg(\gcd(f_\alpha, f'_\alpha))$

Both numbers are computed with Sturm-Habicht sequences.
Extension phase: Root isolation over x-coordinates

First idea
Use Descartes method for f_α.

Problem
Involves calculation with algebraic numbers in each substep

Second idea
Use the Bitstream Descartes method

Problem
f_α is not square free in general

Third (and final) idea
Modify the (Bitstream) Descartes method s.t. it can handle one multiple root, and detect “worse situations”
Extension phase: Root isolation over x-coordinates

First idea
Use Descartes method for f_α.

Problem
Involves calculation with algebraic numbers in each substep.

Second idea
Use the Bitstream Descartes method.

Problem
f_α is not square free in general.

Third (and final) idea
Modify the (Bitstream) Descartes method s.t. it can handle one multiple root, and detect “worse situations”.
Extension phase: Root isolation over x-coordinates

First idea
Use Descartes method for f_α.

Problem
Involves calculation with algebraic numbers in each substep

Second idea
Use the Bitstream Descartes method

Problem
f_α is not square free in general

Third (and final) idea
Modify the (Bitstream) Descartes method s.t. it can handle one multiple root, and detect “worse situations”
Appendix

Extension phase: Root isolation over x-coordinates

First idea
Use Descartes method for f_α.

Problem
Involves calculation with algebraic numbers in each substep

Second idea
Use the Bitstream Descartes method

Problem
f_α is not square free in general

Third (and final) idea
Modify the (Bitstream) Descartes method s.t. it can handle one multiple root, and detect “worse situations”
Extension phase: Root isolation over x-coordinates

First idea
Use Descartes method for f_α.

Problem
Involves calculation with algebraic numbers in each substep

Second idea
Use the Bitstream Descartes method

Problem
f_α is not square free in general

Third (and final) idea
Modify the (Bitstream) Descartes method s.t. it can handle one multiple root, and detect “worse situations”
The m-k-Descartes method

Known:
- m, the number of curve points over α.
- $k = \deg(\gcd(f_\alpha, f'_\alpha))$

Interrupt the Descartes method in two situations

“The m-case” (success)
Stop, if $m - 1$ simple roots plus one interval that has more than one sign variation are detected.

“The k-case” (failure)
Stop, if no interval counts more than k.

Theorem
The m-k-Descartes algorithm terminates, and if the curve is generic, it isolates the roots over each α successfully.
The m-k-Descartes method

Known:
- m, the number of curve points over α.
- $k = \deg(\gcd(f_\alpha, f'_\alpha))$

Interrupt the Descartes method in two situations

"The m-case" (success)
Stop, if $m - 1$ simple roots plus one interval that has more than one sign variation are detected.

"The k-case" (failure)
Stop, if no interval counts more than k.

Theorem
The m-k-Descartes algorithm terminates, and if the curve is generic, it isolates the roots over each α successfully.
The m-k-Descartes method

Known:
- m, the number of curve points over α.
- $k = \deg(\gcd(f_\alpha, f'_\alpha))$

Interrupt the Descartes method in two situations

"The m-case" (success)
Stop, if $m - 1$ simple roots plus one interval that has more than one sign variation are detected.

"The k-case" (failure)
Stop, if no interval counts more than k.

Theorem
The m-k-Descartes algorithm terminates, and if the curve is generic, it isolates the roots over each α successfully.
The m-k-Descartes method

Known:
- m, the number of curve points over α.
- $k = \deg(\gcd(f_\alpha, f'_\alpha))$

Interrupt the Descartes method in two situations

"The m-case" (success)
Stop, if $m - 1$ simple roots plus one interval that has more than one sign variation are detected.

"The k-case" (failure)
Stop, if no interval counts more than k.

Theorem
The m-k-Descartes algorithm terminates, and if the curve is generic, it isolates the roots over each α successfully.
Counting incident arcs

The algorithm

Known: Isolating intervals for the roots, plus one “distinguished” root.

- Compute the number of roots at $\alpha - \varepsilon$ and $\alpha + \varepsilon$
- Connect the arcs in the only possible way.

For that argument, we need both genericity assumptions.
Counting incident arcs

The algorithm

Known: Isolating intervals for the roots, plus one “distinguished” root.

- Compute the number of roots at $\alpha - \varepsilon$ and $\alpha + \varepsilon$
- Connect the arcs in the only possible way.

For that argument, we need both genericity assumptions.
Counting incident arcs

The algorithm

Known: Isolating intervals for the roots, plus one “distinguished” root.

- Compute the number of roots at $\alpha - \varepsilon$ and $\alpha + \varepsilon$
- Connect the arcs in the only possible way.

For that argument, we need both genericity assumptions.
Counting incident arcs

The algorithm

Known: Isolating intervals for the roots, plus one “distinguished” root.

- Compute the number of roots at \(\alpha - \epsilon \) and \(\alpha + \epsilon \)
- Connect the arcs in the only possible way.

For that argument, we need both genericity assumptions.
Real Root Isolation (Descartes method)

Theorem (Descartes’ rule of sign in Bernstein basis)

Let \(g \in \mathbb{R}[t] \), \(\deg g = n \) and \(g = \sum b_i B_i[c, d] \), where \(B_i[c, d] \) are the Bernstein polynomials of degree \(n \) for the interval \([c, d] \). The number of sign variations of the sequence \(b_i \) exceeds the number of real roots of \(g \) inside \([c, d] \), counted with multiplicities, by an even number.

We have a function \(\text{Desc} : \mathbb{R}[x] \times (\mathbb{R} \times \mathbb{R}) \to \mathbb{Z} \) where \(\text{Desc}(g, I) \) returns the number of real roots of \(g \) in \(I \), possibly overestimated by an even number.

- \(\text{Desc}(g, I) = 0 \Rightarrow \) no root in \(I \)
- \(\text{Desc}(g, I) = 1 \Rightarrow \) exactly one (simple) root in \(I \)
- \(\text{Desc}(g, I) \geq 2 \Rightarrow \) nothing
Real Root Isolation (Descartes method)

Theorem (Descartes’ rule of sign in Bernstein basis)

Let \(g \in \mathbb{R}[t] \), \(\deg g = n \) and \(g = \sum b_i B_i[c, d] \), where \(B_i[c, d] \) are the Bernstein polynomials of degree \(n \) for the interval \([c, d]\). The number of sign variations of the sequence \(b_i \) exceeds the number of real roots of \(g \) inside \([c, d]\), counted with multiplicities, by an even number.

We have a function \(\text{Desc} : \mathbb{R}[x] \times (\mathbb{R} \times \mathbb{R}) \rightarrow \mathbb{Z} \) where \(\text{Desc}(g, I) \) returns the number of real roots of \(g \) in \(I \), possibly overestimated by an even number.

- \(\text{Desc}(g, I) = 0 \Rightarrow \) no root in \(I \)
- \(\text{Desc}(g, I) = 1 \Rightarrow \) exactly one (simple) root in \(I \)
- \(\text{Desc}(g, I) \geq 2 \Rightarrow \) nothing
Real Root Isolation (Descartes method)

Theorem (Descartes’ rule of sign in Bernstein basis)

Let $g \in \mathbb{R}[t]$, $\deg g = n$ and $g = \sum b_i B_i[c, d]$, where $B_i[c, d]$ are the Bernstein polynomials of degree n for the interval $[c, d]$. The number of sign variations of the sequence b_i exceeds the number of real roots of g inside $[c, d]$, counted with multiplicities, by an even number.

We have a function $\text{Desc} : \mathbb{R}[x] \times (\mathbb{R} \times \mathbb{R}) \rightarrow \mathbb{Z}$ where $\text{Desc}(g, I)$ returns the number of real roots of g in I, possibly overestimated by an even number.

- $\text{Desc}(g, I) = 0 \Rightarrow$ no root in I
- $\text{Desc}(g, I) = 1 \Rightarrow$ exactly one (simple) root in I
- $\text{Desc}(g, I) \geq 2 \Rightarrow$ nothing
Real Root Isolation (Descartes method)

Theorem (Descartes’ rule of sign in Bernstein basis)

Let $g \in \mathbb{R}[t]$, $\deg g = n$ and $g = \sum b_i B_i[c, d]$, where $B_i[c, d]$ are the Bernstein polynomials of degree n for the interval $[c, d]$. The number of sign variations of the sequence b_i exceeds the number of real roots of g inside $[c, d]$, counted with multiplicities, by an even number.

We have a function $\text{Desc} : \mathbb{R}[x] \times (\mathbb{R} \times \mathbb{R}) \rightarrow \mathbb{Z}$ where $\text{Desc}(g, I)$ returns the number of real roots of g in I, possibly overestimated by an even number.

- $\text{Desc}(g, I) = 0 \Rightarrow$ no root in I
- $\text{Desc}(g, I) = 1 \Rightarrow$ exactly one (simple) root in I
- $\text{Desc}(g, I) \geq 2 \Rightarrow$ nothing
Real Root Isolation (Descartes method)

Theorem (Descartes’ rule of sign in Bernstein basis)

Let $g \in \mathbb{R}[t]$, $\deg g = n$ and $g = \sum b_i B_i[c, d]$, where $B_i[c, d]$ are the Bernstein polynomials of degree n for the interval $[c, d]$. The number of sign variations of the sequence b_i exceeds the number of real roots of g inside $[c, d]$, counted with multiplicities, by an even number.

We have a function $\text{Desc} : \mathbb{R}[x] \times (\mathbb{R} \times \mathbb{R}) \rightarrow \mathbb{Z}$ where $\text{Desc}(g, I)$ returns the number of real roots of g in I, possibly overestimated by an even number.

- $\text{Desc}(g, I) = 0 \Rightarrow$ no root in I
- $\text{Desc}(g, I) = 1 \Rightarrow$ exactly one (simple) root in I
- $\text{Desc}(g, I) \geq 2 \Rightarrow$ nothing
Sturm-Habicht sequences

Subresultants

- $\text{Sres}_0(f, g), \ldots, \text{Sres}_n(f, g)$ \textit{Subresultant sequence} of f and g.
- Definition over minors of the Sylvester matrix
- $\text{res}(f, g) = \text{Sres}_0(f, g)$
- Contain polynomials of the Euclidean remainder sequence of f and g (up to scalar)

Sturm-Habicht-sequences

- $\text{StHa}_i(f) := (-1)^\delta \text{Sres}_i(f, f')$
- Negations to create a “Sturm-like” sequence
- Allows to compute the total number of real roots
- Good specialisation properties
Sturm-Habicht sequences

Subresultants

- \(S_{\text{res}}_0(f, g), \ldots, S_{\text{res}}_n(f, g) \) _Subresultant sequence_ of \(f \) and \(g \).
- Definition over minors of the Sylvester matrix
- \(\text{res}(f, g) = S_{\text{res}}_0(f, g) \)
- Contain polynomials of the Euclidean remainder sequence of \(f \) and \(g \) (up to scalar)

Sturm-Habicht-sequences

- \(\text{StHa}_i(f) := (-1)^{\delta} S_{\text{res}}_i(f, f') \)
- Negations to create a “Sturm-like” sequence
- Allows to compute the total number of real roots
- Good specialisation properties