
Deconstructing the Bakery to Build

a Distributed State Machine

Leslie Lamport

Expanded Version 7 January 2022

Abstract

We connect two well-known concurrent algorithms, the bakery algo-
rithm and a distributed state-machine algorithm, by a sequence of
three mutual exclusion algorithms. Each algorithm is derived from the
preceding one.

Contents

1 Introduction 1

2 The Original Bakery Algorithm 2

3 Generalization of the Original Algorithm 4

4 The Deconstructed Bakery Algorithm 6

5 The Distributed Bakery Algorithm 8

6 A Distributed State Machine 12

7 Ancient and Recent History 15

References 17

Appendix: Proof of Mutual Exclusion 20

1 Introduction

The reader and I, the author, will journey between two concurrent algo-
rithms of the 1970s that are still studied today. We will start at the bakery
algorithm [9] and end at an algorithm for implementing a distributed state
machine [12]. I hope we will enjoy the voyage and perhaps even learn some-
thing.

The bakery algorithm ensures that processes execute a critical section
of code one at a time. A process trying to execute that code chooses a
number it believes to be higher than the numbers chosen by other such
processes. The process with the lowest number goes first, with ties broken
by process name. In the distributed state-machine algorithm of [12], each
process maintains a logical clock, the clocks being synchronized by having a
process include its clock value in the messages it sends. Commands to the
state machine are ordered according to the value of a process’s clock when
it issues a command, with ties broken by process name.

The similarity of the bakery algorithm’s numbers and the state-machine
algorithm’s clocks has been noticed, but I know of no previous rigorous
connection between them. Our trip provides this connection, going from
the bakery algorithm to the state-machine algorithm through a sequence of
algorithms, each (except the first) derived from the preceding one.

The first algorithm on the journey is a straightforward generalization
of the bakery algorithm, mainly by allowing a process to read other pro-
cesses’ numbers in an arbitrary order. We then deconstruct this algorithm
by having each process maintain multiple copies of its number, one for each
other process. Next is a distributed version of the deconstructed algorithm
obtained by having each copy of a process i ’s number kept by the process
that reads it, where i writes the value stored at another process by send-
ing a message to that process. We then modify this distributed algorithm
to ensure that numbers increase with each execution of the critical section.
Finally, we arrive at the distributed state-machine algorithm by forgetting
about critical sections and just using the numbers as logical clocks.

Not only do our algorithms date from the 1970s, but the path between
them is one that could have been followed at that time. The large amount
of related work done since then has neither influenced nor obviated any part
of the route. At the end of our journey, a concluding section discusses that
related work and why the algorithms that begin and end our path are still
studied today. The correctness proofs in our journey are informal, much
as they would have been in the 1970s. More modern rigorous proofs are
discussed in the concluding section.

1

2 The Original Bakery Algorithm

The bakery algorithm solves the mutual exclusion problem, introduced and
solved by Edsger Dijkstra [3]. The problem assumes a set of processes that
alternate between executing a noncritical and a critical section of code. A
process must eventually exit the critical section, but it may stay forever in
the noncritical section. The basic requirement is that at most one process
can be executing the critical section at any time. A solution to the mutual
exclusion problem lies at the heart of almost all multiprocess programming.

The bakery algorithm assumes processes are named by numbers from
1 through N . Figure 1 contains the code for process number i , almost
exactly as it appeared in the original paper. The values of the variables
number and choosing are arrays indexed by process number, with number [i]
and choosing [i] initially equal to 0 for every process i . The relation � is
lexicographical ordering on pairs of numbers, so (1, 3) � (2, 2) � (2, 4); it
is an irreflexive total ordering on the set of all pairs of integers.

Mutual exclusion can be achieved very simply by not allowing any pro-
cess ever to enter the critical section. A mutual exclusion algorithm needs to
satisfy some progress condition as well. The condition Dijkstra’s algorithm
satisfies is deadlock freedom, meaning that if one or more processes try to
enter the critical section, one of them must succeed. Most later algorithms
satisfy the stronger requirement of starvation freedom, meaning that every
process that tries to enter the critical section eventually does so. Before dis-
cussing mutual exclusion, we show that the bakery algorithm is starvation
free. But first, some terminology.

We say that a process is in the doorway when it is executing statement
M . After it finishes executing M until it exits its critical section, we say
that it is inside the bakery. When it’s at any other place in its code, we say
that it is outside the bakery.

We first show that the algorithm is deadlock free. If it weren’t, it would
eventually reach a state in which every process is either forever in its non-
critical section or forever inside the bakery. Eventually, choosing [i] would
equal 0 for all i , so every process inside the bakery would be waiting for-
ever at statement L3. But this is impossible because the waiting process i
with the smallest value of (number [i], i) would eventually enter the critical
section. Hence, the algorithm is deadlock free.

To show that the algorithm is starvation free, it suffices to obtain a
contradiction by assuming that a process i remains forever inside the bakery
and outside the critical section. By deadlock freedom, other processes must
continually enter and leave the critical section, since they cannot halt there.

2

begin integer k ;
L1: noncritical section ;

choosing [i] := 1 ;
M : number [i] := 1 + maximum(number [1], . . . , number [N]) ;

choosing [i] := 0 ;
for k = 1 step 1 until N do

begin
L2: if choosing [k] 6= 0 then goto L2 ;
L3: if number [k] 6= 0 and (number [k], k)� (number [i], i)

then goto L3 ;
end ;

critical section ;
number [i] := 0 ;
goto L1

end

Figure 1: Process i of the original bakery algorithm.

However, once a process j is outside the bakery, to enter the bakery again it
must execute statement M and set number [j] to be greater than number [i].
At that point, process j must remain forever inside the bakery because it
will loop forever if it reaches L3 with k = i . Eventually, number [i] will
be less than number [j] for every process j in the bakery, so i will enter its
critical section. This is the contradiction that proves starvation freedom.

Essentially the same proof shows that the other mutual exclusion algo-
rithms we derive from the bakery algorithm also satisfy starvation freedom.
So, we will say little more about starvation freedom. We now explain why
the bakery algorithm satisfies mutual exclusion. For brevity, we abbreviate
(number [i], i)� (number [j], j) as i � j .

Here is a naive proof that i and j cannot both be in their critical section
at the same time. For i to enter the critical section, it must find number [j] =
0 or i � j when executing L3 for k = j . Similarly, for j to enter the critical
section, it must find number [i] = 0 or j � i when executing L3 for k = i .
Since a process’s number is non-zero when it executes L3, this means that
for i and j both to be in their critical sections, i � j and j � i must be
true, which is impossible.

This argument is flawed because it assumes that both i and j were
inside the bakery when the other process executed L3 for the appropriate
value of k . Suppose process i read number [j] while j was in the doorway
(executing M) but had not yet set number [j]. It is possible for j to have

3

read number [i] = 0 in L3 and entered the critical section, and for i then to
have chosen number [i] to make i � j and also entered the critical section.

The flaw in the argument is corrected by statement L2. Since choosing [j]
equals 1 when j is in the doorway, process i executed L3 after L2 found that
j was not in the doorway; and similarly, j executed L3 after finding i not in
the doorway. If, in both cases, the two processes were inside the bakery when
L2 was executed, then the naive argument is correct. If one of them, say j ,
was not inside the bakery, it must have been outside the bakery. Since i was
then inside the bakery, with its current value of number [i], process j must
have chosen number [j] to be greater than the current value of number [i],
making i � j true. Hence, j could not have exited the L3 loop for k = i
and entered the critical section while i was still in the bakery. Therefore i
and j cannot both be in the critical section.

Observe that the choosing variable serves only to ensure that, when
process i executes L3 for k = j , there had been an instant when i was already
inside the bakery and j was not in the doorway. This will be important later.

The most surprising property of the bakery algorithm is that it does
not require reading or writing a memory register to be an atomic action.
Carefully examining the proof of mutual exclusion shows that it just requires
that number [i] and choosing [i] are what were later called safe registers [13],
ensuring only that a read not overlapping a write obtains the current value
of the register. A read that does overlap a write can obtain any value the
register might contain.

It is most convenient to describe a safe register in terms of atomic actions.
We represent writing a value v to the register as two actions: the first sets
its value to a special constant ¿ and the second sets it to v . We represent a
read as a single atomic action that obtains the value of the register if that
value does not equal ¿. A read of number [i] when it equals ¿ can return
any natural number, and a read of choosing [i] when it equals ¿ can return
0 or 1.

3 Generalization of the Original Algorithm

Two generalizations of the bakery algorithm were obvious when it was
published. The first is that, in statement M , it is not necessary to set
number [i] to 1 + maximum(. . .). It could be set to any number greater
than that maximum. (It can also be set to the maximum if that makes
(number [j], j)� (number [i], i) for all j , but we won’t bother with that gen-
eralization.) We rewrite statement M using :> to mean “is assigned a value
greater than”.

4

The second obvious generalization is that statements L2 and L3 for dif-
ferent values of k do not have to be executed in the order specified by the
for statement. Since the proof of mutual exclusion considers each pair of
processes by themselves, the only requirement is that, for any value of k ,
statement L2 must be executed before L3. For different values of k , those
statements can be executed concurrently by different subprocesses. Also,
there is no reason to execute them for k = i because their if tests always
equal false.

These two generalizations have appeared elsewhere [5, 10]. There is an-
other, less obvious generalization that seems to be new: The assignment
of 0 to number [i] after the process leaves the critical section need not be
completed before the process enters the noncritical section. In fact, that
assignment need not even be completed if the process leaves the noncriti-
cal section to enter its critical section again. As long as that assignment
is completed or aborted (leaving the register equal to ¿) before number [i]
is assigned a new value in statement M , it just appears to other processes
as if process i is still in the critical section or is executing the assignment
statement immediately after the critical section. Therefore, mutual exclu-
sion is still satisfied. To maintain starvation freedom, the write of 0 must
eventually be completed if i remains forever in the noncritical section. There
seems to be no simple way to describe in pseudo-code these requirements
for setting number [i] to 0 upon completing the critical section. We simply
add the mysterious keyword asynchronously and refer to this discussion
for its explanation.

The generalized algorithm is in Figure 2. Processes are explicitly de-
clared, the outer process statement indicates that there are processes num-
bered from 1 through N and shows the code for process number i . Variables
are declared with their initial values. The inner process statement declares
that process i has N − 1 subprocesses j with numbers from 1 through N ,
with none numbered i , and gives the code for subprocess j . That statement
is executed by forking the subprocesses and continuing to the next state-
ment (the critical section) when all subprocesses have terminated. Harmful
or not, gotos have been eliminated. The outer loop is described as a while
statement. The loops at L2 and L3 have been described with await state-
ments, each of which repeatedly evaluates its predicate and terminates when
it is true. The :> in statement M and the asynchronously statement are
explained above.

5

process i in {1, . . . ,N }
variables number [i] = 0, choosing [i] = 0 ;
while true do

noncritical section ;
choosing [i] := 1 ;

M : number [i] :> maximum(number [1], . . . , number [N]) ;
choosing [i] := 0 ;
process j 6= i in {1, . . . ,N }
L2 : await choosing [j] = 0 ;
L3 : await (number [j] = 0) ∨ ((number [i], i)� (number [j], j))

end process ;
critical section ;
asynchronously number [i] := 0 ; see explanation in text

end while
end process

Figure 2: A generalization of the original bakery algorithm.

4 The Deconstructed Bakery Algorithm

We have assumed that number [i] and choosing [i] are safe registers, written
only by i and read by multiple readers. Such a register is easily implemented
with safe registers having a single reader by keeping a copy of the register’s
value in a separate register for each reader.

We deconstruct the generalized bakery algorithm by implementing
the safe registers choosing [i] and number [i] with single-reader registers
localCh[j][i] and localNum[j][i], for each j 6= i . Note the counterintuitive
order of the subscripts, with localCh[j][i] and localNum[j][i] containing the
copies of choosing [i] and number [i] read by process j .

The pseudo-code of the deconstructed algorithm is in Figure 3. The reads
of choosing [j] and number [j] by process i in the generalized algorithm are
replaced by reads of localCh[i][j] and localNum[i][j]. The variable number [i]
is now read only by process i , and we have eliminated choosing [i] because
process i never reads it. Ad hoc notation is used in statement M to indicate
that number [i] is set to be greater than the values of all localNum[j][i].

We have explicitly indicated the two atomic actions that represent writ-
ing a value v to the safe register localNum[j][i], first setting its value to ¿ and
then to v . We have not bothered doing that for the writes to localCh[j][i].
The writes of localCh[j][i] and localNum[j][i] are performed by subprocesses
of process i , except that the N − 1 separate writes of ¿ to all the registers

6

process i in {1, . . . , N }
variables number [i] = 0, localNum[∗][i] = 0, localCh[∗][i] = 0 ;
while true do

noncritical section ;
process j 6= i in {1, . . . , N }

localCh[j][i] := 1
end process ;

M : number [i] := any v > 0 with ∀ j 6= i : v > localNum[i][j] ;
localNum[∗][i] := ¿ ;
process j 6= i in {1, . . . , N }

localNum[j][i] := number [i] ;
localCh[j][i] := 0 ;

L2 : await localCh[i][j] = 0 ;
L3 : await (localNum[i][j] = 0) ∨ ((number [i], i)� (localNum[i][j], j))

end process ;
critical section ;
number [i] := 0 ;
localNum[∗][i] := ¿ ;
asynchronously process j 6= i in {1, . . . , N } see explanation in text

localNum[j][i] := 0
end process

end while
end process

Figure 3: The deconstructed bakery algorithm.

7

localNum[j][i] are represented by an assignment statement

localNum[∗][i] : = ¿

of the main process i . (This will be more convenient for our next version
of the bakery algorithm.) To set number [i] to 0 after i exits the critical
section, all the registers localNum[j][i] are set to ¿ by the main process,
and each is set to 0 by a separate process. We require that the setting of
localNum[j][i] to 0 has been either completed or aborted when localNum[j][i]
is set to number [i] by subprocess (i , j). Again, this is not made explicit in
the pseudo-code.

A proof of correctness for the deconstructed algorithm can be obtained
by simple modifications to the proof for the original algorithm. For the
original algorithm, we defined process i to be in the doorway while executing
statement M , which ended with assigning the value of number [i]. Since
number [i] has been replaced by the registers localNum[j][i], process i now
has a separate doorway for each other process j . We say that i is in the
doorway with respect to (wrt) j from when it begins executing statement M
until its subprocess j assigns number [i] to localNum[j][i]. We say that i is
inside the bakery wrt j from when it leaves the doorway wrt j until it exits
the critical section. The definition of i outside the bakery is the same as
before.

To transform the proof of correctness of the original bakery algorithm
to a proof of correctness of the deconstructed algorithm, we replace every
statement that i or j is in the doorway or inside the bakery with the state-
ment that it is there wrt the other process. The modified proof shows that
the function of statement L2 is to ensure that, sometime between i coming
inside the bakery wrt j and executing L3 for j , process j was not in the
doorway wrt i .

5 The Distributed Bakery Algorithm

We now implement the deconstructed bakery algorithm with a distributed
algorithm. Each main process i is executed at a separate node, which we
call node i , in a network of processes that communicate by message passing.
The variable localNum[j][i], which is process j ’s copy of number [i], is kept
at node j . It is set by process i to the value v by sending the message v to
j . The setting of localNum[j][i] to ¿ in the deconstructed bakery algorithm
is implemented by the action of sending that message, and localNum[j][i]
is set to v by process j when it receives the message. Thus, we are imple-
menting the deconstructed algorithm by having process j obtain a previous

8

value of localNum[j][i] on a read when localNum[j][i] equals ¿. Since the
deconstructed algorithm allows such a read to obtain any value, this is a
correct implementation.

For now, we assume that process i can write the value of localCh[j][i]
atomically by a magical action at a distance. We will remove this magic
later.

We assume that messages sent from a process i to any other process j
are received in the order that they are sent. We represent the messages in
transit from i to j by a FIFO (first-in, first-out) queue q [i][j]. We let φ be
the empty queue, and we define the following operations on a queue Q .

Append(Q , val) Appends the element val to the end of Q .

Head(Q) The value at the beginning of Q .

Behead(Q) Removes the element at the beginning of Q .

Head(Q) and Behead(Q) are undefined if Q equals φ.
The complete algorithm is in Figure 4. The shading highlights uses of

localCh, whose magical properties need to be dealt with. Along with the
main process i , there are concurrently executed processes (i , j) at node i ,
for each j 6= i . Process (i , j) receives and acts upon the messages sent to i
by j .

The main process i of the distributed algorithm is obtained directly
from the deconstructed algorithm by replacing the assignments of ¿ to each
localNum[j][i] with the sending of a message to j , except for two changes.
The first is that statement M and the following sending of messages to other
processes (represented by appending number [i] to all the message queues
q [i][j]) have been made a single atomic action. We can do this because we
can view the end of each message queue q [i][j], onto which messages are
appended, to be part of process i ’s local state. A folk theorem [4] says that,
for reasoning about a multiprocess algorithm, we can combine any number
of actions that access only a process’s local state into a single atomic action.
That folk theorem has been formalized in a number of results starting with
one by Lipton [15], perhaps the most directly applicable being [14]. In our
algorithm, making this action appear atomic just requires preventing other
processes at node i from acting on any incoming messages while the action
is being executed.

The other significant change to the deconstructed algorithm is that the
asynchronously statement has disappeared. The setting of localNum[j][i]
is performed by the receipt of messages sent by i to j . FIFO message delivery
ensures that it is set to 0 before its subsequent setting to a non-zero value.

9

process i in {1, . . . , N }
variables number [i] = 0, localNum[∗][i] = 0, localCh[∗][i] = 0,

ackRcvd [i][∗] = 0, q [∗][i] = φ ;
while true do

noncritical section ;
process j 6= i in {1, . . . , N }
localCh[j][i] := 1

end process ;
atomic M : number [i] := any v > 0 with ∀ j 6= i : v > localNum[i][j] ;

Append(q [i][∗], number [i])
end atomic ;
process j 6= i in {1, . . . , N }
L0 : await ackRcvd [i][j] = 1 ;

localCh[j][i] := 0 ;
L2: await localCh[i][j] = 0 ;
L3: await (localNum[i][j] = 0) ∨ (number [i], i)� (localNum[i][j], j)

end process ;
critical section ;
ackRcvd [i][∗] := 0 ;
number [i] := 0 ;
Append(q [i][∗], 0)

end while
end process

process i , j 6= i in {1, . . . , N }
while true do
atomic await q [j][i] 6= φ ;

if Head(q [j][i]) = ack
then ackRcvd [i][j] := 1
else localNum[i][j] := Head(q [j][i]) ;

if Head(q [j][i]) 6= 0 then Append(q [j][i], ack)
end if

end if ;
Behead(q [j][i])

end atomic ;
end while

end process

Figure 4: The Distributed Bakery Algorithm, with magic.

10

Also, since localNum[j][i] is now set by process (j , i) upon receipt of the
message, the assignment to it in subprocess j of i has been removed.

Correctness of the deconstructed algorithm also depends on the assign-
ment to localNum[j][i] being performed before process i sets localCh[j][i] to
0. Since the assignment to localNum[j][i] is now performed at node j , the
ordering of those two operations is no longer trivially implied by the code.
To maintain that ordering, subprocess j of i must learn that process (j , i)
has set localNum[j][i] to number [i] before it can set localCh[j][i] to 0. This
is done by having (j , i) send a message to i with some value ack that is not
a natural number. Process (j , i) sets the value of localNum[j][i] and sends
the ack message to i as a single atomic action. When process (i , j) at node
i receives the ack message, it sets ackRcvd [i][j] to 1 to notify subprocess
j of process i that the ack has arrived. The setting of localNum[j][i] to
number [i] in the deconstructed algorithm is replaced by statement L0 that
waits for ackRcvd [i][j] to equal 1.

The rest of the code for the main process i is the same as that of the
corresponding process of the deconstructed algorithm, except that after
i leaves the critical section, the asynchronous setting of all the registers
localNum[j][i] to 0 is replaced by sending the message 0 to all the processes
j ; and ackRcvd [i][j] is reset to 0 for all j .

The asynchronously executed process (i , j) receives messages sent by j
via q [j][i]. For an ack message, it sets ackRcvd [i][j] to 1; for a message with
a value of number [j] it sets localNum[i][j] and, if the value is non-zero, sends
an ack to j .

The one remaining problem is the magical atomic reading and writing of
the register localCh[i][j]. The value of that register is used only in statement
L2. The purpose of L2 is to ensure that, before the execution of L3, there
existed a time T when i was in the bakery wrt j and j was not in the
doorway wrt i . We now show that statement L2 is unnecessary, because
executing L0 ensures the existence of such a time T .

The execution of statement M by j and the sending of number [j] in a
message to i are part of a single atomic action, and j enters the bakery wrt
i when that message is received at node i . Therefore, j is in the doorway
wrt i exactly when there is a message with a non-zero integer in q [j][i].
Let’s call that message a doorway message. Process i enters the bakery wrt
j when its message containing number [i] is received at node j , an action
that appends to q [j][i] the ack that L0 is waiting to arrive. If there is no
doorway message in q [j][i] at that time, then immediately after execution of
that action is the time T whose existence we need to show, since it occurred
before the receipt of the ack that L0 was waiting for. If there is a doorway

11

message in q [j][i], then the required time T is right after that message was
received at node i . Because of FIFO message delivery, that time was also
before the receipt of the ack that L0 is waiting for. In both cases, executing
L0 ensures that there was some time T after i entered inside the bakery wrt
j when j was not in the doorway wrt i . Hence, statement L2 is redundant.

Because L2 is the only place where the value of localCh[i][j] is read, we
can eliminate localCh and all statements that set it. Removing all the grayed
statements in Figure 4 gives us the distributed bakery algorithm, with no
magic.

The first paper devoted to distributed mutual exclusion was apparently
that of Ricart and Agrawala [19]. Their algorithm can be viewed as an
optimization and simplification of our algorithm. It delays the sending of
ack messages in such a way that a process can enter its critical section when
it receives an ack from every other process, so it doesn’t have to keep track
of other processes’ numbers. The number 0 messages sent upon exiting
the critical section can therefore be eliminated, yielding an algorithm with
fewer messages. Although nicer than our algorithm, the Ricart-Agrawala
algorithm is not directly on the path we are traveling.

6 A Distributed State Machine

In a distributed state machine [12], there is a set of processes at separate
nodes in a network, each wanting to execute state machine commands. The
processes must agree on the order in which all the commands are executed.
To execute a command, a process must know the entire sequence of preceding
commands.

A distributed mutual exclusion algorithm can be used to implement a
distributed state machine by having a process execute a single command in
the critical section. The order in which processes enter the critical section
determines the ordering of the commands. It’s easy to devise a protocol that
has a process in its critical section send its current command to all other
processes, which order it after all preceding commands. Starting with this
idea and the distributed bakery algorithm, we will obtain the distributed
state-machine algorithm of [12] by eliminating the critical section.

The bakery algorithm is based on the idea that if two processes are trying
to enter the critical section at about the same time, then the process i with
the smaller value of (number [i], i) enters first. We now make that true no
matter when the two processes enter the critical section. Define a version of
the bakery algorithm to be number -ordered if it satisfies this condition: If

12

process i enters the critical section with number [i] = n i and process j later
enters the critical section with number [j] = n j , then (n i , i) � (n j , j). We
now make the distributed bakery number -ordered. We can do that because
we have generalized the bakery algorithm to set number [i] to any number
greater than the maximum value of the values of number [j] it reads, not just
to the next larger number.

We add to the distributed bakery algorithm a variable maxNum, where
maxNum[i][j] is the largest value localNum[i][j] has equaled, for j 6= i . We
let maxNum[i][i] be the largest value number [i] has equaled. We then make
two changes to the algorithm. First, we replace statement M with:

M : number [i] :> maximum(maxNum[i][1], . . . ,maxNum[i][N]);
maxNum[i][i] : = number [i]

Second, in process (i , j), if localNum[i][j] is assigned a non-zero value, then
maxNum[i][j] is assigned that same value. (The FIFO ordering of messages
assures that the new value of maxNum[i][j] will be greater than its previous
value.) Clearly, localNum[i][j] always equals maxNum[i][j] or 0. The value
of number [i] chosen this way is therefore allowed by statement M of the
distributed algorithm, so this is a correct implementation of that algorithm.
We now show that it is number -ordered.

Suppose i enters the critical section with number [i] = n i and j later
enters the critical section with number [j] = n j . It’s easy to see that (n i , i)�
(n j , j) if i = j , so we can assume i 6= j . The proof of mutual exclusion for the
deconstructed algorithm shows that either: (i) (n i , i)� (n j , j) or (ii) j chose
n j after reading a value of localNum[i][j] written after i set it to n i . In our
modified version of the distributed algorithm, j reads maxNum[j][i] rather
than localNum[i][j] to set number [j], and maxNum[j][i] never decreases.
Therefore, (n i , i) � (n j , j) is true also in case (ii), so the algorithm is
number -ordered.

Since the algorithm is number -ordered, we don’t need the critical section
to implement a distributed state machine. We can order the commands by
the value (number [i], i) would have had when i entered the critical section
to execute the command. Process i can send the command it’s executing
in the messages containing the value of number [i] that it sends to other
processes. In fact, we don’t need number [i] at all. When we send that
message, number [i] has the same value as maxNum[i][i]. We can eliminate
everything in the main process i except the atomic statement containing
statement M , which can now be written as follows, where Cmd is process i ’s

13

current command:

atomic
M : maxNum[i][i] :> maximum(maxNum[i][1], . . . ,maxNum[i][N]);

Append((maxNum[i][i],Cmd), q [i][∗])
end atomic

There is one remaining problem. Process i saves the messages contain-
ing commands that it sends and receives, accumulating a set of triples
(v , j ,Cmd) indicating that process j issued a command Cmd with number [j]
having the value v . It knows that those commands are ordered by (v , j).
But to execute the command in (v , j ,Cmd), it has to know that it has re-
ceived all commands (w , k ,Dmd) with (w , k) � (v , j). Process i knows
that, for each process k , it has received all commands (w , k ,Dmd) with
w ≤ maxNum[i][k]. However, suppose i has received no commands from k .
How can i be sure that k hasn’t sent a command in a message that i hasn’t
yet received? The answer is to use the distributed bakery algorithm’s ack
messages. Here’s how.

For convenience, we let process i keep maxNum[i][i] always equal to the
maximum of the values maxNum[i][j] (including j = i). It does this by
increasing maxNum[i][i], if necessary, when receiving a message with the
value of maxNum[i][j] from another process j . Upon receiving a message
(v ,Cmd) from process j , process i sets maxNum[i][j] to v (possibly increas-
ing maxNum[i][i]) and sends back to j the message (maxNum[i][i], ack).
Upon receiving that message, j sets maxNum[j][i] accordingly, (increas-
ing maxNum[j][j] if necessary). When i has received all the ack messages
for a command it issued with maxNum[i][i] equal to v , all its values of
maxNum[i][j] will be ≥ v , so process i knows it has received all commands
ordered before its current command. It can therefore execute all of them,
in the appropriate order, and then execute its current command.

This algorithm is almost identical to the distributed state machine al-
gorithm in [12], where maxNum[i][i] is called process i ’s clock. (The sketch
of the algorithm given there is not detailed enough to mention the other
registers maxNum[i][j].) The one difference is that, when process i receives
a message from j with a new value v of maxNum[i][j], the algorithm of [12]
requires maxNum[i][i] to be set to a value > v , whereas ≥ v suffices. The
algorithm remains correct if the value of maxNum[i][i] is increased by any
amount at any time. Thus, the registers maxNum[i][i] could be logical clocks
that are used for other purposes as well.

We have described all the pieces of a distributed state-machine algorithm,
but have not put them together into pseudo-code. To quote [12]: “The

14

precise algorithm is straightforward, and we will not bother to describe it.”

7 Ancient and Recent History

In addition to being the author of this paper, I am the author of the start-
ing and ending algorithms of our journey. The bakery algorithm is among
hundreds of algorithms that implement mutual exclusion using only read
and write operations to shared memory [22]. A number of them improve
the bakery algorithm, the most significant improvement being a bound on
the chosen numbers [6, 21]. But all improvements seem to add impediments
to our path, except for one: Moses and Patin [17] optimized the bakery
algorithm by allowing process i to stop waiting for process j at statement
L3 if it reads two different values of number [j]. However, it is irrelevant to
our path because it optimizes a case that cannot occur in the distributed
bakery algorithm.

Mutual exclusion algorithms based on read and write operations have
been of no practical use for decades, since modern computers provide special
instructions to implement mutual exclusion more efficiently. Now, they are
studied mainly as concurrent programming exercises. The bakery algorithm
is of interest because it was the first mutual exclusion algorithm not to
assume lower-level mutual exclusion, which is implied by atomic reads and
writes of shared memory.

The distributed state-machine algorithm is interesting because it pre-
serves causality. But it too is less important than the problem it solves.
The most important contribution of [12] was the observation that any de-
sired form of cooperation in a network of computers can be obtained by im-
plementing a distributed state machine. The obvious next step was to make
the implementation fault tolerant. The work addressing that problem is
too extensive to discuss here. Fault-tolerant state-machine algorithms have
become the standard building block for implementing reliable distributed
systems [20].

There was no direct connection between the creation of the bakery al-
gorithm and of the state-machine algorithm. The bakery algorithm was
inspired by a bakery in the neighborhood where I grew up. A machine dis-
pensed numbers to its customers that determined the order in which they
were served. The state-machine algorithm was inspired by an algorithm of
Paul Johnson and Robert Thomas [7]. They used the � relation and pro-
cess identifiers to break ties, but I don’t know if that was inspired by the
bakery algorithm.

15

The path between the two algorithms that we followed is not the one I
originally took. That path began when I was looking for an example of a
distributed algorithm for notes I was writing. Stephan Merz suggested the
mutual exclusion algorithm I had used in [12] to illustrate the state-machine
algorithm. I found it to be too complicated, so I decided to simplify it. (I did
not remember the Ricart-Agrawala algorithm and was only later reminded
of it by a referee.) After stripping away things that were not needed for that
particular state machine, I arrived at the distributed bakery algorithm. It
was obviously related to the original bakery algorithm, but it was still not
clear exactly how.

I wanted to make the distributed algorithm an implementation of the
bakery algorithm. I started with the generalization of having subprocesses
of each process interact independently with the other processes; that was es-
sentially how I had been describing the bakery algorithm for years. Delaying
the setting of number [i] to 0 was required because the distributed algorithm’s
message that accomplished it could be arbitrarily delayed. It took me a while
to realize that I should deconstruct the multi-reader register number [i] into
multiple single-reader registers, and that both the original bakery algorithm
and the distributed algorithm implemented that deconstructed algorithm.

The path back from the distributed bakery algorithm to the distributed
state-machine algorithm was easy. It may have helped that I had previously
used the idea of modifying the bakery algorithm to make values of number [i]
keep increasing. Paradoxically, that was done to keep those values from
getting too large [10].

Correctness of a concurrent algorithm is expressed with two classes of
properties: safety properties like mutual exclusion that assert what the al-
gorithm may do, and liveness properties like starvation freedom that assert
what the algorithm must do [1]. Safety properties depend on the actions the
algorithm can perform; liveness properties depend as well on assumptions,
often implicit, about what actions the algorithm must perform.

The kind of informal behavioral reasoning I have used here is notoriously
unreliable. I believe the best rigorous proofs of safety properties are usually
based on invariants—predicates that are true of every state of every possible
execution [2]. Invariance proofs that the bakery algorithm satisfies mutual
exclusion have often been used to illustrate formalisms or tools [5, 11]. An
informal sketch of such a proof for the decomposed bakery algorithm is in
the appendix. Elegant rigorous proofs of progress properties can be written
using temporal logic [18].

Rigorous proofs are longer than informal ones and can intimidate readers
not used to them. I almost never write one until I believe that what I want to

16

prove is true. For the correctness of our algorithms, that belief was based on
the reasoning embodied in the informal proofs I presented—the same kind of
reasoning I used when I discovered the bakery and distributed state-machine
algorithms.

I understood the two algorithms well enough to be confident in the cor-
rectness of the non-distributed versions of the bakery algorithm and of the
derivation of the state-machine algorithm from the distributed bakery algo-
rithm. Model checking convinced me of the correctness of the distributed
bakery algorithm and confirmed the confidence my informal invariance proof
had given me that the deconstructed algorithm satisfies mutual exclusion.

More recently, Stephan Merz wrote a formal, machine-checked version
of my informal invariance proof. He also wrote a machine-checked proof
that the actions of the distributed bakery algorithm implement the actions
of the deconstructed bakery algorithm under a suitable data refinement.
These two proofs show that the deconstructed algorithm satisfies mutual
exclusion. The proofs are available on the Web [16].

References

[1] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, October 1985.

[2] E. A. Ashcroft. Proving assertions about parallel programs. Journal of
Computer and System Sciences, 10:110–135, February 1975.

[3] E. W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM, 8(9):569, September 1965.

[4] David Harel. On folk theorems. Commun. ACM, 23(7):379–389, 1980.

[5] Wim H. Hesselink. Mechanical verification of Lamport’s bakery algo-
rithm. Sci. Comput. Program., 78(9):1622–1638, 2013.

[6] Prasad Jayanti, King Tan, Gregory Friedland, and Amir Katz. Bound-
ing Lamport’s bakery algorithm. In Leszek Pacholski and Peter Ruzicka,
editors, SOFSEM 2001: 28th Conference on Current Trends in Theory
and Practice of Informatics, volume 2234 of Lecture Notes in Computer
Science, pages 261–270. Springer, 2001.

[7] P. R. Johnson and R. H. Thomas. The maintenance of duplicate data
bases. Request for Comment RFC #677, NIC #31507, ARPANET
Network Working Group, January 1975.

17

[8] Leslie Lamport. Supplemental material for Deconstructing the Bakery
to Build a Distributed State Machine. Web page. http://lamport.
azurewebsites.net/pubs/bakery/deconstruction.html.

[9] Leslie Lamport. A new solution of Dijkstra’s concurrent programming
problem. Communications of the ACM, 17(8):453–455, August 1974.

[10] Leslie Lamport. Concurrent reading and writing. Communications of
the ACM, 20(11):806–811, November 1977.

[11] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, SE-3(2):125–143, March
1977.

[12] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[13] Leslie Lamport. On interprocess communication. Distributed Comput-
ing, 1:77–101, 1986.

[14] Leslie Lamport. A theorem on atomicity in distributed algorithms.
Distributed Computing, 4(2):59–68, 1990.

[15] Richard J. Lipton. Reduction: A method of proving properties of paral-
lel programs. Communications of the ACM, 18(12):717–721, December
1975.

[16] Stephan Merz. TLA+ specifications and proofs for “deconstructing
the bakery to build a distributed state machine”. Web page. https:
//members.loria.fr/SMerz/papers/distributed-bakery.html.

[17] Yoram Moses and Katia Patkin. Mutual exclusion as a matter of pri-
ority. Theor. Comput. Sci., 751:46–60, 2018.

[18] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on the Foundations of Computer Science, pages 46–
57. IEEE, November 1977.

[19] Glenn Ricart and Ashok K. Agrawala. An optimal algorithm for mutual
exclusion in computer networks. Commun. ACM, 24(1):9–17, 1981.

[20] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, 22(4):299–
319, December 1990.

18

http://lamport.azurewebsites.net/pubs/bakery/deconstruction.html
http://lamport.azurewebsites.net/pubs/bakery/deconstruction.html
https://members.loria.fr/SMerz/papers/distributed-bakery.html
https://members.loria.fr/SMerz/papers/distributed-bakery.html

[21] Gadi Taubenfeld. The black-white bakery algorithm and related
bounded-space, adaptive, local-spinning and FIFO algorithms. In
Rachid Guerraoui, editor, Distributed Computing, 18th International
Conference, DISC 2004, Amsterdam, The Netherlands, October 4-7,
2004, Proceedings, volume 3274 of Lecture Notes in Computer Science,
pages 56–70. Springer, 2004.

[22] Gadi Taubenfeld. Concurrent programming, mutual exclusion. In Ming-
Yang Kao, editor, Encyclopedia of Algorithms—2016 Edition, pages
421–425. Springer, 2016.

19

Appendix: Proof of Mutual Exclusion

We now prove that the deconstructed bakery algorithm satisfies mutual ex-
clusion. As we explained, our other mutual exclusion algorithms implement
this algorithm, so they also satisfy mutual exclusion.

The proof is based on a formalism in which an execution of the algorithm
is represented by a sequence of states. The transition from one state to the
next, which we call an event, represents the execution of a single atomic
action of the algorithm. We call the state before the event the old state and
the state after it the new state. For simplicity, we assume that in executing
statement M , process i reads localNum[i][j] once for each process j . Because
of how we represent safe registers, that read is a single event.

We first define several state predicates—formulas that are true or false of
a state of an execution. The significant events of the algorithm are ones that
can change the value of one or more of these predicates. Precise definitions
of these predicates would require precisely specifying all the atomic actions
of the algorithm. We describe these state predicates informally. We also
state their properties that are used in the proof, which indicate how they
should be defined for a precise definition of the algorithm. In all of these
descriptions, i and j are assumed to be distinct processes.

inBakery(i , j) True when i is in the bakery wrt j . This means that sub-
process j of i has finished writing the value number [i] computed in
statement M to localNum[j][i]. Property: inBakery(i , j) implies that
localNum[j][i] equals a number (not ¿) that is greater than 0.

inCS (i) True when i has reached the critical section and has not finished
executing it. Property: inCS (i) implies inBakery(i , j) for all j .

inDoorway(i , j , v) Becomes true when i reads localNum[i][j] in executing
statement M and obtains the number v , and it becomes false when
inBakery(i , j) becomes true. Properties: implies that localCh[j][i] =
1, that statement M will make number [i] > v true, and that
inBakery(i , j) will become true when inDoorway(i , j , v) becomes false.

inDoorway(i , j) Asserts that inDoorway(i , j , v) is true for some v . (This is
not quite the same as the definition of i being in the doorway wrt j in
Section 4.)

Outside(i , j) True when neither inBakery(i) nor inDoorWay(i , j) is true.
Properties: implies that number [i] eventually equals 0 and remains
equal to 0 unless Outside(i , j) becomes false (which will never happen

20

if process i remains forever in the critical section). Exactly one of
Outside(i , j), inDoorway(i , j), and inBakery(i) is always true.

passed(i , j ,L) where L is statement L2 or L3. It becomes true when i
reads a value of localCh[i][j] (for L2) or localNum[i][j] (for L3) that
causes i to exit statement L. It becomes false when i exits the criti-
cal section (making inBakery(i , j) false). Properties: In the state in
which it becomes true, L’s await condition is true; inCS (i) implies
passed(i , j ,L3).

Mutual exclusion asserts that, for any distinct processes i and j , the state
predicate ¬(inCS (i) ∧ inCS (j)) is an invariant of the algorithm, meaning
that it is true in every state of every possible execution. We prove that a
state predicate I is an invariant by induction on the number of events that
occur before reaching the state. This means proving:

I1. I is true in the initial state of any execution.

I2. For every event, if I is true in the old state then it is true in the new
state.

I2 is the induction step of the proof. Proving something by induction often
requires proving something stronger that satisfies the induction step. Prov-
ing that a state predicate P is an invariant often requires finding a state
predicate I that implies P and satisfies I1 and I2.

To prove ¬(inCS (i) ∧ inCS (j)) is an invariant, we need an invariant I
satisfying I1 and I2 that implies it. A key part of defining I is defining a
state predicate Before(i , j) that implies j cannot enter the critical section
until i has finished executing the critical section. Here is its definition,
which assigns the names 1, 2, 2a, 2b, and 2c to subformulas. The symbol
¬ is logical negation; ∧ and ∨ are logical and and or, respectively. Recall
that i � j is an abbreviation for (number [i], i)� (number [j], j).

Before(i , j)
∆
=

1. inBakery(i , j)
∧ 2. (a. Outside(j , i)

∨ b. inDoorway(j , i ,number [i])
∨ c. inBakery(j , i) ∧ (i � j) ∧ ¬passed(j , i ,L3))

We let Before(i , j).1 denote subformula 1 of Before(i , j), and we name other
subformulas similarly.

21

Understanding this definition is a first step to understanding the correct-
ness proof. The basic idea behind the algorithm is that mutual exclusion
is guaranteed because if i and j are competing to enter the critical section,
then i will enter first iff i � j . So Before(i , j) has to imply that j can’t
have or be able to choose number [j] to make j � i true. If i has not yet
set localNum[j][i] after step M , then it will be possible for j to read 0 as
its value and choose a value for number [j] that will make j � i . Hence,
Before(i , j).1 is needed.

Before(i , j).2 states what must be true about process j to keep it from
making j � i true when inBakery(i , j) is true. It is the disjunction
of three subformulas that apply to the three possibilities of Outside(j , i),
inDoorway(j , i), or inBakery(j , i) being true. Considering these possibili-
ties in the reverse order explains the three subformulas.

2c If inBakery(j , i) is true, then j has chosen number [j], so i � j must
be true. But that won’t keep j from entering the critical section if
passed(j , i ,L3) is true, so it must be false.

2b If inDoorway(j , i) is true, then j has read number [i] in executing state-
ment M . Subformula 2b asserts that the value it read is the current
value of number [i], ensuring that j will choose number [j] greater than
number [i] and thus make i � j true.

2a If Outside(j , i) is true, then j has not yet read number [i]. It can’t
enter the critical section before i because, to do so, it must first read
the current value of number [j] in statement M , which makes it choose
number [j] to make i � j true.

The meaning of Before(i , j) implies that once it becomes true, it should
remain true until i exits its critical section, which makes inBakery(i , j)
false. Therefore, this should be true:

Lemma 1 For any distinct processes i and j , any event of the algorithm in
which Before(i , j) is true in the old state either leaves Before(i , j) true or
makes inBakery(i , j) false in the new state.

Proof: By definition of Before, it suffices to assume that an event E with
Before(i , j) true in the old state leaves inBakery(i , j) true, and prove that
the event also leaves Before(i , j).2 true. This requires showing that if one
of the subformulas 2a, 2b, or 2c is true in the old state, then one of them
is true in the new state. Here is the proof for the three cases in which the
indicated one of these subformulas is true in the old state.

22

2a The definition of Outside(j , i) implies Before(i , j).2a remains true un-
less E is the event of process j reading localNum[j][i] in statement
M . Because inBakery(i , j) is true, localNum[j][i] 6= ¿, so that read
obtains the value number [i]. Therefore, Before(i , j).2b is true in the
new state.

2b Before(i , j).2b can become false in two ways: (i) inDoorway(j , i) be-
comes false or (ii) the current value of number [i] changes. Case (ii)
is impossible because number [i] does not change while inBakery(i , j)
remains true. In case (i), the definition of inDoorway implies that E
must be the process j event that completes the execution of statement
M , and condition 2b holding in the old state and the definition of �
imply that E makes i � j true in the new state. The definitions of
inBakery and passed imply that the other two conjuncts of 2c are true
in the new state because passed(i , j ,L2) and passed(i , j ,L3) are false.

2c Only an event in process i or j can falsify i � j . Since the action leaves
inBakery(i , j) true and 2c is true in the old state, an action of neither
i nor j can make i � j false. An event with ¬passed(j , i ,L3) true
in the old state cannot make inBakery(j , i) false. Therefore, the only
way 2c can be made false is by subprocess j making ¬passed(j , i ,L3)
false by executing L3. But since inBakery(i , j) implies localNum[j][i]
equals number [i], which is a number greater than 0, the condition
i � j implies that such an execution of L3 by j is impossible.

This completes the proof of the lemma.

We can now define the invariant I that satisfies I1 and I2 and implies mutual
exclusion. We first define Inv(i , j), numbering and naming subformulas as
for Before(i , j):

Inv(i , j)
∆
=

1. inBakery(i , j)⇒ (Before(i , j) ∨ Before(j , i) ∨ inDoorway(j , i))
∧ 2. passed(i , j ,L2) ⇒ (Before(i , j) ∨ Before(j , i))
∧ 3. passed(i , j ,L3) ⇒ Before(i , j)

Here is the definition of I , where the quantification is over all distinct pro-
cesses i and j :

I
∆
= ∀ i , j : Inv(i , j)

The proof of the following lemma is hierarchically structured, where the
proof of a step can be a sequence of substeps ending with a Q.E.D. substep
whose proof proves the step. A step of the form

23

Suffices Assume: P

Prove: Q

asserts that to prove the current goal, it suffices to assume P and prove
Q . It makes Q the current goal and allows us to assume P in its proof.
Omitting the Prove clause is equivalent to letting Q be the current goal.
The step Case:P asserts that the current goal is true if P is true.

Lemma 2 I is an invariant of the algorithm.

1. Suffices Assume: i and j are distinct processes and E is an event of
process i whose old state satisfies Inv(i , j)∧Inv(j , i).

Prove: Inv(i , j) ∧ Inv(j , i) is true in the new state.

Proof: The conjunction of invariants is an invariant, so it suffices to
prove that Inv(i , j) ∧ Inv(j , i) is an invariant for distinct processes i and
j , which we do by proving conditions I1 and I2. Condition I1 is trivially
true because inBakery(p, q) is false in the initial state for q 6= p, which
implies that passed(p, q ,L2) and passed(p, q ,L3) are also false. To prove
I2, it suffices to prove this step’s goal for an arbitrary event E . We can
assume E is an event of process i or j , because those are the only processes
whose actions can falsify Inv(i , j)∧ Inv(j , i). By symmetry, we need only
prove it for E an event of i .

2. Inv(i , j) is true in the new state.

2.1. Case: inBakery(i , j) is true in the old state.

2.1.1. Suffices Assume: inBakery(i , j) is true in the new state.

Proof: Inv(i , j) is trivially true if inBakery(i , j) is false, which im-
plies passed(i , j ,L2) and passed(i , j ,L3) are false.

2.1.2. E does not falsify Before(i , j) or Before(j , i).

Proof: By Lemma 1 and the step 2.1.1 assumption, since E is an
event of process i .

2.1.3. Inv(i , j).1 is true in the new state.

Proof: inBakery(i , j) is true in the old and new states by case as-
sumption 2.1 and assumption 2.1.1. Whichever of the three disjuncts
of Inv(i , j).1 is true in the old state must remain true in the new
state for the following reasons:

Before(i , j) By step 2.1.2.

Before(j , i) By step 2.1.2.

inDoorway(j , i) Its value can’t be changed by an action of
process i .

24

2.1.4. Inv(i , j).2 is true in the new state.

Proof: By step 2.1.2, Inv(i , j).2 can be falsified only by the value
of passed(i , j ,L2) changing from false to true, which implies that the
event must be an execution of L2 that reads localCh[i][j] and obtains
the value 0. But this implies that inDoorway(j , i) is false in the old
state, so the truth of Inv(i , j).1 implies that Before(i , j)∨Before(j , i)
is true in the old state, which by 2.1.2 implies that it, and therefore
Inv(i , j).2 are true in the new state.

2.1.5. Inv(i , j).3 is true in the new state.

Proof: The same reasoning as in the proof of step 2.1.4 shows that
this subformula can be falsified only if the action is an execution of
statement L3 that reads a value v of localNum[i][j] that equals 0 or
for which (number [i], i)� (v , j) is true. It suffices to show that this
implies Before(j , i) is false, since then the truth of Inv(i , j).2 implies
the truth of Inv(i , j).3.

We prove Before(j , i) is false by assuming it to be true and obtain-
ing a contradiction. By definition of Before, this assumption implies
inBakery(j , i), which implies that localNum[i][j] does not equal ¿ and
that the value v read when executing the action equals number [j],
which is not equal to 0. Therefore, i � j must be true. However,
Before(j , i) and the step 2.1 case assumption imply j � i . This is
the required contradiction because j � i and i � j cannot both be
true.

2.1.6. Q.E.D.

Proof: Steps 2.1.3, 2.1.4, and 2.1.5 imply that Inv(i , j) is true in
the new state.

2.2. Case: inBakery(i , j) is false.

2.2.1. Suffices Assume: inBakery(i , j) is true in the new state.
Prove: Inv(i , j).1 is true in the new state.

Proof: Case assumption 2.2 implies that Inv(i , j) can be falsified
only if E is an action that makes inBakery(i , j) true, so we can assume
inBakery(i , j) is true in the new state. To make inBakery(i , j) true,
action E must be the event in which i sets localNum[j][i] to the
value of number [i] computed in statement M , which implies that
Passed(i , j ,L2) and Passed(i , j ,L3) are false in the new state. Thus,
Inv(i , j).2 and Inv(i , j).3 are trivially true in the new state, so we
need only show that Inv(i , j).1 is also true then.

2.2.2. Case: Outside(j , i) is true in the new state.

25

Proof: In this case, the definition of Before implies Before(i , j) is
true in the new state, making Inv(i , j).1 true.

2.2.3. Case: inDoorway(j , i) is true in the new state.

Proof: This trivially implies that Inv(i , j).1 is true.

2.2.4. Case: inBakery(j , i) is true in the new state.

2.2.4.1. Either i � j or j � i is true in the new state.

The step 2.2.1 assumption and the step 2.2.4 case assumption assert
that inBakery(i , j) and inBakery(j , i) are both true. This implies
that both number [i] and number [j] do not equal ¿ or 0. Since �
is a total order on pairs of integers, either i � j or j � i is true
in the new state.

2.2.4.2. Case: i � j

Proof: We do a case split on the value of passed(j , i ,L3). If it
is false, then i � j , the step 2.2.4 case assumption, the step 2.2.1
assumption, and the definition of Before imply that Before(i , j) is
true, so subformula Inv(i , j).1 is true in the new state.

If passed(j , i ,L3) is true, then the truth of Inv(j , i) in the old
state implies Before(j , i) is true in the old state, which by Lemma 1
implies it is true in the new state, because inBakery(i , j) is true.
By definition of Before(j , i), this implies j � i , which is impossible
by the case assumption since � is an irreflexive order.

2.2.4.3. Case: j � i

Proof: Since the event makes inBakery(i , j) true (by steps 2.2
and 2.2.1), it leaves ¬passed(i , j ,L3) true. The case assumption
and the definition of Before(j , i) therefore imply that Before(j , i)
is true in the new state, so Inv(i , j).1 is true in that state.

2.2.4.4. Q.E.D.

Proof: By steps 2.2.4.1, 2.2.4.2, and 2.2.4.3.

2.2.5. Q.E.D.

Proof: By steps 2.2.2, 2.2.3, and 2.2.4, since either Outside(j , i),
inDoorway(j , i), or inBakery(j , i) must be true.

2.3. Q.E.D.

Proof: By 2.1 and 2.2

3. Inv(j , i) is true in the new state.

3.1. Suffices Assume: inBakery(j , i) is true in the new state.

26

Proof: Inv(j , i) is trivially true if inBakery(j , i) is false.

3.2. Suffices Assume: Event E makes Before(i , j) or inDoorway(i , j)
false.

Prove: Before(i , j)∨Before(j , i) is true in the new state.

Proof: We need to show that the i event does not falsify any of the
three subformulas of Inv(j , i). An event of i obviously cannot change
passed(j , i ,L2) or passed(j , i ,L3), and by Lemma 1 it cannot make
Before(j , i) false. Therefore, the only way the event can make any
of the three subformulas false is by making Inv(j , i).1 or Inv(j , i).2
false by making inDoorway(i , j) or Before(i , j) false. This won’t make
Inv(j , i).1 or Inv(j , i).2 false if Before(i , j) ∨ Before(j , i) is true in the
new state.

3.3. Case: The event makes Before(i , j) false.

Proof: By Lemma 1, an i event that makes Before(i , j) false makes
inBakery(i , j) false, which makes Outside(i , j) true. This in turn makes
Before(j , i) true, which of course makes Before(i , j) ∨ Before(j , i) true
in the new state.

3.4. Case: The event makes inDoorway(i , j) false.

Proof: The case assumption implies that inBakery(i , j) is true in the
new state. By step 2, Inv(i , j).1 is true in that state. By step 3.1,
inBakery(j , i) is true so inDoorway(j , i) is false. Therefore, the truth
of Inv(i , j).1 in the new state implies that Before(i , j) ∨ Before(j , i) is
true in the new state.

3.5. Q.E.D.

Proof: By steps 3.2, 3.3, and 3.4.

4. Q.E.D.

Proof: Steps 2 and 3 prove the goal introduced by step 1.

With these two lemmas, the proof of mutual exclusion is simple.

Theorem The algorithm satisfies mutual exclusion.

1. Suffices Assume: Inv(i , j) ∧ Inv(j , i) ∧ inCS (i) ∧ inCS (j)
Prove: ¬inCS (j)

Proof: By Lemma 2, the definitions of I and mutual exclusion, and
propositional logic.

2. Before(i , j)

27

Proof: By the step 1 assumption and the definition of Inv(i , j), since
inCS (i) implies passed(i , j ,L3).

3. ¬passed(j , i ,L3)

Proof: By the step 1 assumption, step 2, and the definition of Before,
since inCS (j) implies inBakery(j , i).

4. Q.E.D.

Proof: By step 3, since ¬passed(j , i ,L3) implies ¬inCS (j).

Our definitions and the two lemmas can also be used to make the proof of
starvation freedom more rigorous. Doing that is a straightforward matter
of making the statements of the informal proof more precise.

28

	Introduction
	The Original Bakery Algorithm
	Generalization of the Original Algorithm
	The Deconstructed Bakery Algorithm
	The Distributed Bakery Algorithm
	A Distributed State Machine
	Ancient and Recent History
	References
	Appendix: Proof of Mutual Exclusion

