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TLA+ specification language

• formal language for describing and reasoning about
distributed and concurrent systems

• based on mathematical logic and set theory plus
temporal logic TLA

• supported by tool set (TLC model checker)

• Addison-Wesley, 2003
(free download for personal use)
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Plan of these lectures

1. Transition systems and properties of runs
=⇒ understand the foundations of TLA+

2. System specification in TLA+

=⇒ read and write TLA+ models

3. System verification
=⇒ validate models and prove properties

4. System development
=⇒ concepts of refinement and (de-)composition

5. Case study
=⇒ experiment on concrete application
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1 Motivation & Introduction

Why formal specifications?

• describe, analyze, and reason about systems
algorithms, protocols, controllers, embedded systems, . . .

• at different levels of abstraction
meaningful to users, system developers, implementors, machine

• support and justify development process
gradually introduce design decisions/architecture, relate models at different levels

Unlike programs, high-level specifications need not be executable.

• encompass software, hardware, physical environment, users

• starting point: requirements – describe “real world”

• target: executable code – enable efficient execution
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Classifications of specification languages

• intended for different classes of systems
– sequential algorithms

– interactive systems

– reactive & distributed systems

– real-time & hybrid systems

– security-sensitive systems

• based on different specification styles
– property oriented or axiomatic: what?

list desired (correctness) properties (cf. algebra)

– model-based: how?
describe system in terms of abstract model (cf. analysis, but add refinement)

TLA+ : model-based specification, reactive & distributed systems
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TLA+ : Informal Introduction
Example 1.1 (an hour clock)

MODULE HourClock
EXTENDS Naturals
VARIABLE hr

HCini 4
= hr ∈ (0..23)

HCnxt 4
= hr′ = IF hr = 23 THEN 0 ELSE hr +1

HCsafe 4
= HCini∧2[HCnxt]hr

THEOREM HCsafe⇒ 2HCini
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The module HourClock contains declarations and definitions

• hr a state variable

• HCini a state predicate

• HCnxt an action (built from hr and hr′)

• HCsafe a temporal formula specifying that

– the initial state satisfies HCini

– every transition satisfies HCnxt or leaves hr unchanged

Module HourClock also asserts a theorem: HCsafe⇒2HCini

This invariant can be verified using TLC, the TLA+ model checker.

Note:

• the hour clock may eventually stop ticking

• it must not fail in any other way
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A TLA formula Init∧2[Next]v
specifies the initial states and the allowed transitions of a system.

It allows for transitions that do not change v: stuttering transitions.

Infinite stuttering can be excluded by asserting fairness conditions.

For example,

HC 4
= HCini∧2[HCnxt]hr ∧WFhr(HCnxt)

specifies an hour clock that never stops ticking.
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Fairness conditions assert that some action A occurs eventually
— provided it is “sufficiently often” enabled.

Two standard interpretations of “sufficiently often”:

weak fairness. A occurs eventually if it is persistently enabled after some point

strong fairness. A occurs eventually if it is infinitely often enabled after some point

Note: strong fairness is strictly stronger than weak fairness

An action can be infinitely often enabled without being persistently enabled.

Identifying adequate fairness conditions for a system is often non-trivial.
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Most TLA system specifications are of the form

Init∧2[Next]v∧L

Init : state formula describing the initial state(s)

Next : action formula formalizing the transition relation
– usually a disjunction A1∨ . . .∨An of possible actions (events) Ai

L : temporal formula asserting liveness conditions
– usually a conjunction WFv(Ai)∧ . . .∧SFv(Aj) of fairness conditions

TLA system specifications formalize fair transition systems.
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2 Fair transition systems, runs, and properties

Transformational systems (sequential algorithms)

• input data −→ compute −→ output result

• partial correctness + termination + complexity

• computational model: Turing machines, RAM, term rewriting, . . .

Reactive systems (operating systems, controllers, . . . )

• environment ←→ system

• safety: something bad never happens

• liveness: something good eventually happens

• computational model: transition systems
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2.1 Labeled transition systems

Definition 2.1 A labeled transition system T = (Q, I,A ,δ) is given by

• a (finite or infinite) set of states Q,

• a set I ⊆ Q of initial states,

• a set A of actions (action names), and

• a transition relation δ⊆ Q×A×Q.

An action A ∈ A is enabled at state q ∈ Q iff (q,A,q′) ∈ δ for some q′ ∈ Q.

A run of T is a (finite or infinite) sequence ρ = q0
A0−→ q1

A1−→ q2 . . . where q0 ∈ I and
(qi,Ai,qi+1) ∈ δ holds for all i.
A state q ∈ Q is reachable iff it appears in some run ρ of T .

Convention. We assume that A contains a special “stuttering” action τ with
(q,τ,q′) ∈ δ iff q′ = q. Every finite run can then be extended to an infinite run by
“infinite stuttering”.

We say that T is deadlocked at q if no action except τ is enabled at q.
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Example 2.2 (Hour clock as transition system)
The hour clock (see example 1.1) gives rise to the following transition system:
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:

• all states are initial

• stuttering and “tick” actions

• all states reachable, no deadlocks

14



Example 2.3 (Toy railway)

signalW

signalE

enroute

onbridge
atsignal

system state includes:

• train data (position, speed, acceleration, . . . )

• signal and switch state

state transitions:

• update of train data (sensor readings)

• signal switching
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abstract (finite-state) model: divide tracks into sections

trains

�
�

�
�enroute

�
�

�
�onbridge

�
�
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�atsignal
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�- ?

[green]

�
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signals (combinatorial)

trainW trainE signalW signalE

enroute atsignal red green
atsignal enroute green red
atsignal atsignal ? ?

else red red

entire transition system obtained as product of trains and signals

Note: • non-determinism due to abstract model

• some transitions mapped to stuttering
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Example 2.4 (parallel programs as transition systems)
var x,y : integer = 0,0;

cobegin
α : while y = 0 do β : x := x+1 end ‖ γ : y := 1

coend

states: valuations of program variables (including “program counter”)

actions: one action per program instruction, plus stuttering

two sample runs

run 1:
action — α β α β α γ β α τ · · ·

x 0 0 1 1 2 2 2 3 3 3 · · ·
y 0 0 0 0 0 0 1 1 1 1 · · ·

run 2:
action — α β α β α β α β α · · ·

x 0 0 1 1 2 2 3 3 4 4 · · ·
y 0 0 0 0 0 0 0 0 0 0 · · ·
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2.2 Fairness conditions

Transition systems define the possible transitions.

They often admit “unfair” runs that have no counterpart in the “real” system.

Fairness problems arise from local choices (non-determinism) that are continuously
resolved in one way but not the other.

Non-determinism is often due to abstraction:

• railway: abstract from exact train positions

• stopwatch program: representation of parallel execution by non-determinism

Fairness conditions specify that some actions must happen, provided they are
“sufficiently often” enabled.

They place additional “global” constraints on runs of transition systems.
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Weak fairness (justice). A run ρ = q0
A0−→ q1

A1−→ q2 . . . is weakly fair w.r.t. an
action A ∈ A iff the following condition holds:
If A is enabled at all states beyond m then An = A for some n≥ m.

equivalent: If A is taken only finitely often then A is infinitely often disabled.

Strong fairness (compassion). A run ρ = q0
A0−→ q1

A1−→ q2 . . . is strongly fair w.r.t.
an action A ∈ A iff the following condition holds:
If A is enabled at infinitely many states beyond m then An = A for some n≥ m.

equivalent: If A is taken only finitely often then A is only finitely often enabled.

Prove: strong fairness implies weak fairness

Any run that is strongly fair w.r.t. A is also weakly fair w.r.t. A.
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Definition 2.5 A fair transition system Tf = (Q, I,A ,δ,W,S) extends a transition
system by sets W,S⊆ A .

The runs of Tf are those runs of the underlying transition system that are weakly fair
w.r.t. all actions A ∈W and strongly fair w.r.t. all actions A ∈ S.

The following fairness conditions are reasonable for our examples:

hour clock: weak fairness for “tick” action HCnxt

toy railway:
• weak fairness for “leave bridge” (i.e., transition from onbridge to enroute)
• strong fairness for switching either signal to green in case of conflict

stopwatch program: weak fairness for each of the two processes

The choice of adequate fairness conditions is non-trivial and must be validated w.r.t.
the “real world” (the system being modeled).
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Assuming we have complete control over scheduling of actions, fairness conditions
can be implemented. For weak fairness, a “round-robin” scheduler is sufficient.

Theorem 2.6 Let Tf = (Q, I,A ,δ,{B0, . . . ,Bm−1}, /0) be a fair transition system

without strong fairness, and let s0
A0−→ s1 . . .

An−1−→ sn be a finite execution of Tf .

Then every sequence s0
A0−→ s1 . . .

An−1−→ sn
An−→ sn+1 . . . is a run of Tf provided that for

all k ≥ n the following conditions hold:

1. (sk,Ak,sk+1) ∈ δ and

2. If the action Bk mod m is enabled at sk then Ak = Bk mod m.

Since we assume δ to be total (ensured by stuttering action τ) the theorem asserts that
any finite execution of Tf can be extended to an (infinite) fair run of Tf .

21



Proof (of Theorem 2.6). By condition (1), ρ = s0
A0−→ s1 . . .

An−1−→ sn
An−→ sn+1 . . .

is clearly a run of the underlying transition system T without fairness conditions.

It remains to prove that ρ is weakly fair for, say, action Bi.

So assume that Bi is enabled at all states sk for k ≥ p≥ n (for some p ∈ N).
By condition (2), we know that Ak = Bi for all k ≥ p such that k mod m = i.

There are infinitely many such k, hence Bi appears infinitely often in ρ. Q.E.D.
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A similar theorem holds for strong fairness, but it requires a priority scheduler:
actions that have not been executed for a long time are prioritized.

Theorem 2.7 Let Tf = (Q, I,A ,δ, /0,{B0, . . . ,Bm−1}) be a fair transition system with

strong fairness, and let s0
A0−→ s1 . . .

An−1−→ sn be a finite execution of Tf .

Then every sequence s0
A0−→ s1 . . .

An−1−→ sn
An−→ sn+1 . . . is a run of Tf provided that

there exists a sequence πn,πn+1, . . . of permutations πk of {B0, . . . ,Bm−1} such that
for all k ≥ n the following conditions hold:

1. (sk,Ak,sk+1) ∈ δ,

2. Assume that πk = 〈C0, . . . ,Cm−1〉.
If there exists i such that Ci is enabled at state sk but all Cj where j < i are
disabled then Ak = Cj and πk+1 = 〈C0, . . . ,Ci−1,Ci+1, . . . ,Cm−1,Ci〉.
Otherwise Ak ∈ A is arbitrary and πk+1 = πk.

Again, any finite execution can be extended in this way to yield an infinite run.
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Proof (of theorem 2.7). By condition (1), ρ = s0
A0−→ s1 . . .

An−1−→ sn
An−→ sn+1 . . . is

clearly a run of the underlying transition system T without fairness conditions.

It remains to prove that ρ is strongly fair for, say, action Bi. Assume not.

Then we may choose some p≥ n such that Bi is enabled at infinitely many k ≥ p but
Ak 6= Bi for all k ≥ p.

Consider the sequence πp,πp+1, . . ., and in particular the positions jp, jp+1, . . . of
action Bi in the πk: because Bi is never executed, the sequence of the jk is weakly
decreasing (i.e., jk+1 ≤ jk for all k ≥ p), and therefore eventually stabilizes, say,
jk = j ∈ N for all k ≥ q (for some q≥ p).

By condition (2), it follows that there exist actions C0, . . . ,Cj = Bi such that for all
k ≥ q, the lists πk are of the form 〈C0, . . . ,Cj, . . .〉, and none of C0, . . . ,Cj are enabled.

In particular, it follows that Cj = Bi is never enabled beyond state sq — contradiction.
Q.E.D.
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Interpretation of the theorems 2.6 and 2.7.

• If runs for a transition system T can be generated effectively (i.e., initial and
successor states are computable), then fair runs of an FTS obtained from T by
adding some fairness conditions can be generated using schedulers.
In fact, it is enough to use the scheduler only after an arbitrary finite prefix.

• Since strong fairness implies weak fairness, the scheduler of theorem 2.7 can
also be used for FTSs with both weak and strong fairness conditions.

• However, not all fair runs, are generated in this way.
In particular, schedulers are of no use when some actions are controlled by the
environment.

• The theorems can be extended to fairness conditions on denumerable sets of
actions by “diagonalization”.
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2.3 Properties of runs

When analysing transition systems, one is interested in properties of their runs:

• The two trains are never simultaneously in section onbridge.

• Any train waiting at the signal will eventually be on the bridge.

• The variable x will eventually remain constant.

Properties about the branching structure are occasionally also of interest:

• From any state it is possible to reach an initial state.

• Two actions A and B are in conflict, resp. are independent.

• Two processes can cooperate to starve a third process.

In the following, we restrict attention to properties of runs.
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We identify a property Φ with the set of runs that satisfy Φ:

Definition 2.8 Let Q and A be sets of states and actions. A (Q,A)-property Φ is a
set of ω-sequences σ = s0

A0−→ s1
A1−→ . . . where si ∈ Q and Ai ∈ A .

We interchangeably write σ ∈Φ and σ |= Φ.

Examples:

• set of runs of a transition system T
• runs that are strongly fair for a given action A ∈ A

• runs s0
A0−→ s1

A1−→ . . . such that sn(y) = 1 for some n ∈ N

Note: assertions about the existence of certain runs are not “properties” in the sense
of definition 2.8!
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Safety and liveness properties (Lamport 1980)

• two fundamental classes of properties, different proof principles

• generalization of partial correctness and termination of sequential programs

safety properties: something bad never happens
• trains are never simultaneously on the bridge

• data is received in the same order as it was sent

liveness properties: something good eventually happens
• trains will enter section onbridge

• every data item will eventually be received

• action γ will eventually be executed

The following is neither a safety nor a liveness property:

trains wait at signals until entering section onbridge, which will eventually occur
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Definition 2.9 (Alpern, Schneider 1985)

• A property Φ is a safety property iff the following condition holds:

σ = s0
A0−→ s1

A1−→ s2 . . . is in Φ if and only if

every finite prefix s0
A0−→ s1 . . .

An−1−→ sn of σ can be extended

to some sequence s0
A0−→ s1 . . .

An−1−→ sn
Bn−→ tn+1

Bn+1−→ tn+2 . . . ∈Φ.

• A property Φ is a liveness property iff any finite sequence s0
A0−→ s1 . . .

An−1−→ sn

can be extended to some sequence s0
A0−→ s1 . . .

An−1−→ sn
An−→ sn+1 . . . ∈Φ.

Connection with informal description

• A sequence σ does not satisfy a safety property Φ iff there exists some finite
prefix of σ that cannot be extended to an infinite sequence satisfying Φ.
The “bad thing” has thus happened after some finite time.

• Liveness properties do not exclude finite prefixes: “good thing” may occur later.
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Properties and finite sequences

• Given a sequence σ = s0
A0−→ s1 . . .

A1−→ s2 . . ., we write σ[..n] to denote the
prefix s0

A0−→ s1 . . .
An−1−→ sn.

• For sequences ρ = s0
A0−→ s1 . . .

An−1−→ sn and σ = sn
An−→ sn+1

An+1−→ sn+2 . . ., we
write ρ◦σ for the concatenation s0

A0−→ s1 . . .
An−1−→ sn

An−→ sn+1
An+1−→ sn+2 . . ..

• For a property Φ and a finite sequence ρ = s0
A0−→ s1 . . .

An−1−→ sn, we write ρ |= Φ
iff ρ◦σ ∈Φ for some infinite sequence σ (ρ optimistically satisfies Φ).

Reformulation of characteristic conditions:

• Φ is a safety property iff for any infinite sequence σ:
σ |= Φ if σ[..n] |= Φ for all n ∈ N.

• Φ is a liveness property iff σ[..n] |= Φ for all σ and all n ∈ N.
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Examples

• The set R of runs of a transition system T = (Q, I,A ,δ) with a total transition
relation, but without fairness conditions, is a safety property:

Let σ = s0
A0−→ s1

A1−→ s2 . . .

σ[..n] |= R for all n ∈ N

⇒ s0 ∈ I and (si,si+1) ∈ δ for all i < n, for all n ∈ N

⇒ σ ∈ R

• Weak or strong fairness conditions are liveness properties:
Using the constructions of theorems 2.6 and 2.7, any finite sequence can be
extended to some sequence satisfying a fairness property.
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Theorem 2.10 (safety and liveness: fundamental results)

1. If Φi is a safety property, for all i ∈ I , then so is
T

i∈I Φi.

2. If Φ is a liveness property then so is any Ψ⊇Φ.

3. The trivial property containing all sequences is the only property that is both a
safety and a liveness property.

4. For any property Φ, the property

C (Φ) = {σ : σ[..n] |= Φ for all n ∈ N}

is the smallest safety property containing Φ, called the safety closure of Φ.
• Φ is a safety property iff C (Φ) = Φ.
• If Φ is arbitrary and Ψ is a safety property then: Φ⊆Ψ iff C (Φ)⊆Ψ.

5. Φ⊆Ψ =⇒ C (Φ)⊆ C (Ψ).

6. For any property Φ there is a safety property SΦ and a liveness property LΦ

such that Φ = SΦ∩LΦ.
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Proof. 1–3, 5: exercise!

4. Clearly, we have Φ⊆ C (Φ) for any Φ. Moreover, C (Φ) is a safety property:

σ[..n] |= C (Φ) for all n ∈ N

⇒ for all n ∈ N there is τ such that σ[..n]◦ τ ∈ C (Φ) [def. σ[..n] |= C (Φ)]

⇒ σ[..n] |= Φ for all n ∈ N [def. C (Φ)]

⇒ σ ∈ C (Φ) [def. C (Φ)]

C (Φ)⊆ S for any safety property S such that Φ⊆ S:

σ ∈ C (Φ)

⇒ σ[..n] |= Φ for all n ∈ N [def. C (Φ)]

⇒ for all n ∈ N exists τ such that σ[..n]◦ τ ∈Φ [def. σ[..n] |= Φ]

⇒ for all n ∈ N exists τ such that σ[..n]◦ τ ∈ S [Φ⊆ S]

⇒ σ[..n] |= S for all n ∈ N [def. σ[..n] |= S]

⇒ σ ∈ S [S safety property]

6. Let SΦ = C (Φ) and LΦ = {σ : σ /∈ C (Φ) or σ ∈Φ} : exercise!
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Example 2.11 (see also “stopwatch” example 2.4)
Let Φ be the set of all sequences s0

A0−→ s1
A1−→ s2 . . . such that for some n ∈ N,

si(y) = 0 for all i≤ n and si(y) = 1 for all i > n

The safety closure C (Φ) contains the sequences σ = s0
A0−→ s1

A1−→ s2 . . . such that

• either σ ∈Φ or

• si(y) = 0 for all i ∈ N.

Exercise 2.12
Let T = (Q, I,A ,δ,W,S) be a fair transition system with W,S⊆ A and A finite.

Determine the safety closure of the set of (fair) runs of T .
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By theorem 2.10(6), any property can be written as a pair (S,L) where S is a safety
property and L is a liveness property.

It is often desirable that S alone provides all constraints on finite sequences ρ:

ρ |= S =⇒ ρ◦σ |= S∩L for some σ

Definition 2.13 Let S be a safety property and L be any property.

The pair (S,L) is machine closed iff C (S∩L) = S.

Example 2.14 (non-machine-closed specification)
Let S denote the set of all runs of the transition system

-��
��

s0 -α
��
��

s1




τ




τ

and let L be the set of sequences that contain the state s0 infinitely often.

The finite run s0
α−→ s1 can be extended to a run in S, but not in S∩L.
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If (S,L) is machine-closed and Φ is a safety property then the runs satisfying (S,L)

satisfy Φ iff S⊆Φ holds:

S∩L⊆Φ

⇔ C (S∩L)⊆Φ [Theorem 2.10(4)]

⇔ S⊆Φ [(S,L) machine closed]

The liveness property L can thus be ignored for the proof of safety properties.

Notes:

• If (S,L) is a system specification then it should usually be machine closed:
otherwise they require unbounded look-ahead and are non-implementable.

• Some formalisms ensure that all system specifications are machine closed.

• Theorems 2.6 and 2.7 imply that fair transition systems yield machine closed
specifications. (They can be generalized for countably many fairness conditions.)
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Summary

• Transition systems: semantics of reactive and distributed systems

• Fairness conditions constrain local non-determinism

• Properties of runs formalized as sets of (infinite) state-action sequences

• Rich theory of safety and liveness properties

• Every property is the intersection of a safety and a liveness property

• Machine closure prerequisite for implementability of system specifications
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3 System specification in TLA+

Temporal logics: a short history

• Middle Ages: understand temporal relations in natural language
Yesterday she said that she’d come tomorrow, so she should come today.

• 20th century: formalisation of modal and temporal logics
temporal primitives: always, eventually, until, since, . . .
A. Prior: Past, present, and future. Oxford University Press, 1967

• 1977: Pnueli uses temporal logic to express properties of reactive systems
A. Pnueli: The temporal logic of programs. FOCS’77

System satisfies property
formalized as

Transition system is model of temporal formula

38



Temporal Logic of Actions (TLA) (L. Lamport, TOPLAS 1994)

• uniform language : transition system and properties represented as formulas

• mathematical abstraction : basis for description and analysis of reactive and
distributed systems

• logical connectives express structural concepts (composition, refinement, hiding)

• avoid temporal logic : first-order proof obligations whenever possible

Keep it as simple as possible, but no simpler
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3.1 Anatomy of TLA

TLA defines two levels of syntax: action formulas and temporal formulas.

• action formulas describe states and state transitions

• temporal formulas describe state sequences

Formally, assume given:

• a first-order signature (function and predicate symbols),

• disjoint sets Xr and Xf of rigid and flexible (or state) variables.

Rigid variables denote values as in first-order logic.

Flexible variables represent state components (program variables).
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Action formulas are evaluated over pairs of states

They are ordinary first-order formulas built from

• rigid variables x ∈ Xr,

• (unprimed) flexible variables v ∈ Xf , and

• primed flexible variables v′ for v ∈ Xf .

Examples: hr ∈ (0..23), hr′ = hr +1, ∃k : n+m′ < 3∗ k, . . .

Terms are called transition functions, formulas transition predicates or actions.

Action formulas without free primed variables are called state formulas.

Actions are not primitive in TLA!

41



Semantics of action formulas

• first-order interpretation I (for the underlying signature)
– provides a universe |I | of values
– interprets function and predicate symbols: 0, +, <, ∈, . . .

• state : valuation of flexible variables s : Xf → |I |
• valuation of rigid variables ξ : Xr→ |I |

[[A]]
ξ
s,t ∈ {tt, ff} given by standard inductive definition

• s and t interpret unprimed and primed flexible variables

• ξ interprets rigid variables

Note: semantics of state formulas independent of second state
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Notations (for action formulas)

• For a state formula e, write e′ for the action formula obtained by “priming” all
free flexible variables (rename bound variables as necessary).

Examples: (v+1)′ ≡ v′+1
(∃x : n = x+m)′ ≡ ∃x : n′ = x+m′

(∃n′ : n = n′+m)′ ≡ ∃np : n′ = np+m′

• For an action A and a state function t write

[A]t ≡ A∨ t′ = t
〈A〉t ≡ A∧¬(t′ = t)

Note: 〈A〉t ≡ ¬[¬A]t ¬〈A〉t ≡ [¬A]t

[A]t ≡ ¬〈¬A〉t ¬[A]t ≡ 〈¬A〉t
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• For an action A define the state formula (!)

ENABLED A ≡ ∃v′1, . . . ,v′n : A

where v′1, . . . ,v′n are all free primed flexible variables in A.

ENABLED A holds at s iff there is some state t such that A holds of (s, t).

• For two actions A and B define

A ·B ≡ ∃v′′1 , . . . ,v′′n : A[v′′1/v1, . . . ,v′′n/vn]∧B[v′′1/v′1, . . . ,v′′n/vn]

A ·B holds of (s, t) iff for some state u, A holds of (s,u) and B of (u, t).

It represents the sequential composition of A and B as a single atomic action.
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Temporal formulas are evaluated over (infinite) state sequences

Definition 3.1 (syntax and semantics of temporal formulas)
Let σ = s0s1 . . . be a sequence of states and ξ be a valuation of the rigid variables.

• Every state formula P is a formula.
σ,ξ |= P iff [[P]]

ξ
s0 = tt

• For an action A and a state function t, 2[A]t (“always square A sub t”)
is a formula.

σ,ξ |= 2[A]t iff for all n ∈ N, [[A]]
ξ
sn,sn+1 = tt or [[t]]ξsn = [[t]]ξsn+1

• If F is a formula then so is 2F (“always F”).
σ,ξ |= 2F iff σ[n..],ξ |= F for all n ∈ N

• Boolean combinations of formulas are formulas, as are ∃x : F and ∀x : F
for x ∈ Xr (with obvious semantics).
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Notations (for temporal formulas)

• If F is a temporal formula then 3F (“eventually F”, “finally F”) abbreviates

3F ≡ ¬2¬F : σ,ξ |= 3F iff σ[n..],ξ |= F for some n ∈ N

• Similarly we define 3〈A〉t (“eventually angle A sub t”)

3〈A〉t ≡ ¬2[¬A]t : σ,ξ |= 3〈A〉t iff [[〈A〉t]]ξsn,sn+1 = tt for some n ∈ N

• F ; G (“F leads to G”) is defined as

F ; G ≡ 2(F⇒3G)

It asserts that every suffix satisfying F is followed by some suffix satisfying G.

46



Infinitely often and eventually always

• The formula 23F asserts that F holds infinitely often over σ:

σ,ξ |= 23F iff for all m ∈ N there is n≥ m such that σ[n..],ξ |= F

Similarly, the formula 23〈A〉t asserts that the action 〈A〉t occurs infinitely often.

• The formula 32F asserts that F holds from a certain suffix onward.
Equivalently, F is false only finitely often.

The formula 32[A]t asserts that only [A]t actions occur after some initial time.

Equivalences: ¬23F ≡32¬F 323F ≡23F
¬32F ≡23¬F 232F ≡32F
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Example 3.2 (semantics of temporal formulas)

-

x 0 0 3 7 0 1 1 0 2 . . . (always 6= 0)
y 1 1 0 0 0 0 3 4 0 . . . (always = 0)

Which of the following formulas hold of this behavior?

2¬(x = 0∧ y = 0)

2[x = 0⇒ y′ = 0]x,y

3(x = 7∧ y = 0)

3〈y = 0∧ x′ = 0〉y

23(y 6= 0)

32(x = 0⇒ y 6= 0)

32[FALSE]y
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Representing fairness in TLA
Recall definitions of weak and strong fairness conditions:

• A run is weakly fair for some action A iff A occurs infinitely often provided that
it is eventually always enabled.

• A run is strongly fair for some action A iff A occurs infinitely often provided that
it is infinitely often enabled.

For actions 〈A〉t this can be written in TLA:

WFt(A) ≡ 32ENABLED 〈A〉t⇒ 23〈A〉t
SFt(A) ≡ 23ENABLED 〈A〉t⇒ 23〈A〉t

Equivalent conditions:

WFt(A) ≡ 23¬ENABLED 〈A〉t ∨23〈A〉t SFt(A) ≡ 32¬ENABLED 〈A〉t ∨23〈A〉t
WFt(A) ≡ 2(2ENABLED 〈A〉t⇒3〈A〉t) SFt(A) ≡ 2(23ENABLED 〈A〉t⇒3〈A〉t)
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Example 3.3 (stopwatch as a TLA+ module)
MODULE Stopwatch

EXTENDS Naturals
VARIABLES pc1,pc2,x,y

Init 4
= pc1 = “alpha”∧pc2 = “gamma”∧ x = 0∧ y = 0

A 4
= ∧ pc1 = “alpha”∧pc′1 = IF y = 0 THEN “beta” ELSE “stop”

∧ UNCHANGED 〈pc2,x,y〉
B 4

= ∧ pc1 = “beta”∧pc′1 = “alpha”

∧ x′ = x+1∧UNCHANGED 〈pc2,y〉
G 4

= ∧ pc2 = “gamma”∧pc′2 = “stop”

∧ y′ = 1∧UNCHANGED 〈pc1,x〉
vars 4

= 〈pc1,pc2,x,y〉
Spec 4

= Init∧2[A∨B∨G]vars∧WFvars(A∨B)∧WFvars(G)

Note: • explicit encoding of control structure

• process structure lost
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Stuttering invariance
Actions in TLA formulas must be “guarded” : 2[A]t, 3〈A〉t
These formulas allow for finitely many state repetitions, and this observation extends
to arbitrary TLA formulas.

Definition 3.4 Stuttering equivalence (≈) is the smallest equivalence relation that
identifies behaviors

s0s1 . . .snsn+1sn+2 . . . and s0s1 . . .snsnsn+1sn+2 . . .

Theorem 3.5 For any TLA formula F and stuttering equivalent behaviors σ≈ τ :

σ,ξ |= F iff τ,ξ |= F

TLA formulas cannot distinguish stuttering equivalent behaviors.
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3.2 Representing system paradigms in TLA

Recall: a system specification is usually of the form

Init∧2[Next]v∧L

• state components (e.g., program variables, communication channels)
explicitly represented as flexible variables

• synchronization and communication encoded explicitly by appropriate actions

• different classes of systems characterized by different specification styles

• in the following: example specifications of FIFO channels
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Example 3.6 (lossy FIFO)
MODULE LossyQueue

EXTENDS Sequences
VARIABLES i,o,q

LQInit 4
= q = 〈〉∧ i = o

LQEnq 4
= q′ = Append(q, i′)∧o′ = o

LQDeq 4
= q 6= 〈〉∧o′ = Head(q)∧q′ = Tail(q)∧ i′ = i

LQNext 4
= LQEnq∨LQDeq

LQLive 4
= WFq,o(LQDeq)

LQSpec 4
= LQInit∧2[LQNext]q,o∧LQLive

-i -o
q

• i and o represent interface, q is (unbounded) internal buffer

• buffer can enqueue same input value several times, or not at all
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Simple interleaving specifications are of the form

Init∧2[Next]v,o∧L

i,o,v : input, output and internal variables of the system

Next : action formula describing the possible transitions
Only o and v appear in the index: the system allows for arbitrary changes to the
input variables (“environment actions”).
The system should not change the input variables (interleaving model):

Next⇒ i′ = i

L : conjunction of fairness conditions WFv,o(A) or SFv,o(A)

Usually, Next is a disjunction A1∨ . . .∨An, and L asserts fairness of several Ai.
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Example 3.7 (synchronous communication, interleaving)
MODULE SyncInterleavingQueue

EXTENDS Sequences
VARIABLES i,o,q

SIQInit 4
= q = 〈〉∧ i = o

SIQEnq 4
= i′ 6= i∧q′ = Append(q, i′)∧o′ = o

SIQDeq 4
= q 6= 〈〉∧o′ = Head(q)∧q′ = Tail(q)∧ i′ = i

SIQNext 4
= SIQEnq∨SIQDeq

SIQLive 4
= WFi,q,o(SIQDeq)

SIQSpec 4
= SIQInit∧2[SIQNext]i,q,o ∧SIQLive

-i -o
q

• i appears in the index: “synchronous” reaction to changes of input

• interleaving model: SIQEnq and SIQDeq mutually exclusive

• every run of SIQSpec also satisfies LQSpec
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Interleaving specifications with synchronous communication

Init∧2[Next]i,v,o∧L

Next : disjunction Env∨Sys
• Sys describes system actions (internal or output)
• Env describes environment actions and their effect on system state

Sys⇒ i′ = i and Env⇒ o′ = o

• no action changes both input and output: interleaving model
• input variables appear in the index to ensure reaction to their change
• closed system specifications

L : asserts fairness conditions of system actions
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Example 3.8 (asynchronous communication, interleaving)
MODULE AsyncInterleavingQueue

EXTENDS Sequences
VARIABLES i,o,q,sig

AQInit 4
= q = 〈〉∧ i = o∧ sig = 0

AQEnv 4
= sig = 0∧ sig′ = 1∧UNCHANGED 〈q,o〉

AQEnq 4
= sig = 1∧ sig′ = 0∧q′ = Append(q, i′)∧UNCHANGED 〈i,o〉

AQDeq 4
= q 6= 〈〉∧o′ = Head(q)∧q′ = Tail(q)∧UNCHANGED 〈i,sig〉

AQNext 4
= AQEnv∨AQEnq∨SIQDeq

AQLive 4
= WFi,q,o,sig(AQEnq)∧WFi,q,o,sig(AQDeq)

AQSpec 4
= AQInit∧2[AQNext]i,q,o,sig∧AQLive

-i -o
q

• explicit model of “handshake” protocol for enqueuing values (AQEnv, AQEnq)

• fairness condition on AQEnq ensures that system reacts to new inputs

• every run of AQSpec also satisfies LQSpec
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Asynchronous communication has to be modeled explicitly

Environment actions A are represented as two separate actions Aenv and Asys :

• Aenv models proper environment step

Aenv⇒ UNCHANGED 〈v,o〉

• Asys represents system reaction to environment step

Asys⇒ UNCHANGED 〈i,o〉

• handshake variables (like sig) ensure alternation of Asys and Aenv

• fairness conditions for Asys ensure (eventual) system reaction

Mostly: interleaving specifications, synchronous or asynchronous communication.
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Example 3.9 (synchronous communication, non-interleaving)
MODULE SyncNonInterleavingQueue

EXTENDS Sequences
VARIABLES i,o,q

SNQInit 4
= q = 〈〉∧ i = o

d(v) 4
= IF v′ = v THEN 〈〉 ELSE 〈v′〉

SNQEnq 4
= i′ 6= i∧q◦d(i) = d(o)◦q′

SNQDeq 4
= q 6= 〈〉∧o′ = Head(q)∧q◦d(i) = d(o)◦q′

SNQLive 4
= WFi,q,o(SNQDeq)

SNQSpec 4
= ∧ SNQInit∧2[SNQEnq]i ∧2[SNQDeq]o

∧ 2[SNQEnq∨SNQDeq]q ∧SNQLive

-i -o
q

• one next-state relation per variable

• non-interleaving: input and output may occur simultaneously

• every run of SIQSpec also satisfies SNQSpec
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Non-interleaving specifications simultaneous actions of system and environment

They can be written in the form

Init∧2[Env]i∧2[Int]v∧2[Out]o∧L

• Env, Int,Out describe environment, internal, and output actions

• synchronization by common variables as necessary

• “transition invariants” ensure consistent modifications of state components

• L specifies fairness conditions for subactions of Int and Out

Observations:

• Non-interleaving specifications are usually harder to write.

• NI specifications may be a more faithful model of the real system.

• NI specifications are easier to compose.
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Summary

• TLA: system specification and properties are formulas

• action formulas (states and transitions) vs. temporal formulas (behaviors)

• actions must be “guarded”: 2[A]v, 3〈A〉v entails stuttering invariant semantics

• fairness properties definable as TLA formulas

• different specification styles represent different system paradigms

• interleaving vs. non-interleaving representations
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4 System verification and validation

Formal models of systems are the basis for formal analysis.

Validation: are we building the right system ?

• compare model against (informal!) user requirements

• animation, prototyping, run test cases

Verification: are we building the system right ?

• compare model against (formal) correctness properties or abstract model

• theorem proving, model checking, equivalence checking
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4.1 Deductive verification in TLA

Systems as well as properties are represented as TLA formulas.

System described by Spec satisfies property Prop
iff

Prop holds of every run of Spec
iff

formula Spec⇒ Prop is valid : |= Spec⇒ Prop

System verification reduces to provability of TLA formulas.

Next: verification rules for standard correctness properties
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4.1.1 Invariants

formulas 2I for state predicate I

• characterize the set of reachable states of a system

• express intuitive correctness of algorithm

• basis for proving more advanced properties

Basic proof rule: I∧Next⇒ I′ I∧ v′ = v⇒ I′
(INV1)

I∧2[Next]v⇒ 2I

Justification:
• hypothesis ensures that every transition (stuttering or not) preserves I

• thus, if I holds initially, it will hold throughout the run

Generalization: I∧ [N1]v1 ∧ . . .∧ [Nk]vk ⇒ I′
(INV1m)

I∧2[N1]v1 ∧ . . .∧2[Nk]vk ⇒ 2I
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Example 4.1 (invariant for the hour clock, see example 1.1)
MODULE HourClock

EXTENDS Naturals
VARIABLE hr

HCini 4
= hr ∈ (0..23)

HCnxt 4
= hr′ = IF hr = 23 THEN 0 ELSE hr +1

HC 4
= HCini∧2[HCnxt]hr ∧WFhr(HCnxt)

Prove HC⇒ 2HCini : by (INV1) and propositional logic, it suffices to show

hr ∈ (0..23)∧HCnxt ⇒ hr′ ∈ (0..23)

hr ∈ (0..23)∧hr′ = hr ⇒ hr′ ∈ (0..23)

Both implications are clearly valid.
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(INV1) can be used to prove inductive invariants.

Usually, an invariant has to be strengthened for the proof, using the derived rule

Init⇒ J J∧ (Next∨ v′ = v)⇒ J′ J⇒ I
(INV)

Init∧2[Next]v⇒2I

• J : inductive invariant that implies I

• Finding inductive invariants requires creativity.

• Its proof is entirely schematic and doesn’t need temporal logic.

• Some formal methods document inductive invariants as part of the model.

Exercise 4.2
For the interleaving FIFO with synchronous communication, prove that any two
consecutive elements in the queue are different:

SIQSpec⇒2(∀i ∈ (1..Len(q)−1) : q[i] 6= q[i+1])
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Excursion: For an action A and a state predicate P define

wp(P,A)
4
= ∀v′1, . . . ,v′n : A⇒ P′

(
≡ ¬ENABLED (A∧¬P′)

)

where v′1, . . . ,v′n are all free primed variables in A or P′.

wp(P,A) is called the weakest precondition of P w.r.t. A.

It defines the set of states all of whose A-successors satisfy P.

Examples:

wp(x = 5,x′ = x+1) ≡ ∀x′ : x′ = x+1⇒ x′ = 5

≡ x = 4

wp(y ∈ S,S′ = S∪T ∧ y′ = y) ≡ ∀y′,S′ : S′ = S∪T ∧ y′ = y⇒ y′ ∈ S′

≡ y ∈ S∨ y ∈ T
wp(x > 0,x′ = 0) ≡ ∀x′ : x′ = 0⇒ x′ > 0

≡ FALSE
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Using the wp notation, (INV) can be rewritten as follows:

Init⇒ J J⇒ wp(J,Next∨ v′ = v) J⇒ I
Init∧2[Next]v =⇒ 2I

The following heuristic can help finding inductive invariants:

1. Start with the target invariant: J0
4
= I.

2. Try proving Ji∧A⇒ J′i for each subaction A of [Next]v.

If the proof fails, set Ji+1
4
= Ji∧wp(Ji,A).

3. Repeat step 2 until

• either all sub-proofs succeed and Init⇒ Ji holds: Ji is an inductive invariant

• or Ji is not implied by Init; then I is not an invariant.

This heuristic need not terminate: must also generalize appropriately.
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4.1.2 Liveness from fairness

Fairness conditions ensure that actions do occur eventually.

Liveness from weak fairness

P∧ [Next]v⇒ P′∨Q′

P∧〈Next∧A〉v⇒ Q′

P⇒ ENABLED 〈A〉v(WF1)
2[Next]v∧WFv(A)⇒ (P ; Q)

The hypotheses of (WF1) are again non-temporal formulas.
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Example: weak fairness for HCnxt ensures that the clock keeps ticking

HC ⇒ ∀k ∈ (0..23) : hr = k ; hr = (k +1)%24

Using (WF1) and first-order logic, this can be reduced to

k ∈ (0..23)∧hr = k∧ [HCnxt]hr ⇒ hr′ = k∨hr′ = (k +1)%24

k ∈ (0..23)∧hr = k∧〈HCnxt〉hr ⇒ hr′ = (k +1)%24

k ∈ (0..23)∧hr = k ⇒ ENABLED 〈HCnxt〉hr

These formulas are again valid.

Exercise 4.3
show that elements advance in the lossy queue, i.e.

LQSpec⇒∀k ∈ (1..Len(q)) : ∀x : q[k] = x ; (o = x∨q[k−1] = x)
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Correctness of (WF1): assume σ,ξ |= 2[Next]v∧WFv(A) where σ = s0s1 . . .

To prove that σ,ξ |= P ; Q assume that [[P]]
ξ
sn = tt for some n ∈ N.

For a contradiction, assume also that [[Q]]
ξ
sm = ff for all m≥ n.

1. [[P]]
ξ
sn = tt for all m≥ n.
√

proof by induction on m≥ n using hypothesis P∧ [Next]v⇒ P′∨Q′

2. [[ENABLED 〈A〉v]]ξsm = tt for all m≥ n.
√

from (1) and hypothesis P⇒ ENABLED 〈A〉v

3. [[〈A〉v]]ξsm = tt for some m≥ n.
√

from (2) and weak fairness assumption for 〈A〉v

4. [[Q]]
ξ
sm+1 = tt for some m≥ n.
√

from (3), (1), and hypothesis P∧〈Next∧A〉v⇒ Q′

5. Q.E.D. (by contradiction)
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Liveness from strong fairness
For (WF1), the “helpful action” 〈A〉v must remain executable as long as P holds.

This assumption is too strong for actions with strong fairness, which ensures eventual
execution if the action is infinitely often (but not necessarily persistently) enabled.

P∧ [Next]v⇒ P′∨Q′

P∧〈Next∧A〉v⇒ Q′

2P∧2[Next]v∧2F⇒3ENABLED 〈A〉v(SF1)
2[Next]v∧SFv(A)∧2F⇒ (P ; Q)

• The first two hypotheses are as for (WF1).

• The third hypothesis is a temporal formula; F can be a conjunction of
– fairness conditions: observe WFv(B)≡2WFv(B) and SFv(B)≡2SFv(B)

– auxiliary “leadsto” formulas, invariants, . . .
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Example 4.4 (mutual exclusion with semaphores)
Pseudo-code: semaphore s = 1;

loop
ncrit1 : (* non-critical *)

try1 : P(s)

crit1 : (* critical *)

V(s)
endloop

‖

loop
ncrit2 : (* non-critical *)

try2 : P(s)

crit2 : (* critical *)

V(s)
endloop

TLA+ module: MODULE Mutex
VARIABLES s, pc1, pc2
Init 4

= s = 1∧pc1 = “ncrit”∧pc2 = “ncrit”

Ncrit(pc,oth)
4
= pc = “ncrit”∧pc′ = “try”∧UNCHANGED 〈oth,s〉

Enter(pc,oth)
4
= pc = “try”∧ s = 1∧pc′ = “crit”∧ s′ = 0∧oth′ = oth

Exit(pc,oth)
4
= pc = “crit”∧pc′ = “ncrit”∧ s′ = 1∧oth′ = oth

Proc1 4
= Ncrit(pc1,pc2)∨Enter(pc1,pc2)∨Exit(pc1,pc2)

Proc2 4
= Ncrit(pc2,pc1)∨Enter(pc2,pc1)∨Exit(pc2,pc1)

vars 4
= 〈s,pc1,pc2〉
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TLA+ module:
(continued)

Live 4
= ∧ SFvars(Enter(pc1,pc2))∧SFvars(Enter(pc2,pc1))

∧WFvars(Exit(pc1,pc2))∧WFvars(Exit(pc2,pc1))

Mutex 4
= Init∧2[Proc1∨Proc2]vars ∧Live

Inv 4
= ∨ s = 1∧{pc1,pc2} ⊆ {“ncrit”, “try”}

∨ s = 0∧pc1 = “crit”∧pc2 ∈ {“ncrit”, “try”}
∨ s = 0∧pc2 = “crit”∧pc1 ∈ {“ncrit”, “try”}

THEOREM Mutex⇒ Inv
THEOREM Mutex⇒ (pc1 = “try” ; pc1 = “crit”)

The proof of the invariant is straightforward using (INV1) : exercise!

Our goal is to establish liveness:

• The two process can compete for entry to the critical section.

• The helpful action Enter(pc1,pc2) is disabled while pc2 = “crit”.
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We use (SF1) to show

2[Proc1∨Proc2]vars∧SFvars(Enter(pc1,pc2))∧2WFvars(Exit(pc2,pc1))

⇒ ((pc1 = “try”∧ Inv) ; pc1 = “crit”)

The first and second hypotheses of (SF1) pose no problem.

For the third hypothesis, we use (WF1) to show

2[Proc1∨Proc2]vars∧WFvars(Exit(pc2,pc1))

⇒ ((pc1 = “try”∧ Inv∧ s 6= 1) ; (pc1 = “try”∧ s = 1))

Simple temporal reasoning (see later) implies

2(pc1 = “try”∧ Inv)∧2[Proc1∨Proc2]vars∧2WFvars(Exit(pc2,pc1))

⇒ 3 (pc1 = “try”∧ s = 1)
︸ ︷︷ ︸

ENABLED 〈Enter(pc1,pc2)〉vars
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4.1.3 Liveness from well-founded relations

Rules (WF1) and (SF1) prove elementary liveness properties:

• clock will eventually display next hour

• elements in queue will advance by one step, first element will be output

Really, want to prove complex properties:

• clock will eventually display noon

HC⇒23(hr = 12)

• any element in the queue will eventually be output

LQSpec⇒
(
(∃k ∈ 1..Len(q) : q[k] = x) ; o = x

)
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Informal argumentation: repeat elementary liveness argument

• every tick of the clock brings us closer to noon

• every output action will move the element closer to the head of the queue;
the following output action will actually put it on the output channel

Definition 4.5 A binary relation ≺⊆ D×D is well-founded iff there is no infinite
descending chain d0 � d1 � d2 � . . . of elements di ∈ D.

Note: – well-founded relations are irreflexive and asymmetric.

– Every non-empty subset of (D,≺) contains a minimal element.

Example 4.6 (Well-founded relations)
• < is well-founded over N, but also over ordinal numbers.

• Lexicographic ordering on fixed-size lists is well-founded.

• Lexicographic ordering is not well-founded over {a,b}∗ : b� ab� aab� aaab� . . .
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The following rule can be used to combine “leadsto” properties:

(D,≺) well-founded
F∧d ∈ D⇒

(
H(d)∧¬G ; G∨ (∃e ∈ D : e≺ d∧H(e))

)

(WFO)
F⇒

(
(∃d ∈ D : H(d)) ; G

)

where d and e are rigid variables and d does not have free occurrences in G

(WFO) requires proving another “leads-to” property, typically by (WF1) or (SF1).

The premise “(D,≺) well-founded” is verified semantically (or in the host logic).

Exercise 4.7
Formally justify the correctness of the rule (WFO).
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Example: HC⇒ ((∃d ∈ 0..23 : hr = d) ; hr = 12)

Define the well-founded relation ≺ on 0..23 by

dist(d)
4
= IF d ≤ 12 THEN 12−d ELSE 36−d

d ≺ e 4
= dist(d) < dist(e)

Using (WFO), we have to prove

HC∧d ∈ 0..23⇒ (hr = d∧hr 6= 12 ; hr = 12∨∃e ∈ 0..23 : e≺ d∧hr = e)

This follows from the formula

HC ⇒ ∀k ∈ (0..23) : hr = k ; hr = (k +1)%24

shown earlier.
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4.1.4 Simple temporal logic

The application of the verification rules is supported by laws of

• first-order logic,

• theories formalizing the data (set theory, arithmetic, graph theory, . . . ),

• and laws of temporal logic such as the following:

F(STL1)
2F

(STL2) 2F⇒ F

(STL3) 22F ≡2F (STL4) 2(F⇒ G)⇒ (2F⇒2G)

(STL5) 2(F∧G)≡ (2F∧2G) (STL6) 32(F∧G)≡32F∧32G

P∧ t′ = t⇒ P′(TLA1)
2P≡ P∧2[P⇒ P′]t

I∧ I′∧ [A]t⇒ [B]u(TLA2)
2I∧2[A]t⇒2[B]u

Note: validity of propositional temporal logic is mechanically decidable.
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4.2 Algorithmic verification

Interactive theorem provers can assist deductive system verification.

, applicable in principle to arbitrary TLA specifications
/ tedious to apply, needs much expertise

Finite-state models can be analyzed using state-space exploration
by running the TLA+ model checker TLC.

The model is defined by a TLA+ specification and a configuration file:

!" # $% & % $' ( % )* + $

% * , ' - % ' * ( + $. / .

" - )" # - (0 + $ � . 12
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Invariant checking systematically generate all reachable states
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• depth-first search: organize � �x � as stack
; stack contains counter-example if invariant is violated

• breadth-first search: organize � �x � as a queue (TLC implementation)
; remember predecessor states to obtain shortest-length counter-example

Property checking : generalize to search for “acceptance cycles”
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Syntactic restrictions for TLC

• TLC must be able to compute initial and successor states:

– Action formulas are evaluated “from left to right”.
– The first occurrence of a primed flexible variables must be an “assignment”

x′ = e or x′ ∈ S where S evaluates to a finite set

– All flexible variables must be “assigned” some value.
– Quantifiers must range over finite sets: ∀x ∈ S : P, ∃x ∈ S : P

• Analogous conditions apply to the initial state predicate.

• Module parameters must be instantiated by finite sets.

See Lamport’s book for a detailed description.
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What if the model is not finite-state or too large ?

• test: analyze small, finite instances

• approximate: write higher-level model

• abstract: soundness-preserving finite-state abstraction

Model checking : debugging rather than verification
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Summary

• Validation: compare model to informal requirements (review, simulation)

• Verification: establish properties of formal model

• Deductive verification: invariants, fairness, well-founded relations

• TLA: most proof obligations are non-temporal formulas

• Combine verification steps using rules of temporal logic

• Algorithmic verification using TLC

finite-state instances, counter-example on failure, great for debugging
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5 The language TLA+

TLA+ is a specification language based on TLA that adds

• module structure (declarations, extension, instantiation)

• fixed first-order language and interpretation, based on set theory

TLA+ is untyped: e.g., 5 = TRUE and 17∧ “abc” are well-formed formulas

— but we don’t know if they are true or false

Now: brief presentation of concepts necessary to understand TLA+ models

See Lamport’s book for detailed exposition.
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5.1 Specifying data in TLA+

Every TLA+ value is a set — cf. set-theoretical foundations of mathematics (ZFC)

From a logical perspective, the language of TLA+ contains

• the binary predicate symbol ∈
(actually, TLA+ also considers functions as primitive — see later)

• and the term formation operator CHOOSE x : P (a.k.a. Hilbert’s ε-operator)
that denotes some (arbitrary, but fixed) value satisfying P if such a value exists
— and any value otherwise
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The choice operator
TLA+ assumes a first-order interpretation with an (unspecified) choice function ε :

[[CHOOSE x : P]]
ξ
s,t = ε({d : [[P]]

ξ[x:=d]
s,t = tt})

Characteristic axioms:

(∃x : P(x)) ⇒ P(CHOOSE x : P(x))
(∀x : P≡ Q) ⇒ (CHOOSE x : P) = (CHOOSE x : Q)

Examples:
(CHOOSE x : x /∈ ProcId) /∈ ProcId

(CHOOSE n : n ∈ Nat∧ (n/2)∗2 = n) = (CHOOSE x : ∃k ∈ Nat : x = 2∗ k)
(CHOOSE S : ∀z : z ∈ S≡ z /∈ z) = (CHOOSE x : x ∈ {}) (cf. Russell’s paradox)
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Choice vs. non-determinism
Consider the following actions specifying resource allocation:

Allocnd
4
=

∧ owner = NoProcess
∧ waiting 6= {}
∧ owner′ ∈ waiting
∧ waiting′ = waiting\{owner′}

Allocch
4
=

∧ owner = NoProcess
∧ waiting 6= {}
∧ owner′ = CHOOSE p : p ∈ waiting
∧ waiting′ = waiting\{owner′}

• Both are enabled in precisely those states where the resource is free and
there is some waiting process.

• Allocnd produces as many successor states as there are waiting processes.

• Allocch produces a single successor state: it chooses some fixed process.
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Constructions of elementary set theory in TLA+

S⊆ T 4
= ∀x : x ∈ S⇒ x ∈ T

{e1, . . . ,en} 4
= CHOOSE M : ∀x : x ∈M ≡ (x = e1∨ . . .∨ x = en)

UNION S 4
= CHOOSE M : ∀x : x ∈M ≡ (∃T ∈ S : x ∈ T)

S∪T 4
= UNION {S,T}

S∩T 4
= CHOOSE M : x ∈M ≡ (x ∈ S∧ x ∈ T)

SUBSET S 4
= CHOOSE M : ∀x : x ∈M ≡ x⊆ S

{x ∈ S : P} 4
= CHOOSE M : ∀x : x ∈M ≡ (x ∈ S∧P)

{t : x ∈ S} 4
= CHOOSE M : ∀x : x ∈M ≡ (∃y ∈ S : x = t)

• existence of these sets ensured by rules of ZF set theory
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Functional values in TLA+

Some sets represent functions — TLA+ does not specify how

[S→ T] set of functions with domain S and codomain T
DOMAIN f domain of functional value f
f [e] application of functional value f to expression e
[x ∈ S 7→ e] function with domain S mapping x to e
[f EXCEPT ![t] = e] function update

[f EXCEPT ![t] = @+ e] = [f EXCEPT ![t] = f [t]+ e]

f is a functional value iff f = [x ∈ DOMAIN f 7→ f [x]]

Value of f [x] is unspecified for x /∈ DOMAIN f .
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Recursive functions can be defined using choice, e.g.

fact 4
= CHOOSE f : f = [n ∈ Nat 7→ IF n = 0 THEN 1 ELSE n∗ f [n−1]]

This can be abbreviated to

fact[n ∈ Nat] 4
= IF n = 0 THEN 1 ELSE n∗ fact[n−1]

• should justify existence of such a function

• no implicit commitment to, e.g., least fixed point semantics
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Natural numbers defined using choice from Peano axioms
MODULE Peano

PeanoAxioms(N,Z,Sc) 4
=

∧ Z ∈ N
∧ Sc ∈ [N→ N]

∧ ∀n ∈ N : (∃m ∈ N : n = Sc[m])≡ (n 6= Z)

∧ ∀S ∈ SUBSET N : Z ∈ S∧ (∀n ∈ S : Sc[n] ∈ S)⇒ S = N

Succ 4
= CHOOSE Sc : ∃N,Z : PeanoAxioms(N,Z,Sc)

Nat 4
= DOMAIN Succ

Zero 4
= CHOOSE Z : PeanoAxioms(Nat,Z,Succ)

Predefined notation: 0 4
= Zero, 1 4

= Succ[0], . . .

i..j 4
= {n ∈ Nat : i≤ n∧n≤ j}

Integers and reals similarly defined as supersets of Nat, arithmetic operations agree
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Tuples and sequences represented as functions

〈e1, . . . ,en〉 4
= [i ∈ 1..n 7→ IF i = 1 THEN e1 . . . ELSE en]

Some standard operations on sequences

Seq(S)
4
= UNION {[1..n→ S] : n ∈ Nat}

Len(s) 4
= CHOOSE n ∈ Nat : DOMAIN s = 1..n

Head(s) 4
= s[1]

Tail(s) 4
= [i ∈ 1..(Len(s)−1) 7→ s[i+1]]

s◦ t 4
= [i ∈ 1..(Len(s)+Len(t)) 7→

IF i≤ Len(s) THEN s[i] ELSE t[i−Len(s)]]
Append(s,e) 4

= s◦ 〈e〉

Question: What are Head(〈〉) and Tail(〈〉) ?
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Exercise 5.1
1. Define an operator IsSorted(s) such that for any sequence s of (real) numbers,

IsSorted(s) is true iff s is sorted.

2. Define a function sort ∈ [Seq(Real)→ Seq(Real)] such that sort[s] is a sorted
sequence containing the same elements as s.

3. Give a recursive definition of the mergesort function.
Does sort = mergesort hold for your definitions? Why (why not)?

4. Define operators IsFiniteSet(S) and card(S) such that IsFiniteSet(S) holds iff
S is a finite set and that card(S) denotes the cardinality of S if S is finite.
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Representation of strings: sequences of characters

standard operations on sequences apply to strings, e.g. “th”◦ “is” = “this”

Records: functions whose domain is a finite set of strings

short notation instead of

account.bal account[“bal”]

[account EXCEPT !.bal = @+ sum] [account EXCEPT ![“bal”] = @+ sum]

[num 7→ 1234567,bal 7→ −321.45] [f ∈ {“num”, “bal”} 7→
IF f = “num” THEN 1234567
ELSE −321.45]
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5.2 TLA+ modules

A TLA+ module consists of a sequence of

– declarations of constant and variable parameters
– definitions of operators (non-recursive)
– assertions of assumptions and theorems

• Modules serve as units of structuring: they provide scopes for identifiers.

• They form a hierarchy by extending or instantiating other modules.

• The meaning of any symbol is obtained by replacing definitions by their bodies.
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Principle of unique names
Identifiers that are active in the current scope cannot be redeclared or redefined
— not even as bound variables.

MODULE IllegalModule
EXTENDS Naturals
CONSTANTS x, y

m+n 4
= . . . \* attempt to redefine operator + defined in Naturals

Foo(y,z) 4
= ∃x : . . . \* x and y already declared as constant parameters

Nat 4
= LET y 4

= . . . IN . . . \* clashes of Nat (from Naturals) and y (parameter)

Import of the same module via different paths is allowed.

Definitions can be protected from export by the LOCAL keyword.
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Module extension

MODULE Foo
EXTENDS Bar, Baz
CONSTANTS Data, Compare(_)

Module Foo exports

• the symbols declared or defined in module Foo and

• the symbols (of global scope) exported by modules Bar, Baz

Module Foo may use, but not redefine or declare symbols exported by Bar, Baz.
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Module instantiation allows for import with renaming:

MODULE Component

InChan 4
= INSTANCE Channel WITH Data←Message,chan← in

Chan(c) 4
= INSTANCE Channel WITH Data←Message,chan← c

The operators defined in module Channel can be used in Component as follows:

InChan!Send(d) resp. Chan(in)!Send(d)

• Identity renaming can be omitted

• Name for the instantiation can be omitted if only one copy is needed

• LOCAL instantiation is possible

Module Component does not export symbols declared or defined in module Channel.
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Summary

• TLA+ : complete specification language based on TLA and set theory

• untyped formalism: every value is a set

• rich data structures definable via set-theoretic constructions

• module structure to decompose specifications
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6 Refinement, hiding, and composition

So far: specifications of components at a single level of abstraction.

This chapter:

• compare different levels of abstraction: refinement of runs

• composition of components to build a system

• hiding (encapsulation) of internal state components

These concepts are represented by logical connectives in TLA+
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6.1 Refinement
Example 6.1 (hour and minute clock, see example 1.1)

MODULE HourMinuteClock
EXTENDS Naturals, HourClock
VARIABLE min

HMCini 4
= HCini∧min ∈ (0..59)

Min 4
= min′ = IF min = 59 THEN 0 ELSE min+1

Hr 4
= (min = 59∧HCnxt) ∨ (min < 59∧hr′ = hr)

HMCnxt 4
= Min∧Hr

HMC 4
= HMCini∧2[HMCnxt]〈hr,min〉 ∧WF〈hr,min〉(HMCnxt)

THEOREM HMC⇒ HC

HMC implies the hour clock specification HC : stuttering invariance.
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Refinement is represented in TLA as (validity of) implication: |= HMC⇒ HC

• HMC⇒ HCini : obvious

• HMC⇒2[HCnxt]hr : immediate from definition, formal proof via (TLA2)

• HMC⇒WFhr(HCnxt) : informal argument obvious, formally supported by rule

〈N ∧P∧A〉v⇒ 〈B〉w
P∧ENABLED 〈B〉w⇒ ENABLED 〈A〉v

2[N∧ [¬B]w]v∧WFv(A)∧2F∧32ENABLED 〈B〉w⇒32P(WF2)
2[N]v∧WFv(A)∧2F⇒WFw(B)

Exercise:

1. formally prove that the hour-minute clock refines the hour clock

2. verify the refinement using TLC
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Refinement as implication (trace inclusion)

• refinement may add state variables (“implementation detail”)

• high-level actions decomposed into sequence of low-level actions:
– actions except last one do not affect high-level state

– final action corresponds to high-level effect
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• stuttering invariance is crucial to make this work

• fairness condition must also be preserved to ensure liveness properties

• branching structure not preserved: implementation may reduce non-determinism
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6.2 Hiding of state components

Reminder: queue specification

MODULE SyncInterleavingQueue
EXTENDS Sequences
VARIABLES i,o,q

SIQInit 4
= q = 〈〉∧ i = o

SIQEnq 4
= i′ 6= i∧q′ = Append(q, i′)∧o′ = o

SIQDeq 4
= q 6= 〈〉∧o′ = Head(q)∧q′ = Tail(q)∧ i′ = i

SIQNext 4
= SIQEnq∨SIQDeq

SIQLive 4
= WFi,q,o(SIQDeq)

SIQSpec 4
= SIQInit∧2[SIQNext]i,q,o∧SIQLive

-i -o
q

The internal queue q is an “implementation detail”, not part of the interface.

The FIFO should behave as if there were an internal queue.
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Hiding expressed in TLA by existential quantification over flexible variables:

MODULE SIQueue
VARIABLES i,o
IntQueue(q) 4

= INSTANCE SyncInterleavingQueue

SIQueue 4
= ∃∃∃∃∃∃q : IntQueue(q)!SIQSpec

We therefore extend the syntax of temporal formulas:

• If F is a formula and v is a flexible variable then ∃∃∃∃∃∃v : F is a formula.

Intuitive meaning:
The TLA formula ∃∃∃∃∃∃v : F holds of behavior σ
if F holds of some τ that differs from σ only in the valuations of v.
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Naive semantics of flexible quantification

σ,ξ |= ∃∃∃∃∃∃v : F iff τ,ξ |= F for some τ =v σ

Problem: F 4
= v = 0∧2[v = 1]w

-τ

v
w

0
0

1
0

1
1

· · ·
· · ·

-σ

v
w

0
0

0
0

1
1

· · ·
· · ·

F asserts that v has changed before first change of w.

F holds of τ, and therefore ∃∃∃∃∃∃v : F holds of σ.

∃∃∃∃∃∃v : F would not hold of behavior obtained from σ by removing second state.

Violation of stuttering invariance!

109



Correct semantics of quantification: “build in” stuttering invariance

σ,ξ |= ∃∃∃∃∃∃v : F iff there exist ρ≈ σ and τ =v ρ such that τ,ξ |= F

• Both σ and τ satisfy ∃∃∃∃∃∃v : v = 0∧2[v = 1]w

In fact, this formula is valid!

• For the clock example, we have |= HC⇒ ∃∃∃∃∃∃min : HMC
Intuition: the implementation of an hour clock can use a hidden minute display

Although the semantics is more complicated, the usual proof rules are sound:

(∃∃∃∃∃∃ -I) F(t)⇒∃∃∃∃∃∃v : F(v) (t state function: “refinement mapping”)

F⇒ G
(∃∃∃∃∃∃ -E)

(∃∃∃∃∃∃v : F)⇒ G
(v not free in G)

For completeness, more introduction rules needed (“history”, “prophecy” variables).
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6.3 Composition of specifications

Reactive and distributed systems: parallel composition of components

Common variables a2b and b2a represent interface (rename internal variables).

A B
-a2b

�b2a

Assuming that runs of components are described by ASpec and BSpec, the formula

ASpec∧BSpec

specifies the two components running in parallel.

Problem: each formula must allow changes to interface due to other component.

=⇒ Sometimes need additional conjuncts to express “synchronization”.
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Example 6.2 (composition of two FIFOs)

-i -mq2
-o

q1

MODULE TwoQueues
VARIABLES i,m,o

LeftQ 4
= INSTANCE SIQueue WITH o← m

RightQ 4
= INSTANCE SIQueue WITH i← m

LongQ 4
= LeftQ!SIQueue∧RightQ!SIQueue

INSTANCE SIQueue
THEOREM LongQ⇒ SIQueue ??

Problem: LongQ allows for simultaneous enqueueing and dequeueing,
but SIQueue does not. Interleaving assumption has to be asserted explicitly.
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Proof: LongQ∧2[i′ = i∨o′ = o]i,o⇒ SIQueue (outline)

LongQ ≡ ∧ ∃∃∃∃∃∃q : IntQueue(i,q,m)!SIQSpec
∧ ∃∃∃∃∃∃q : IntQueue(m,q,o)!SIQSpec

SIQueue ≡ ∃∃∃∃∃∃q : IntQueue(i,q,o)!SIQSpec

Using rules (∃∃∃∃∃∃ -E) and (∃∃∃∃∃∃ -I), we have to show

IntQueue(i,q1,m)!SIQSpec∧ IntQueue(m,q2,o)!SIQSpec∧2[i′ = i∨o′ = o]i,o

⇒ IntQueue(i, t,o)!SIQSpec

for some state function t. The proof succeeds for t 4
= q1 ◦q2.

Exercise: formally carry out this proof.
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Summary

• Refinement: successively add implementation detail during system development

• TLA: represent refinement as implication (stuttering invariance!)

• Hiding of internal state components via existential quantification

• Composition of sub-systems represented as conjunction
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7 Case study: a resource allocator

• A set of clients compete for a (finite) set of resources.

• Whenever a client holds no resources and has no outstanding requests, he can
request a set of resources. (No request may exceed the entire set of resources.)

• The allocator can allocate a set of available resources to a client that requested
them, possibly without completely satisfying the client’s request.

• Clients can return resources they hold at any time.
A client that received all resources he requested must eventually return them (not
necessarily at once).

Objectives:

• Clients have exclusive access to resources they hold.

• Every request is eventually satisfied.
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7.1 A first solution
MODULE SimpleAllocator

EXTENDS FiniteSet

CONSTANTS Clients, Resources
ASSUME IsFiniteSet(Resources)

VARIABLES

unsat, \* unsat[c] denotes the outstanding requests of client c

alloc \* alloc[c] denotes the resources allocated to client c

TypeInvariant 4
=

∧ unsat ∈ [Clients→ SUBSET Resources]
∧ alloc ∈ [Clients→ SUBSET Resources]

available 4
= \* set of resources free for allocation

Resources\ (UNION {alloc[c] : c ∈ Clients})
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Init 4
= \* initially, no resources have been requested or allocated

∧ unsat = [Clients→ {}]
∧ alloc = [Clients→{}]

\* Client c requests set S of resources, provided it has no outstanding requests and no allocated resources.
Request(c,S) 4

=

∧ unsat[c] = {}∧alloc[c] = {}
∧ S 6= {}∧unsat′ = [unsat EXCEPT ![c] = S]

∧ UNCHANGED alloc

\* Allocation of a set of available resources to a client that requested them.
Allocate(c,S) 4

=

∧ S 6= {}∧S⊆ available∩unsat[c]
∧ alloc′ = [alloc EXCEPT ![c] = @∪S]

∧ unsat′ = [unsat EXCEPT ![c] = @\S]
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Return(c,S) 4
= \* Client c returns a set of resources that it holds.

∧ S 6= {}∧S⊆ alloc[c]
∧ alloc′ = [alloc EXCEPT ![c] = @\S]

∧ UNCHANGED unsat

Next 4
= \* The next-state relation.

∃c ∈ Clients,S ∈ SUBSET Resources :

Request(c,S)∨Allocate(c,S)∨Return(c,S)

vars 4
= 〈unsat,alloc〉

SimpleAllocator 4
= \* The complete high-level specification.

∧ Init∧2[Next]vars

∧ ∀c ∈ Clients : WFvars(Return(c,alloc[c]))
∧ ∀c ∈ Clients : SFvars(∃S ∈ SUBSET Resources : Allocate(c,S))
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ResourceMutex 4
= ∀c1,c2 ∈ Clients : alloc[c1]∩alloc[c2] 6= {} ⇒ c1 = c2

ClientsWillFree 4
= ∀c ∈ Clients : unsat[c] = {}; alloc[c] = {}

ClientsWillObtain 4
= ∀c ∈ Clients,r ∈ Resources : (r ∈ unsat[c]) ; (r ∈ alloc[c])

InfOftenSatisfied 4
= ∀c ∈ Clients : 23(unsat[c] = {})

THEOREM SimpleAllocator⇒2ResourceMutex

THEOREM SimpleAllocator⇒ ClientsWillFree

THEOREM SimpleAllocator⇒ ClientsWillObtain

THEOREM SimpleAllocator⇒ InfOftenSatisfied

All three theorems are verified by TLC (for small sets Clients and Resources).
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Verification of InfOftenSatisfied via Boolean abstraction
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MODULE SimpleAllocatorDiagram
EXTENDS SimpleAllocator
CONSTANTS c \* Skolem constant for verification
ASSUME c ∈ Clients

unsat_c_empty 4
= unsat[c] = {}

unsat_c_finite 4
= IsFiniteSet(unsat[c])

alloc_c_empty 4
= alloc[c] = {}

resource_available 4
= unsat[c]∩available 6= {}

Reqc
4
= ∃S ∈ SUBSET Resources : Request(c,S)

Allocc
4
= ∃S ∈ SUBSET Resources : Allocate(c,S)

Returnc
4
= Return(c,alloc[c])

Return 6=c
4
= ∧ unsat[c] 6= {}∧¬resource_available
∧ ∃d ∈ Clients : d 6= c∧alloc[d]∩unsat[c] 6= {}∧Return(d,alloc[d])

S⊆f T 4
= IsFiniteSet(S)∧S ⊆ T

S⊂f T 4
= S⊆f T ∧S 6= T
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The specification SimpleAllocator is wrong.

The fairness condition

∀c ∈ Clients : WFvars(Return(c,alloc[c]))

requires clients to return resources even if their entire request has not been satisfied.

Solution: weaken fairness condition and require

∀c ∈ Clients : WFvars(unsat[c] = {}∧Return(c,alloc[c]))

With the new fairness condition, the implication

SimpleAllocator⇒ ClientsWillObtain

is no longer valid (and TLC produces a counter-example).
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7.2 Second solution

Idea: allocator keeps a schedule of clients with pending requests
such that all requests can be completely satisfied, under worst-case assumptions.

• Resource r will be allocated to client c only if c appears in the schedule and if no
client that appears before c in the schedule requires it.

• Upon issuing a request, clients are put in a pool of clients with pending requests.

• The allocator eventually appends its schedule with clients from the pool
(in arbitrary order)
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MODULE SchedulingAllocator
EXTENDS FiniteSets, Sequences, Naturals

CONSTANTS Clients, Resources
ASSUME IsFiniteSet(Resources)

VARIABLES

unsat, \* unsat[c] denotes the outstanding requests of client c

alloc, \* alloc[c] denotes the resources allocated to client c

pool, \* clients with unsatisfied requests that have not been scheduled

sched \* schedule (sequence of clients)

TypeInvariant 4
=

∧ unsat ∈ [Clients→ SUBSET Resources]
∧ alloc ∈ [Clients→ SUBSET Resources]
∧ pool ∈ SUBSET Clients
∧ sched ∈ Seq(Clients)

125



PermSeqs(S) 4
= \* Permutation sequences of finite set S.

LET perms[ss ∈ SUBSET S]
4
=

IF ss = {} THEN 〈〉
ELSE LET ps 4

=
[
x ∈ ss 7→

{
Append(sq,x) : sq ∈ perms[ss\{x}]

}]

IN UNION {ps[x] : x ∈ ss}
IN perms[S]

Drop(seq,i) 4
= \* remove element at position i from sequence seq

SubSeq(seq,1, i−1)◦SubSeq(seq, i+1,Len(seq))

available 4
= \* set of resources free for allocation

Resources\ (UNION {alloc[c] : c ∈ Clients})
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Init 4
=

∧ unsat = [Clients→ {}]∧alloc = [Clients→{}]
∧ pool = {}∧ sched = 〈〉

Request(c,S) 4
= \* Client c requests set S of resources.

∧ unsat[c] = {}∧alloc[c] = {}
∧ S 6= {}∧unsat′ = [unsat EXCEPT ![c] = S]

∧ pool′ = pool∪{c}
∧ UNCHANGED 〈alloc,sched〉

Return(c,S) 4
= \* Client c returns a set of resources that it holds.

∧ S 6= {}∧S⊆ alloc[c]
∧ alloc′ = [alloc EXCEPT ![c] = @\S]

∧ UNCHANGED 〈unsat,pool,sched〉
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Allocate(c,S) 4
=

\* Allocation of a set of available resources to a client that requested them.

∧ S 6= {}∧S⊆ available∩unsat[c]
∧ ∃i ∈ 1..Len(sched) : ∧ sched[i] = c

∧ ∀j ∈ 1..i−1 : unsat[sched[j]]∩S = {}
∧ sched′ = IF S = unsat[c] THEN Drop(sched, i) ELSE sched

∧ alloc′ = [alloc EXCEPT ![c] = @∪S]

∧ unsat′ = [unsatEXCEPT![c] = @\S]

∧ UNCHANGED pool

Schedule 4
= \* The allocator extends its schedule by the processes from the pool.

∧ pool 6= {}
∧ ∃sq ∈ PermSeqs(pool) : sched′ = sched ◦ sq
∧ pool′ = {}
∧ UNCHANGED 〈unsat,alloc〉
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Next 4
= \* The next-state relation.

∨ ∃c ∈ Clients,S ∈ SUBSET Resources : Request(c,S)∨Allocate(c,S)∨Return(c,S)

∨ Schedule

vars 4
= 〈unsat,alloc,pool,sched〉

SchedulingAllocator 4
=

∧ Init∧2[Next]vars

∧ ∀c ∈ Clients : WFvars(unsat[c] = {}∧Return(c,alloc[c]))
∧ ∀c ∈ Clients : WFvars(∃S ∈ SUBSET Resources : Allocate(c,S))

∧WFvars(Schedule)

The scheduling allocator satisfies the correctness requirements.
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Crucial invariant: request of any scheduled client can be satisfied from the
resources that will be available after previously scheduled clients released the
resources they held:

∀i ∈ 1..Len(sched) :

unsat[sched[i]] ⊆ available
∪ UNION {unsat[sched[j]]∪alloc[sched[j]] : j ∈ 1..i−1}
∪ UNION {alloc[c] : c ∈ UnscheduledClients}

where UnscheduledClients 4
= Clients\{sched[i] : i ∈ 1..Len(sched)}
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In fact, the scheduling allocator is a refinement of the simple allocator.

MODULE AllocatorRefinement
EXTENDS SchedulingAllocator

Simple 4
= INSTANCE SimpleAllocator

SimpleAllocator 4
= Simple!SimpleAllocator

THEOREM SchedulingAllocator⇒ SimpleAllocator

Due to the schedule, the weaker fairness requirement of the clients implies the
original one because the allocator can guarantee that each client will eventually
receive the resources it asked for.
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7.3 Towards an implementation

Next goals:

• distinguish local states of clients and allocator

• introduce explicit message passing between processes

Idea:

• variables unsat,alloc,pool,sched represent allocator state

• add variables
– requests ∈ [Clients→ SUBSET Resources]
– holding ∈ [Clients→ SUBSET Resources]

to represent clients’ view of system state

• distinguish originating and receiving part of actions

Scheduling approach as before, now focus on distribution and communication
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MODULE AllocatorImplementation
EXTENDS FiniteSets, Sequences, Naturals
CONSTANTS Clients, Resources
ASSUME IsFiniteSet(Resources)
VARIABLES

unsat, \* unsat[c] : allocator’s view of pending requests of client c

alloc, \* alloc[c] : allocator’s view of resources allocated to c

pool, \* set of clients with pending requests that have not been scheduled

sched, \* schedule (sequence of clients)

requests, \* request[c] : client c’s view of pending requests

holding, \* holding[c] : client c’s view of allocated resources

network \* set of messages in transit

Sched 4
= INSTANCE SchedulingAllocator
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Messages 4
= [type : {“request”, “allocate”, “return”},

clt : Clients,
rsrc : SUBSET Resources]

TypeInvariant 4
=

∧ Sched!TypeInvariant
∧ requests ∈ [Clients→ SUBSET Resources]
∧ holding ∈ [Clients→ SUBSET Resources]
∧ network ∈ SUBSET Messages

Init 4
=

∧ Sched!Init
∧ requests = [c ∈ Clients 7→ {}]
∧ holding = [c ∈ Clients 7→ {}]
∧ network = {}
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Request(c,S)
4
=

∧ requests[c] = {}∧holding[c] = {}
∧ S 6= {}∧ requests′ = [requests EXCEPT ![c] = S]

∧ network′ = network∪{[type 7→ “request”,clt 7→ c,rsrc 7→ S]}
∧ UNCHANGED 〈unsat,alloc,pool,sched,holding〉

Rreq(m)
4
=

∧ m ∈ network∧m.type = “request”

∧ unsat′ = [unsat EXCEPT ![m.clt] = m.rsrc]
∧ pool′ = pool∪{m.clt}
∧ network′ = network \{m}
∧ UNCHANGED 〈alloc,sched,requests,holding〉
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Allocate(c,S)
4
=

∧ Sched!Allocate(c,S)

∧ network′ = network∪{[type 7→ “allocate”,clt 7→ c,rsrc 7→ S]}
∧ UNCHANGED 〈requests,holding〉

RAlloc(m)
4
=

∧ m ∈ network∧m.type = “allocate”

∧ holding′ = [holding EXCEPT ![m.clt] = @∪m.rsrc]
∧ requests′ = [requests EXCEPT ![m.clt] = @\m.rsrc]
∧ network′ = network \{m}
∧ UNCHANGED 〈unsat,alloc,pool,sched〉

Return(c,S)
4
= . . .

RRet(m)
4
= . . .

Schedule 4
= Sched!Schedule∧UNCHANGED 〈requests,holding,network〉
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Next 4
=

∨ ∃c ∈ Clients,S ∈ SUBSET Resources : Request(c,S)∨Allocate(c,S)∨Return(c,S)

∨ ∃m ∈ network : RReq(m)∨RAlloc(m)∨RRet(m)

∨ Schedule

vars 4
= 〈unsat,alloc,pool,sched,requests,holding,network〉

Specification 4
=

∧ Init∧2[Next]vars

∧ ∀c ∈ Clients : WFvars(requests[c] = {}∧Return(c,holding[c]))
∧ ∀c ∈ Clients : WFvars(∃S ∈ SUBSET Resources : Allocate(c,S))

∧WFvars(Schedule)
∧ ∀m ∈Messages : WFvars(RReq(m))∧WFvars(RAlloc(m))∧WFvars(RRet(m))

THEOREM Specification⇒ Sched!SchedulingAllocator
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TLC produces a counter-example:

1. Client c1 returns a resource it is holding

2. Client c1 requests the same resource again

3. Allocator handles the request before the return message

This error reflects a typical race condition!

Possible solutions:

• use FIFO communication between processes

• strengthen pre-condition of RReq(m) by conjunct

alloc[m.clt] = {}
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Correctness of refinement relies on following invariant:

RequestsInTransit(c) 4
= \* requests sent by c but not yet received

{
msg.rsrc : msg ∈ {m ∈ network : m.type = “request”∧m.clt = c}

}

AllocsInTransit(c) 4
= \* allocations sent to c but not yet received

{
msg.rsrc : msg ∈ {m ∈ network : m.type = “allocate”∧m.clt = c}

}

ReturnsInTransit(c) 4
= \* return messages sent by c but not yet received

{
msg.rsrc : msg ∈ {m ∈ network : m.type = “return”∧m.clt = c}

}

Invariant 4
= ∀c ∈ Clients :

∧ Cardinality(RequestsInTransit(c)) ≤ 1

∧ requests[c] = unsat[c]∪ (UNION RequestsInTransit(c))∪ (UNION AllocsInTransit(c))
∧ alloc[c] = holding[c]∪ (UNION AllocsInTransit(c))∪ (UNION ReturnsInTransit(c))

Exercise: verify this invariant
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The last specification describes a distributed system, distinguishing between local
state of different processes and assigning responsability for actions.

However, it is not written as a composition of specifications!

• In principle, this can be done in TLA+ (exercise!)

• Some issues:
– state representation (function vs. collection of scalar variables)
– interleaving vs. non-interleaving composition

• Moreover, TLC does not (yet) support multiple next-state relations.

The process structure is in the eye of the beholder
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Summary

• Development of a not-so-small case study

• Verification of properties does not ensure correctness of specification

• Fairness can be tricky (especially for environment)

• Refinement helps to focus on a single problem at a time

• Delay decomposition and communication after main algorithm

• Writing “monolithic” models is easiest in TLA+
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Summary

• TLA formulas express specifications and properties of (transition) systems.

• System verification reduces to proof of formulas.
Verification rules try to reduce temporal conclusions to non-temporal hypotheses.

• Structural concepts are represented using logical connectives:

refinement implication

composition conjunction

hiding existential quantification

Stuttering invariant semantics makes this representation possible.

• TLA+ : specification language designed around TLA and ZFC set theory.

• Tool support: TLC, model checker for high-level specifications
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Thank you!
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