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Introduction

» Goal: extend parsing technigues on ACG by adding new
operation (here: deletion)

» Parsing ACG =- Natural Language Generation

» Deletion can be used to represent lexical semantics
information in our grammar

» No intension of creating a new lexical semantics theory.
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LSecond—order ACG and Lexical Semantics

LAbstract Categorial Grammars

ACG

» [dGO1, Mus01]
» Computational linguistics.
» Focus on syntax, semantics and their relation.

» Based on two main ideas:

» Montagovian semantics,
» Curry’s distinction between phenogrammar and
tectogrammar.
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LSecond-order ACG and Lexical Semantics

LAbstrac’( Categorial Grammars

ACG
» [dG01, Mus01]
» Computational linguistics.
» Focus on syntax, semantics and their relation.
» Based on two main ideas:
» Montagovian semantics, \-calculus for semantics
» Curry’s distinction between phenogrammar and
tectogrammar. intermediate structure between syntax and
semantics
» Plus, uniformity of the formalism: use of the A-calculus to

describe every module/grammar



I—Second-order ACG and Lexical Semantics

I—Abstract Categorial Grammars

Example

/\tecto

Hsem

«O>» «F»r <




LSecond-order ACG and Lexical Semantics

LAbstract Categorial Grammars

From tectogrammars to phenogrammars

The lexicons

» We use homomorphisms.
» Nothing new:
» [Mon73], [Lam58]

» If terms are typed, Z applies to both terms and types.

As an example (syntax)

» eatnp — np — s
> Hiyn(np)=str
> Heyn(s)=str
> Hsyn(AXy.eatxy)=AXxiXe.Xo + eat + Xy



LSecond-order ACG and Lexical Semantics

LAbstract Categorial Grammars

From tectogrammars to phenogrammars

The lexicons

» We use homomorphisms.
» Nothing new:
» [Mon73], [Lam58].

» If terms are typed, 27 applies to both terms and types.

As an example (semantics)

» eatnp — np — s
> Hemlnp)=(e — £) — t
> Hgem(s)=t
> Hsem(Axy.eatxy)=APQ.P(Ax.Q(\y.EAT xy))



LSecond-order ACG and Lexical Semantics

LAbstrac’( Categorial Grammars

Formally

Higher-Order Signature

A higher-order signature X = (&7, ¢, 7):
» o/ afinite set of atomic types
» ¢ a finite set of constants
» 7 the typing function ¢ — .7 (&)

Derivation system

X:abyx:a Fszec:7(0€)

FreEs M: g lFs M:a— 3 Abs N«
N—{x:alFs MxM:a—p FTUAFs MN:
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Overview (1)

» An ACG ¥ = (21,22,% S)
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I—Abstract Categorial Grammars

Overview (1)

> AnACG%:(&,Zg,%,s)
> ﬂ(g)Z{MG/\E“—E M:S}
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I—Second-order ACG and Lexical Semantics

LAbstract Categorial Grammars

Overview (1)

> AnACGg:(Zth,%,S)
> ,,Q{(g):{ME/\):1||—z1 M:S}
> 0(9) ={M € Ns,|3N € 7(9),|(N)|s = M}
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LSecond-order ACG and Lexical Semantics

LAbstract Categorial Grammars

Overview (1)

» An ACG ¥ = (21,22,%,3)
> ﬂ(g):{ME/\Z1| |—z1 MZS}
> 0(9) ={M € Ns,|3N € 7(9),|(N)|s = M}
» Terms of the tectogrammar represent the deep structure of
a sentence.
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> 0(9) ={M € Ns,|3N € 7(9),|(N)|s = M}
» Terms of the tectogrammar represent the deep structure of
a sentence.

» Syntax is a realization of this structure...



LSecond-order ACG and Lexical Semantics

LAbstract Categorial Grammars

Overview (1)

> AnACGg:(Zth,%,S)
> ﬂ(g):{ME/\E“—E MZS}
> 0(9) ={M € Ng,|3N € &(9),|#(N)|s = M}

» Terms of the tectogrammar represent the deep structure of
a sentence.

» Syntax is a realization of this structure...
» Just like semantics!
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Overview (1)

> AnACGg:(Zth,%,S)
> ﬂ(g):{ME/\E“—E MZS}
> 0(9) ={M € Ng,|3N € &(9),|#(N)|s = M}

» Terms of the tectogrammar represent the deep structure of
a sentence.

» Syntax is a realization of this structure...
» Just like semantics!
» A-terms used to represent all this structures.



LSecond-order ACG and Lexical Semantics

LAbstrac’( Categorial Grammars

Overview (1)

> AnACGg:(Zth,%,S)
> ﬂ(g):{ME/\E“—E MZS}
> 0(9) ={M € Ng,|3N € &(9),|#(N)|s = M}

» Terms of the tectogrammar represent the deep structure of
a sentence.

» Syntax is a realization of this structure...
» Just like semantics!
» A-terms used to represent all this structures.

NL Generation = NL Parsing



I—Second-order ACG and Lexical Semantics
I—Abstract Categorial Grammars

Overview(2)

> tecto

eat Mary (a cake)

Hsyn

«O>» «Fr




I—Second-order ACG and Lexical Semantics

L Integrating some lexical semantics information

Outline

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information
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LSecond-order ACG and Lexical Semantics

LIntegrating some lexical semantics information

Original ACG

Linearity
A term M is linear if every variable in M has one and only one
occurrence in M (no deletion, no copy)

Example
X, A\x.fx but not Ax.fxx
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LSecond-order ACG and Lexical Semantics

LIntegrating some lexical semantics information

Original ACG

Linearity
A term M is linear if every variable in M has one and only one
occurrence in M (no deletion, no copy)

Example
X, A\x.fx but not Ax.fxx

(Linear) ACG
9 = (X4,%2,,5). For every constant ¢ of X4, .7(c) is linear.



LSecond-order ACG and Lexical Semantics

LIntegrating some lexical semantics information

First extension

Almost Linearity

A term M is almost linear if every variable in M has at least one
occurrence in M (no deletion).

A variable which has more than one occurrence in M is
assigned an atomic type in M’s principal typing limited copy)

Example
X, Ax.fx, Ax.fxx but not Ax.f(fx)



LSecond»order ACG and Lexical Semantics

L Integrating some lexical semantics information

First extension

Almost Linearity

A term M is almost linear if every variable in M has at least one
occurrence in M (no deletion).

A variable which has more than one occurrence in M is
assigned an atomic type in M’s principal typing limited copy)

Example
X, Ax.fx, Ax.fxx but not Ax.f(fx)

Almost linear ACG
9 = (Xq,Xp, 2, s). For every constant ¢ of ¥4, 57(c) is almost
linear.



I—Second-order ACG and Lexical Semantics

L Integrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

» “John bought and read Hamlet”.
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LSecond-order ACG and Lexical Semantics

LIntegrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

» “John bought and read Hamlet”.

» Hamlet: the character? A book as an object? A book as an
information container?
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LSecond-order ACG and Lexical Semantics

LIntegra’[ing some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

» “John bought and read Hamlet”.

» Hamlet: the character? A book as an object? A book as an
information container?

» Semantics:
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LIntegrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

» “John bought and read Hamlet”.
» Hamlet: the character? A book as an object? A book as an
information container?
» Semantics:
» A(BUY HAM JOHN) (READ HAM JOHN)
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Aspects

» “John bought and read Hamlet”.

» Hamlet: the character? A book as an object? A book as an
information container?

» Semantics:

» A(BUY HAM JOHN) (READ HAM JOHN)
» Differenciation through terms and not types (Pustejovsky)
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LIntegrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

» “John bought and read Hamlet”.

» Hamlet: the character? A book as an object? A book as an
information container?
» Semantics:

» A(BUY HAM JOHN) (READ HAM JOHN)
» Differenciation through terms and not types (Pustejovsky)

> A(BUY HAMphys—obj JOHN) (READ HAMnto— cont JOHN)



LSecond-order ACG and Lexical Semantics

LIntegrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

» “John bought and read Hamlet”.

» Hamlet: the character? A book as an object? A book as an
information container?
» Semantics:
» A(BUY HAM JOHN) (READ HAM JOHN)
» Differenciation through terms and not types (Pustejovsky)
> A(BUY HAMphys—obj JOHN) (READ HAMinto— cont JOHN)

>

AN(BUY HAMpnys—obj JOHNchar) (READ HAMinto—cont JOHN har)



I—Second-order ACG and Lexical Semantics

LIntegrating some lexical semantics information

Choice as deletion

List of aspects on NP
> Hsem(hamlet) = AP.P HAM

Verb (predicate) as selector
> Hzem(read) = APQ.P(Ax.Q(\y.READxy))
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LSecond-order ACG and Lexical Semantics

LIntegrating some lexical semantics information

Choice as deletion

List of aspects on NP

> Jsyn(hamlet) =
AQP.P (Q HAMchar HAMphys—obj HAMinfo—cont)

» Q is the selector

Verb (predicate) as selector

> Jsem(read) = APQ.Pr3(Ax.Qmi(\y.READXxy))
> T = AX1XoX3.X;



LSecond»order ACG and Lexical Semantics

L Integrating some lexical semantics information

Almost affine terms

Almost affine terms

A term M is almost affine if every variable/constant which has
more than one occurrence in M is assigned an atomic type in
M’s principal typing

Example

Ax3yb fa—a—cyayapt not AxayP.fa—a—a(fa—a—ayaya)ya

Almost affine ACG
An ACG (X4, X2, %, s) is almost affine if for every constant ¢ in
Y4, Z(c) is almost affine.
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L General Idea
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Parsing ACG
General Idea
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L General Idea
Parsing ACG

h
Ms
Sz
]
Z1
My

Sketch



L Parsing ACG

L General Idea
Parsing ACG

>
Ms
Sz
]
b 1
My

Sketch

1. Aterm Mg, : avin I4



L Parsing ACG

LGeneral Idea
Parsing ACG
>
Ms.
N
jf]
24 2o
Ms, Ms,
Sketch

1. Aterm My, : acin X4
2. Find the terms Ms, such that 74 (Ms) —3 Ms,



L Parsing ACG

LGeneral Idea
Parsing ACG
)X
Ms
o
jﬁ
Y Y
M, Ms,
Sketch

1. Aterm My, : acin X4
2. Find the terms Ms, such that 74 (Ms) —3 Ms,
3. Get the terms Ms,, such that % (Ms) -5 Ms,

[m] = =




L Parsing ACG
I—General Idea

Parsing ACG

Sketch

2. Find the term Ms, such that s (Ms) —3 Ms,
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L Parsing ACG

L Using types

Outline

Parsing ACG

USing types



L Parsing ACG
L Using types

ldea: Use Types

Y princ

i

If Ms, and .77 (Ms) share the same principal typing then
Ms, =5 75 (Mx)
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LParsing ACG
LUsing types

ldea: Use Types

Theorem

[Coherence] Let’s consider a 3-reduced term M and (T'; ) its
principal typing. If M is ??7 it is the unique [3-normal inhabitant
of (I'; )

Theorem
[Subject Expansion] Let’s consider a ??? term M, a term M’
such thatM —3 M andT = M’ :~. ThenT =M : v



LParsing ACG
LUsing types

ldea: Use Types

Theorem

[Coherence] Let’s consider a 3-reduced term M and (T'; ~) its
principal typing. If M is linear it is the unique 3-normal
inhabitant of (I'; ) [BS82]

Theorem

[Subject Expansion] Let’s consider a linear term M, a term M’
such thatM —3 M andT = M’ :~. ThenT =M : v



LParsing ACG
LUsing types

ldea: Use Types

Theorem

[Coherence] Let’s consider a 3-reduced term M and (T'; v) its
principal typing. If M is almost linear it is the unique [3-normal
inhabitant of (I'; v) [Aot99]

Theorem

[Subject Expansion] Let’s consider a almost linear term M, a
term M’ such that M —3 M" andT + M’ :~. ThenT = M : ~
[Kan07]



L Parsing ACG
L Using types

Results

» [Kan07] gave a Datalog recognizer for linear and almost
linear terms.

» Complexity is LOGCFL C P

» [Sal10] proved natural language generation is decidable in
the Montagovian framework



L Parsing ACG
L Using types

Results

» [Kan07] gave a Datalog recognizer for linear and almost
linear terms.

» Complexity is LOGCFL C P

» [Sal10] proved natural language generation is decidable in
the Montagovian framework

With deletion?



[ Extended parsers

I_Typing issues
:
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Extended parsers
Typlng iSSUeS



LE><tended parsers
LTyping issues

What we would like

Theorem
[Coherence] Let’s consider a 3-reduced term M and (T'; ) its

principal typing. If M is almost affine it is the unique 3-normal
inhabitant of (I'; )

Theorem

[Subject Expansion] Let’s consider a almost affine term M, a
term M’ such that M —3 M" andT += M’ :~. ThenT = M : ~



L Extended parsers

LTyping issues

What we would like

Theorem

[Subject Expansion] Let’s consider a almost affine term M, a

term M’ such that M —3 M" andT =M’ :~. ThenT = M : ~




L Extended parsers
I—Typing issues

Typing issues with deletion

Example
> (AP.c)(Ax.fcc) »5 €

> APf((\y.c)(Pc)) —5 AP fc



L Extended parsers
LTyping issues

Typing issues with deletion

Example

> (AP.c)(Ax.fcc) »5 €
»c:af:b—b—ck(AP.c)(M\xfxx):a
» c:akc:a

» APA((\y.c)(Pc)) -3 AP.fc
»c:af:a—bFAPH(N\y.c)(Pc)):(a—c)—b
»c:af:a—-bHAPfc:0—b
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L Extended parsers
L Typing issues

Typing issues with deletion

Example

> (AP.c)(Ax.fec) —5 ¢
» c:af:b—b—ck(APc)Mxfxx):a
» c:akc:a
> AP.f((\y.c)(Pc)) -3 AP.fc
» c:af:a—bFAPf((\y.c)(Pc)):(a—c)—b
» c:af:a—brHXPfc:o—b

1. Need to include all possible free variables (i.e. constants in
the case of HOS)

2. Need to know type structure (skeleton) for each variable.



L Extended parsers
LTyping issues

Intersection Types

> (AP.c)(Ax.fxx) -5 ¢C

c:af:b—b—ck(APc)Ixfxx): a

c:atc:a

We do not know the type of f

Idea: use intersection types to enumerate possible types in
the signature: f: (b —-b—c)n(a—b—c)n...

v

v Yvyy
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LE><tended parsers
LTyping issues

Intersection Types

> (AP.c)(Ax.fxx) -5 ¢C
»c:af:b—b—ck(APc)(M\xfxx):a
» c:atc:a
» We do not know the type of f
» Idea: use intersection types to enumerate possible types in
the signature: f: (b —-b—c)n(a—b—c)n...

» AP.f(\y.c(Pc)) -3 AP.fc



L Extended parsers
L Typing issues

Intersection Types

> (AP.c)(Ax.fxx) -5 €
»c:af:b—b—ck(APc)(M\xfxx):a
c:akc:a
We do not know the type of f
Idea: use intersection types to enumerate possible types in
the signature: f: (b—b—c)n(a—b—c)n...
» AP.f(\y.c(Pc)) -3 AP.fc
»c:af:a—bFAPf(Ay.c(Pc)):(a—c)—b
» c:af:a—b-XPfc:o—b
» We do not know the type of P
» |dea: use intersection types to enumerate possible types in
the signature: P: (a—c)n(a— b)N...

v vy



L Extended parsers
L Typing issues

Intersection Types

Moreover, intersection types are already present (but hidden) in
Kanazawa’s technique:

I(Ax.A(CAKE x) (N (BUY x MARY') (EAT x MARY)))

» The two occurrences of MARY come from the same lexical
entry (Hsem(Mary))

» The two occurrences of A come from two different lexical
entries (zem(and) and #sem(a))

» “Pseudo-principal typing”:
MARY :a, A : (b1 —>b2—>Cg)O(C1 —>Cg—>d),...
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LA new typing system
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Extended parsers

A new typing system



LE><tended parsers
LA new typing system

Restricted intersection types

Rigid variables

A rigid variable x5 is such that x is a variable and s a type
skeleton

» Type skeletons: o, (0 — 0) — 0
> Any type: s [o]
» (0—0)—o0-[ar,aas] = (a1 — &) — as

Listed Types
> T(A)i=d | A — T(A)
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Restricted intersection types

Rigid variables

A rigid variable x5 is such that x is a variable and s a type
skeleton

» Type skeletons: o, (0 — 0) — 0
> Any type: s [o]
» (0—0)—o0-[ar,aas] = (a1 — &) — as

Listed Types

> T(A)i=d | A — T(A)
» Js(7): simple types of skeletons s
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LA new typing system

Restricted intersection types

Rigid variables
A rigid variable x5 is such that x is a variable and s a type
skeleton
» Type skeletons: o, (0 — 0) — 0
> Any type: s [o]
» (0—0)—o0-[ar,aas] = (a1 — &) — as

Listed Types
> T(A)i=d | A — T(A)

» Js(7): simple types of skeletons s
> L) = T(A) | Ls() N Ls(A)



LE><tended parsers
LA new typing system

Restricted intersection types

Rigid variables
A rigid variable x5 is such that x is a variable and s a type
skeleton
» Type skeletons: o, (0 — 0) — 0
> Any type: s [o]
» (0—0)—o0-[ar,aas] = (a1 — &) — as

Listed Types

> T(A)i=d | A — T(A)

» Js(7): simple types of skeletons s
> L) = T(A) | Ls() N Ls(A)
> L(A) =Us Ls()



LE><tended parsers
LA new typing system

Restricted intersection types

Rigid variables
A rigid variable x5 is such that x is a variable and s a type
skeleton
» Type skeletons: o, (0 — 0) — 0
> Any type: s [o]
» (0—0)—o0-[ar,aas] = (a1 — &) — as

Listed Types
> T(A)i=d | A — T(A)
» Js(7): simple types of skeletons s
> L) = T(A) | Ls() N Ls(A)

> L(d) =Us Zs()
» Listed types are noted @, ... and we note a € @



L Extended parsers
LA new typing system

Listed Higher-order Signature
Definition
Y =(,€,71)
» o/ afinite set of atomic types
» ¢ afinite set of constants
» 7 the typing function ¢ — £ (&)



L Extended parsers

LA new typing system

Listed Higher-order Signature
Definition
Y =(,€,71)

» o/ afinite set of atomic types

» ¢ afinite set of constants

» 7 the typing function ¢ — £ (&)
Derivations

a € 7(c)

xXS:s-lalFgxS:s-[a] Frec:a




L Extended parsers
LA new typing system

Listed Higher-order Signature
Definition
Y =(,€,71)
» o/ afinite set of atomic types
» ¢ afinite set of constants
» 7 the typing function ¢ — £ (&)

Derivations
a € 7(c)
xXS:s-lalFgxS:s-[a] Frec:a
Fres M: B TFy M:a— B8 Ay N: o
r—{x*:alkFy MxM:a — g FTUAFy MN: 3



L Extended parsers
LA new typing system

Listed Higher-order Signature
Definition
Y =(,€,71)
» o/ afinite set of atomic types
» ¢ afinite set of constants
» 7 the typing function ¢ — £ (&)

Derivations
a € 7(c)
xXS:s-lalFgxS:s-[a] Frec:a
Fres M: B TFy M:a— B8 Ay N: o
r—{x*:alkFy MxM:a — g FTUAFy MN: 3

FM:ay FM:oagp
FM arna;
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LE><tended parsers
LA new typing system

Characteristic typing

The most general signature for M

» Given M € Ay where X = (&7, ¢,7)and -y M : «
principal simple type
Yy = (& U{w}, €, ) such that:
» ifce€in M= my(c) =7(c)
» otherwise, for 7(¢) € Zs(«),
m(€) = 0(31 ,,,, an 1)e(/Ufw})1 S [a1,...,a8n-1,w]



L Extended parsers

LA new typing system

Characteristic typing

The most general signature for M

» Given M € Ay where X = (&7, %¢,7)and s M : «
principal simple type
Yy = (& U{w}, €, ) such that:
» ifce€in M= my(c) =7(c)
» otherwise, for 7(¢) € Zs(«),
m(c) = 0(31 77777 an_1)€( A U{w})"" s-lai,...,an—1,w]

Characteristic typing

If == M : «vis M’s principal typing, we can build £y, minimal in
|</| and obtain -5, M : &, where @ = a4 N... ap and n maximal
as follows:



L Extended parsers
LA new typing system

Example @ = {c1, o, C3}

» Principal on Simple Types:
» 7(c1)=(a—u—b)—dr(z)=a—a—bts
AX.Cq ()\X1X2.02X1X1) v —d
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LE><tended parsers
LA new typing system

Example @ = {c1, o, C3}

» Principal on Simple Types:
» 7(c1)=(a—u—b)—dr(z)=a—a—bts
AX.Cq ()\X1X2.02X1X1) v —d
» Principal with Rigid Variables:
» 7(c1)=(a@a— (U3 > ) > b)—d,7(x)=a—a— bty
AXOT0. 01 (AXPx3 0. Caxix1) 1 (U — Up) — d



LE><tended parsers
LA new typing system

Example @ = {c1, o, C3}

» Principal with Rigid Variables:
» 7(c1)=(a@a— (U3 > ) > b)—d,7(x)=a—a— bty
AXOT0. 01 (AXPx3 0. Caxix1) 1 (U — Up) — d
» Characteristic Typing:

» 7(c1) =ay,7(C2) =02, 7(C3) =3 Fx
AXO70 e (AXPXS 0. .Cax1X1) 1 @

> O =\ew,(@— (t—w)—b)—d
» ax,=a—a—b>b

> @ =gy, t W

> a= ﬂted(t—u‘u)—wj



L Extended parsers
LA new typing system

Example @ = {c1, o, C3}

» Characteristic Typing:

» 7(c1) =ay,7(c2) = a2, 7(C3) = a3 Fx
AX070, c1()\x°x§H° Cox1Xq) @
=Niew,(@— (t—w)—b)—d

a—a—

nted t—w
mted (t—w)—d

Q\ Q‘ Q‘ Q‘

>
>
>
>



L Extended parsers
LA new typing system

Potentially negatively non-duplicating typing

~Neesla—(t—w)—=b)—d
a—a—b

=Ntexy t = w
—ﬂte,a{(t_“‘-’)_’d

vVYvYyYVvYy
QI Q| Q| Q|
I



L Extended parsers
LA new typing system

Potentially negatively non-duplicating typing

Useful occurrences of atomic types
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Potentially negatively non-duplicating typing

Useful occurrences of atomic types
> = (ew(@ = (t—w) = b7) —d”
> Qo = at —-a — b
> ag =yt —w
> a:ﬂte.ﬂ(t_)w)_)d+
Such a typing is called a PN-typing
Theorem

If a term M is in long-normal form for a PN-typing (T';7) it is the
unique long-normal inhabitant of this pair.

Theorem
An almost affine term has a PN characteristic typing.
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LE><tended parsers
LA new typing system

Properties

The characteristic typing is the simplest typing of -5, M : @
which ensures:

1. M is the unique inhabitant of it.
2. If an almost affine term M’ —3 M, then 5, M : @

Moreover, we show almost affine terms M and M’ in Ay, verify
M =z M' iff they share the same characteristic typing.
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ldea: Use Types

If Ms, and 7 (Ms) share the same characteristic typing then
Ms, =5 74 (Ms)
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Example

READ J OHNchar HAMinfo—cont

IDB

L(John) = A\QP.P(Q JOHN_ par undefined undefined)
E(Hamlet) = )\QPP(O HAMchar HAMphys—obj HAMinfo—cont)
L(read) = \QP.Pm1(A\x.Qmr3 (\y.READ x y))

T = AX{ XoX3.X;
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Example

S(xg) - NP(x1, X2, X3, X1, X4, X5, Xg), ’VP(Y17Y2,YsyY3,Y4aY5,X5) READ(xy, ys, ¥5)
NP(x1, X, X3, X4, X4, X5, X5) - JOHNhar (X1 ),
NP(x1, X2, X3, X4, X4, X5, X5) - HAMcpar (1), HAM,

i

d(x3)-
Iphys — ob[(X2) HAMinto— cont(X3)

7:-5(3)

[m]

EDB

READ(1, 2, 3).
JOHN pgar (1)

HAMphys— cont (2)
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Example

IDB

S(xg) - NP(x1, X2, X3, X1, X4, X5, Xg), NP(Y17J/2,Y3,}’3,Y4J5,X5) READ(x4, s, ¥s)-
NP(xy, Xp, X3, X4, X4, X5, X5) - JOHNgpar (1), X2), d(x3)

NP(xy, Xp, X3, X4, X4, X5, X5) - HAMcpar (1), HAMppys_ ob,(Xz) HAMingo— cont(X3)-

IDB,

READ(x;, Xp, w) - type(Xq), type(xp).
EAT(xq, X2, w) - type(Xq), type(Xz)-

7:-5(3)

EDB

READ(1, 2, 3).
JOHNpar(1).
HAMphys— cant(2) .

EDB,

JOHNpar(w).
HAMphys—cont(W)-
undefined(w).
MARY car ().
type(1).

type(2).
type(3).
type(w).
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Example

IDB

S(xg) - NP(x1, X2, X3, X1, X4, X5, Xg), NP(Y17Y2,YsyY3,Y4aY5aX5) READ(x4, s, ¥s)-
NP(x1, X2, X3, X4, X4, X5, X5) - JOHNgpap (X1), , d(x3).
NP(xy, Xp, X3, X4, X4, X5, X5) - HAMcpar (1), HAMppys_ ob,(Xz) HAMingo— cont(X3)-

IDB,

READ(x;, Xp, w) - type(Xq), type(xp).
EAT(xq, X2, w) - type(Xq), type(Xz)-

7:-5(3)

EDB

READ(1,2,3).
JOHN_par(1).
HAMphysfcont(z)‘

EDB,

JOHNpar(w).
HAMphys—cont(W)-
undefined(w).
MARY car ().
type(1).

type(2).
type(3).
type(w).
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Conclusion

» Kanazawa: Datalog recognizer for (almost)-linear ACG:
efficient parsing (LOGCFL)
» Result extended to almost affine ACG; at least polynomial
time
» A more complex typing system is needed (intersection
which are used in [Sal10])
» Principal Typings replaced with Charateristic Typing.

» Deletion can be used to enrich the grammar with:

» Aspects (lexical semantics)
» Agreement (syntax)
> ...
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algorithm [Kan08]
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LConclusion

Future work

» Parsing:
» Check magic-set rewriting to lead to prefix-correct Earley
algorithm [Kan08]
» Extract derivations: recognizer — parser.
» Development.
» From listed HOS to intersected HOS?

» Linguistic Model:
» Basic treatment.

» Unable to reject unfelicitous sentences (“John fished and
ate a fast salmon.” (7))
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