
Correctness of Tarjan’s Algorithm

Stephan Merz

October 17, 2018

Contents

1 Reachability in graphs 2

2 Strongly connected components 3

3 Auxiliary functions 3

4 Main functions used for Tarjan’s algorithms 5
4.1 Function definitions . 5
4.2 Well-definedness of the functions 5

5 Auxiliary notions for the proof of partial correctness 11

6 Predicates and lemmas about environments 14

7 Partial correctness of the main functions 17

8 Theorems establishing total correctness 34
theory Tarjan
imports Main
begin

Tarjan’s algorithm computes the strongly connected components of a finite
graph using depth-first search. We formalize a functional version of the algo-
rithm in Isabelle/HOL, following a development of Lvy et al. in Why3 that
is available at http://pauillac.inria.fr/∼levy/why3/graph/abs/scct/1-68bis/
scc.html.

Make the simplifier expand let-constructions automatically

declare Let-def [simp]

Definition of an auxiliary data structure holding local variables during the
execution of Tarjan’s algorithm.

record ′v env =
black :: ′v set

1

http://pauillac.inria.fr/~levy/why3/graph/abs/scct/1-68bis/scc.html
http://pauillac.inria.fr/~levy/why3/graph/abs/scct/1-68bis/scc.html

gray :: ′v set
stack :: ′v list
sccs :: ′v set set
sn :: nat
num :: ′v ⇒ int

definition colored where
colored e ≡ black e ∪ gray e

locale graph =
fixes vertices :: ′v set

and successors :: ′v ⇒ ′v set
assumes vfin: finite vertices

and sclosed : ∀ x ∈ vertices. successors x ⊆ vertices

context graph
begin

1 Reachability in graphs

abbreviation edge where
edge x y ≡ y ∈ successors x

definition xedge-to where
— ys is a suffix of xs, y appears in ys, and there is an edge from some node in

the prefix of xs to y
xedge-to xs ys y ≡

y ∈ set ys
∧ (∃ zs. xs = zs @ ys ∧ (∃ z ∈ set zs. edge z y))

inductive reachable where
reachable-refl [iff]: reachable x x
| reachable-succ[elim]: [[edge x y ; reachable y z]] =⇒ reachable x z

lemma reachable-edge: edge x y =⇒ reachable x y
by auto

lemma succ-reachable:
assumes reachable x y and edge y z
shows reachable x z
using assms by induct auto

lemma reachable-trans:
assumes y : reachable x y and z : reachable y z
shows reachable x z
using assms by induct auto

Given some set S and two vertices x and y such that y is reachable from x,
and x is an element of S but y is not, then there exists some vertices x ′ and

2

y ′ linked by an edge such that x ′ is an element of S, y ′ is not, x ′ is reachable
from x, and y is reachable from y ′.

lemma reachable-crossing-set :
assumes 1 : reachable x y and 2 : x ∈ S and 3 : y /∈ S
obtains x ′ y ′ where

x ′ ∈ S y ′ /∈ S edge x ′ y ′ reachable x x ′ reachable y ′ y
proof −

from assms
have ∃ x ′ y ′. x ′ ∈ S ∧ y ′ /∈ S ∧ edge x ′ y ′ ∧ reachable x x ′ ∧ reachable y ′ y

by induct (blast intro: reachable-edge reachable-trans)+
with that show ?thesis by blast

qed

2 Strongly connected components

definition is-subscc where
is-subscc S ≡ ∀ x ∈ S . ∀ y ∈ S . reachable x y

definition is-scc where
is-scc S ≡ S 6= {} ∧ is-subscc S ∧ (∀S ′. S ⊆ S ′ ∧ is-subscc S ′ −→ S ′ = S)

lemma subscc-add :
assumes is-subscc S and x ∈ S

and reachable x y and reachable y x
shows is-subscc (insert y S)

using assms unfolding is-subscc-def by (metis insert-iff reachable-trans)

lemma sccE :
— Two vertices that are reachable from each other are in the same SCC.
assumes is-scc S and x ∈ S

and reachable x y and reachable y x
shows y ∈ S

using assms unfolding is-scc-def by (metis insertI1 subscc-add subset-insertI)

lemma scc-partition:
— Two SCCs that contain a common element are identical.
assumes is-scc S and is-scc S ′ and x ∈ S ∩ S ′

shows S = S ′

using assms unfolding is-scc-def is-subscc-def
by (metis IntE assms(2) sccE subsetI)

3 Auxiliary functions

abbreviation infty (∞) where
— integer exceeding any one used as a vertex number during the algorithm
∞ ≡ int (card vertices)

definition set-infty where

3

— set f x to ∞ for all x in xs
set-infty xs f = fold (λx g . g (x := ∞)) xs f

lemma set-infty :
(set-infty xs f) x = (if x ∈ set xs then ∞ else f x)
unfolding set-infty-def by (induct xs arbitrary : f) auto

Split a list at the first occurrence of a given element. Returns the two sublists
of elements before (and including) the element and those strictly after the
element. If the element does not occur in the list, returns a pair formed by
the entire list and the empty list.

fun split-list where
split-list x [] = ([], [])
| split-list x (y # xs) =

(if x = y then ([x], xs) else
(let (l , r) = split-list x xs in

(y # l , r)))

lemma split-list-concat :
— Concatenating the two sublists produced by split-list yields back the original

list.
assumes x ∈ set xs
shows (fst (split-list x xs)) @ (snd (split-list x xs)) = xs
using assms by (induct xs) (auto simp: split-def)

lemma fst-split-list :
assumes x ∈ set xs
shows ∃ ys. fst (split-list x xs) = ys @ [x] ∧ x /∈ set ys
using assms by (induct xs) (auto simp: split-def)

Push a vertex on the stack and increment the sequence number. The pushed
vertex is associated with the (old) sequence number. It is also added to the
set of gray nodes.

definition add-stack-incr where
add-stack-incr x e =

e (| gray := insert x (gray e),
stack := x # (stack e),
sn := sn e +1 ,
num := (num e) (x := int (sn e)) |)

Add vertex x to the set of black vertices in e and remove it from the set of
gray vertices.

definition add-black where
add-black x e = e (| black := insert x (black e),

gray := (gray e) − {x} |)

4

4 Main functions used for Tarjan’s algorithms

4.1 Function definitions

We define two mutually recursive functions that contain the essence of Tar-
jan’s algorithm. Their arguments are respectively a single vertex and a set
of vertices, as well as an environment that contains the local variables of the
algorithm, and an auxiliary parameter representing the set of “gray” ver-
tices, which is used only for the proof. The main function is then obtained
by specializing the function operating on a set of vertices.

function (domintros) dfs1 and dfs where
dfs1 x e =

(let (n1 , e1) = dfs (successors x) (add-stack-incr x e) in
if n1 < int (sn e) then (n1 , add-black x e1)
else
(let (l ,r) = split-list x (stack e1) in

(∞,
(| black = insert x (black e1),

gray = gray e,
stack = r ,
sccs = insert (set l) (sccs e1),
sn = sn e1 ,
num = set-infty l (num e1) |))))

| dfs roots e =
(if roots = {} then (∞, e)
else

(let x = SOME x . x ∈ roots;
res1 = (if num e x 6= −1 then (num e x , e) else dfs1 x e);
res2 = dfs (roots − {x}) (snd res1)

in (min (fst res1) (fst res2), snd res2)))
by pat-completeness auto

definition init-env where
init-env ≡ (| black = {}, gray = {},

stack = [], sccs = {},
sn = 0 , num = λ-. −1 |)

definition tarjan where
tarjan ≡ sccs (snd (dfs vertices init-env))

4.2 Well-definedness of the functions

We did not prove termination when we defined the two mutually recur-
sive functions dfs1 and dfs defined above, and indeed it is easy to see that
they do not terminate for arbitrary arguments. Isabelle allows us to define
“partial” recursive functions, for which it introduces an auxiliary domain
predicate that characterizes their domain of definition. We now make this
more concrete and prove that the two functions terminate when called for

5

nodes of the graph, also assuming an elementary well-definedness condition
for environments. These conditions are met in the cases of interest, and
in particular in the call to dfs in the main function tarjan. Intuitively, the
reason is that every (possibly indirect) recursive call to dfs either decreases
the set of roots or increases the set of nodes colored black or gray.

The set of nodes colored black never decreases in the course of the compu-
tation.

lemma black-increasing :
dfs1-dfs-dom (Inl (x ,e)) =⇒ black e ⊆ black (snd (dfs1 x e))
dfs1-dfs-dom (Inr (roots,e)) =⇒ black e ⊆ black (snd (dfs roots e))
by (induct rule: dfs1-dfs.pinduct ,

(fastforce simp: dfs1 .psimps dfs.psimps case-prod-beta
add-black-def add-stack-incr-def)+)

Similarly, the set of nodes colored black or gray never decreases in the course
of the computation.

lemma colored-increasing :
dfs1-dfs-dom (Inl (x ,e)) =⇒

colored e ⊆ colored (snd (dfs1 x e)) ∧
colored (add-stack-incr x e)
⊆ colored (snd (dfs (successors x) (add-stack-incr x e)))

dfs1-dfs-dom (Inr (roots,e)) =⇒
colored e ⊆ colored (snd (dfs roots e))

proof (induct rule: dfs1-dfs.pinduct)
case (1 x e)
from 〈dfs1-dfs-dom (Inl (x ,e))〉

have black e ⊆ black (snd (dfs1 x e))
by (rule black-increasing)

with 1 show ?case
by (auto simp: dfs1 .psimps case-prod-beta add-stack-incr-def

add-black-def colored-def)
next

case (2 roots e) then show ?case
by (fastforce simp: dfs.psimps case-prod-beta)

qed

The functions dfs1 and dfs never assign the number of a vertex to -1.

lemma dfs-num-defined :
[[dfs1-dfs-dom (Inl (x ,e)); num (snd (dfs1 x e)) v = −1]] =⇒

num e v = −1
[[dfs1-dfs-dom (Inr (roots,e)); num (snd (dfs roots e)) v = −1]] =⇒

num e v = −1
by (induct rule: dfs1-dfs.pinduct ,

(auto simp: dfs1 .psimps dfs.psimps case-prod-beta add-stack-incr-def
add-black-def set-infty

split : if-split-asm))

6

We are only interested in environments that assign positive numbers to
colored nodes, and we show that calls to dfs1 and dfs preserve this property.

definition colored-num where
colored-num e ≡ ∀ v ∈ colored e. v ∈ vertices ∧ num e v 6= −1

lemma colored-num:
[[dfs1-dfs-dom (Inl (x ,e)); x ∈ vertices; colored-num e]] =⇒

colored-num (snd (dfs1 x e))
[[dfs1-dfs-dom (Inr (roots,e)); roots ⊆ vertices; colored-num e]] =⇒

colored-num (snd (dfs roots e))
proof (induct rule: dfs1-dfs.pinduct)

case (1 x e)
let ?rec = dfs (successors x) (add-stack-incr x e)
from sclosed 〈x ∈ vertices〉

have successors x ⊆ vertices ..
moreover
from 〈colored-num e〉 〈x ∈ vertices〉

have colored-num (add-stack-incr x e)
by (auto simp: colored-num-def add-stack-incr-def colored-def)

ultimately
have rec: colored-num (snd ?rec)

using 1 by blast
have x : x ∈ colored (add-stack-incr x e)

by (simp add : add-stack-incr-def colored-def)
from 〈dfs1-dfs-dom (Inl (x ,e))〉 colored-increasing
have colrec: colored (add-stack-incr x e) ⊆ colored (snd ?rec)

by blast
show ?case
proof (cases fst ?rec < int (sn e))

case True
with rec x colrec 〈dfs1-dfs-dom (Inl (x ,e))〉 show ?thesis

by (auto simp: dfs1 .psimps case-prod-beta
colored-num-def add-black-def colored-def)

next
case False
let ?e ′ = snd (dfs1 x e)
have colored e ⊆ colored (add-stack-incr x e)

by (auto simp: colored-def add-stack-incr-def)
with False x colrec 〈dfs1-dfs-dom (Inl (x ,e))〉

have colored ?e ′ ⊆ colored (snd ?rec)
∃ xs. num ?e ′ = set-infty xs (num (snd ?rec))

by (auto simp: dfs1 .psimps case-prod-beta colored-def)
with rec show ?thesis

by (auto simp: colored-num-def set-infty split : if-split-asm)
qed

next
case (2 roots e)
show ?case
proof (cases roots = {})

7

case True
with 〈dfs1-dfs-dom (Inr (roots,e))〉 〈colored-num e〉

show ?thesis by (auto simp: dfs.psimps)
next

case False
let ?x = SOME x . x ∈ roots
from False obtain r where r ∈ roots by blast
hence ?x ∈ roots by (rule someI)
with 〈roots ⊆ vertices〉 have x : ?x ∈ vertices ..
let ?res1 = if num e ?x 6= −1 then (num e ?x , e) else dfs1 ?x e
let ?res2 = dfs (roots − {?x}) (snd ?res1)
from 2 False 〈roots ⊆ vertices〉 x
have colored-num (snd ?res1) by auto
with 2 False 〈roots ⊆ vertices〉

have colored-num (snd ?res2)
by blast

moreover
from False 〈dfs1-dfs-dom (Inr (roots,e))〉

have dfs roots e = (min (fst ?res1) (fst ?res2), snd ?res2)
by (auto simp: dfs.psimps)

ultimately show ?thesis by simp
qed

qed

The following relation underlies the termination argument used for proving
well-definedness of the functions dfs1 and dfs. It is defined on the disjoint
sum of the types of arguments of the two functions and relates the arguments
of (mutually) recursive calls.

definition dfs1-dfs-term where
dfs1-dfs-term ≡
{ (Inl(x , e:: ′v env), Inr(roots,e)) |

x e roots .
roots ⊆ vertices ∧ x ∈ roots ∧ colored e ⊆ vertices }

∪ { (Inr(roots, add-stack-incr x e), Inl(x , e)) |
x e roots .
colored e ⊆ vertices ∧ x ∈ vertices − colored e }

∪ { (Inr(roots, e:: ′v env), Inr(roots ′, e ′)) |
roots roots ′ e e ′ .
roots ′ ⊆ vertices ∧ roots ⊂ roots ′ ∧
colored e ′ ⊆ colored e ∧ colored e ⊆ vertices }

In order to prove that the above relation is well-founded, we use the fol-
lowing function that embeds it into triples whose first component is the
complement of the colored nodes, whose second component is the set of root
nodes, and whose third component is 1 or 2 depending on the function being
called. The third component corresponds to the first case in the definition
of dfs1-dfs-term.

fun dfs1-dfs-to-tuple where

8

dfs1-dfs-to-tuple (Inl(x :: ′v , e:: ′v env)) = (vertices − colored e, {x}, 1 ::nat)
| dfs1-dfs-to-tuple (Inr(roots, e:: ′v env)) = (vertices − colored e, roots, 2)

lemma wf-term: wf dfs1-dfs-term
proof −

let ?r = (finite-psubset :: (′v set × ′v set) set)
<∗lex∗> (finite-psubset :: (′v set × ′v set) set)
<∗lex∗> pred-nat

have wf ?r
using wf-finite-psubset wf-pred-nat by blast

moreover
have dfs1-dfs-term ⊆ inv-image ?r dfs1-dfs-to-tuple

unfolding dfs1-dfs-term-def pred-nat-def using vfin
by (auto dest : finite-subset simp: add-stack-incr-def colored-def)

ultimately show ?thesis
using wf-inv-image wf-subset by blast

qed

The following theorem establishes sufficient conditions under which the two
functions dfs1 and dfs terminate. The proof proceeds by well-founded
induction using the relation dfs1-dfs-term and makes use of the theorem
dfs1-dfs.domintros that was generated by Isabelle from the mutually re-
cursive definitions in order to characterize the domain conditions for these
functions.

theorem dfs1-dfs-termination:
[[x ∈ vertices − colored e; colored-num e]] =⇒ dfs1-dfs-dom (Inl(x , e))
[[roots ⊆ vertices; colored-num e]] =⇒ dfs1-dfs-dom (Inr(roots, e))

proof −
{ fix args

have (case args
of Inl(x ,e) ⇒

x ∈ vertices − colored e ∧ colored-num e
| Inr(roots,e) ⇒

roots ⊆ vertices ∧ colored-num e)
−→ dfs1-dfs-dom args (is ?P args −→ ?Q args)

proof (rule wf-induct [OF wf-term])
fix arg :: (′v × ′v env) + (′v set × ′v env)
assume ih: ∀ arg ′. (arg ′,arg) ∈ dfs1-dfs-term

−→ (?P arg ′ −→ ?Q arg ′)
show ?P arg −→ ?Q arg
proof

assume P : ?P arg
show ?Q arg
proof (cases arg)

case (Inl a)
then obtain x e where a: arg = Inl(x ,e)

using dfs1 .cases by metis
have ?Q (Inl(x ,e))
proof (rule dfs1-dfs.domintros)

9

let ?recarg = Inr (successors x , add-stack-incr x e)
from a P have (?recarg , arg) ∈ dfs1-dfs-term

by (auto simp: add-stack-incr-def colored-num-def dfs1-dfs-term-def)
moreover
from a P sclosed have ?P ?recarg

by (auto simp: add-stack-incr-def colored-num-def colored-def)
ultimately show ?Q ?recarg

using ih by auto
qed
with a show ?thesis by simp

next
case (Inr b)
then obtain roots e where b: arg = Inr(roots,e)

using dfs.cases by metis
let ?sx = SOME x . x ∈ roots
let ?rec1arg = Inl (?sx , e)
let ?rec2arg = Inr (roots − {?sx}, e)
let ?rec3arg = Inr (roots − {?sx}, snd (dfs1 ?sx e))
have ?Q (Inr(roots,e))
proof (rule dfs1-dfs.domintros)

fix x
assume 1 : x ∈ roots

and 2 : num e ?sx = −1
and 3 : ¬ dfs1-dfs-dom ?rec1arg

from 1 have sx : ?sx ∈ roots by (rule someI)
with P b have (?rec1arg , arg) ∈ dfs1-dfs-term

by (auto simp: dfs1-dfs-term-def colored-num-def)
moreover
from sx 2 P b have ?P ?rec1arg

by (auto simp: colored-num-def)
ultimately show False

using ih 3 by auto
next

fix x
assume x ∈ roots
hence sx : ?sx ∈ roots by (rule someI)
from sx b P have (?rec2arg , arg) ∈ dfs1-dfs-term

by (auto simp: dfs1-dfs-term-def colored-num-def)
moreover
from P b have ?P ?rec2arg by auto
ultimately show dfs1-dfs-dom ?rec2arg

using ih by auto
next

fix x
assume 1 : x ∈ roots and 2 : num e ?sx = −1
from 1 have sx : ?sx ∈ roots by (rule someI)
have dfs1-dfs-dom ?rec1arg
proof −

from sx P b have (?rec1arg , arg) ∈ dfs1-dfs-term

10

by (auto simp: dfs1-dfs-term-def colored-num-def)
moreover
from sx 2 P b have ?P ?rec1arg

by (auto simp: colored-num-def)
ultimately show ?thesis

using ih by auto
qed
with P b sx have colored-num (snd (dfs1 ?sx e))

by (auto elim: colored-num)
moreover
from this sx b P 〈dfs1-dfs-dom ?rec1arg〉

have (?rec3arg , arg) ∈ dfs1-dfs-term
by (auto simp: dfs1-dfs-term-def colored-num-def

dest : colored-increasing)
moreover
from this P b 〈colored-num (snd (dfs1 ?sx e))〉

have ?P ?rec3arg by auto
ultimately show dfs1-dfs-dom ?rec3arg

using ih by auto
qed
with b show ?thesis by simp

qed
qed

qed
}
note dom = this
from dom
show [[x ∈ vertices − colored e; colored-num e]] =⇒ dfs1-dfs-dom (Inl(x ,e))

by auto
from dom
show [[roots ⊆ vertices; colored-num e]] =⇒ dfs1-dfs-dom (Inr(roots,e))

by auto
qed

5 Auxiliary notions for the proof of partial cor-
rectness

The proof of partial correctness is more challenging and requires some fur-
ther concepts that we now define.

We need to reason about the relative order of elements in a list (specifically,
the stack used in the algorithm).

definition precedes (- � - in - [100 ,100 ,100] 39) where
— x has an occurrence in xs that precedes an occurrence of y.
x � y in xs ≡ ∃ l r . xs = l @ (x # r) ∧ y ∈ set (x # r)

lemma precedes-mem:
assumes x � y in xs

11

shows x ∈ set xs y ∈ set xs
using assms unfolding precedes-def by auto

lemma head-precedes:
assumes y ∈ set (x # xs)
shows x � y in (x # xs)
using assms unfolding precedes-def by force

lemma precedes-in-tail :
assumes x 6= z
shows x � y in (z # zs) ←→ x � y in zs
using assms unfolding precedes-def by (auto simp: Cons-eq-append-conv)

lemma tail-not-precedes:
assumes y � x in (x # xs) x /∈ set xs
shows x = y
using assms unfolding precedes-def
by (metis Cons-eq-append-conv Un-iff list .inject set-append)

lemma split-list-precedes:
assumes y ∈ set (ys @ [x])
shows y � x in (ys @ x # xs)
using assms unfolding precedes-def
by (metis append-Cons append-assoc in-set-conv-decomp

rotate1 .simps(2) set-ConsD set-rotate1)

lemma precedes-refl [simp]: (x � x in xs) = (x ∈ set xs)
proof

assume x � x in xs thus x ∈ set xs
by (simp add : precedes-mem)

next
assume x ∈ set xs
from this[THEN split-list] show x � x in xs

unfolding precedes-def by auto
qed

lemma precedes-append-left :
assumes x � y in xs
shows x � y in (ys @ xs)
using assms unfolding precedes-def by (metis append .assoc)

lemma precedes-append-left-iff :
assumes x /∈ set ys
shows x � y in (ys @ xs) ←→ x � y in xs (is ?lhs = ?rhs)

proof
assume ?lhs
then obtain l r where lr : ys @ xs = l @ (x # r) y ∈ set (x # r)

unfolding precedes-def by blast
then obtain us where

12

(ys = l @ us ∧ us @ xs = x # r) ∨ (ys @ us = l ∧ xs = us @ (x # r))
by (auto simp: append-eq-append-conv2)

thus ?rhs
proof

assume us: ys = l @ us ∧ us @ xs = x # r
with assms have us = []

by (metis Cons-eq-append-conv in-set-conv-decomp)
with us lr show ?rhs

unfolding precedes-def by auto
next

assume us: ys @ us = l ∧ xs = us @ (x # r)
with 〈y ∈ set (x # r)〉 show ?rhs

unfolding precedes-def by blast
qed

next
assume ?rhs thus ?lhs by (rule precedes-append-left)

qed

lemma precedes-append-right :
assumes x � y in xs
shows x � y in (xs @ ys)
using assms unfolding precedes-def by force

lemma precedes-append-right-iff :
assumes y /∈ set ys
shows x � y in (xs @ ys) ←→ x � y in xs (is ?lhs = ?rhs)

proof
assume ?lhs
then obtain l r where lr : xs @ ys = l @ (x # r) y ∈ set (x # r)

unfolding precedes-def by blast
then obtain us where

(xs = l @ us ∧ us @ ys = x # r) ∨ (xs @ us = l ∧ ys = us @ (x # r))
by (auto simp: append-eq-append-conv2)

thus ?rhs
proof

assume us: xs = l @ us ∧ us @ ys = x # r
with 〈y ∈ set (x # r)〉 assms show ?rhs

unfolding precedes-def by (metis Cons-eq-append-conv Un-iff set-append)
next

assume us: xs @ us = l ∧ ys = us @ (x # r)
with 〈y ∈ set (x # r)〉 assms
show ?rhs by auto — contradiction

qed
next

assume ?rhs thus ?lhs by (rule precedes-append-right)
qed

Precedence determines an order on the elements of a list, provided elements
have unique occurrences. However, consider a list such as [2 :: ′a, 3 :: ′a, 1 :: ′a,

13

2 :: ′a]: then 1 precedes 2 and 2 precedes 3, but 1 does not precede 3.

lemma precedes-trans:
assumes x � y in xs and y � z in xs and distinct xs
shows x � z in xs
using assms unfolding precedes-def
by (smt Un-iff append .assoc append-Cons-eq-iff distinct-append

not-distinct-conv-prefix set-append split-list-last)

lemma precedes-antisym:
assumes x � y in xs and y � x in xs and distinct xs
shows x = y

proof −
from 〈x � y in xs〉 〈distinct xs〉 obtain as bs where

1 : xs = as @ (x # bs) y ∈ set (x # bs) y /∈ set as
unfolding precedes-def by force

from 〈y � x in xs〉 〈distinct xs〉 obtain cs ds where
2 : xs = cs @ (y # ds) x ∈ set (y # ds) x /∈ set cs
unfolding precedes-def by force

from 1 2 have as @ (x # bs) = cs @ (y # ds)
by simp

then obtain zs where
(as = cs @ zs ∧ zs @ (x # bs) = y # ds)
∨ (as @ zs = cs ∧ x # bs = zs @ (y # ds)) (is ?P ∨ ?Q)

by (auto simp: append-eq-append-conv2)
then show ?thesis
proof

assume ?P with 〈y /∈ set as〉 show ?thesis
by (cases zs) auto

next
assume ?Q with 〈x /∈ set cs〉 show ?thesis

by (cases zs) auto
qed

qed

6 Predicates and lemmas about environments

definition subenv where
subenv e e ′ ≡

(∃ s. stack e ′ = s @ (stack e) ∧ set s ⊆ black e ′)
∧ black e ⊆ black e ′ ∧ gray e = gray e ′

∧ sccs e ⊆ sccs e ′

∧ (∀ x ∈ set (stack e). num e x = num e ′ x)

lemma subenv-refl [simp]: subenv e e
by (auto simp: subenv-def)

lemma subenv-trans:
assumes subenv e e ′ and subenv e ′ e ′′

14

shows subenv e e ′′

using assms unfolding subenv-def by force

definition wf-color where
— conditions about colors, part of the invariant of the algorithm
wf-color e ≡

colored e ⊆ vertices
∧ black e ∩ gray e = {}
∧ (

⋃
sccs e) ⊆ black e

∧ set (stack e) = gray e ∪ (black e −
⋃

sccs e)

definition wf-num where
— conditions about vertex numbers
wf-num e ≡

int (sn e) ≤ ∞
∧ (∀ x . −1 ≤ num e x ∧ (num e x = ∞ ∨ num e x < int (sn e)))
∧ sn e = card (colored e)
∧ (∀ x . num e x = ∞ ←→ x ∈

⋃
sccs e)

∧ (∀ x . num e x = −1 ←→ x /∈ colored e)
∧ (∀ x ∈ set (stack e). ∀ y ∈ set (stack e).

(num e x ≤ num e y ←→ y � x in (stack e)))

lemma subenv-num:
— If e and e ′ are two well-formed environments, and e is a sub-environment of

e ′ then the number assigned by e ′ to any vertex is at least that assigned by e.
assumes sub: subenv e e ′

and e: wf-color e wf-num e
and e ′: wf-color e ′ wf-num e ′

shows num e x ≤ num e ′ x

proof (cases x ∈ colored e)
case True then show ?thesis unfolding colored-def
proof

assume x ∈ gray e
with e sub show ?thesis

by (auto simp: wf-color-def subenv-def)
next

assume x ∈ black e
show ?thesis
proof (cases x ∈

⋃
sccs e)

case True
with sub e e ′ have num e x = ∞ num e ′ x = ∞

by (auto simp: subenv-def wf-num-def)
thus ?thesis by simp

next
case False
with 〈x ∈ black e〉 e sub show ?thesis

by (auto simp: wf-color-def subenv-def)
qed

15

qed
next

case False with e e ′ show ?thesis
unfolding wf-num-def by metis

qed

definition no-black-to-white where
— successors of black vertices cannot be white
no-black-to-white e ≡ ∀ x y . edge x y ∧ x ∈ black e −→ y ∈ colored e

definition wf-env where
wf-env e ≡

wf-color e ∧ wf-num e
∧ no-black-to-white e ∧ distinct (stack e)
∧ (∀ x y . y � x in (stack e) −→ reachable x y)
∧ (∀ y ∈ set (stack e). ∃ g ∈ gray e. y � g in (stack e) ∧ reachable y g)
∧ sccs e = { C . C ⊆ black e ∧ is-scc C }

lemma num-in-stack :
assumes wf-env e and x ∈ set (stack e)
shows num e x 6= −1

num e x < int (sn e)
proof −

from assms
show num e x 6= −1

by (auto simp: wf-env-def wf-color-def wf-num-def colored-def)
from 〈wf-env e〉

have num e x < int (sn e) ∨ x ∈
⋃

sccs e
unfolding wf-env-def wf-num-def by metis

with assms show num e x < int (sn e)
unfolding wf-env-def wf-color-def by blast

qed

Numbers assigned to different stack elements are distinct.

lemma num-inj :
assumes wf-env e and x ∈ set (stack e)

and y ∈ set (stack e) and num e x = num e y
shows x = y

using assms unfolding wf-env-def wf-num-def
by (metis precedes-refl precedes-antisym)

The set of black elements at the top of the stack together with the first gray
element always form a sub-SCC. This lemma is useful for the “else” branch
of dfs1.

lemma first-gray-yields-subscc:
assumes e: wf-env e

and x : stack e = ys @ (x # zs)
and g : x ∈ gray e
and ys: set ys ⊆ black e

16

shows is-subscc (insert x (set ys))
proof −

from e x have ∀ y ∈ set ys. ∃ g ∈ gray e. reachable y g
unfolding wf-env-def by force

moreover
have ∀ g ∈ gray e. reachable g x
proof

fix g
assume g ∈ gray e
with e x ys have g ∈ set (x # zs)

unfolding wf-env-def wf-color-def by auto
with e x show reachable g x

unfolding wf-env-def precedes-def by blast
qed
moreover
from e x g have ∀ y ∈ set ys. reachable x y

unfolding wf-env-def by (simp add : split-list-precedes)
ultimately show ?thesis

unfolding is-subscc-def
by (metis reachable-trans reachable-refl insertE)

qed

7 Partial correctness of the main functions

We now define the pre- and post-conditions for proving that the functions
dfs1 and dfs are partially correct. The parameters of the preconditions, as
well as the first parameters of the postconditions, coincide with the parame-
ters of the functions dfs1 and dfs. The final parameter of the postconditions
represents the result computed by the function.

definition dfs1-pre where
dfs1-pre x e ≡

x ∈ vertices
∧ x /∈ colored e
∧ (∀ g ∈ gray e. reachable g x)
∧ wf-env e

definition dfs1-post where
dfs1-post x e res ≡

let n = fst res; e ′ = snd res
in wf-env e ′

∧ subenv e e ′

∧ x ∈ black e ′

∧ n ≤ num e ′ x
∧ (n = ∞ ∨ (∃ y ∈ set (stack e ′). num e ′ y = n ∧ reachable x y))
∧ (∀ y . xedge-to (stack e ′) (stack e) y −→ n ≤ num e ′ y)

definition dfs-pre where
dfs-pre roots e ≡

17

roots ⊆ vertices
∧ (∀ x ∈ roots. ∀ g ∈ gray e. reachable g x)
∧ wf-env e

definition dfs-post where
dfs-post roots e res ≡

let n = fst res; e ′ = snd res
in wf-env e ′

∧ subenv e e ′

∧ roots ⊆ colored e ′

∧ (∀ x ∈ roots. n ≤ num e ′ x)
∧ (n = ∞ ∨ (∃ x ∈ roots. ∃ y ∈ set (stack e ′). num e ′ y = n ∧ reachable x

y))
∧ (∀ y . xedge-to (stack e ′) (stack e) y −→ n ≤ num e ′ y)

The following lemmas express some useful consequences of the pre- and post-
conditions. In particular, the preconditions ensure that the function calls
terminate.

lemma dfs1-pre-domain:
assumes dfs1-pre x e
shows colored e ⊆ vertices

x ∈ vertices − colored e
x /∈ set (stack e)
int (sn e) < ∞

using assms vfin
unfolding dfs1-pre-def wf-env-def wf-color-def wf-num-def colored-def
by (auto intro: psubset-card-mono)

lemma dfs1-pre-dfs1-dom:
dfs1-pre x e =⇒ dfs1-dfs-dom (Inl(x ,e))
unfolding dfs1-pre-def wf-env-def wf-color-def wf-num-def
by (auto simp: colored-num-def intro!: dfs1-dfs-termination)

lemma dfs-pre-dfs-dom:
dfs-pre roots e =⇒ dfs1-dfs-dom (Inr(roots,e))
unfolding dfs-pre-def wf-env-def wf-color-def wf-num-def
by (auto simp: colored-num-def intro!: dfs1-dfs-termination)

lemma dfs-post-stack :
assumes dfs-post roots e res
obtains s where

stack (snd res) = s @ stack e
set s ⊆ black (snd res)
∀ x ∈ set (stack e). num (snd res) x = num e x

using assms unfolding dfs-post-def subenv-def by auto

lemma dfs-post-split :

18

fixes x e res
defines n ′ ≡ fst res
defines e ′ ≡ snd res
defines l ≡ fst (split-list x (stack e ′))
defines r ≡ snd (split-list x (stack e ′))
assumes post : dfs-post (successors x) (add-stack-incr x e) res

(is dfs-post ?roots ?e res)
obtains ys where

l = ys @ [x]
x /∈ set ys
set ys ⊆ black e ′

stack e ′ = l @ r
is-subscc (set l)
r = stack e

proof −
from post have dist : distinct (stack e ′)

unfolding dfs-post-def wf-env-def e ′-def by auto
from post obtain s where

s: stack e ′ = s @ (x # stack e) set s ⊆ black e ′

unfolding add-stack-incr-def e ′-def
by (auto intro: dfs-post-stack)

then obtain ys where ys: l = ys @ [x] x /∈ set ys stack e ′ = l @ r
unfolding add-stack-incr-def l-def r-def
by (metis in-set-conv-decomp split-list-concat fst-split-list)

with s have l : l = (s @ [x]) ∧ r = stack e
by (metis dist append .assoc append .simps(1) append .simps(2)

append-Cons-eq-iff distinct .simps(2) distinct-append)
from post have wf-env e ′ x ∈ gray e ′

by (auto simp: dfs-post-def subenv-def add-stack-incr-def e ′-def)
with s l have is-subscc (set l)

by (auto simp: add-stack-incr-def intro: first-gray-yields-subscc)
with s ys l that show ?thesis by auto

qed

A crucial lemma establishing a condition after the “then” branch following
the recursive call in function dfs1.

lemma dfs-post-reach-gray :
fixes x e res
defines n ′ ≡ fst res
defines e ′ ≡ snd res
assumes e: wf-env e

and post : dfs-post (successors x) (add-stack-incr x e) res
(is dfs-post ?roots ?e res)

and n ′: n ′ < int (sn e)
obtains g where

g 6= x g ∈ gray e ′ x � g in (stack e ′)
reachable x g reachable g x

proof −
from post have e ′: wf-env e ′ subenv ?e e ′

19

by (auto simp: dfs-post-def e ′-def)
hence x-e ′: x ∈ set (stack e ′) x ∈ vertices num e ′ x = int(sn e)
by (auto simp: add-stack-incr-def subenv-def wf-env-def wf-color-def colored-def)

from e n ′ have n ′ 6= ∞
unfolding wf-env-def wf-num-def by simp

with post e ′ obtain sx y g where
g : sx ∈ ?roots y ∈ set (stack e ′) num e ′ y = n ′ reachable sx y

g ∈ gray e ′ g ∈ set (stack e ′) y � g in (stack e ′) reachable y g
unfolding dfs-post-def e ′-def n ′-def wf-env-def
by (fastforce intro: precedes-mem)

with e ′ have num e ′ g ≤ num e ′ y
unfolding wf-env-def wf-num-def by metis

with n ′ x-e ′ 〈num e ′ y = n ′〉

have num e ′ g ≤ num e ′ x g 6= x by auto
with 〈g ∈ set (stack e ′)〉 〈x ∈ set (stack e ′)〉 e ′

have g 6= x ∧ x � g in (stack e ′) ∧ reachable g x
unfolding wf-env-def wf-num-def by auto

moreover
from g have reachable x g

by (metis reachable-succ reachable-trans)
moreover
note 〈g ∈ gray e ′〉 that
ultimately show ?thesis by auto

qed

The following lemmas represent steps in the proof of partial correctness.

lemma dfs1-pre-dfs-pre:
— The precondition of dfs1 establishes that of the recursive call to dfs.
assumes dfs1-pre x e
shows dfs-pre (successors x) (add-stack-incr x e)

(is dfs-pre ?roots ′ ?e ′)
proof −

from assms sclosed have ?roots ′ ⊆ vertices
unfolding dfs1-pre-def by blast

moreover
from assms have ∀ y ∈ ?roots ′. ∀ g ∈ gray ?e ′. reachable g y

unfolding dfs1-pre-def add-stack-incr-def
by (auto dest : succ-reachable reachable-trans)

moreover
{

from assms have wf-col ′: wf-color ?e ′

by (auto simp: dfs1-pre-def wf-env-def wf-color-def
add-stack-incr-def colored-def)

note 1 = dfs1-pre-domain[OF assms]
from assms 1 have dist ′: distinct (stack ?e ′)

unfolding dfs1-pre-def wf-env-def add-stack-incr-def by auto
from assms have 3 : sn e = card (colored e)

unfolding dfs1-pre-def wf-env-def wf-num-def by simp
from 1 have 4 : int (sn ?e ′) ≤ ∞

20

unfolding add-stack-incr-def by simp
with assms have 5 : ∀ x . −1 ≤ num ?e ′ x ∧ (num ?e ′ x = ∞ ∨ num ?e ′ x <

int (sn ?e ′))
unfolding dfs1-pre-def wf-env-def wf-num-def add-stack-incr-def by auto

from 1 vfin have finite (colored e) using finite-subset by blast
with 1 3 have 6 : sn ?e ′ = card (colored ?e ′)

unfolding add-stack-incr-def colored-def by auto
from assms 1 3 have 7 : ∀ y . num ?e ′ y = ∞ ←→ y ∈

⋃
sccs ?e ′

by (auto simp: dfs1-pre-def wf-env-def wf-num-def
add-stack-incr-def colored-def)

from assms 3 have 8 : ∀ y . num ?e ′ y = −1 ←→ y /∈ colored ?e ′

by (auto simp: dfs1-pre-def wf-env-def wf-num-def add-stack-incr-def colored-def)
from assms 1 have ∀ y ∈ set (stack e). num ?e ′ y < num ?e ′ x

unfolding dfs1-pre-def add-stack-incr-def
by (auto dest : num-in-stack)

moreover
have ∀ y ∈ set (stack e). x � y in (stack ?e ′)

unfolding add-stack-incr-def by (auto intro: head-precedes)
moreover
from 1 have ∀ y ∈ set (stack e). ¬(y � x in (stack ?e ′))

unfolding add-stack-incr-def by (auto dest : tail-not-precedes)
moreover
{

fix y z
assume y ∈ set (stack e) z ∈ set (stack e)
with 1 have x 6= y by auto
hence y � z in (stack ?e ′) ←→ y � z in (stack e)

by (simp add : add-stack-incr-def precedes-in-tail)
}
ultimately
have 9 : ∀ y ∈ set (stack ?e ′). ∀ z ∈ set (stack ?e ′).

num ?e ′ y ≤ num ?e ′ z ←→ z � y in (stack ?e ′)
using assms
unfolding dfs1-pre-def wf-env-def wf-num-def add-stack-incr-def
by auto

from 4 5 6 7 8 9 have wf-num ′: wf-num ?e ′

unfolding wf-num-def by blast
from assms have nbtw ′: no-black-to-white ?e ′

by (auto simp: dfs1-pre-def wf-env-def no-black-to-white-def
add-stack-incr-def colored-def)

have stg ′: ∀ y ∈ set (stack ?e ′). ∃ g ∈ gray ?e ′.
y � g in (stack ?e ′) ∧ reachable y g

proof
fix y
assume y : y ∈ set (stack ?e ′)
show ∃ g ∈ gray ?e ′. y � g in (stack ?e ′) ∧ reachable y g
proof (cases y = x)

case True

21

then show ?thesis
unfolding add-stack-incr-def by auto

next
case False
with y have y ∈ set (stack e)

by (simp add : add-stack-incr-def)
with assms obtain g where

g ∈ gray e ∧ y � g in (stack e) ∧ reachable y g
unfolding dfs1-pre-def wf-env-def by blast

thus ?thesis
unfolding add-stack-incr-def
by (auto dest : precedes-append-left [where ys=[x]])

qed
qed

have str ′: ∀ y z . y � z in (stack ?e ′) −→ reachable z y
proof (clarify)

fix y z
assume yz : y � z in stack ?e ′

show reachable z y
proof (cases y = x)

case True
from yz [THEN precedes-mem(2)] stg ′

obtain g where g ∈ gray ?e ′ reachable z g by blast
with True assms show ?thesis

unfolding dfs1-pre-def add-stack-incr-def
by (auto elim: reachable-trans)

next
case False
with yz have yze: y � z in stack e

by (simp add : add-stack-incr-def precedes-in-tail)
with assms show ?thesis

unfolding dfs1-pre-def wf-env-def by blast
qed

qed
from assms have sccs (add-stack-incr x e) =

{C . C ⊆ black (add-stack-incr x e) ∧ is-scc C}
by (auto simp: dfs1-pre-def wf-env-def add-stack-incr-def)

with wf-col ′ wf-num ′ nbtw ′ dist ′ str ′ stg ′

have wf-env ?e ′

unfolding wf-env-def by blast
}
ultimately show ?thesis

unfolding dfs-pre-def by blast
qed

lemma dfs-pre-dfs1-pre:
— The precondition of dfs establishes that of the recursive call to dfs1, for any x
∈ roots such that num e x = −1.

22

assumes dfs-pre roots e and x ∈ roots and num e x = −1
shows dfs1-pre x e
using assms unfolding dfs-pre-def dfs1-pre-def wf-env-def wf-num-def by auto

Prove the post-condition of dfs1 for the “then” branch in the definition of
dfs1, assuming that the recursive call to dfs establishes its post-condition.

lemma dfs-post-dfs1-post-case1 :
fixes x e
defines res1 ≡ dfs (successors x) (add-stack-incr x e)
defines n1 ≡ fst res1
defines e1 ≡ snd res1
defines res ≡ dfs1 x e
assumes pre: dfs1-pre x e

and post : dfs-post (successors x) (add-stack-incr x e) res1
and lt : fst res1 < int (sn e)

shows dfs1-post x e res
proof −

let ?e ′ = add-black x e1
from pre have dom: dfs1-dfs-dom (Inl (x , e))

by (rule dfs1-pre-dfs1-dom)
from lt dom have dfs1 : res = (n1 , ?e ′)

by (simp add : res1-def n1-def e1-def res-def case-prod-beta dfs1 .psimps)
from post have wf-env1 : wf-env e1

unfolding dfs-post-def e1-def by auto
from post obtain s where s: stack e1 = s @ stack (add-stack-incr x e)

unfolding e1-def by (blast intro: dfs-post-stack)
from post have x-e1 : x ∈ set (stack e1)

by (auto intro: dfs-post-stack simp: e1-def add-stack-incr-def)
from post have se1 : subenv (add-stack-incr x e) e1

unfolding dfs-post-def by (simp add : e1-def split-def)
from pre lt post obtain g where

g : g 6= x g ∈ gray e1 x � g in (stack e1)
reachable x g reachable g x

unfolding e1-def using dfs-post-reach-gray dfs1-pre-def by blast

have wf-env ′: wf-env ?e ′

proof −
from wf-env1 dfs1-pre-domain[OF pre] x-e1 have wf-color ?e ′

by (auto simp: dfs-pre-def wf-env-def wf-color-def add-black-def colored-def)
moreover
from se1
have x ∈ gray e1 colored ?e ′ = colored e1

by (auto simp: subenv-def add-stack-incr-def add-black-def colored-def)
with wf-env1 have wf-num ?e ′

unfolding dfs-pre-def wf-env-def wf-num-def add-black-def by auto
moreover
from post wf-env1 have no-black-to-white ?e ′

unfolding dfs-post-def wf-env-def no-black-to-white-def
add-black-def e1-def subenv-def colored-def

23

by auto
moreover
{

fix y
assume y ∈ set (stack ?e ′)
hence y : y ∈ set (stack e1) by (simp add : add-black-def)
with wf-env1 obtain z where

z : z ∈ gray e1
y � z in stack e1
reachable y z

unfolding wf-env-def by blast
have ∃ g ∈ gray ?e ′.

y � g in (stack ?e ′) ∧ reachable y g
proof (cases z ∈ gray ?e ′)

case True with z show ?thesis by (auto simp: add-black-def)
next

case False
with z have z = x by (simp add : add-black-def)
with g z wf-env1 show ?thesis

unfolding wf-env-def add-black-def
by (auto elim: reachable-trans precedes-trans)

qed
}
moreover
have sccs ?e ′ = {C . C ⊆ black ?e ′ ∧ is-scc C}
proof −
{

fix C
assume C ∈ sccs ?e ′

with post have is-scc C ∧ C ⊆ black ?e ′

unfolding dfs-post-def wf-env-def add-black-def e1-def by auto
}
moreover
{

fix C
assume C : is-scc C C ⊆ black ?e ′

have x /∈ C
proof

assume xC : x ∈ C
with 〈is-scc C 〉 g have g ∈ C

unfolding is-scc-def by (auto dest : subscc-add)
with wf-env1 g 〈C ⊆ black ?e ′〉 show False

unfolding wf-env-def wf-color-def add-black-def by auto
qed
with post C have C ∈ sccs ?e ′

unfolding dfs-post-def wf-env-def add-black-def e1-def by auto
}
ultimately show ?thesis by blast

qed

24

ultimately show ?thesis — the remaining conjuncts carry over trivially
using wf-env1 unfolding wf-env-def add-black-def by auto

qed

from pre have x /∈ set (stack e) x /∈ gray e
unfolding dfs1-pre-def wf-env-def wf-color-def colored-def by auto

with se1 have subenv ′: subenv e ?e ′

unfolding subenv-def add-stack-incr-def add-black-def
by (auto split : if-split-asm)

have xblack ′: x ∈ black ?e ′

unfolding add-black-def by simp

from lt have n1 < num (add-stack-incr x e) x
unfolding add-stack-incr-def n1-def by simp

also have . . . = num e1 x
using se1 unfolding subenv-def add-stack-incr-def by auto

finally have xnum ′: n1 ≤ num ?e ′ x
unfolding add-black-def by simp

from lt pre have n1 6= ∞
unfolding dfs1-pre-def wf-env-def wf-num-def n1-def by simp

with post obtain sx y where
sx ∈ successors x y ∈ set (stack ?e ′) num ?e ′ y = n1 reachable sx y
unfolding dfs-post-def add-black-def n1-def e1-def by auto

with dfs1-pre-domain[OF pre]
have n1 ′: ∃ y ∈ set (stack ?e ′). num ?e ′ y = n1 ∧ reachable x y

by (auto intro: reachable-trans)

{
fix y
assume xedge-to (stack ?e ′) (stack e) y
then obtain zs z where

y : stack ?e ′ = zs @ (stack e) z ∈ set zs y ∈ set (stack e) edge z y
unfolding xedge-to-def by auto

have n1 ≤ num ?e ′ y
proof (cases z=x)

case True
with 〈edge z y〉 post show ?thesis

unfolding dfs-post-def add-black-def n1-def e1-def by auto
next

case False
with s y have xedge-to (stack e1) (stack (add-stack-incr x e)) y

unfolding xedge-to-def add-black-def add-stack-incr-def by auto
with post show ?thesis

unfolding dfs-post-def add-black-def n1-def e1-def by auto
qed

}

25

with dfs1 wf-env ′ subenv ′ xblack ′ xnum ′ n1 ′

show ?thesis unfolding dfs1-post-def by simp
qed

Prove the post-condition of dfs1 for the “else” branch in the definition of
dfs1, assuming that the recursive call to dfs establishes its post-condition.

lemma dfs-post-dfs1-post-case2 :
fixes x e
defines res1 ≡ dfs (successors x) (add-stack-incr x e)
defines n1 ≡ fst res1
defines e1 ≡ snd res1
defines res ≡ dfs1 x e
assumes pre: dfs1-pre x e

and post : dfs-post (successors x) (add-stack-incr x e) res1
and nlt : ¬(n1 < int (sn e))

shows dfs1-post x e res
proof −

let ?split = split-list x (stack e1)
let ?e ′ = (| black = insert x (black e1),

gray = gray e,
stack = snd ?split ,
sccs = insert (set (fst ?split)) (sccs e1),
sn = sn e1 ,
num = set-infty (fst ?split) (num e1) |)

from pre have dom: dfs1-dfs-dom (Inl (x , e))
by (rule dfs1-pre-dfs1-dom)

from dom nlt have res: res = (∞, ?e ′)
by (simp add : res1-def n1-def e1-def res-def case-prod-beta dfs1 .psimps)

from post have wf-e1 : wf-env e1 subenv (add-stack-incr x e) e1
successors x ⊆ colored e1

by (auto simp: dfs-post-def e1-def)
hence gray ′: gray e1 = insert x (gray e)

by (auto simp: subenv-def add-stack-incr-def)
from post obtain l where

l : fst ?split = l @ [x]
x /∈ set l
set l ⊆ black e1
stack e1 = fst ?split @ snd ?split
is-subscc (set (fst ?split))
snd ?split = stack e

unfolding e1-def by (blast intro: dfs-post-split)
hence x : x ∈ set (stack e1) by auto
from l have stack : set (stack e) ⊆ set (stack e1) by auto
from wf-e1 l
have dist : x /∈ set l x /∈ set (stack e)

set l ∩ set (stack e) = {}
set (fst ?split) ∩ set (stack e) = {}

unfolding wf-env-def by auto

26

with 〈stack e1 = fst ?split @ snd ?split 〉 〈snd ?split = stack e〉

have prec: ∀ y ∈ set (stack e). ∀ z . y � z in (stack e1) ←→ y � z in (stack e)
by (metis precedes-append-left-iff Int-iff empty-iff)

from post have numx : num e1 x = int (sn e)
unfolding dfs-post-def subenv-def add-stack-incr-def e1-def by auto

All nodes contained in the same SCC as x are elements of fst ?split. There-
fore, set (fst ?split) constitutes an SCC.

{
fix y
assume xy : reachable x y and yx : reachable y x

and y : y /∈ set (fst ?split)
from l(1) have x ∈ set (fst ?split) by simp
with xy y obtain x ′ y ′ where

y ′: reachable x x ′ edge x ′ y ′ reachable y ′ y
x ′ ∈ set (fst ?split) y ′ /∈ set (fst ?split)

using reachable-crossing-set by metis
with wf-e1 l have y ′ ∈ colored e1

unfolding wf-env-def no-black-to-white-def by auto
from 〈reachable x x ′〉 〈edge x ′ y ′〉 have reachable x y ′

using reachable-succ reachable-trans by blast
moreover
from 〈reachable y ′ y〉 〈reachable y x 〉 have reachable y ′ x

by (rule reachable-trans)
ultimately have y ′ /∈

⋃
sccs e1

using wf-e1 gray ′

by (auto simp: wf-env-def wf-color-def dest : sccE)
with wf-e1 〈y ′ ∈ colored e1 〉 have y ′e1 : y ′ ∈ set (stack e1)

unfolding wf-env-def wf-color-def e1-def colored-def by auto
with y ′ l have y ′e: y ′ ∈ set (stack e) by auto
with y ′ post l have numy ′: n1 ≤ num e1 y ′

unfolding dfs-post-def e1-def n1-def xedge-to-def add-stack-incr-def
by force

with numx nlt have num e1 x ≤ num e1 y ′ by auto
with y ′e1 x wf-e1 have y ′ � x in stack e1

unfolding wf-env-def wf-num-def e1-def n1-def by auto
with y ′e have y ′ � x in stack e by (auto simp: prec)
with dist have False by (simp add : precedes-mem)

}
hence ∀ y . reachable x y ∧ reachable y x −→ y ∈ set (fst ?split)

by blast
with l have scc: is-scc (set (fst ?split))

by (simp add : is-scc-def is-subscc-def subset-antisym subsetI)

have wf-e ′: wf-env ?e ′

proof −
have wfc: wf-color ?e ′

proof −
from post dfs1-pre-domain[OF pre] l

27

have gray ?e ′ ⊆ vertices ∧ black ?e ′ ⊆ vertices
∧ gray ?e ′ ∩ black ?e ′ = {}
∧ (

⋃
sccs ?e ′) ⊆ black ?e ′

by (auto simp: dfs-post-def wf-env-def wf-color-def e1-def subenv-def
add-stack-incr-def colored-def)

moreover
have set (stack ?e ′) = gray ?e ′ ∪ (black ?e ′ −

⋃
sccs ?e ′) (is ?lhs = ?rhs)

proof
from wf-e1 dist l show ?lhs ⊆ ?rhs

by (auto simp: wf-env-def wf-color-def e1-def subenv-def
add-stack-incr-def colored-def)

next
from l have stack ?e ′ = stack e gray ?e ′ = gray e by simp+
moreover
from pre have gray e ⊆ set (stack e)

unfolding dfs1-pre-def wf-env-def wf-color-def by auto
moreover
{

fix v
assume v ∈ black ?e ′ −

⋃
sccs ?e ′

with l wf-e1
have v ∈ black e1 v /∈

⋃
sccs e1 v /∈ insert x (set l)

v ∈ set (stack e1)
unfolding wf-env-def wf-color-def by auto

with l have v ∈ set (stack e) by auto
}
ultimately show ?rhs ⊆ ?lhs by auto

qed
ultimately show ?thesis

unfolding wf-color-def colored-def by blast
qed
moreover
from wf-e1 l dist prec gray ′ have wf-num ?e ′

unfolding wf-env-def wf-num-def colored-def
by (auto simp: set-infty)

moreover
from wf-e1 gray ′ have no-black-to-white ?e ′

by (auto simp: wf-env-def no-black-to-white-def colored-def)
moreover
from wf-e1 l have distinct (stack ?e ′)

unfolding wf-env-def by auto
moreover
from wf-e1 prec
have ∀ y z . y � z in (stack e) −→ reachable z y

unfolding wf-env-def by (metis precedes-mem(1))
moreover
from wf-e1 prec stack dfs1-pre-domain[OF pre] gray ′

have ∀ y ∈ set (stack e). ∃ g ∈ gray e. y � g in (stack e) ∧ reachable y g
unfolding wf-env-def by (metis insert-iff subsetCE precedes-mem(2))

28

moreover
from wf-e1 l scc have sccs ?e ′ = {C . C ⊆ black ?e ′ ∧ is-scc C}

by (auto simp: wf-env-def dest : scc-partition)
ultimately show ?thesis

using l unfolding wf-env-def by simp
qed

from post l dist have sub: subenv e ?e ′

unfolding dfs-post-def subenv-def e1-def add-stack-incr-def
by (auto simp: set-infty)

from l have num: ∞ ≤ num ?e ′ x
by (auto simp: set-infty)

from l have ∀ y . xedge-to (stack ?e ′) (stack e) y −→ ∞ ≤ num ?e ′ y
unfolding xedge-to-def by auto

with res wf-e ′ sub num show ?thesis
unfolding dfs1-post-def res-def by simp

qed

The following main lemma establishes the partial correctness of the two
mutually recursive functions. The domain conditions appear explicitly as
hypotheses, although we already know that they are subsumed by the pre-
conditions. They are needed for the application of the “partial induction”
rule generated by Isabelle for recursive functions whose termination was not
proved. We will remove them in the next step.

lemma dfs-partial-correct :
fixes x roots e
shows
[[dfs1-dfs-dom (Inl(x ,e)); dfs1-pre x e]] =⇒ dfs1-post x e (dfs1 x e)
[[dfs1-dfs-dom (Inr(roots,e)); dfs-pre roots e]] =⇒ dfs-post roots e (dfs roots e)

proof (induct rule: dfs1-dfs.pinduct)
fix x e
let ?res1 = dfs1 x e
let ?res ′ = dfs (successors x) (add-stack-incr x e)
assume ind : dfs-pre (successors x) (add-stack-incr x e)

=⇒ dfs-post (successors x) (add-stack-incr x e) ?res ′

and pre: dfs1-pre x e
have post : dfs-post (successors x) (add-stack-incr x e) ?res ′

by (rule ind) (rule dfs1-pre-dfs-pre[OF pre])
show dfs1-post x e ?res1
proof (cases fst ?res ′ < int (sn e))

case True with pre post show ?thesis by (rule dfs-post-dfs1-post-case1)
next

case False
with pre post show ?thesis by (rule dfs-post-dfs1-post-case2)

qed
next

29

fix roots e
let ?res ′ = dfs roots e
let ?dfs1 = λx . dfs1 x e
let ?dfs = λx e ′. dfs (roots − {x}) e ′

assume ind1 :
∧

x . [[roots 6= {}; x = (SOME x . x ∈ roots);
¬ num e x 6= − 1 ; dfs1-pre x e]]

=⇒ dfs1-post x e (?dfs1 x)
and ind ′:

∧
x res1 .

[[roots 6= {}; x = (SOME x . x ∈ roots);
res1 = (if num e x 6= − 1 then (num e x , e) else ?dfs1 x);
dfs-pre (roots − {x}) (snd res1)]]

=⇒ dfs-post (roots − {x}) (snd res1) (?dfs x (snd res1))
and pre: dfs-pre roots e

from pre have dom: dfs1-dfs-dom (Inr (roots, e))
by (rule dfs-pre-dfs-dom)

show dfs-post roots e ?res ′

proof (cases roots = {})
case True
with pre dom show ?thesis

unfolding dfs-pre-def dfs-post-def subenv-def xedge-to-def
by (auto simp: dfs.psimps)

next
case nempty : False
define x where x = (SOME x . x ∈ roots)
with nempty have x : x ∈ roots by (auto intro: someI)
define res1 where

res1 = (if num e x 6= − 1 then (num e x , e) else ?dfs1 x)
define res2 where

res2 = ?dfs x (snd res1)
have post1 : num e x = −1 −→ dfs1-post x e (?dfs1 x)
proof

assume num: num e x = −1
with pre x have dfs1-pre x e

by (rule dfs-pre-dfs1-pre)
with nempty num x-def show dfs1-post x e (?dfs1 x)

by (simp add : ind1)
qed
have sub1 : subenv e (snd res1)
proof (cases num e x = −1)

case True
with post1 res1-def show ?thesis

by (auto simp: dfs1-post-def)
next

case False
with res1-def show ?thesis by simp

qed
have wf1 : wf-env (snd res1)
proof (cases num e x = −1)

case True

30

with res1-def post1 show ?thesis
by (auto simp: dfs1-post-def)

next
case False
with res1-def pre show ?thesis

by (auto simp: dfs-pre-def)
qed
from post1 pre res1-def
have res1 : dfs-pre (roots − {x}) (snd res1)

unfolding dfs-pre-def dfs1-post-def subenv-def by auto
with nempty x-def res1-def ind ′

have post : dfs-post (roots − {x}) (snd res1) (?dfs x (snd res1))
by blast

with res2-def have sub2 : subenv (snd res1) (snd res2)
by (auto simp: dfs-post-def)

from post res2-def have wf2 : wf-env (snd res2)
by (auto simp: dfs-post-def)

from dom nempty x-def res1-def res2-def
have res: dfs roots e = (min (fst res1) (fst res2), snd res2)

by (auto simp add : dfs.psimps)
show ?thesis
proof −

let ?n2 = min (fst res1) (fst res2)
let ?e2 = snd res2

from post res2-def
have wf-env ?e2

unfolding dfs-post-def by auto

moreover
from sub1 sub2 have sub: subenv e ?e2

by (rule subenv-trans)

moreover
have x ∈ colored ?e2
proof (cases num e x = −1)

case True
with post1 res1-def sub2 show ?thesis

by (auto simp: dfs1-post-def subenv-def colored-def)
next

case False
with pre sub show ?thesis

by (auto simp: dfs-pre-def wf-env-def wf-num-def subenv-def colored-def)
qed
with post res2-def have roots ⊆ colored ?e2

unfolding dfs-post-def by auto

moreover
have ∀ y ∈ roots. ?n2 ≤ num ?e2 y

31

proof
fix y
assume y : y ∈ roots
show ?n2 ≤ num ?e2 y
proof (cases y = x)

case True
show ?thesis
proof (cases num e x = −1)

case True
with post1 res1-def have fst res1 ≤ num (snd res1) x

unfolding dfs1-post-def by auto
moreover
from wf1 wf2 sub2 have num (snd res1) x ≤ num (snd res2) x

unfolding wf-env-def by (auto elim: subenv-num)
ultimately show ?thesis

using 〈y=x 〉 by simp
next

case False
with res1-def wf1 wf2 sub2 have fst res1 ≤ num (snd res2) x

unfolding wf-env-def by (auto elim: subenv-num)
with 〈y=x 〉 show ?thesis by simp

qed
next

case False
with y post res2-def have fst res2 ≤ num ?e2 y

unfolding dfs-post-def by auto
thus ?thesis by simp

qed
qed

moreover
{

assume n2 : ?n2 6= ∞
hence (fst res1 6= ∞ ∧ ?n2 = fst res1)
∨ (fst res2 6= ∞ ∧ ?n2 = fst res2) by auto

hence ∃ r ∈ roots. ∃ y ∈ set (stack ?e2). num ?e2 y = ?n2 ∧ reachable r y
proof

assume n2 : fst res1 6= ∞ ∧ ?n2 = fst res1
have ∃ y ∈ set (stack (snd res1)).

num (snd res1) y = (fst res1) ∧ reachable x y
proof (cases num e x = −1)

case True
with post1 res1-def n2 show ?thesis

unfolding dfs1-post-def by auto
next

case False
with wf1 res1-def n2 have x ∈ set (stack (snd res1))

unfolding wf-env-def wf-color-def wf-num-def colored-def by auto
with False res1-def show ?thesis

32

by auto
qed
with sub2 x n2 show ?thesis

unfolding subenv-def by fastforce
next

assume fst res2 6= ∞ ∧ ?n2 = fst res2
with post res2-def show ?thesis

unfolding dfs-post-def by auto
qed

}
hence ?n2 = ∞ ∨ (∃ r ∈ roots. ∃ y ∈ set (stack ?e2). num ?e2 y = ?n2 ∧

reachable r y)
by blast

moreover
have ∀ y . xedge-to (stack ?e2) (stack e) y −→ ?n2 ≤ num ?e2 y
proof (clarify)

fix y
assume y : xedge-to (stack ?e2) (stack e) y
show ?n2 ≤ num ?e2 y
proof (cases num e x = −1)

case True
from sub1 obtain s1 where

s1 : stack (snd res1) = s1 @ stack e
by (auto simp: subenv-def)

from sub2 obtain s2 where
s2 : stack ?e2 = s2 @ stack (snd res1)
by (auto simp: subenv-def)

from y obtain zs z where
z : stack ?e2 = zs @ stack e z ∈ set zs

y ∈ set (stack e) edge z y
by (auto simp: xedge-to-def)

with s1 s2 have z ∈ (set s1) ∪ (set s2) by auto
thus ?thesis
proof

assume z ∈ set s1
with s1 z have xedge-to (stack (snd res1)) (stack e) y

by (auto simp: xedge-to-def)
with post1 res1-def 〈num e x = −1 〉

have fst res1 ≤ num (snd res1) y
by (auto simp: dfs1-post-def)

moreover
with wf1 wf2 sub2 have num (snd res1) y ≤ num ?e2 y

unfolding wf-env-def by (auto elim: subenv-num)
ultimately show ?thesis by simp

next
assume z ∈ set s2
with s1 s2 z have xedge-to (stack ?e2) (stack (snd res1)) y

by (auto simp: xedge-to-def)

33

with post res2-def show ?thesis
by (auto simp: dfs-post-def)

qed
next

case False
with y post res1-def res2-def show ?thesis

unfolding dfs-post-def by auto
qed

qed

ultimately show ?thesis
using res unfolding dfs-post-def by simp

qed
qed

qed

8 Theorems establishing total correctness

Combining the previous theorems, we show total correctness for both the
auxiliary functions and the main function tarjan.

theorem dfs-correct :
dfs1-pre x e =⇒ dfs1-post x e (dfs1 x e)
dfs-pre roots e =⇒ dfs-post roots e (dfs roots e)
using dfs-partial-correct dfs1-pre-dfs1-dom dfs-pre-dfs-dom by (blast+)

theorem tarjan-correct : tarjan = { C . is-scc C ∧ C ⊆ vertices }
proof −

have dfs-pre vertices init-env
by (auto simp: dfs-pre-def init-env-def wf-env-def wf-color-def colored-def

wf-num-def no-black-to-white-def is-scc-def precedes-def)
hence res: dfs-post vertices init-env (dfs vertices init-env)

by (rule dfs-correct)
thus ?thesis

by (auto simp: tarjan-def init-env-def dfs-post-def wf-env-def wf-color-def
colored-def subenv-def)

qed

end — context graph
end — theory Tarjan

34

	Reachability in graphs
	Strongly connected components
	Auxiliary functions
	Main functions used for Tarjan's algorithms
	Function definitions
	Well-definedness of the functions

	Auxiliary notions for the proof of partial correctness
	Predicates and lemmas about environments
	Partial correctness of the main functions
	Theorems establishing total correctness

