
module BakeryDeconstructedAtomic

This is the PlusCal specification of the deconstructed bakery algorithm in the paper

Deconstructing the Bakery to Build a Distributed State Machine

There is one simplification that has been made in the PlusCal version: the registers localCh[i][j]
have been made atomic, a read or write being a single atomic action. This doesn’t affect the
derivation of the distributed bakery algorithm from the deconstructed algorithm, which also
makes the simplifying assumption those registers are atomic because they disappear from the
final algorithm.

Here are some of the changes made to the paper’s notation to conform to PlusCal/TLA+. Tuples
are enclosed in 〈〉, so we write 〈i , j 〉 instead of (i ,j). There’s no upside down “?” symbol in TLA+,

so that’s replaced by the identifier qm.

The pseudo-code for main process i has two places in which subprocesses (i , j) are forked and
process i resumes execution when they complete. PlusCal doesn’t have subprocesses. This is
represented in PlusCal by having a single process 〈i , j 〉 executing concurrently with process i ,

synchronizing appropriately using the variable pc.

Here is the basic idea:

This pseudo-code for process i :

main code ;

process j # i \in S

s1: subprocess code

end process

p2: more main code

is expressed in PlusCal as follows:

In process i

main code ;

p2: await \A j # i : pc[<<i,j>>] = "s2"

more main code

In process 〈i , j 〉
s1: await pc[i] = "p2"

subprocess code ;

s2: ...

Also, processes have identifiers and, for reasons that are not important here, we can’t use i as
the identifier for process i , so we use 〈i〉. So, pc[i] in the example above should be pc[〈i〉]. In the
pseudo-code, process i also launches asynchronous processes (i , j) to set localNum[j][i] to 0. In

the code, these are another set of processes with ids 〈i , j , “wr”〉.

We could simplify this algorithm by not waiting for localNum[j][i] to equal 0 in subprocess 〈i , j 〉
and having the asynchronous write of 0 not do anything if process i has begun the write to
localCh[i][j] that sets its value to number [i]. However, I think I like the algorithm in the paper

the way it is because it makes the pseudo-code more self-contained.

Like the pseudo-code shown in the paper, this version of the algorithm represents the M action
as an atomic step.

extends Data

--algorithm Decon{
variables number = [p ∈ Procs 7→ 0],

1

localNum = [p ∈ Procs 7→ [q ∈ OtherProcs(p) 7→ 0]],
localCh = [p ∈ Procs 7→ [q ∈ OtherProcs(p) 7→ 0]] ;

fair process (main ∈ ProcIds)
{
ncs :- while (true) {

skip ; noncritical section

M : await ∀ p ∈ SubProcsOf (self [1]) : pc[p] = “test” ;
with (v ∈ {n ∈ Nat \ {0} : ∀ j ∈ OtherProcs(self [1]) :

localNum[self [1]][j] 6= qm ⇒ n > localNum[self [1]][j]}) {
number [self [1]] := v ;
localNum := [j ∈ Procs 7→

[i ∈ OtherProcs(j) 7→
if i = self [1] then qm

else localNum[j][i]]] ;
} ;

L: await ∀ p ∈ SubProcsOf (self [1]) : pc[p] = “ch” ;
cs : skip ; critical section

P : number [self [1]] := 0 ;
localNum := [j ∈ Procs 7→

[i ∈ OtherProcs(j) 7→
if i = self [1] then qm

else localNum[j][i]]] ;
}

}

fair process (sub ∈ SubProcs) {
ch : while (true) {

await pc[〈self [1]〉] = “M” ;
localCh[self [2]][self [1]] := 1 ;

test : await pc[〈self [1]〉] = “L” ;
localNum[self [2]][self [1]] := number [self [1]] ;

Lb : localCh[self [2]][self [1]] := 0 ;
L2: await localCh[self [1]][self [2]] = 0 ;
L3:- See below for an explanation of why there is no fairness here.

await (localNum[self [1]][self [2]] /∈ {0, qm})⇒
(〈number [self [1]], self [1]〉 �
〈localNum[self [1]][self [2]], self [2]〉)

The await condition is written in the form A ⇒ B rather than A ∨ B because
when TLC is finding new states, when evaluating A ∨B it evaluates B even when
A is true, and in this case that would produce an error if localNum[self [1]][self [2]]

equals qm.

}
}

2

We allow process 〈i , j , “wr”〉 to set localNum[j][i] to 0 only if it has not already been set to qm
by process 〈i〉 in action M0. We could also allow it to write 0 after that write of qm but before
process 〈i , j 〉 executes statement test. Such a write just decreases the possible executions, so

eliminating this possibility doesn’t forbid any possible executions.

fair process (wrp ∈ WrProcs) {
wr : while (true) {

await ∧ localNum[self [2]][self [1]] = qm
∧ pc[〈self [1]〉] ∈ {“ncs”, “M”} ;

localNum[self [2]][self [1]] := 0 ;
}

}
}
**

BEGIN TRANSLATION (chksum(pcal) = “7827c38d” ∧ chksum(tla) = “83cb6c12”)

variables number , localNum, localCh, pc

vars
∆
= 〈number , localNum, localCh, pc〉

ProcSet
∆
= (ProcIds) ∪ (SubProcs) ∪ (WrProcs)

Init
∆
= Global variables

∧ number = [p ∈ Procs 7→ 0]
∧ localNum = [p ∈ Procs 7→ [q ∈ OtherProcs(p) 7→ 0]]
∧ localCh = [p ∈ Procs 7→ [q ∈ OtherProcs(p) 7→ 0]]
∧ pc = [self ∈ ProcSet 7→ case self ∈ ProcIds → “ncs”

2 self ∈ SubProcs → “ch”
2 self ∈ WrProcs → “wr”]

ncs(self)
∆
= ∧ pc[self] = “ncs”
∧ true
∧ pc′ = [pc except ! [self] = “M”]
∧ unchanged 〈number , localNum, localCh〉

M (self)
∆
= ∧ pc[self] = “M”
∧ ∀ p ∈ SubProcsOf (self [1]) : pc[p] = “test”
∧ ∃ v ∈ {n ∈ Nat \ {0} : ∀ j ∈ OtherProcs(self [1]) :

localNum[self [1]][j] 6= qm ⇒ n > localNum[self [1]][j]} :
∧ number ′ = [number except ! [self [1]] = v]
∧ localNum ′ = [j ∈ Procs 7→

[i ∈ OtherProcs(j) 7→
if i = self [1] then qm

else localNum[j][i]]]
∧ pc′ = [pc except ! [self] = “L”]
∧ unchanged localCh

L(self)
∆
= ∧ pc[self] = “L”

3

∧ ∀ p ∈ SubProcsOf (self [1]) : pc[p] = “ch”
∧ pc′ = [pc except ! [self] = “cs”]
∧ unchanged 〈number , localNum, localCh〉

cs(self)
∆
= ∧ pc[self] = “cs”
∧ true
∧ pc′ = [pc except ! [self] = “P”]
∧ unchanged 〈number , localNum, localCh〉

P(self)
∆
= ∧ pc[self] = “P”
∧ number ′ = [number except ! [self [1]] = 0]
∧ localNum ′ = [j ∈ Procs 7→

[i ∈ OtherProcs(j) 7→
if i = self [1] then qm

else localNum[j][i]]]
∧ pc′ = [pc except ! [self] = “ncs”]
∧ unchanged localCh

main(self)
∆
= ncs(self) ∨M (self) ∨ L(self) ∨ cs(self) ∨ P(self)

ch(self)
∆
= ∧ pc[self] = “ch”
∧ pc[〈self [1]〉] = “M”
∧ localCh ′ = [localCh except ! [self [2]][self [1]] = 1]
∧ pc′ = [pc except ! [self] = “test”]
∧ unchanged 〈number , localNum〉

test(self)
∆
= ∧ pc[self] = “test”
∧ pc[〈self [1]〉] = “L”
∧ localNum ′ = [localNum except ! [self [2]][self [1]] = number [self [1]]]
∧ pc′ = [pc except ! [self] = “Lb”]
∧ unchanged 〈number , localCh〉

Lb(self)
∆
= ∧ pc[self] = “Lb”
∧ localCh ′ = [localCh except ! [self [2]][self [1]] = 0]
∧ pc′ = [pc except ! [self] = “L2”]
∧ unchanged 〈number , localNum〉

L2(self)
∆
= ∧ pc[self] = “L2”
∧ localCh[self [1]][self [2]] = 0
∧ pc′ = [pc except ! [self] = “L3”]
∧ unchanged 〈number , localNum, localCh〉

L3(self)
∆
= ∧ pc[self] = “L3”
∧ (localNum[self [1]][self [2]] /∈ {0, qm})⇒

(〈number [self [1]], self [1]〉 �
〈localNum[self [1]][self [2]], self [2]〉)

∧ pc′ = [pc except ! [self] = “ch”]

4

∧ unchanged 〈number , localNum, localCh〉

sub(self)
∆
= ch(self) ∨ test(self) ∨ Lb(self) ∨ L2(self) ∨ L3(self)

wr(self)
∆
= ∧ pc[self] = “wr”
∧ ∧ localNum[self [2]][self [1]] = qm
∧ pc[〈self [1]〉] ∈ {“ncs”, “M” }

∧ localNum ′ = [localNum except ! [self [2]][self [1]] = 0]
∧ pc′ = [pc except ! [self] = “wr”]
∧ unchanged 〈number , localCh〉

wrp(self)
∆
= wr(self)

Next
∆
= (∃ self ∈ ProcIds : main(self))

∨ (∃ self ∈ SubProcs : sub(self))
∨ (∃ self ∈ WrProcs : wrp(self))

Spec
∆
= ∧ Init ∧2[Next]vars
∧ ∀ self ∈ ProcIds : WFvars((pc[self] 6= “ncs”) ∧main(self))
∧ ∀ self ∈ SubProcs : WFvars((pc[self] 6= “L3”) ∧ sub(self))
∧ ∀ self ∈ WrProcs : WFvars(wrp(self))

END TRANSLATION

In statement L3, the await condition is satisfied if process 〈i , j 〉 reads localNum[self [1]][self [2]]
equal to qm. This is because that’s a possible execution, since the process could “interpret” the
qm as 0. For checking safety (namely, mutual exclusion), we want to allow that because it’s a
possibility that must be taken into account. However, for checking liveness, we don’t want to
require that the statement must be executed when localNum[self [1]][self [2]] equals qm, since that
value could also be interpreted as localNum[self [1]][self [2]] equal to 1, which could prevent the wait
condition from being true. So we omit that fairness condition from the formula Spec produced by
translating the algorithm, and we add weak fairness of the action when localNum[self [1]][self [2]]

does not equal qm. This produces the TLA+ specification FSpec defined here.

FSpec
∆
= ∧ Spec
∧ ∀ q ∈ SubProcs : WFvars(L3(q) ∧ (localNum[q [1]][q [2]] 6= qm))

TypeOK
∆
= ∧ number ∈ [Procs → Nat]
∧ ∧ domain localNum = Procs
∧ ∀ i ∈ Procs : localNum[i] ∈ [OtherProcs(i)→ Nat ∪ {qm}]

∧ ∧ domain localCh = Procs
∧ ∀ i ∈ Procs : localCh[i] ∈ [OtherProcs(i)→ {0, 1}]

MutualExclusion
∆
= ∀ p, q ∈ ProcIds : (p 6= q)⇒ ({pc[p], pc[q]} 6= {“cs”})

StarvationFree
∆
= ∀ p ∈ ProcIds : (pc[p] = “M”) ; (pc[p] = “cs”)

Checking the invariant in the appendix of the paper.

inBakery(i , j)
∆
= ∨ pc[〈i , j 〉] ∈ {“Lb”, “L2”, “L3”}

5

∨ ∧ pc[〈i , j 〉] = “ch”
∧ pc[〈i〉] ∈ {“L”, “cs”}

inCS (i)
∆
= pc[〈i〉] = “cs”

In TLA+, we can’t write both inDoorway(i , j , w) and inDoorway(i , j), so we change the first
to inDoorwayVal . Its definition differs from the definition of inDoorway(i , j , w) in the paper
to avoid having to add a history variable to remember the value of localNum[self [1]][j] read in
statement M0. It’s a nicer definition, but it would have required more explanation than the
definition in the paper.

The definition of inDoorway(i , j) is equivalent to the one in the paper. It is obviously implied by

∃w ∈ Nat : inDoorwayVal(i , j , w), and type correctness implies the opposite implication.

inDoorwayVal(i , j , w)
∆
= ∧ pc[〈i〉] = “L”
∧ pc[〈i , j 〉] = “test”
∧ number [i] > w

inDoorway(i , j)
∆
= ∧ pc[〈i〉] = “L”
∧ pc[〈i , j 〉] = “test”

Outside(i , j)
∆
= ¬(inDoorway(i , j) ∨ inBakery(i , j))

passed(i , j , LL)
∆
= if LL = “L2” then ∨ pc[〈i , j 〉] = “L3”

∨ ∧ pc[〈i , j 〉] = “ch”
∧ pc[〈i〉] ∈ {“L”, “cs”}

else ∧ pc[〈i , j 〉] = “ch”
∧ pc[〈i〉] ∈ {“L”, “cs”}

Before(i , j)
∆
= ∧ inBakery(i , j)
∧ ∨Outside(j , i)
∨ inDoorwayVal(j , i , number [i])
∨ ∧ inBakery(j , i)
∧ 〈number [i], i〉 � 〈number [j], j 〉
∧ ¬passed(j , i , “L3”)

Inv(i , j)
∆
= ∧ inBakery(i , j)⇒ Before(i , j) ∨ Before(j , i)

∨ inDoorway(j , i)
∧ passed(i , j , “L2”)⇒ Before(i , j) ∨ Before(j , i)
∧ passed(i , j , “L3”)⇒ Before(i , j)

I
∆
= ∀ i ∈ Procs : ∀ j ∈ OtherProcs(i) : Inv(i , j)

The following is for testing. Since the spec allows the values of number [n] to get arbitrarily
large, there are infinitely many states. The obvious solution to that is to use models with a state
constraint that number [n] is at most some value TestMaxNum. However, TLC would still not
be able to execute the spec because the with statement in action M allows an infinite number
of possible values for number [n]. To solve that problem, we have the model redefine Nat to a
finite set of numbers. The obvious set is 0 . . TestMaxNum. However, trying that reveals a subtle
problem. Running the model produces a bogus counterexample to the StarvationFree property.

6

This is surprising, since constraints on the state space generally fail to find real counterexamples
to a liveness property because the counterexamples require large (possibly infinite) traces that are
ruled out by the state constraint. The remaining traces may not satisfy the liveness property, but
they are ruled out because they fail to satisfy the algorithm’s fairness requirements. In this case,
a behavior that didn’t satisfy the liveness property StarvationFree but shouldn’t have satisfied
the fairness requirements of the algorithm did satisfy the fairness requirement because of the
substitution of a finite set of numbers for Nat .

Here’s what happened: In the behavior, two nodes kept alternately entering the critical section
in a way that kept increasing their values of num until one of those values reached TestMaxNum.
That one entered its critical section while the other was in its noncritical section, re-entered its
noncritical section, and then the two processes kept repeating this dance forever. Meanwhile, a
third process’s subprocess was trying to execute action M . Every time it tried to execute that
action, it saw that another process’s number equaled TestMaxNum. In a normal execution, it
would just set its value of num larger than TestMaxNum and eventually enter its critical section.
However, it couldn’t do that because the substitution of 0 . . TestMaxNum for Nat meant that
it couldn’t set num to such a value, so the enter step was disabled. The fairness requirement
on the enter action is weak fairness, which requires an action eventually to be taken only if it’s
continually enabled. Requiring strong fairness of the action would have solved this problem,
because the enabled action kept being enabled and strong fairness would rule out a behavior in
which that process’s enter step never occurred. However, it’s important that the algorithm satisfy
starvation freedom without assuming strong fairness of any of its steps.

The solution to this problem is to substitute 0 . . (TestMax + 1) for Nat . The state constraint will
allow the enter step to be taken, but will allow no further steps from that state. The process still
never enters its critical section, but now the behavior that keeps it from doing so will violate the
weak fairness requirements on that process’s steps.

TestMaxNum
∆
= 4

TestNat
∆
= 0 . . (TestMaxNum + 1)

\ * Modification History

\ * Last modified Tue Nov 16 18:37:41 CET 2021 by merz

\ * Last modified Thu Jul 01 12:24:37 CEST 2021 by merz

\ * Last modified Wed Apr 28 18:06:24 PDT 2021 by lamport

\ * Created Sat Apr 24 09:45:26 PDT 2021 by lamport6

7

