
Generation with Grammars enriched with
Lexical Semantics Information

Pierre Bourreau1 Sylvain Salvati1

1Equipe SIGNES
LaBRI - INRIA Sud-Ouest

Introduction

I Goal: extend parsing techniques on ACG by adding new
operation (here: deletion)

I Parsing ACG⇒ Natural Language Generation
I Deletion can be used to represent lexical semantics

information in our grammar
I No intension of creating a new lexical semantics theory.

Outline

Second-order ACG and Lexical Semantics
Abstract Categorial Grammars
Integrating some lexical semantics information

Parsing ACG
General Idea
Using types

Extended parsers
Typing issues
A new typing system
Example and Datalog

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Outline

Second-order ACG and Lexical Semantics
Abstract Categorial Grammars
Integrating some lexical semantics information

Parsing ACG
General Idea
Using types

Extended parsers
Typing issues
A new typing system
Example and Datalog

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

ACG

I [dG01, Mus01]
I Computational linguistics.
I Focus on syntax, semantics and their relation.
I Based on two main ideas:

I Montagovian semantics,

λ-calculus for semantics

I Curry’s distinction between phenogrammar and
tectogrammar.

intermediate structure between syntax and
semantics

I Plus, uniformity of the formalism: use of the λ-calculus to
describe every module/grammar

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

ACG

I [dG01, Mus01]
I Computational linguistics.
I Focus on syntax, semantics and their relation.
I Based on two main ideas:

I Montagovian semantics, λ-calculus for semantics
I Curry’s distinction between phenogrammar and

tectogrammar. intermediate structure between syntax and
semantics

I Plus, uniformity of the formalism: use of the λ-calculus to
describe every module/grammar

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

ACG

I [dG01, Mus01]
I Computational linguistics.
I Focus on syntax, semantics and their relation.
I Based on two main ideas:

I Montagovian semantics, λ-calculus for semantics
I Curry’s distinction between phenogrammar and

tectogrammar. intermediate structure between syntax and
semantics

I Plus, uniformity of the formalism: use of the λ-calculus to
describe every module/grammar

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Example

Λtecto

Λsyn Λsem

Hsyn

Hsem

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

From tectogrammars to phenogrammars

The lexicons
I We use homomorphisms.
I Nothing new:

I [Mon73], [Lam58]
I If terms are typed, H applies to both terms and types.

As an example (syntax)

I eat :np → np → s
I Hsyn(np)=str
I Hsyn(s)=str
I Hsyn(λxy .eatxy)=λx1x2.x2 + eat + x1

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

From tectogrammars to phenogrammars

The lexicons
I We use homomorphisms.
I Nothing new:

I [Mon73], [Lam58].
I If terms are typed, H applies to both terms and types.

As an example (semantics)

I eat :np → np → s
I Hsem(np)=(e → t) → t
I Hsem(s)=t
I Hsem(λxy .eatxy)=λPQ.P(λx .Q(λy .EATxy))

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Formally

Higher-Order Signature
A higher-order signature Σ = (A ,C , τ):

I A a finite set of atomic types
I C a finite set of constants
I τ the typing function C → T (A)

Derivation system

x : α `Σ x : α `Σ c : τ(c)

Γ `Σ M : β

Γ− {x : α} `Σ λx .M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α

Γ ∪∆ `Σ MN : β

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview (1)

I An ACG G = (Σ1,Σ2,H , s)
I A (G) = {M ∈ ΛΣ1 | `Σ1 M : s}
I O(G) = {M ∈ ΛΣ2 |∃N ∈ A (G), |H (N)|β = M}

I Terms of the tectogrammar represent the deep structure of
a sentence.

I Syntax is a realization of this structure...
I Just like semantics!
I λ-terms used to represent all this structures.

NL Generation ≡ NL Parsing

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview (1)

I An ACG G = (Σ1,Σ2,H , s)
I A (G) = {M ∈ ΛΣ1 | `Σ1 M : s}
I O(G) = {M ∈ ΛΣ2 |∃N ∈ A (G), |H (N)|β = M}

I Terms of the tectogrammar represent the deep structure of
a sentence.

I Syntax is a realization of this structure...
I Just like semantics!
I λ-terms used to represent all this structures.

NL Generation ≡ NL Parsing

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview (1)

I An ACG G = (Σ1,Σ2,H , s)
I A (G) = {M ∈ ΛΣ1 | `Σ1 M : s}
I O(G) = {M ∈ ΛΣ2 |∃N ∈ A (G), |H (N)|β = M}

I Terms of the tectogrammar represent the deep structure of
a sentence.

I Syntax is a realization of this structure...
I Just like semantics!
I λ-terms used to represent all this structures.

NL Generation ≡ NL Parsing

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview (1)

I An ACG G = (Σ1,Σ2,H , s)
I A (G) = {M ∈ ΛΣ1 | `Σ1 M : s}
I O(G) = {M ∈ ΛΣ2 |∃N ∈ A (G), |H (N)|β = M}

I Terms of the tectogrammar represent the deep structure of
a sentence.

I Syntax is a realization of this structure...
I Just like semantics!
I λ-terms used to represent all this structures.

NL Generation ≡ NL Parsing

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview (1)

I An ACG G = (Σ1,Σ2,H , s)
I A (G) = {M ∈ ΛΣ1 | `Σ1 M : s}
I O(G) = {M ∈ ΛΣ2 |∃N ∈ A (G), |H (N)|β = M}

I Terms of the tectogrammar represent the deep structure of
a sentence.

I Syntax is a realization of this structure...
I Just like semantics!
I λ-terms used to represent all this structures.

NL Generation ≡ NL Parsing

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview (1)

I An ACG G = (Σ1,Σ2,H , s)
I A (G) = {M ∈ ΛΣ1 | `Σ1 M : s}
I O(G) = {M ∈ ΛΣ2 |∃N ∈ A (G), |H (N)|β = M}

I Terms of the tectogrammar represent the deep structure of
a sentence.

I Syntax is a realization of this structure...
I Just like semantics!
I λ-terms used to represent all this structures.

NL Generation ≡ NL Parsing

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview (1)

I An ACG G = (Σ1,Σ2,H , s)
I A (G) = {M ∈ ΛΣ1 | `Σ1 M : s}
I O(G) = {M ∈ ΛΣ2 |∃N ∈ A (G), |H (N)|β = M}

I Terms of the tectogrammar represent the deep structure of
a sentence.

I Syntax is a realization of this structure...
I Just like semantics!
I λ-terms used to represent all this structures.

NL Generation ≡ NL Parsing

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview (1)

I An ACG G = (Σ1,Σ2,H , s)
I A (G) = {M ∈ ΛΣ1 | `Σ1 M : s}
I O(G) = {M ∈ ΛΣ2 |∃N ∈ A (G), |H (N)|β = M}

I Terms of the tectogrammar represent the deep structure of
a sentence.

I Syntax is a realization of this structure...
I Just like semantics!
I λ-terms used to represent all this structures.

NL Generation ≡ NL Parsing

Second-order ACG and Lexical Semantics

Abstract Categorial Grammars

Overview(2)

Σtecto
eat Mary (a cake)

Σsyn
Mary+eat+a+cake

Σsem
∃(λx.∧(CAKEx)(EATxMARY))

Hsyn

Hsem

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Outline

Second-order ACG and Lexical Semantics
Abstract Categorial Grammars
Integrating some lexical semantics information

Parsing ACG
General Idea
Using types

Extended parsers
Typing issues
A new typing system
Example and Datalog

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Original ACG

Linearity
A term M is linear if every variable in M has one and only one
occurrence in M (no deletion, no copy)

Example
x , λx .fx but not λx .fxx

(Linear) ACG
G = (Σ1,Σ2,H , s). For every constant c of Σ1, H (c) is linear.

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Original ACG

Linearity
A term M is linear if every variable in M has one and only one
occurrence in M (no deletion, no copy)

Example
x , λx .fx but not λx .fxx

(Linear) ACG
G = (Σ1,Σ2,H , s). For every constant c of Σ1, H (c) is linear.

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

First extension

Almost Linearity
A term M is almost linear if every variable in M has at least one
occurrence in M (no deletion).
A variable which has more than one occurrence in M is
assigned an atomic type in M ’s principal typing limited copy)

Example
x , λx .fx , λx .fxx but not λx .f (fx)

Almost linear ACG
G = (Σ1,Σ2,H , s). For every constant c of Σ1, H (c) is almost
linear.

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

First extension

Almost Linearity
A term M is almost linear if every variable in M has at least one
occurrence in M (no deletion).
A variable which has more than one occurrence in M is
assigned an atomic type in M ’s principal typing limited copy)

Example
x , λx .fx , λx .fxx but not λx .f (fx)

Almost linear ACG
G = (Σ1,Σ2,H , s). For every constant c of Σ1, H (c) is almost
linear.

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

I “John bought and read Hamlet”.

I Hamlet: the character? A book as an object? A book as an
information container?

I Semantics:
I ∧(BUY HAM JOHN) (READ HAM JOHN)
I Differenciation through terms and not types (Pustejovsky)

I ∧(BUY HAMphys−obj JOHN) (READ HAMinfo−cont JOHN)
I

∧(BUY HAMphys−obj JOHNchar) (READ HAMinfo−cont JOHNchar)

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

I “John bought and read Hamlet”.

I Hamlet: the character? A book as an object? A book as an
information container?

I Semantics:
I ∧(BUY HAM JOHN) (READ HAM JOHN)
I Differenciation through terms and not types (Pustejovsky)

I ∧(BUY HAMphys−obj JOHN) (READ HAMinfo−cont JOHN)
I

∧(BUY HAMphys−obj JOHNchar) (READ HAMinfo−cont JOHNchar)

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

I “John bought and read Hamlet”.

I Hamlet: the character? A book as an object? A book as an
information container?

I Semantics:
I ∧(BUY HAM JOHN) (READ HAM JOHN)
I Differenciation through terms and not types (Pustejovsky)

I ∧(BUY HAMphys−obj JOHN) (READ HAMinfo−cont JOHN)
I

∧(BUY HAMphys−obj JOHNchar) (READ HAMinfo−cont JOHNchar)

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

I “John bought and read Hamlet”.

I Hamlet: the character? A book as an object? A book as an
information container?

I Semantics:
I ∧(BUY HAM JOHN) (READ HAM JOHN)
I Differenciation through terms and not types (Pustejovsky)

I ∧(BUY HAMphys−obj JOHN) (READ HAMinfo−cont JOHN)
I

∧(BUY HAMphys−obj JOHNchar) (READ HAMinfo−cont JOHNchar)

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

I “John bought and read Hamlet”.

I Hamlet: the character? A book as an object? A book as an
information container?

I Semantics:
I ∧(BUY HAM JOHN) (READ HAM JOHN)
I Differenciation through terms and not types (Pustejovsky)

I ∧(BUY HAMphys−obj JOHN) (READ HAMinfo−cont JOHN)
I

∧(BUY HAMphys−obj JOHNchar) (READ HAMinfo−cont JOHNchar)

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

I “John bought and read Hamlet”.

I Hamlet: the character? A book as an object? A book as an
information container?

I Semantics:
I ∧(BUY HAM JOHN) (READ HAM JOHN)
I Differenciation through terms and not types (Pustejovsky)

I ∧(BUY HAMphys−obj JOHN) (READ HAMinfo−cont JOHN)
I

∧(BUY HAMphys−obj JOHNchar) (READ HAMinfo−cont JOHNchar)

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Lexical Semantics: what kind of information?

Aspects

I “John bought and read Hamlet”.

I Hamlet: the character? A book as an object? A book as an
information container?

I Semantics:
I ∧(BUY HAM JOHN) (READ HAM JOHN)
I Differenciation through terms and not types (Pustejovsky)

I ∧(BUY HAMphys−obj JOHN) (READ HAMinfo−cont JOHN)
I

∧(BUY HAMphys−obj JOHNchar) (READ HAMinfo−cont JOHNchar)

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Choice as deletion

List of aspects on NP

I Hsem(hamlet) = λP.P HAM

I Hsyn(hamlet) =
λQP.P(Q HAMchar HAMphys−obj HAM info−cont)

I Q is the selector

Verb (predicate) as selector

I Hsem(read) = λPQ.P(λx .Q(λy .READxy))

I Hsem(read) = λPQ.Pπ3(λx .Qπ1(λy .READxy))

I πi = λx1x2x3.xi

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Choice as deletion

List of aspects on NP

I Hsem(hamlet) = λP.P HAM

I Hsyn(hamlet) =
λQP.P(Q HAMchar HAMphys−obj HAM info−cont)

I Q is the selector

Verb (predicate) as selector

I Hsem(read) = λPQ.P(λx .Q(λy .READxy))

I Hsem(read) = λPQ.Pπ3(λx .Qπ1(λy .READxy))

I πi = λx1x2x3.xi

Second-order ACG and Lexical Semantics

Integrating some lexical semantics information

Almost affine terms

Almost affine terms
A term M is almost affine if every variable/constant which has
more than one occurrence in M is assigned an atomic type in
M ’s principal typing

Example
λxayb.f a→a→cxaxa but not λxayb.f a→a→a(f a→a→axaxa)xa

Almost affine ACG
An ACG (Σ1,Σ2,L , s) is almost affine if for every constant c in
Σ1, L (c) is almost affine.

Parsing ACG

General Idea

Outline

Second-order ACG and Lexical Semantics
Abstract Categorial Grammars
Integrating some lexical semantics information

Parsing ACG
General Idea
Using types

Extended parsers
Typing issues
A new typing system
Example and Datalog

Parsing ACG

General Idea

Parsing ACG

Σ
MΣ

Σ1
MΣ1

Σ2
MΣ2

H1

H2

Sketch

1. A term MΣ1 : α in Σ1

2. Find the terms MΣ, such that H1(MΣ) �β MΣ1

3. Get the terms MΣ2 , such that H2(MΣ) �β MΣ2

Parsing ACG

General Idea

Parsing ACG

Σ
MΣ

Σ1
MΣ1

Σ2
MΣ2

H1

H2

Sketch

1. A term MΣ1 : α in Σ1

2. Find the terms MΣ, such that H1(MΣ) �β MΣ1

3. Get the terms MΣ2 , such that H2(MΣ) �β MΣ2

Parsing ACG

General Idea

Parsing ACG

Σ
MΣ

Σ1
MΣ1

Σ2
MΣ2

H1

H2

Sketch

1. A term MΣ1 : α in Σ1

2. Find the terms MΣ, such that H1(MΣ) �β MΣ1

3. Get the terms MΣ2 , such that H2(MΣ) �β MΣ2

Parsing ACG

General Idea

Parsing ACG

Σ
MΣ

Σ1
MΣ1

Σ2
MΣ2

H1

H2

Sketch

1. A term MΣ1 : α in Σ1

2. Find the terms MΣ, such that H1(MΣ) �β MΣ1

3. Get the terms MΣ2 , such that H2(MΣ) �β MΣ2

Parsing ACG

General Idea

Parsing ACG

Σ
MΣ

Σ1
MΣ1

Σ2
MΣ2

H1

H2

Sketch

1. A term MΣ1 : α in Σ1

2. Find the term MΣ, such that H1(MΣ) �β MΣ1

3. Get the term MΣ2 , such that H2(MΣ) �β MΣ2

Parsing ACG

Using types

Outline

Second-order ACG and Lexical Semantics
Abstract Categorial Grammars
Integrating some lexical semantics information

Parsing ACG
General Idea
Using types

Extended parsers
Typing issues
A new typing system
Example and Datalog

Parsing ACG

Using types

Idea: Use Types

Σprinc

MΣ

Σprinc
1
MΣ1

H1

If MΣ1 and H1(MΣ) share the same principal typing then
MΣ1 =β H1(MΣ)

Parsing ACG

Using types

Idea: Use Types

Theorem
[Coherence] Let’s consider a β-reduced term M and 〈Γ; γ〉 its
principal typing. If M is ??? it is the unique β-normal inhabitant
of 〈Γ; γ〉

Theorem
[Subject Expansion] Let’s consider a ??? term M, a term M ′

such that M �β M ′ and Γ ` M ′ : γ. Then Γ ` M : γ

Parsing ACG

Using types

Idea: Use Types

Theorem
[Coherence] Let’s consider a β-reduced term M and 〈Γ; γ〉 its
principal typing. If M is linear it is the unique β-normal
inhabitant of 〈Γ; γ〉 [BS82]

Theorem
[Subject Expansion] Let’s consider a linear term M, a term M ′

such that M �β M ′ and Γ ` M ′ : γ. Then Γ ` M : γ

Parsing ACG

Using types

Idea: Use Types

Theorem
[Coherence] Let’s consider a β-reduced term M and 〈Γ; γ〉 its
principal typing. If M is almost linear it is the unique β-normal
inhabitant of 〈Γ; γ〉 [Aot99]

Theorem
[Subject Expansion] Let’s consider a almost linear term M, a
term M ′ such that M �β M ′ and Γ ` M ′ : γ. Then Γ ` M : γ
[Kan07]

Parsing ACG

Using types

Results

I [Kan07] gave a Datalog recognizer for linear and almost
linear terms.

I Complexity is LOGCFL ⊆ P
I [Sal10] proved natural language generation is decidable in

the Montagovian framework

With deletion?

Parsing ACG

Using types

Results

I [Kan07] gave a Datalog recognizer for linear and almost
linear terms.

I Complexity is LOGCFL ⊆ P
I [Sal10] proved natural language generation is decidable in

the Montagovian framework

With deletion?

Extended parsers

Typing issues

Outline

Second-order ACG and Lexical Semantics
Abstract Categorial Grammars
Integrating some lexical semantics information

Parsing ACG
General Idea
Using types

Extended parsers
Typing issues
A new typing system
Example and Datalog

Extended parsers

Typing issues

What we would like

Theorem
[Coherence] Let’s consider a β-reduced term M and 〈Γ; γ〉 its
principal typing. If M is almost affine it is the unique β-normal
inhabitant of 〈Γ; γ〉

Theorem
[Subject Expansion] Let’s consider a almost affine term M, a
term M ′ such that M �β M ′ and Γ ` M ′ : γ. Then Γ ` M : γ

Extended parsers

Typing issues

What we would like

Theorem
[Coherence] Let’s consider a β-reduced term M and 〈Γ; γ〉 its
principal typing. If M is almost affine it is the unique β-normal
inhabitant of 〈Γ; γ〉

Theorem
[Subject Expansion] Let’s consider a almost affine term M, a
term M ′ such that M �β M ′ and Γ ` M ′ : γ. Then Γ ` M : γ

Extended parsers

Typing issues

Typing issues with deletion

Example

I (λP.c)(λx .fcc) �β c

I c : a, f : b → b → c ` (λP.c)(λx .fxx) : a
I c : a ` c : a

I λP.f((λy .c)(Pc)) �β λP.fc

I c : a, f : a→ b ` λP.f((λy .c)(Pc)) : (a→ c)→ b
I c : a, f : a→ b ` λP.fc : o → b

1. Need to include all possible free variables (i.e. constants in
the case of HOS)

2. Need to know type structure (skeleton) for each variable.

Extended parsers

Typing issues

Typing issues with deletion

Example

I (λP.c)(λx .fcc) �β c
I c : a, f : b → b → c ` (λP.c)(λx .fxx) : a
I c : a ` c : a

I λP.f((λy .c)(Pc)) �β λP.fc
I c : a, f : a→ b ` λP.f((λy .c)(Pc)) : (a→ c)→ b
I c : a, f : a→ b ` λP.fc : o → b

1. Need to include all possible free variables (i.e. constants in
the case of HOS)

2. Need to know type structure (skeleton) for each variable.

Extended parsers

Typing issues

Typing issues with deletion

Example

I (λP.c)(λx .fcc) �β c
I c : a, f : b → b → c ` (λP.c)(λx .fxx) : a
I c : a ` c : a

I λP.f((λy .c)(Pc)) �β λP.fc
I c : a, f : a→ b ` λP.f((λy .c)(Pc)) : (a→ c)→ b
I c : a, f : a→ b ` λP.fc : o → b

1. Need to include all possible free variables (i.e. constants in
the case of HOS)

2. Need to know type structure (skeleton) for each variable.

Extended parsers

Typing issues

Intersection Types

I (λP.c)(λx .fxx) �β c
I c : a, f : b → b → c ` (λP.c)(λx .fxx) : a
I c : a ` c : a
I We do not know the type of f
I Idea: use intersection types to enumerate possible types in

the signature: f : (b → b → c) ∩ (a→ b → c) ∩ . . .

I λP.f(λy .c(Pc)) �β λP.fc
I c : a, f : a→ b ` λP.f(λy .c(Pc)) : (a→ c)→ b
I c : a, f : a→ b ` λP.fc : o → b
I We do not know the type of P
I Idea: use intersection types to enumerate possible types in

the signature: P : (a→ c) ∩ (a→ b) ∩ . . .

Extended parsers

Typing issues

Intersection Types

I (λP.c)(λx .fxx) �β c
I c : a, f : b → b → c ` (λP.c)(λx .fxx) : a
I c : a ` c : a
I We do not know the type of f
I Idea: use intersection types to enumerate possible types in

the signature: f : (b → b → c) ∩ (a→ b → c) ∩ . . .
I λP.f(λy .c(Pc)) �β λP.fc

I c : a, f : a→ b ` λP.f(λy .c(Pc)) : (a→ c)→ b
I c : a, f : a→ b ` λP.fc : o → b
I We do not know the type of P
I Idea: use intersection types to enumerate possible types in

the signature: P : (a→ c) ∩ (a→ b) ∩ . . .

Extended parsers

Typing issues

Intersection Types

I (λP.c)(λx .fxx) �β c
I c : a, f : b → b → c ` (λP.c)(λx .fxx) : a
I c : a ` c : a
I We do not know the type of f
I Idea: use intersection types to enumerate possible types in

the signature: f : (b → b → c) ∩ (a→ b → c) ∩ . . .
I λP.f(λy .c(Pc)) �β λP.fc

I c : a, f : a→ b ` λP.f(λy .c(Pc)) : (a→ c)→ b
I c : a, f : a→ b ` λP.fc : o → b
I We do not know the type of P
I Idea: use intersection types to enumerate possible types in

the signature: P : (a→ c) ∩ (a→ b) ∩ . . .

Extended parsers

Typing issues

Intersection Types

Moreover, intersection types are already present (but hidden) in
Kanazawa’s technique:

∃(λx .∧(CAKE x) (∧ (BUY x MARY) (EAT x MARY)))

I The two occurrences of MARY come from the same lexical
entry (Hsem(Mary))

I The two occurrences of ∧ come from two different lexical
entries (Hsem(and) and Hsem(a))

I “Pseudo-principal typing”:
MARY : a,∧ : (b1 → b2 → c2) ∩ (c1 → c2 → d), . . .

Extended parsers

A new typing system

Outline

Second-order ACG and Lexical Semantics
Abstract Categorial Grammars
Integrating some lexical semantics information

Parsing ACG
General Idea
Using types

Extended parsers
Typing issues
A new typing system
Example and Datalog

Extended parsers

A new typing system

Restricted intersection types
Rigid variables
A rigid variable xs is such that x is a variable and s a type
skeleton

I Type skeletons: o, (o → o)→ o
I Any type: s · [α]

I (o → o)→ o · [a1,a2,a3] = (a1 → a2)→ a3

Listed Types

I T (A) ::= A | A → T (A)

I Ts(A): simple types of skeletons s
I Ls(A) ::= Ts(A) | Ls(A) ∩Ls(A)
I L (A) =

⋃
s Ls(A)

I Listed types are noted α, . . . and we note α ∈ α

Extended parsers

A new typing system

Restricted intersection types
Rigid variables
A rigid variable xs is such that x is a variable and s a type
skeleton

I Type skeletons: o, (o → o)→ o
I Any type: s · [α]

I (o → o)→ o · [a1,a2,a3] = (a1 → a2)→ a3

Listed Types

I T (A) ::= A | A → T (A)

I Ts(A): simple types of skeletons s
I Ls(A) ::= Ts(A) | Ls(A) ∩Ls(A)
I L (A) =

⋃
s Ls(A)

I Listed types are noted α, . . . and we note α ∈ α

Extended parsers

A new typing system

Restricted intersection types
Rigid variables
A rigid variable xs is such that x is a variable and s a type
skeleton

I Type skeletons: o, (o → o)→ o
I Any type: s · [α]

I (o → o)→ o · [a1,a2,a3] = (a1 → a2)→ a3

Listed Types

I T (A) ::= A | A → T (A)

I Ts(A): simple types of skeletons s
I Ls(A) ::= Ts(A) | Ls(A) ∩Ls(A)
I L (A) =

⋃
s Ls(A)

I Listed types are noted α, . . . and we note α ∈ α

Extended parsers

A new typing system

Restricted intersection types
Rigid variables
A rigid variable xs is such that x is a variable and s a type
skeleton

I Type skeletons: o, (o → o)→ o
I Any type: s · [α]

I (o → o)→ o · [a1,a2,a3] = (a1 → a2)→ a3

Listed Types

I T (A) ::= A | A → T (A)

I Ts(A): simple types of skeletons s
I Ls(A) ::= Ts(A) | Ls(A) ∩Ls(A)
I L (A) =

⋃
s Ls(A)

I Listed types are noted α, . . . and we note α ∈ α

Extended parsers

A new typing system

Restricted intersection types
Rigid variables
A rigid variable xs is such that x is a variable and s a type
skeleton

I Type skeletons: o, (o → o)→ o
I Any type: s · [α]

I (o → o)→ o · [a1,a2,a3] = (a1 → a2)→ a3

Listed Types

I T (A) ::= A | A → T (A)

I Ts(A): simple types of skeletons s
I Ls(A) ::= Ts(A) | Ls(A) ∩Ls(A)
I L (A) =

⋃
s Ls(A)

I Listed types are noted α, . . . and we note α ∈ α

Extended parsers

A new typing system

Listed Higher-order Signature
Definition
Σ = (A ,C , τ)

I A a finite set of atomic types
I C a finite set of constants
I τ the typing function C → L (A)

Derivations

xs : s · [α] `Σ xs : s · [α]

α ∈ τ(c)

`Σ c : α

Γ `Σ M : β

Γ− {xs : α} `Σ λxs.M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α

Γ ∪ ∆ `Σ MN : β

` M : α1 ` M : α2

` M : α1 ∩ α2

Extended parsers

A new typing system

Listed Higher-order Signature
Definition
Σ = (A ,C , τ)

I A a finite set of atomic types
I C a finite set of constants
I τ the typing function C → L (A)

Derivations

xs : s · [α] `Σ xs : s · [α]

α ∈ τ(c)

`Σ c : α

Γ `Σ M : β

Γ− {xs : α} `Σ λxs.M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α

Γ ∪ ∆ `Σ MN : β

` M : α1 ` M : α2

` M : α1 ∩ α2

Extended parsers

A new typing system

Listed Higher-order Signature
Definition
Σ = (A ,C , τ)

I A a finite set of atomic types
I C a finite set of constants
I τ the typing function C → L (A)

Derivations

xs : s · [α] `Σ xs : s · [α]

α ∈ τ(c)

`Σ c : α

Γ `Σ M : β

Γ− {xs : α} `Σ λxs.M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α

Γ ∪ ∆ `Σ MN : β

` M : α1 ` M : α2

` M : α1 ∩ α2

Extended parsers

A new typing system

Listed Higher-order Signature
Definition
Σ = (A ,C , τ)

I A a finite set of atomic types
I C a finite set of constants
I τ the typing function C → L (A)

Derivations

xs : s · [α] `Σ xs : s · [α]

α ∈ τ(c)

`Σ c : α

Γ `Σ M : β

Γ− {xs : α} `Σ λxs.M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α

Γ ∪ ∆ `Σ MN : β

` M : α1 ` M : α2

` M : α1 ∩ α2

Extended parsers

A new typing system

Characteristic typing

The most general signature for M

I Given M ∈ ΛΣ where Σ = (A ,C , τ) and `Σ M : α
principal simple type

ΣM = (A ∪ {ω},C , τM) such that:
I if c ∈ C in M ⇒ τM(c) = τ(c)
I otherwise, for τ(c) ∈ Ls(A),
τM(c) =

⋂
(a1,...,an−1)∈(A∪{ω})n−1 s · [a1, . . . ,an−1, ω]

Characteristic typing
If `Σ M : α is M ’s principal typing, we can build ΣM minimal in
|A | and obtain `ΣM M : α, where α = α1 ∩ . . . αn and n maximal
as follows:

Extended parsers

A new typing system

Characteristic typing

The most general signature for M

I Given M ∈ ΛΣ where Σ = (A ,C , τ) and `Σ M : α
principal simple type

ΣM = (A ∪ {ω},C , τM) such that:
I if c ∈ C in M ⇒ τM(c) = τ(c)
I otherwise, for τ(c) ∈ Ls(A),
τM(c) =

⋂
(a1,...,an−1)∈(A∪{ω})n−1 s · [a1, . . . ,an−1, ω]

Characteristic typing
If `Σ M : α is M ’s principal typing, we can build ΣM minimal in
|A | and obtain `ΣM M : α, where α = α1 ∩ . . . αn and n maximal
as follows:

Extended parsers

A new typing system

Example C = {c1, c2, c3}

I Principal on Simple Types:
I τ(c1) = (a→ u → b)→ d , τ(c2) = a→ a→ b `Σ

λx .c1(λx1x2.c2x1x1) : u′ → d

I Principal with Rigid Variables:
I τ(c1) = (a→ (u3 → u4)→ b)→ d , τ(c2) = a→ a→ b `Σ

λxo→o.c1(λxo
1 xo→o

2 .c2x1x1) : (u1 → u2)→ d
I Characteristic Typing:

I τ(c1) = α1, τ(c2) = α2, τ(c3) = α3 `Σ

λxo→o.c1(λxo
1 xo→o

2 .c2x1x1) : α
I α1 =

T
t∈Aω

(a → (t → ω) → b) → d
I α2 = a → a → b
I α3 =

T
t∈Aω

t → ω
I α =

T
t∈Aω

(t → ω) → d

Extended parsers

A new typing system

Example C = {c1, c2, c3}

I Principal on Simple Types:
I τ(c1) = (a→ u → b)→ d , τ(c2) = a→ a→ b `Σ

λx .c1(λx1x2.c2x1x1) : u′ → d
I Principal with Rigid Variables:

I τ(c1) = (a→ (u3 → u4)→ b)→ d , τ(c2) = a→ a→ b `Σ

λxo→o.c1(λxo
1 xo→o

2 .c2x1x1) : (u1 → u2)→ d

I Characteristic Typing:
I τ(c1) = α1, τ(c2) = α2, τ(c3) = α3 `Σ

λxo→o.c1(λxo
1 xo→o

2 .c2x1x1) : α
I α1 =

T
t∈Aω

(a → (t → ω) → b) → d
I α2 = a → a → b
I α3 =

T
t∈Aω

t → ω
I α =

T
t∈Aω

(t → ω) → d

Extended parsers

A new typing system

Example C = {c1, c2, c3}

I Principal on Simple Types:
I τ(c1) = (a→ u → b)→ d , τ(c2) = a→ a→ b `Σ

λx .c1(λx1x2.c2x1x1) : u′ → d

I Principal with Rigid Variables:
I τ(c1) = (a→ (u3 → u4)→ b)→ d , τ(c2) = a→ a→ b `Σ

λxo→o.c1(λxo
1 xo→o

2 .c2x1x1) : (u1 → u2)→ d
I Characteristic Typing:

I τ(c1) = α1, τ(c2) = α2, τ(c3) = α3 `Σ

λxo→o.c1(λxo
1 xo→o

2 .c2x1x1) : α
I α1 =

T
t∈Aω

(a → (t → ω) → b) → d
I α2 = a → a → b
I α3 =

T
t∈Aω

t → ω
I α =

T
t∈Aω

(t → ω) → d

Extended parsers

A new typing system

Example C = {c1, c2, c3}

I Principal on Simple Types:
I τ(c1) = (a→ u → b)→ d , τ(c2) = a→ a→ b `Σ

λx .c1(λx1x2.c2x1x1) : u′ → d
I Principal with Rigid Variables:

I τ(c1) = (a→ (u3 → u4)→ b)→ d , τ(c2) = a→ a→ b `Σ

λxo→o.c1(λxo
1 xo→o

2 .c2x1x1) : (u1 → u2)→ d

I Characteristic Typing:
I τ(c1) = α1, τ(c2) = α2, τ(c3) = α3 `Σ

λxo→o.c1(λxo
1 xo→o

2 .c2x1x1) : α
I α1 =

T
t∈Aω

(a → (t → ω) → b) → d
I α2 = a → a → b
I α3 =

T
t∈Aω

t → ω
I α =

T
t∈Aω

(t → ω) → d

Extended parsers

A new typing system

Potentially negatively non-duplicating typing

Useful occurrences of atomic types

I α1 =
⋂

t∈A (a→ (t → ω)→ b)→ d
I α2 = a→ a→ b
I α3 =

⋂
t∈A t → ω

I α =
⋂

t∈A (t → ω)→ d

Theorem
If a term M is in long-normal form for a PN-typing 〈Γ; γ〉 it is the
unique long-normal inhabitant of this pair.

Theorem
An almost affine term has a PN characteristic typing.

Extended parsers

A new typing system

Potentially negatively non-duplicating typing

Useful occurrences of atomic types
I α1 =

⋂
t∈A (a− → (t → ω)→ b+)→ d−

I α2 = a+ → a+ → b−

I α3 =
⋂

t∈A t → ω

I α =
⋂

t∈A (t → ω)→ d+

Such a typing is called a PN-typing

Theorem
If a term M is in long-normal form for a PN-typing 〈Γ; γ〉 it is the
unique long-normal inhabitant of this pair.

Theorem
An almost affine term has a PN characteristic typing.

Extended parsers

A new typing system

Potentially negatively non-duplicating typing

Useful occurrences of atomic types
I α1 =

⋂
t∈A (a− → (t → ω)→ b+)→ d−

I α2 = a+ → a+ → b−

I α3 =
⋂

t∈A t → ω

I α =
⋂

t∈A (t → ω)→ d+

Such a typing is called a PN-typing

Theorem
If a term M is in long-normal form for a PN-typing 〈Γ; γ〉 it is the
unique long-normal inhabitant of this pair.

Theorem
An almost affine term has a PN characteristic typing.

Extended parsers

A new typing system

Potentially negatively non-duplicating typing

Useful occurrences of atomic types
I α1 =

⋂
t∈A (a− → (t → ω)→ b+)→ d−

I α2 = a+ → a+ → b−

I α3 =
⋂

t∈A t → ω

I α =
⋂

t∈A (t → ω)→ d+

Such a typing is called a PN-typing

Theorem
If a term M is in long-normal form for a PN-typing 〈Γ; γ〉 it is the
unique long-normal inhabitant of this pair.

Theorem
An almost affine term has a PN characteristic typing.

Extended parsers

A new typing system

Properties

The characteristic typing is the simplest typing of `ΣM M : α
which ensures:

1. M is the unique inhabitant of it.
2. If an almost affine term M ′ �β M, then `ΣM M : α

Moreover, we show almost affine terms M and M ′ in ΛΣM verify
M =β M ′ iff they share the same characteristic typing.

Extended parsers

A new typing system

Properties

The characteristic typing is the simplest typing of `ΣM M : α
which ensures:

1. M is the unique inhabitant of it.
2. If an almost affine term M ′ �β M, then `ΣM M : α

Moreover, we show almost affine terms M and M ′ in ΛΣM verify
M =β M ′ iff they share the same characteristic typing.

Extended parsers

A new typing system

Idea: Use Types

Σchar
M
M

Σchar
M1
M1

H1

If MΣ1 and H1(MΣ) share the same characteristic typing then
MΣ1 =β H1(MΣ)

Extended parsers

Example and Datalog

Outline

Second-order ACG and Lexical Semantics
Abstract Categorial Grammars
Integrating some lexical semantics information

Parsing ACG
General Idea
Using types

Extended parsers
Typing issues
A new typing system
Example and Datalog

Extended parsers

Example and Datalog

Example

READ JOHNchar HAMinfo−cont

IDB

L(John) = λQP.P(Q JOHNchar undefined undefined)
L(Hamlet) = λQP.P(Q HAMchar HAMphys−obj HAMinfo−cont)
L(read) = λQP.Pπ1(λx .Qπ3 (λy .READ x y))

πi ≡ λx1x2x3.xi

Extended parsers

Example and Datalog

Example

IDB
S(x6) :- NP(x1, x2, x3, x1, x4, x5, x6),NP(y1, y2, y3, y3, y4, y5, x5),READ(x4, y4, y5).
NP(x1, x2, x3, x4, x4, x5, x5) :- JOHNchar (x1), undefined(x2), undefined(x3).
NP(x1, x2, x3, x4, x4, x5, x5) :- HAMchar (x1),HAMphys−obj (x2),HAMinfo−cont (x3).

IDBω

READ(x1, x2, ω) :- type(x1), type(x2).
EAT (x1, x2, ω) :- type(x1), type(x2).

EDB
READ(1, 2, 3).
JOHNchar (1).
HAMphys−cont (2).

EDBω

JOHNchar (ω).
HAMphys−cont (ω).

undefined(ω).
MARYchar (ω).
type(1).
type(2).
type(3).
type(ω).

? :- S(3)

Extended parsers

Example and Datalog

Example

IDB
S(x6) :- NP(x1, x2, x3, x1, x4, x5, x6),NP(y1, y2, y3, y3, y4, y5, x5),READ(x4, y4, y5).
NP(x1, x2, x3, x4, x4, x5, x5) :- JOHNchar (x1), undefined(x2), undefined(x3).
NP(x1, x2, x3, x4, x4, x5, x5) :- HAMchar (x1),HAMphys−obj (x2),HAMinfo−cont (x3).

IDBω

READ(x1, x2, ω) :- type(x1), type(x2).
EAT (x1, x2, ω) :- type(x1), type(x2).

EDB
READ(1, 2, 3).
JOHNchar (1).
HAMphys−cont (2).

EDBω

JOHNchar (ω).
HAMphys−cont (ω).

undefined(ω).
MARYchar (ω).
type(1).
type(2).
type(3).
type(ω).

? :- S(3)

Extended parsers

Example and Datalog

Example

IDB
S(x6) :- NP(x1, x2, x3, x1, x4, x5, x6),NP(y1, y2, y3, y3, y4, y5, x5),READ(x4, y4, y5).
NP(x1, x2, x3, x4, x4, x5, x5) :- JOHNchar (x1), undefined(x2), undefined(x3).
NP(x1, x2, x3, x4, x4, x5, x5) :- HAMchar (x1),HAMphys−obj (x2),HAMinfo−cont (x3).

IDBω

READ(x1, x2, ω) :- type(x1), type(x2).
EAT (x1, x2, ω) :- type(x1), type(x2).

EDB
READ(1, 2, 3).
JOHNchar (1).
HAMphys−cont (2).

EDBω

JOHNchar (ω).
HAMphys−cont (ω).

undefined(ω).
MARYchar (ω).
type(1).
type(2).
type(3).
type(ω).

? :- S(3)

Conclusion

Conclusion

I Kanazawa: Datalog recognizer for (almost)-linear ACG:
efficient parsing (LOGCFL)

I Result extended to almost affine ACG; at least polynomial
time

I A more complex typing system is needed (intersection
which are used in [Sal10])

I Principal Typings replaced with Charateristic Typing.
I Deletion can be used to enrich the grammar with:

I Aspects (lexical semantics)
I Agreement (syntax)
I . . .

Conclusion

Future work

I Parsing:
I Check magic-set rewriting to lead to prefix-correct Earley

algorithm [Kan08]
I Extract derivations: recognizer→ parser.
I Development.
I From listed HOS to intersected HOS?

I Linguistic Model:
I Basic treatment.
I Unable to reject unfelicitous sentences (“John fished and

ate a fast salmon.” (?))

Conclusion

Future work

I Parsing:
I Check magic-set rewriting to lead to prefix-correct Earley

algorithm [Kan08]
I Extract derivations: recognizer→ parser.
I Development.
I From listed HOS to intersected HOS?

I Linguistic Model:
I Basic treatment.
I Unable to reject unfelicitous sentences (“John fished and

ate a fast salmon.” (?))

Conclusion

Future work

I Parsing:
I Check magic-set rewriting to lead to prefix-correct Earley

algorithm [Kan08]
I Extract derivations: recognizer→ parser.
I Development.
I From listed HOS to intersected HOS?

I Linguistic Model:
I Basic treatment.
I Unable to reject unfelicitous sentences (“John fished and

ate a fast salmon.” (?))

Conclusion

Future work

I Parsing:
I Check magic-set rewriting to lead to prefix-correct Earley

algorithm [Kan08]
I Extract derivations: recognizer→ parser.
I Development.
I From listed HOS to intersected HOS?

I Linguistic Model:
I Basic treatment.
I Unable to reject unfelicitous sentences (“John fished and

ate a fast salmon.” (?))

Conclusion

Future work

I Parsing:
I Check magic-set rewriting to lead to prefix-correct Earley

algorithm [Kan08]
I Extract derivations: recognizer→ parser.
I Development.
I From listed HOS to intersected HOS?

I Linguistic Model:
I Basic treatment.
I Unable to reject unfelicitous sentences (“John fished and

ate a fast salmon.” (?))

Conclusion

Future work

I Parsing:
I Check magic-set rewriting to lead to prefix-correct Earley

algorithm [Kan08]
I Extract derivations: recognizer→ parser.
I Development.
I From listed HOS to intersected HOS?

I Linguistic Model:
I Basic treatment.
I Unable to reject unfelicitous sentences (“John fished and

ate a fast salmon.” (?))

Conclusion

Future work

I Parsing:
I Check magic-set rewriting to lead to prefix-correct Earley

algorithm [Kan08]
I Extract derivations: recognizer→ parser.
I Development.
I From listed HOS to intersected HOS?

I Linguistic Model:
I Basic treatment.
I Unable to reject unfelicitous sentences (“John fished and

ate a fast salmon.” (?))

Conclusion

Future work

I Parsing:
I Check magic-set rewriting to lead to prefix-correct Earley

algorithm [Kan08]
I Extract derivations: recognizer→ parser.
I Development.
I From listed HOS to intersected HOS?

I Linguistic Model:
I Basic treatment.
I Unable to reject unfelicitous sentences (“John fished and

ate a fast salmon.” (?))

Appendix

For Further Reading

For Further Reading I

T. Aoto.
Uniqueness of normal proofs in implicational intuitionistic logic.
Journal of Logic, Language and Information, 8:217–242, 1999.

A. Babaev and S. Soloviev.
A coherence theorem for canonical morphism in cartesian closed categories.
Journal of Soviet Mathematics, 20:2263 – 2279, 1982.

P. de Groote.
Towards abstract categorial grammars.
In Association for Computational Linguistics, 39th Annual Meeting and 10th
Conference of the European Chapter, Proceedings of the Conference, pages
148–155, 2001.

M. Kanazawa.
Parsing and generation as Datalog queries.
In Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics, pages 176–183, Prague, 2007. Association for Computational
Linguistics.

Appendix

For Further Reading

For Further Reading II
M. Kanazawa.
A prefix-correct earley recognizer form multiple context-free grammars.
In TAG+9, Proceedings of the ninth International Workshop on Tree Adjoining
Grammars and Related Frameworks, Tubingen, Germany, June 2008.

J. Lambek.
The mathematics of sentence structure.
Amer. Math. Mon., 65:154–170, 1958.

R. Montague.
The proper treatment of quantification in ordinary english.
Approaches to Natural Language, pages 221–242, 1973.

R. Muskens.
Lambda Grammars and the Syntax-Semantics Interface.
In R. van Rooy and M. Stokhof, editors, Proceedings of the Thirteenth
Amsterdam Colloquium, pages 150–155, Amsterdam, 2001.

Sylvain Salvati.
On the membership problem for non-linear abstract categorial grammars.
Journal of Logic, Language and Information, 19(2):163–183, 2010.

	Second-order ACG and Lexical Semantics
	Abstract Categorial Grammars
	Integrating some lexical semantics information

	Parsing ACG
	General Idea
	Using types

	Extended parsers
	Typing issues
	A new typing system
	Example and Datalog

	Conclusion
	Appendix
	Appendix
	

