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Analyzing pseudo-telepathy graph games, we propose a way to build contextuality 
scenarios exhibiting the quantum supremacy using graph states. We consider the
combinatorial structures generating equivalent scenarios. We introduce a new tool called 
multipartiteness width to investigate which scenarios are hard to decompose and show 
that there exist graphs generating scenarios with a linear multipartiteness width.
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1. Introduction

Contextuality is an active area of research that describes models of correlations and interpretations, and links to some 
fundamental questions about the natural world. It also provides a framework where one can utilize the understanding of 
quantum mechanics (and quantum information) in order to better analyze, understand, and interpret macroscopic phenom-
ena [10,34,24,21,49].

The theoretical and experimental study of quantum world has proven that a scenario involving many parties (each 
having access to a local information) can contain correlations that do not possess any classical interpretation that relies 
on decomposition of these correlations using local functions. Frameworks for contextuality provide a tool to describe the 
combinatorial structures present in these correlations.

Contextuality has been well studied in literature, see for instance [14,48], and a large family of them [2,3,6,7,45] are 
based on a model introduced by Abramsky and Brandenburger [1] which uses sheaf theory to naturally relate issues sur-
rounding the consistency of interpretation to the pre-sheaf structure obtained by a distribution functor on the sheaf of 
events. The authors introduce three levels of contextuality: (i) Probabilistic contextuality, which corresponds to the possibil-
ity of simulating locally and classically a probability distribution over outcomes for each allowed context of measurements. It 
extends the celebrated Bell’s theorem [12] which shows that quantum probabilities are inconsistent with the predictions of 
any local realistic theory; (ii) Logical contextuality or possibilistic contextuality, which generalizes the kind of contextuality 
present in Hardy’s construction [32] and considers only the support of a probability distribution; (iii) Strong contextuality, 
which generalizes the kind of contextuality present in local measurements of the GHZ state [29] and relies on the existence 
of a global assignment consistent with the support.
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More recently Acín, Fritz, Leverrier, and Belén Sainz [8] have presented contextuality scenarios defined as hypergraphs, 
in which vertices correspond to outcomes and hyperedges are called measurements. A general interpretation model is an 
assignment of non negative reals to the vertices that can be interpreted as a probability distribution for any hyperedge 
(weights of the vertices of each hyperedge sum to 1). Each hypergraph H admits a set C(H) (resp. Q(H), G(H)) of classical 
(resp. quantum, general probabilistic) models with C(H) ⊆ Q(H) ⊆ G(H).

They have shown that the Foulis Randall product of hypergraphs [25] allows one to describe the set of no-signaling 
models in product scenarios G(H1 ⊗ H2). They have also investigated the multipartite case, showing that the different 
products for composition of local interpretation models produce models that are observationally equivalent.

Non locality is a particular case of contextuality, exhibited for example in the pseudo-telepathy games [13]. These are 
games that can be won by non-communicating players that share quantum resources, but cannot be won classically without 
communication.

A family of pseudo-telepathy games based on graph states have been introduced in [9]. The pseudo-telepathy game asso-
ciated with a graph G of order n (on n vertices), is a collaborative n-player game where each player receives a binary input 
(question) and is asked to provide, without communication, a binary output (answer). Some global pairs of (answers|ques-
tions) are forbidden and correspond to losing positions. We associate a hypergraph to each pseudotelepathy game, with its 
vertices labeled by pairs (answers|questions) representing a contextuality scenario. In order to quantify its multipartiteness, 
we define the multipartiteness width: a scenario built from a game on n parties has a multipartiteness width less than 
k if it has an interpretation (assignment of real positive numbers to the vertices) that can be obtained interpretations of 
contextual scenarios on less than k parties as resources.

It has been shown in [17] that even though GHZ type scenarios are maximally non local (strongly contextual), they can 
be won with 2 partite nonlocal boxes. So the multipartiteness width is different from the usual measures of contextuality 
[4,5,28]. However, it has potential application for producing device independent witnesses for entanglement depth [37].

In section 2, we define the graph pseudo-telepathy games, investigate in detail the quantum strategy and link them 
to contextuality scenarios. The quantum strategy consists in sharing a particular quantum state called graph state [33]. 
Graph states have multiple applications in quantum information processing, e.g. secret sharing [27,39,40], interactive proofs 
[15,38,44], and measurement-based quantum computing [18,22,23,42,43,46]. We show in section 3 that provided that the 
players share multipartite randomness, it is enough to perfectly win the associated pseudo-telepathy game, in order to 
simulate the associated quantum probability distribution. In section 4, we prove that graphs obtained by a combinatorial 
graph transformation called pivoting correspond to equivalent games. Finally, we prove that there exist graphs for which 
the multipartiteness width is linear in the number of players, improving upon the previous logarithmic bound given in [9].

Note that even though the rules of these graph games appear non-trivial, they naturally correspond to the correlations 
present in outcomes of a quantum process that performs X and Z measurements on a graph state. Thus, they might be 
easy to produce experimentally. Furthermore even if the space of events is quite large, the scenarios have the advantage of 
possessing concise descriptions, quite similar to the separating scenarios using Johnson graphs in [26]. Requiring such large 
structures to achieve possibilistic contextuality for quantum scenarios seems to be unavoidable. Indeed, it has been shown 
that multiparty XOR type inequalities involving two-body correlation functions cannot achieve pseudo-telepathy [30].

2. Pseudo-telepathy graph games, multipartiteness and contextuality scenarios

Graph notations We consider finite simple undirected graphs. Let G = (V , E) be a graph. For any vertex u ∈ V , NG(u) =
{v ∈ V | (u, v) ∈ E} is the neighborhood of u. For any D ⊆ V , the odd neighborhood of D is the set of all vertices which are 
oddly connected to D in G: Odd(D) = {v ∈ V : |D ∩ N(v)| = 1 mod 2}. Even(D) = V \ Odd(D) is the even neighborhood of 
D , and loc(D) = D ∪ Odd(D) is the local set of D which consists of the vertices in D and those oddly connected to D . See 
Fig. 1.

For any D ⊆ V , G[D] = (D, E ∩ D×D) is the subgraph induced by D , and |G[D]| its size, i.e. the number of edges of 
G[D]. Note that Odd can be realized as a linear map (where we consider subsets as binary vectors), which implies that for 
any two subset of vertices A, B , Odd(A ⊕ B) = Odd(A) ⊕ Odd(B) where ⊕ denotes the symmetric difference.

We introduce the notion of involvement:

Definition 1 (Involvement). Given a graph G = (V , E), a set D ⊆ V of vertices is involved in a binary labeling x ∈ {0, 1}V of 
the vertices if D ⊆ supp(x) ⊆ Even(D), where supp(x) = {u ∈ V | xu = 1}.

Fig. 1. Even and odd neighborhoods.
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In other words, D is involved in the binary labeling x, if all the vertices in D are labeled with 1 and all the vertices in 
Odd(D) are labeled with 0. Notice that when G[D] is not a union of Eulerian graphs,1 there is no binary labeling in which 
D is involved. On the other hand, if G[D] is a union of Eulerian graphs, there are 2|Even(D)|−|D| binary labellings in which D
is involved.

Collaborative games A multipartite collaborative game G for a set V of players is a scenario characterized by a set L ⊆
{0, 1}V × {0, 1}V of losing pairs: each player u is asked a binary question xu and has to produce a binary answer au . The 
collaborative game is won by the players if for a given question x ∈ {0, 1}V they produce an answer a ∈ {0, 1}V such that 
the pair formed by a and x, denoted (a|x), is not a losing pair, i.e. (a|x) /∈ L.

A game is pseudo-telepathic if classical players using classical resources cannot perfectly win the game (unless they cheat 
by exchanging messages after receiving the questions) whereas using entangled states as quantum resources the players can 
perfectly win the game, giving the impression to a quantum non believer that they are telepathic (as the only classical 
explanation to a perfect winning strategy is that they are communicating).

An n-player strategy here is viewed as a protocol without communication where each player has access to some kind 
of resources (shared randomness, quantum states, k-partite non local boxes) that they access locally in a sequence using 
a finite number of rounds before producing their output. We use the term classical to refer to the case where the players 
have access only to shared randomness.

Example 1. The losing set associated with the Mermin parity game [41] is LMermin = {(a|x) : ∑
xi = 0 mod 2 and 

∑
ai +

(
∑

xi)/2 = 1 mod 2}. Notice that the losing set admits the following simpler description: LMermin = {(a|x) : 2|a| = |x| +
2 mod 4}, where |x| = |supp(x)| is the Hamming weight of x.

Collaborative graph games MCG(G) A multipartite collaborative game MCG(G) associated with a graph G = (V , E), where V is 
a set of players, is the collaborative game where the set of losing pairs is LG := {(a|x) : ∃D involved in x s.t. 

∑
u∈loc(D) au =

|G[D]| + 1 mod 2}. In other words, the collaborative game is won by the players if for a given question x ∈ {0, 1}V they 
produce an answer a ∈ {0, 1}V such that for any non-empty D involved in x,∑

u∈loc(D)

au = |G[D]| mod 2.

Example 2. Consider MCG(Kn) the collaborative game associated with the complete graph Kn of order n. When a question 
x contains an even number of 1s the players trivially win since there is no non-empty subset of vertices involved in 
such a question. When x has an odd number of 1s, the set of players (vertices) involved in this question is D = supp(x). 
In this case, all the players are either in D or Odd(D) thus the sum of all the answers has to be equal to |G[D]| =
|D|(|D|−1)

2 = |D|−1
2 mod 2. Thus for the complete graph Kn , LKn = {(a|x) : |x| = 1 mod 2 and |a| = |x|−1

2 + 1 mod 2} = {(a|x) :
2|a| = |x| + 1 mod 4}. Note that for this particular graph, the constraints are global in the sense that the sum of the answers 
of all the players is used for all the questions. Notice also that the set of losing pairs LKn = {(a|x) : 2|a| = |x| + 1 mod 4} is 
similar to the one of the Mermin parity game, LMermin = {(a|x) : 2|a| = |x| + 2 mod 4}. In section 4, we actually show the 
two games simulate each other.

Quantum strategy (Qstrat) In the following we show that for any graph G , the corresponding multipartite collaborative 
game can be won by the players if they share a particular quantum state. More precisely the state they share is the so-called 
graph state |G〉 = 1√

2|V |
∑

y∈{0,1}V (−1)|G[supp(y)]| |y〉, and they apply the following strategy: every player u measures his qubit 
according to X if xu = 1 or according to Z if xu = 0. Every player answers the outcome au ∈ {0, 1} of this measurement.

This quantum strategy QStrat, not only produces correct answers, but provides all the good answers uniformly:

Lemma 2. Given a graph G = (V , E) and question x ∈ {0, 1}V , the probability p(a|x) to observe the outcome a ∈ {0, 1}V when each 
qubit u of a graph state |G〉 is measured according to Z if xu = 0 or according to X if xu = 1 satisfies:

p(a|x) =
{

0 if (a|x) ∈ L
|{D involved in x}|

2|V | otherwise.

Proof. According to the Born rule, the probability to get the answer a ∈ {0, 1}V to a given question x ∈ {0, 1}V is:

p(a|x) = 〈G|
⎛
⎝ ⊗

v∈V \supp(x)

I + (−1)av Z v

2

⎞
⎠ ⊗

⎛
⎝ ⊗

u∈supp(x)

I + (−1)au Xu

2

⎞
⎠ |G〉

1 The following three properties are equivalent: (i) D ⊆ Even(D); (ii) every vertex of G[D] has an even degree; (iii) G[D] is a union of Eulerian graphs. 
Notice that D ⊆ Even(D) does not imply that G[D] is Eulerian as it may not be connected.
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= 1

2n

∑
D⊆V

(−1)
∑

u∈D au 〈G| Z D\supp(x) XD∩supp(x) |G〉

The basic property which makes this strategy work is that for any u ∈ V , Xu |G〉 = Z N(u) |G〉. As a consequence, since X and 
Z anti-commute and X2 = Z 2 = I , for any D ⊆ V , XD |G〉 = (−1)|G[D]| ZOdd(D) |G〉. Thus,

p(a|x) = 1

2n

∑
D⊆V

(−1)|G[D∩supp(x)]|+∑
u∈D au 〈G| Z(Odd(D∩supp(x)))⊕(D∩\supp(x)) |G〉

Where ⊕ denotes the symmetric difference. Since 〈G| ZC |G〉 =
{

1 if C = ∅
0 otherwise

,

p(a|x) = 1

2n

∑
D⊆V ,D\supp(x)=Odd(D∩supp(x))

(−1)|G[D∩supp(x)]|+∑
u∈D au

= 1

2n

∑
D1⊆supp(x)

∑
D0⊆V \supp(x),D0=Odd(D1)

(−1)
|G[D1]|+∑

u∈D0∪D1
au

= 1

2n

∑
D1⊆supp(x),Odd(D1)∩supp(x)=∅

(−1)
|G[D1]|+∑

u∈loc(D1) au

= 1

2n

∑
D1involved in x

(−1)
|G[D1]|+∑

u∈loc(D1) au = |R(x,a)
0 | − |R(x,a)

1 |
2n

where R(x,a)

d = {D involved in x : |G[D]| + ∑
u∈loc(D) au = d mod 2}. If (a|x) /∈L, then R(x,a)

1 = ∅, so p(a|x) = |{D involved in x}|
2n >

0 since ∅ is involved in x. Otherwise, there exists D ′ ∈ R(x,a)
1 . Notice that R(x,a)

0 is a vector space (∀D1, D2 ∈ R(x,a)
0 , D1 ⊕ D2 ∈

R(x,a)
0 ) and R(x,a)

1 an affine space R(x,a)
1 = {D ′ ⊕ D | D ∈ R(x,a)

0 }. Thus |R(x,a)
0 | = |R(x,a)

1 | which implies p(a|x) = 0. �
The probability distribution produced by QStrat depends on the number of sets D involved in a given question 

x. Notice that a set D ⊆ supp(x) is involved in x if and only if D ∈ Ker(Lx), where Lx linearly2 maps A ⊆ supp(x)
to Odd(A) ∩ supp(x). Thus |{D involved in x}| = 2|x|−rkG (x) , where rkG(x) = log2(|{Lx(A) : A ⊆ supp(x))}|) is the rank of 
Lx = A �→ Odd(A) ∩ supp(x).

Contextuality scenario With any multipartite collaborative game MCG(G), we associate a hypergraph which describes a 
contextuality scenario in the sense of the hypergraph approach to contextuality[8]. The vertices are the pairs (a|x) and each 
hyperedge corresponds, roughly speaking, to a constraint.

The hyperedges can be decomposed into two subsets : those (HNsigV
) which guarantee no-signaling and those (HG ), 

depending on the graph G , which avoid the losing pairs:

• HNsigV
is the hypergraph representing the no-signaling polytope. It corresponds [8] to the Bell scenario B |V |,2,2 where 

|V | parties have access to 2 local measurements each, each of which has 2 possible outcomes (see Fig. 2), which is 
obtained as a product3 of the elementary scenario B1,2,2.

• The hypergraph HG defined on the same vertex set, corresponds to the game constraints: for each question4 x ∈ {0, 1}V

we associate an hyperedge ex containing all the answers which make the players win on x i.e., ex = {(a|x) ∈ {0, 1}V ×
{0, 1}V , (a|x) /∈L}.

Given a graph G = (V , E), MCG(G) is a pseudo-telepathy game if it admits a quantum model (Q(HG ∪ HNsigV
) �= ∅) but 

no classical model (C(HG ∪ HNsigV
) = ∅). It has been proven in [9] that MCG(G) is pseudo-telepathic if and only if G is not 

bipartite.

2 Lx is linear for the symmetric difference: Lx(D1 ⊕ D2) = Lx(D1) ⊕ Lx(D2).
3 The Foulis Randall product of scenarios [8] is the scenario H A ⊗ H B with vertices V (H A ⊗ H B ) = V (H A) × V (H B ) and edges E(H A ⊗ H B ) = E A→B ∪ E A←B

where E A→B := {∪a∈e A {a} × f (a) : ea ∈ E A , f : e A → E B } and E A←B := {∪b∈e A f (b) × {b} : eb ∈ Eb, f : E B → E A}. In the multipartite case there are several 
ways to define products, however they all correspond to the same non-locality constraints [8]. Therefore one can just consider the minimal product 
min ⊗n

i=1 Hi which has vertices in the Cartesian product V = �V i and edges ∪k∈[1,n] Ek where Ek = {(v1 . . . , vn), vi ∈ ei ∀i �= k, vk ∈ f (−→v )} for some edge 
ei ∈ E(Hi) for every party i �= k and a function −→v �→ f (−→v ) which assigns to every joint outcome −→v = (v1 . . . vk−1, vk+1, . . . vn) an edge f (−→v ) ∈ E(Hk)

(the kth vertex is replaced by a function of the others).
4 Note that for the questions x for which there exists no D involved in x, all the answers are allowed thus the constraints represented by the associated 

edge is a hyperedge of no-signaling scenario HNsig .
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Fig. 2. HNsig2
: hyperedges of the Bell scenario B2,2,2 from [8].

Fig. 3. Paley graph of order 13.

Example 3. In a complete graph Kn of order n, there exists a non-empty set D involved in a question x ∈ {0, 1}V if and only if 
|x| = 1 mod 2. With each such question x, the associated hyperedge is ex = {(a|x) ∈ {0, 1}V ×{0, 1}V s.t. 2|a| �= |x| +1 mod 4}.

When n = 3, the scenario obtained has vertices (a|x), with a, x ∈ {0, 1}3.

• H Nsig{1,2,3} =min ⊗3
i=1 H Nsigi where H Nsigi = {{(0|0), (1|0)}, {(0|1), (1|1)}} are the hyperedges ensuring non-signaling.

• HG = {e001, e010, e001, e111} where
e001 = {(000|001), (011|001), (101|001), (110|001)},
e010 = {(000|010), (011|010), (101|010), (110|010)},
e001 = {(000|001), (011|001), (101|001), (110|001)},
e111 = {(100|111), (010|111), (001|111), (111|111)}.

Example 4. In the graph Paley 13 (see Fig. 3), Odd({0, 1, 4}) = {2, 7, 8, 9, 11, 12} thus if {0, 1, 4} is involved in x i.e. xi = 1
for i ∈ {0, 1, 4} and xi = 0 for i ∈ {2, 7, 8, 9, 11, 12} then the associated pseudo-telepathy game requires that the sum of 
the outputs of these nine players 

∑
i /∈{3,5,6,10} ai has to be odd. This corresponds to 16 hyperedges e jklm for j, k, l, m ∈

{0, 1} in the contextuality scenario where e jklm = {(a|x), ∑i /∈{3,5,6,10} ai = 1 mod 2, xi = 1 for i ∈ {0, 1, 4}, xi = 0 for i ∈
{2, 7, 8, 9, 11, 12}, x3 = j, x5 = k, x6 = l, x10 = m}.

For any contextuality scenario (hypergraph), one can choose an integer n, label the vertices with (a|x) with a, x ∈ {0, 1}n , 
add some new vertices to have 22n vertices, add the non signaling hyperedges induced by the labeling and try to find a 
model consistent with the original hyperedges and the nonsignaling ones. Thus it seems interesting to lift the properties 
observed in our model to the scenario itself, by considering the possible labellings. Note that as pseudotelepathy is a special 
case of nonlocality, for the families of scenarios that we build, the labeling and the non signaling condition are already 
fixed.

It is interesting to go back to the models of contextuality defined in [1] as the probabilistic contextuality is what was 
considered in [9] as it corresponds to investigating the possibility of simulating a probability distribution of a quantum 
strategy playing with graph states.
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Furthermore, the two other levels of contextuality can gain some new perspectives when viewed as games: indeed the 
possibilistic contextuality is similar to the fact that the players cannot give all the good answers with non zero probability 
using classical local strategies, and strong contextuality is similar to the case where classical players cannot win the game 
(even by giving a strict subset of the good answers).

Definition 3. An interpretation p : {0, 1}V × {0, 1}V → [0, 1] is k-multipartite if it can be obtained by a strategy without 
communication using nonlocal boxes that are at most k-partite: for any set I ⊂ V with |I| ≤ k, each player has access to one 
bit of a variable λI (aI |xI ) that has a no-signaling probability distribution.

In other words, a k-multipartite interpretation can be obtained with no-signaling correlations involving at most k players. 
For example the strategy to win the Mermin game proposed in [17] where each pair among n players share a (2-partite) 
non localbox and each player outputs the sum of his boxes’ outputs is a 2-multipartite interpretation. Similarly, the result in 
[11] where they prove that a probability distribution that can be obtained by 5 players measuring a quantum state cannot 
be simulated without communication using any number of bi-partite non local boxes shows that it is not a 2-multipartite 
interpretation.5

Definition 4 (Multipartiteness width). A scenario has a multipartiteness width k if it admits a k-multipartite interpretation 
but no (k − 1)-multipartite interpretation.

In a contextual scenario, the more hyperedges one adds the less possible interpretations exist (the interpretations of a 
hypergraph with one extra hyperedge are a subset of the interpretations of the one with one less constraint). A scenario 
has a multipartiteness width k if its hyperedges already forbids all the interpretations of a product of Bell scenarios on less 
than k parties. For a scenario, having a classical interpretation means being decomposable : one can think of the probability 
distribution as local actors acting each on his bit and that’s a classical interpretation. The multipartiteness width measure 
how non-decomposable a scenario is : it can not be decomposed with interpretations where each subspace has a small 
width.

It implies that the players cannot perfectly win the game if they have only quantum systems on less than k qubits, this 
corresponds to using k separable states as resources as defined in [31].

Note that from the observations in [9] the multipartiteness width of the scenario generated by the Paley graph on 13 
(see Fig. 3) is strictly larger than 4.

In the next section, we will show how for the scenarios we describe, being able to give only good answers allows for 
simulation of the quantum distribution with random variables. Thus, the contextuality lies in the combinatorial structure of 
the graph and the three levels collapse for these games.

3. Simulating a probability distribution is the same as winning the pseudo-telepathy graph game

In [9] it was proven that for some graphs, the probability distributions of the quantum strategy using the graph states 
cannot be simulated using non local boxes on less than k parties, we show here that any strategy that allows to win the 
game can be extended using random variables shared between neighbors (in the graph) to simulate the uniform probability 
distribution arising from the quantum strategy.

We start by describing a classical strategy CStrat based on shared random variables rather than quantum states. We 
show that CStrat is a winning strategy if and only if the graph is bi-partite. We also show that CStrat can be used to 
make any winning strategy a uniform winning strategy, i.e. each valid answer to a given question are equiprobable. We 
show that CStrat can be locally adapted to collaborative games on graphs that can be obtained by a sequence of local 
complementations.

Classical strategy (Cstrat) Given a graph G = (V , E), pick uniformly at random λ ∈ {0, 1}V . Each player u ∈ V receives a 
pair of bits (λu, μu), where μu = ∑

v∈NG (u) λu mod 2. Given a question x ∈ {0, 1}V , each player u ∈ V locally computes and 
answers au = (1 − xu).λu + xu .μu mod 2.

Lemma 5. Given a graph G = (V , E) and a question x ∈ {0, 1}V , CStrat produces an answer uniformly at random in {a ∈
{0, 1}V | ∃D ⊆ S, (A ⊕ Odd(A ⊕ D))∩S = ∅ where A = supp(a) and S = supp(x)}.

Proof. Given a graph G = (V , E), a question x ∈ {0, 1}V and a ∈ {0, 1}V , the probability that CStrat outputs a is

p(a|x) = p (∀u∈V \S,au=λu) p(∀u∈S,au=
∑

v∈N(u)

λv mod 2 | ∀u∈V \S,au=λu)

= p (A \ S = � \ S) p(A ∩ S = Odd(�) ∩ S|A \ S = � \ S)

5 The probability distribution described in [11] corresponds to the quantum winning strategy on the graph state obtained from a cycle with 5 vertices.
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where S = supp(x), A = supp(a) and � = supp(λ). Since p (A \ S = � \ S) = 1
2n−|x| , p(a|x) =

1
2n−|x| p (A ∩ S = Odd(� ∩ S ⊕ � \ S) ∩ S|A \ S = � \ S) = 1

2n−|x| p (A ∩ S = Odd(D ⊕ (A \ S)) ∩ S|A \ S = � \ S), where 
D = � ∩ S . If A ∩ S �= Odd(D ⊕ (A \ S)) ∩ S for all D ⊆ S , then p(a|x) = 0. Otherwise, the set of subsets D of S
which satisfy the condition is the affine space {D0 ⊕ D| D ⊆ S ∧ Odd(D) ∩ S = ∅}, where D0 is a fixed set which 
satisfies A ∩ S = Odd(D0 ⊕ A \ S) ∩ S . Thus the p(a|x) = 1

2n−|x| .
|{D⊆S|Odd(D)∩S=∅}|

2|x| = 2|x|−rkG (x)−n , which is independent 
of a, proving the uniformity of the answer. Finally notice ∃D0 ⊆ S, A ∩ S = Odd(D0 ⊕ (A \ S)) ∩ S if and only if 
∃D1 ⊆ S, (A ⊕ Odd(A ⊕ D1))∩S = ∅, by taking D1 = D0 ⊕ (A ∩ S). �

We consider some standard graph transformations: Given a graph G = (V , E) the local complementation [16] on a 
vertex u ∈ V produces the graph G ∗ u = (V , E ⊕ K N(v)) where the sum is taken modulo 2 (it is the symmetric difference) 
and KU is the complete graph on U ⊂ V . G ∗ u is obtained from G by exchanging the edges by non edges and vice 
versa in the neighborhood of the vertex u. Pivoting using an edge (u, v), is a sequence of three local complementations 
G ∧ uv = G ∗ u ∗ v ∗ u. We denote by δloc(G) [35,36,19] (resp. δpiv(G)) the minimum degree taken over all graphs that can 
be obtained from G through some sequence of local complementations (edge pivots).

Given the shared randomness (λv , μv)v∈V associated with G , if player u replaces its first bit by the XOR of its two bits, 
and each of his neighbors replaces his second bit by the XOR of his two bits, one gets the shared randomness associated 
with G ∗ u. (proof given in Appendix)

Lemma 6. Given the probability distribution (λv , μv)v∈V associated with G, if player u replaces its first bit by the XOR of its two bits, 
and each of its neighbors replaces their second bit by the XOR of their two bits, one gets the probability distribution associated with 
G ∗ u.

Thus the probability distribution corresponding to the classical strategy for G can be locally transformed into the prob-
ability distribution associated with the G ∗ u, thus one can use local complementation to optimize the cost of preparing 
the shared randomness. For instance the classical strategy CStrat for a graph G requires shared random bits on at most 
�loc(G) + 1 players, where �loc(G) = min(�(G ′), s.t. ∃u1, . . . , uk, G ′ = G ∗ u1 ∗ . . . ∗ uk) and �(G) is its maximum degree. 
If there is no pre-shared random bits, the probability distribution can be prepared using at most 2|G|loc communications 
in-between the players, where |G|loc = min(|G ′|, s.t. ∃u1, . . . , uk, G ′ = G ∗ u1 ∗ . . . ∗ uk) is the minimum number of edges by 
local complementation.

Now we show how, using the classical strategy CStrat , one can simulate the quantum strategy QStrat given an oracle 
that provides only good answers.

Lemma 7. For any collaborative game on a graph G, for any strategy Q that never loses, there exists a strategy Q ′ using the outputs of 
Q and shared random variables that simulate QStrat.

Proof. Given a collaborative graph game on a graph G , let Q be a strategy that always outputs permissible outputs for any 
set of inputs x, so we have pairs (a|x) /∈ L. We consider the strategy which combines Q and CStrat for this graph: For a 
given question x, Q ′ outputs the XOR of the Q answer and CStrat answer for x. First we prove that such an answer is a 
valid answer and then the uniform probability among the possible answer to a given question. Given a question x ∈ {0, 1}V , 
suppose Q ′ outputs a′ ∈ {0, 1}V : ∀u ∈ V , a′

u = au + (1 − xu)λu + xuμu where au is the answer produced by Q and λ and 
μ are as defined in the classical strategy. By contradiction, assume (a′|x) ∈ L, so there exists D involved in x such that ∑

u∈loc(D) a′
u = |G[D]| + 1 mod 2.∑

u∈loc(D) a′
u = ∑

u∈loc(D) (au + (1 − xu)λu + xuμu) mod 2 = ∑
u∈loc(D) au +∑

u∈loc(D)\supp(x) λu +∑
u∈loc(D)∩supp(x) μu mod

2 = ∑
u∈loc(D) au + ∑

u∈Odd(D) λu + ∑
u∈D

∑
v∈N(u) λv mod 2 = ∑

u∈loc(D) au + ∑
u∈Odd(D) λu + ∑

v∈Odd(D) λv mod 2 =∑
u∈loc(D) au mod 2. Thus (a|x) ∈ L which is a contradiction thus p(a′|x) = 0 if (a′|x) ∈ L. Now we prove that 

p(a′|x) = 2|x|−n−rkG (x) . First assume Q is determinist, thus p(a′|x) is the probability that the classical strategy out-
puts a + a′ := (au + a′

u mod 2)u∈V . Since this probability is non zero it must be 2|x|−n−rkG (x) . If Q is probabilistic, p(a′|x) =∑
a∈{0,1}V p(Q outputs a on x)p(classical strategy outputs a + a′ on x) ≤ 2|x|−n−rkG (x) ∑

a∈{0,1}V p(Q outputs a on x) ≤
2|x|−n−rkG (x) . Thus each answer a produced by the strategy on a given question x is s.t. (a|x) /∈L and occurs with probability 
at most 2|x|−n−rkG (x) . Since |{a ∈ {0, 1}V | (a|x) /∈L}| = 2|x|−n−rkG (x) , each of the possible answers is produced by the strategy 
and occurs with probability 2|x|−n−rkG (x) . �
4. Locally equivalent games

A pseudo telepathy game G locally simulates another pseudo telepathy game G′ if any winning strategy for G can be 
locally turned into a winning strategy for G′:

Definition 8 (Local simulation). Given two pseudo telepathy games G and G′ on a set V of players which sets of losing 
pairs are respectively LG and LG′ , G locally simulates G′ if for all u ∈ V , there exist f1, . . . , fn : {0, 1} → {0, 1} and 
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g1, . . . , gn : {0, 1} × {0, 1} → {0, 1} s.t. ∀x, a ∈ {0, 1}V (g(a, x), x) ∈ LG′ ⇒ (a| f (x)) ∈ LG where f (x) = ( fu(xu))u∈V and 
g(a, x) = (gu(au, xu))u∈V .

Assuming G locally simulates G′ and that the players have a strategy to win G , the strategy for G′ is as follows: given 
an input x of G′ , each player u applies the preprocessing fu turning her input xu into fu(xu), then they collectively play 
the game G with this input f (x) getting an output a s.t. (a| f (x)) /∈ LG . Finally each player u applies a postprocessing gu
which depends on her output au and her initial input xu to produce the output gu(au, xu) to the game G′ . This output is 
valid since, by contradiction, (g(a, x), x) ∈ LG′ would imply (a| f (x)) ∈LG .

Definition 9 (Local equivalence). G and G′ are locally equivalent games if G locally simulates G′ and G′ locally simulates G .

In the following we give two examples of locally equivalent games (the proofs of equivalence are given in Appendix): 
first we show that the games associated with the complete graphs are locally equivalent to Mermin parity games, and then 
that pivoting, a graph theoretical transformation, produces a graph game locally equivalent to the original one:

Lemma 10. For any n, the game associated with the complete graph Kn is locally equivalent to the Mermin parity game on n players.

Lemma 11. Given a graph G = (V , E) and (u, v) ∈ E, the games associated with G and G ∧ uv are locally equivalent.

Therefore, the important quantity for the pre-shared randomness for the strategies defined with a graph is �piv (G) =
min{�(G ′), G ′ pivot equivalent to G}.

5. Scenarios with linear multipartiteness width

We prove that there exist contextuality scenarios with linear multipartiteness width. We use a graph property called 
k-odd domination which is related [9] to the classical simulation of the quantum probability distribution obtained by playing 
the associated graph game. Since bipartite graphs correspond to graph games that can be won classically [9], we focus on 
the non-bipartite case by showing that there exist non-bipartite 0.11n-odd dominated graphs of order n.

Definition 12 (k-odd domination [9]). A graph G = (V , E) is k-odd dominated (k-o.d.) iff for any S ∈ (V
k

)
, there exists a labeling

of the vertices in S = {v1, . . . , vk} and C1, . . . Ck , s.t. ∀i, Ci ⊆ V \ S and Odd(Ci) ∩ {vi, . . . vk} = {vi} and Ci ⊆ Even(Ci).

Lemma 13. For any k ≥ 0, r ≥ 0 and any graph G = (V , E) a graph of order n having two distinct independent sets V 0 and V 1 of 
order |V 0| = |V 1| = �n−r

2 �, G is k-odd dominated if for any i ∈ {0, 1}, and any non-empty D ⊆ V \ V i , |OddG(D) ∩ V i | > k − |D|

Proof. Given S0 ⊆ V 0, S1 ⊆ V 1, and S2 ⊆ V 2 = V \ (V 0 ∪ V 1) s.t. |S0| +|S1| +|S2| = k, we show that for any u ∈ S = S0 ∪ S1 ∪
S2, there exists Cu ⊆ V \ S s.t. Odd(Cu) ∩ S = {u} and Cu ⊆ E ven(Cu). For any u ∈ S , there exists i ∈ {0, 1} s.t. u ∈ Si ∪ S2. Let 
Li : 2Si∪S2 → 2V 1−i\S1−i be the function which maps D ⊆ Si ∪ S2 to Li(D) = OddG (D) ∩ (V 1−i \ S1−i). Li is linear according 
to the symmetric difference. Li is injective: for any D ⊆ Si ∪ S2, Odd(D) ∩ (V 1−i \ S1−i) = ∅ implies Odd(D) ∩ V 1−i ⊆ S1−i , 
thus |Odd(D) ∩ V 1−i | ≤ |S1−i |. notice that |D| ≤ |Si | + |S2|, so |Odd(D) ∩ V 1−i | ≤ |S1−i | ≤ |S0| + |S1| + |S2| − |D| = k − |D|, 
so D = ∅. The matrix representing Li is nothing but the submatrix �[Si∪S2,V 1−i\S1−i ] of the adjacency matrix � of G . So 
its transpose �[V 1−i\S1−i ,Si∪S2] is surjective which means that the corresponding linear map LT

i : 2V 1−i\S1−i → 2Si∪S2 = C �→
OddG(C) ∩ (V 1−i \ S1−i) is surjective, so ∃Cu ⊆ V 1−i \ S1−i s.t. OddG (Cu) ∩ (Si ∪ S2) = {u}, which implies, since V 1−i is an 
independent set, that OddG (Cu) ∩ S = {u} and Cu ⊆ E ven(Cu). �
Theorem 14. For any even n > n0 , there exists a non-bipartite �0.110n�-odd dominated graph of order n.

Proof. Given n, r ≤ n s.t. r = n mod 2, and k ≥ 0. Let p = (n − r)/2, and let G = (V 0 ∪ V 1 ∪ V 2, E) s.t. |V 0| = |V 1| = p, 
|V 2| = r be a random graph on n vertices s.t. for any u ∈ V i , v ∈ V j there is an edge between u and v with probability 0 if 
i = j and with probability 1/2 otherwise. For any i ∈ {0, 1}, and any non empty D ⊆ V \ V i s.t. |D| ≤ k, let A(i)

D be the bad 
event |OddG(D) ∩ V i | ≤ k − |D|. Since each vertex of V i is in OddG(D) with probability 1/2, Pr(A(i)

D ) = ∑k−|D|
j=0

(p
j

)
2−p ≤

2p[H(
k−|D|

p )−1] . Another bad event is that G is bipartite which occurs with probability less than ( 7
8 )pr . Indeed, the prob-

ability that given u ∈ V 0, v ∈ V 1, w ∈ V 2, (u, v, w) do not form a triangle is 7
8 , so given a bijection f : V 0 → V 1, the 

probability that ∀u ∈ V 0, ∀w ∈ V 2, (u, f (u), w) do not form a triangle is ( 7
8 )pr . Let X be the number of bad events. 

E[X] = 2 
∑k

d=1

(p+r
d

)∑k−d
j=0

(p
j

)
2−p + ( 7

8 )pr ≤ 2 
∑k

d=1 2(p+r)H( d
p+r )+pH( k−d

p )−p + ( 7
8 )pr ≤ 2 

∑k
d=1 2pH( d

p+r )+pH( k−d
p )−p+r + ( 7

8 )pr . 

The function d �→ pH( d
p+r ) + pH( k−d

p ) − p + r is maximal for d = k(p+r)
2p+r . Thus, E[X] ≤ 2k22pH( k

2p+r )−p+r + ( 7
8 )pr . By taking 

r = 1, and k = 0.11n = 0.11(2p + 1), E[X] < 1 when p large enough, thus G has no bad event with a non zero probabil-
ity. �
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Corollary 15. There exist contextuality scenarios with linear multipartiteness width: for any even n > n0 , there exist graph games on 
n players producing contextuality scenarios of multipartiteness width at least �0.11n�.

Proof. Using the result from [9], for any non bipartite graph of order n being 0.11n-o.d ensures that the probability distri-
bution obtained by using the quantum strategy cannot be simulated using non local boxes involving at most 0.11n parties. 
Thus Lemma 7 allows to conclude that the associated pseudo-telepathy game cannot be won classically. Therefore there is 
no interpretation that is k-multipartite with k < 0.11n which means that the contextuality scenario has linear width. �
6. Conclusion

We have shown that there exist graphs with linear multipartiteness width, however the proof is non constructive and 
the best known bound for explicit families is logarithmic. A natural future direction of research would be to find explicit 
families with linear multipartiteness width or to improve the bounds proven for the Paley graph states. An other important 
question is to consider lower bounds for the scenarios associated with the graph games. A promising area of investigation 
for multipartite scenarios is: what happens if we limit the width of shared randomness? Indeed, for the proof of how 
winning the game allows to simulate the quantum probability distributions, one needs only shared random variables that 
are correlated in local neighborhoods in the graph. One can also consider the link with building entanglement witnesses for 
graph states, generalizing the construction of [33]. It would be also very interesting to link the multipartiteness width with 
the structures of the groups of the associated binary linear system defining the two-player bipartite non-local games [47]. 
Very recently, Chao and Reichardt [20] proposed a test separating quantum theory form k-local theories, where players can 
use k-local boxes. A future work could consist in defining new tests associated with our games, proving bounds on how far 
they are from being winnable in k-local theories. Finally, one can expect that the multipartiteness width of the Paley graph 
states might have cryptographic applications to ensure security against cheating for some protocols for example.
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