Using Verb Structure for Semantic Variables Control

ı

Maxime Amblard

-

15 Mai 2009

Arc CAuLD Nancy

P. de Groote

Introduction of left and right contexts in the calculus

 $\lambda os.s(\lambda xo(\lambda ye\phi.verb\ x\ y \land \phi\ e)))$

3 classical problems in Semantic:

- 1. Scope (quantifiers and negation)
- 2. Anaphora Resolution
- 3. Temporal structure

3 classical problems in Semantic:

- I. Scope (quantifiers and negation)
 Use of lambda mu-calculus
- 2. Anaphora Resolution
- 3. Temporal structure

3 classical problems in Semantic:

- 1. Scope (quantifiers and negation)
 Use of lambda mu-calculus
- 2. Anaphora Resolution

Determine subsets of accessible variables

3. Temporal structure

3 classical problems in Semantic:

- Scope (quantifiers and negation)
 Use of lambda mu-calculus
- 2. Anaphora Resolution

Determine subsets of accessible variables

3. Temporal structure

Modelling structural dependencies

In Montagovian calculus, scopes are usual ones

$$\lambda QPe. \forall x \ Qx \Rightarrow Px(x :: e)$$

In Montagovian calculus, scopes are usual ones

$$\lambda QPe. \forall x \ Qx \Rightarrow Px(x :: e)$$

Introduction of a sub $\lambda\mu$ -calculus of Parigot to model quantifiers (de Groote 01)

$$\lambda Qe\mu\alpha.\forall xQ(x) \Rightarrow \alpha(x)(x::e)$$

In Montagovian calculus, scopes are usual ones

$$\lambda QPe. \forall x \ Qx \Rightarrow Px(x :: e)$$

Introduction of a sub $\lambda\mu$ -calculus of Parigot to model quantifiers (de Groote 01)

$$\lambda Qe\mu\alpha.\forall xQ(x)\Rightarrow\alpha(x)(x::e)$$

 μ -operators allow to *froze* a part of calculus and perform it later in the evaluation

 $\lambda\mu$ -calculus is an under-specified representation of scope ambiguities

But in the context of MDS, the resolution of a μ -operator implies to take scope over the right context

A solution:

Introduction of a scope border (SB) for μ -resolution But... where ?

From the Computational Semantic perspective, semantic is build under the verb structure

Hyp:

- SB is a structural property which belongs to verb structure
- The μ -operator belongs to the noun definition

SB and μ -operator should be split into:

- lexical noun item
- lexical verb item

From the Computational Semantic perspective, semantic is build under the verb structure

From the Computational Semantic perspective, semantic is build under the verb structure

Нур:

- SB is a structural property which belongs to verb structure
- The μ -operator belongs to the noun definition

From the Computational Semantic perspective, semantic is build under the verb structure

Hyp:

- SB is a structural property which belongs to verb structure
- The μ -operator belongs to the noun definition

SB and μ -operator should be split into:

lexical noun item

$$\lambda Qe\mu\alpha.\forall xQ(x)\Rightarrow\alpha(x)(x::e)$$

lexical verb item

$$\lambda os.s(\lambda xo(\lambda ye\phi.[verb\ x\ y \land \phi\ e])))$$

This is more or less the same treatment I had proposed in Amblard07th where:

Variables are introduced in formulae in two steps:

- position
- realisation

And, this is a marker of the maximal phase of a verb

Phases are the different states of a verb in a syntex/semantic analyse in generative grammar.

This implies that Semantic needs:

I. information from the syntax

2. a structure which links propositions

This implies that Semantic needs:

- I. information from the syntax structural properties of the MDS's input
- 2. a structure which links propositions

This implies that Semantic needs:

- I. information from the syntax structural properties of the MDS's input
- 2. a structure which links propositions

let's see next slide...

2. implies that:

in a computational semantic system, reification is needed (!)

2. implies that:

in a computational semantic system, reification is needed (!)

3 types:

- $\cdot e$ individual
- t true values
- ι event

2. implies that:

in a computational semantic system, reification is needed (!)

3 types:

- $\cdot e$ individual
- t true values
- ι event

Event in a very general sense, a better definition should be: type of semantic unit binders

They are associated to verbs

Introduction of this new type:

I. including more informations like thematic roles, ...

2. data structure which links the verb's variables

Introduction of this new type:

I. including more informations like thematic roles, ...

$$\lambda P \lambda x_2 \lambda y \lambda e.P(y,e) \wedge patient(e,x_2)$$

2. data structure which links the verb's variables

Introduction of this new type:

I. including more informations like thematic roles, ...

$$\lambda P \lambda x_2 \lambda y \lambda e.P(y,e) \wedge patient(e,x_2)$$

2. data structure which links the verb's variables

Which kind of data structure? What is the semantic of links in this structure?

Introduction of this new type:

I. including more informations like thematic roles, ...

$$\lambda P \lambda x_2 \lambda y \lambda e.P(y,e) \wedge patient(e,x_2)$$

2. data structure which links the verb's variables

Which kind of data structure? What is the semantic of links in this structure?

(structure of phases)

Hyp: The structure between verbs should:

- contain the list of accessible variables (for a specific verb)
- allow (or not) the accessibility of its variables (then reduce the size of the set (sub-set) of accessible variables)

Hyp: The structure between verbs should:

- contain the list of accessible variables (for a specific verb)
- allow (or not) the accessibility of its variables (then reduce the size of the set (sub-set) of accessible variables)

This structure is a point in MDS where classical relations in DRT should be re-introduced.

Hyp: The structure between verbs is a Tree.

Accessibility Tree

- The tree might be built in the context part of a term.
- Nodes are relations between verb variables
- · Leaf are lists of variables introduced (by a specific verb variable)

Hyp: The structure between verbs is a Tree.

Accessibility Tree

- The tree might be built in the context part of a term.
- Nodes are relations between verb variables
- · Leaf are lists of variables introduced (by a specific verb variable)

This tree structure could be interpreted as the right frontier of DRT

This structure captures properties used in DRT to interprete relations.

One interesting point is that this tree introduce distinctions between:

- introduction of variables
- verbs relation (path in the tree)
- scopes relation

This structure captures properties used in DRT to interprete relations.

One interesting point is that this tree introduce distinctions between:

- introduction of variables
- verbs relation (path in the tree)
- scopes relation

One more time: dissociation on atomic relations (That why it could not be the exact DRT relation!)

In this structure, nodes should be used to modelise other relations:

S-DRT relations
Temporal structure
Aspect

• • •

Often, these relations are partial order,

Hyp: Semantic collects information, interpretation of these partials order is delegated to pragmatic;-)

MDS:

- input some syntactic relations from a sentence
- output a (huge) term which contains:
 - predicates
 - variables (declaration, scope, unification,...)
 - structural properties

MDS:

- input some syntactic relations from a sentence
- output a (huge) term which contains:
 - predicates
 - variables (declaration, scope, unification,...)
 - structural properties

This result is more or less a meta-representation from which partial representations could be derived (like time relations).

MDS:

- input some syntactic relations from a sentence
- output a (huge) term which contains:
 - predicates
 - variables (declaration, scope, unification,...)
 - structural properties

This result is more or less a meta-representation from which partial representations could be derived (like time relations).

And these informations do not interfer with others (like anaphora resolution)

MDS:

- input some syntactic relations from a sentence
- output a (huge) term which contains:
 - predicates
 - variables (declaration, scope, unification,...)
 - structural properties

This result is more or less a meta-representation from which partial representations could be derived (like time relations).

And these informations do not interfer with others (like anaphora resolution)

All these problems became extraction of partial order representaiton from structure.

Conclusion

Conclusion

Introduction of variable's type

Use this type as a semantic unit for computational semantic

Produce (partial) information like:

- I. Structure of Discourse
- 2. Temporal relations
- 3. Subsets of accessible variables (for anaphora resolution)