
A Superposition Strategy for Abductive

Reasoning in Ground Equational Logic

Mnacho Echenim, Nicolas Peltier, and Sophie Tourret

University of Grenoble (LIG, Grenoble INP/CNRS)

Abstract. An algorithm is presented for generating implicates of sets
of ground, �at, equational clauses. It uses a novel representation of the
clause sets that takes the properties of the equality predicate into account
in order to ease redundancy elimination. The generation of implicates is
performed modulo equivalence and is based on an unordered application
of the transitivity axiom with delayed equality tests.

1 Introduction and Motivations

Abduction has been introduced by Peirce [8] as the process of inferring plausible
hypotheses from data. This mode of reasoning has many natural applications
in computer science, especially for debugging. Many veri�cation problems boil
down to testing the validity of logical formulæ, possibly modulo some particular
theory. The behavior of the system and the expected property are modeled by
two logical formulæ H and C and automated reasoning systems are used to
verify that the implication H ⇒ C holds. In case this formula turns out to be
not valid, a counter-example can be constructed [1] to provide a trace of an
undesired execution of the system. By analyzing this interpretation, it is often
possible to understand where the error comes from and in some cases to correct
it. However, this approach is not always satisfactory. First, the counter-example
may be very large and complex, with a lot of irrelevant information that can
possibly �hide� the origin of the error. Second, it may be too speci�c, in the
sense that it only corresponds to one particular execution of the system and
that dismissing this only execution may not be su�cient to �x the system. This
leaves to the user the burden of having to infer the general property that can
rule out all the undesired behaviors. Consequently, a more useful and informative
solution would be to directly infer the missing axioms, or hypotheses, that can
be added to H in order to ensure the validity of the formula. Such axioms must
be plausible and economical: for instance the formula C can be added to H, but
this is obviously of no use; similarly, explanations that contradict the axioms of
the considered theories are obviously irrelevant.

There exists an extensive amount of research on abductive reasoning, mainly
in propositional logic, with numerous applications in, e.g., arti�cial intelligence.
Abduction can be performed in a top-down manner, by allowing some hypotheses
to be asserted instead of being proven. However it is more often reduced to
a consequence-generation problem: indeed, by contrapositive, the implication
H ⇒ C holds i� ¬H is a logical consequence of ¬C. Thus explanations of C

can be generated from the derivation of the implicates1 of ¬C. In general, these
explanations are further restricted to ensure relevance: only explanations de�ned
on a particular set of symbols, called the abducible symbols are considered.

Most automated theorem provers focus on proving that one particular prop-
erty holds (usually by contradiction), and thus they are not well-adapted for
the �blind� generation of implicates. Although saturation-based provers work
by generating consequences of sets of axioms, the application of the inference
rules is strongly restricted (for obvious e�ciency reasons), which prevents the
generation of some potentially relevant implicates. Existing approaches for com-
puting implicates use either variants of the (unordered) resolution rule, together
with speci�c redundancy criteria and strategies ensuring e�ciency [11, 6, 5, 2],
or decomposition-based approaches in the spirit of the DPLL method, which
compute implicates by recursively decomposing them into smaller pieces [10, 9,
7]. In [3], we devised a variant of the superposition calculus that is speci�cally
tuned for generating ground consequences of sets of axioms. Given a set of �rst-
order clauses S, this calculus is able to generate a set of ground, �at, clauses
T∞(S) that describes all possible consequences of S that are of interest: if C is
an implicate of S built over abducible symbols, then it is also an implicate of
T∞(S). Thus, the formula ¬T∞(S) can be viewed as a representation of the set
of all plausible hypotheses ensuring the unsatis�ability of S. However, returning
the set T∞(S) to a user is not fully satisfactory, since this set may be very large
and contain a lot of redundant information. In practice, it would be more useful
to return only the most general clauses that are logical consequences of T∞(S),
which correspond to the most economical explanations of S. Such clauses are
the prime implicates of T∞(S).

2 Generating Prime Implicates

A �rst method to automatically generate prime implicates built over abducible
symbols is given in [3]. It applies the resolution rule on the clause set T∞(S)
enriched with all ground instances of the equality axioms on the considered sig-
nature. It is shown that this approach is complete, in the sense that every prime
implicate is eventually obtained. However, it is also very ine�cient, because the
systematic instantiation of the equality axioms produces numerous clauses, with
a huge number of potential resolvents. In particular, the resolution rule will de-
rive clauses containing constant symbols not occurring in the premises in T∞(S):
for instance a clause a 6' b, will produce, together with the transitivity axiom
a 6' c ∨ c 6' b ∨ a ' b, one clause a 6' c ∨ c 6' b for each constant symbol c in
the signature, even if there is no logical connection between c and a or b. From
a practical point of view, such inferences are rather cumbersome, and it would
be obviously better to have a calculus in which the properties of the equality
predicate are directly encoded as built-in features of the inference process, rather
than having to express them explicitly as axioms. A natural candidate is the su-
perposition calculus, but it is easy to see that it is too restrictive for our purpose:
for example, a prime implicate of the clauses a 6' b and c ' d, is c 6' a ∨ d 6' b,

1 A formula F ′ is an implicate of a formula F i� F ′ is not a tautology and F |= F ′.

yet there is no way of generating this clause from the two premises by super-
position, even if ordering conditions are relaxed. It is thus natural to search for
new superposition-based strategies for generating implicates. On one hand, such
strategies must be more relaxed than the standard superposition inference rules,
so that all prime implicates can be obtained, but on the other hand, they should
be more focused than the blind application of the resolution rule, in order to
yield a more e�cient and hopefully scalable algorithm. We devise such a strategy
in the present paper.

3 Representation of Clauses Modulo Equality

In propositional logic, detecting redundant clauses is an easy task, since a (non-
tautological) clause C is a logical consequence ofD i�D is a subclause of C. Thus
C is redundant in a clause set i� there exists a clause D ∈ S such that D ⊆ C.
The literals can be totally ordered to handle commutativity and the clause set
S can be represented as a trie (a tree-based data-structure commonly used to
represent strings [4]), so that inclusion can be tested e�ciently. However, in
ground equational logic, the above property does not hold anymore: for instance
the clause a 6' b∨b ' c is a logical consequence of a ' c but obviously a ' c is not
a subclause of a 6' b ∨ b ' c. Thus testing clause inclusion is no longer su�cient
and representing clause sets as tries would yield many undesired redundancies:
for instance the clauses a 6' b ∨ b ' c and a 6' b ∨ a ' c would be both stored,
although they are equivalent. Our �rst task is thus to devise a new redundancy
criterion that generalizes subsumption, together with a new way of representing
clauses, that takes into account the special properties of the equality predicate.
To this purpose we show how to normalize ground clauses according to a total
ordering on constant symbols, and we introduce a new notion of projection.

Let ≺ be a �xed, total ordering on constant symbols and C be a clause. The
C-representatives of a constant a, a literal2 l and a clause D are respectively
de�ned as follows: a�C = min≺{b | b 6' a |= C}; l�C = a�C ./ b�C when l = a ./ b;
and D�C = {l�C | l ∈ D}. The literal l�C (resp. the clause D�C) is called the
projection of l (resp. D) on C. It can be veri�ed that every clause C is equivalent

to the clause: C↓
def

=
∨

a∈C,a6=a�C
a 6' a�C ∨

∨
a'b∈C a�C ' b�C . The clause C↓ is

the normal form of C.
Clauses in normal form are stored in a tree data-structure, called a

clausal tree, speci�cally tailored to store sets of literals while taking into ac-
count the usual properties of the equality predicate. As in tries, the edges of the
tree are labeled by literals and the leaves are labeled either by � (representing
the empty clause) or by ∅ (failure node). The set of clauses C(T) represented by
a tree T is the disjunction of literals labeling a path from the root to those leaves
labeled by �. Failure nodes are useful mainly to represent empty sets � in fact
they can always be eliminated by straightforward simpli�cation rules, except
if the root itself is labeled by ∅. A few constraints are imposed on the literals
labeling the edges of a clausal tree � the main one being that negative literals
occur before positive ones in all branches of the tree � in order to guarantee that

2 When we write l = a ./ b, the symbol ./ stands for ' or 6'.

the clauses represented by a clausal tree are in normal form, and that this data-
structure can be used to test redundancy e�ciently. The conditions permit to
design an e�cient test whether a given clause is redundant w.r.t. those stored in
the tree (forward subsumption) and conversely to delete from the tree all clauses
that are redundant w.r.t. a newly generated clause (backward subsumption).

Theorem 1. Let C and D be two clauses. Assume that C is not a tautology.
D |= C i� every negative literal in D�C is a contradiction and every positive
literal in D�C is also in C�C .

We will use a slightly more restrictive version of this criterion for redundancy
elimination, by viewing the clauses as multisets and by imposing that the positive
literals in D�C are mapped to pairwise distinct literals in C�C . This additional
restriction is necessary to prevent the factors of a clause to be redundant w.r.t.
the initial clause. For instance, the clause a ' b ∨ a 6' a′ will not be redundant
w.r.t. a ' b ∨ a′ 6' b ∨ a 6' a′, although a ' b ∨ a′ 6' b ∨ a 6' a′ |= a ' b ∨ a 6' a′.

Algorithm 1 isEntailed(C, T)

Require: C is a clause in normal form and T is an RN -clausal tree.
Ensure: isEntailed(C, T) = true ⇔ ∃D ∈ C(T), D |= C
if T = � then

return true
end if

if C = � then

return false
end if

l1 ← min
<
{l ∈ C}

for all (l, T ′) ∈ T such that l ≥ l1 do

if l1 = a 6' b, with a � b then
if l = l1 then

if isEntailed(C\l1, T ′) then
return true

end if

else if ¬(l = a 6' c), with a � c then
if isEntailed(C\l1, (T ′|↑l)[a := b]) then

return true
end if

end if

else if l ∈ C then

if isEntailed(C\l, T ′) then
return true

end if

end if

end for

return false

The �rst algorithm is invoked on a clause C and a tree T , and returns true
if and only if there exists a clause D in C(T) such that C is redundant w.r.t.
D. To test this entailment, the algorithm performs a depth-�rst traversal of T
and attempts to project every encountered literal on C. If a literal cannot be
projected, the exploration of the subtree associated to this literal is useless, so
the algorithm switches to the following literal. As soon as a clause entailing C
is found, the traversal halts and true is returned.

The second algorithm deletes from a tree T all clauses entailed by C. It
performs a depth-�rst traversal of T and attempts to project C on every clause in
C(T), deleting those on which such a projection succeeds. As soon as a projection
is identi�ed as impossible, the exploration of the associated subtree halts and
the algorithm moves on to the next clause. When every literal in C has been
projected, all the clauses represented in the current subtree are entailed by C,
and are therefore deleted.

Algorithm 2 pruneEntailed(C, T)

Require: C is a clause in relaxed normal form, T is an N -clausal tree and
isEntailed(C, T) = false

Ensure: ∀D ∈ C(T), C 6|= D
if C = � then

T ← ∅
exit

end if

if T = � then

exit

end if

l1 ← min
<
{li ∈ C}

for all (l, T ′) ∈ T such that l ≤ l1 do

if l1 = l then
pruneEntailed(C\l1, T ′)

else

if l = a ' b then
pruneEntailed(C, T ′)

else if l = a 6' b, with a � b and @c, l1 = a 6' c, with a � c then
pruneEntailed(C[a := b], T ′)

end if

end if

end for

4 Generation of Implicates

The clausal trees described above are used during the generation of implicates
to store the non-redundant clauses generated by the following inference rules:

a ' b ∨ C a′ ' c ∨D
a 6' a′ ∨ b ' c ∨ C ∨D

a ' b ∨ a′ ' b′ ∨ C
a ' b ∨ a 6' a′ ∨ b 6' b′ ∨ C

∨n
i=1(ai 6' bi) ∨ P1 c ' d ∨ P2∨n
i=1(ai 6' c ∨ d 6' bi) ∨ P1 ∨ P2

The premises are assumed to be in normal form and the conclusion is normal-
ized before being stored. The �rst rule is similar to the usual paramodulation
rule, except that the uni�cation between the terms a and a′ is omitted and
replaced by the addition of the literal a 6' a′ ensuring that these terms are
semantically equal. Similarly, the second rule factorizes the literals a ' b and
a′ ' b′ and adds the conditions a 6' a′ and b 6' b′. The last rule corresponds
to an application of the factorization rule on the negative literals ai 6' bi, fol-
lowed by a paramodulation step which removes these literals, while adding the
conditions ensuring that ai = c and bi = d. Note that no ordering condition is
imposed. It is easy to see that the addition of ordering restrictions (as in the
usual version of the rules) makes the calculus incomplete. For instance, assume
that S = {a 6' b ∨ c ' d, a ' b}, with a ≺ b ≺ c ≺ d. Then S |= c ' d,
but a 6' b is not maximal in a 6' b ∨ c ' d, thus it is impossible to infer the
clause c ' d if paramodulation is restricted to maximal literals. Similarly, if
S′ = {a 6' b, c ' b}, then S′ |= a 6' c, but a 6' c can only be derived if the
paramodulation rule is applied on the non-maximal term a in a 6' b (replacing
a by b in a 6' b yields a contradiction and the condition a 6' c is added in the
clause) or from the non-maximal term b in c ' b (replacing b by c in a 6' b yields
a 6' c).

Some of the literals in the conclusions, more precisely the conditions a 6' a′,
b 6' b′, ai 6' c and d 6' bi can be �frozen� in the sense that no further inference is
allowed within them (these literals will eventually remain � after normalization
� in the considered prime implicate). Although this remark can dismiss many
inferences, its practical interest remains unclear, since the frozen literals have to
be considered apart when applying the redundancy detection, which may prevent
the removal of numerous clauses.

A set of clauses S is saturated i� for every clause C that can be derived from
S using these rules, there exists a clause C ′ ∈ S such that C is redundant w.r.t.
C ′. The following theorem states the completeness of this approach:

Theorem 2. Let S be a set of ground �at clauses in normal form. If S is sat-
urated and S |= C then there exists a clause C ′ ∈ S such that C ′ |= C.

A seemingly natural idea is to restrict the last rule to the case n = 1 (i.e.
to remove the preliminary implicit factorization step when paramodulating into
negative literals). However, this makes the calculus incomplete. For instance,
consider the set: S = {c 6' a ∨ d 6' a, a ' b ∨ c 6' b ∨ d 6' b}. It is clear that
S |= c 6' b ∨ d 6' b and that S is saturated if the negative paramodulation rule
is applied on a unique literal only.

5 Conclusion

We have devised a calculus for generating prime implicates of clause sets de�ned
over equations and disequations between constants. Such an algorithm is much

more restricted and thus (probably) more e�cient than the naive approach con-
sisting in applying the resolution calculus on equality axioms. In particular, the
clauses are taken modulo equivalence, and e�cient data-structures are used to
represent clause sets. Algorithms are provided for updating such data-structures
and detecting redundancy. The generation of the implicates is performed by
applying a constrained paramodulation rule, where equations permitting the
application of the transitivity axiom are allowed to be asserted instead of be-
ing proved. While such a rule is far more restricted than the resolution rule, its
de�nition probably leaves room for improvements: in particular, no ordering re-
striction is considered in the current version. This is to some extent unavoidable
if one wants to derive all implicates3, but, still, some partial ordering conditions
can probably be enforced while retaining completeness, and we are currently
investigating this problem, as well as working on an implementation of the cal-
culus.

References

1. R. Caferra, A. Leitsch, and N. Peltier. Automated Model Building, volume 31 of
Applied Logic Series. Kluwer Academic Publishers, 2004.

2. J. De Kleer. An improved incremental algorithm for generating prime implicates.
In Proceedings of the National Conference on Arti�cial Intelligence, pages 780�780.
John Wiley & Sons ltd, 1992.

3. M. Echenim and N. Peltier. A Calculus for Generating Ground Explanations. In
Proceedings of the International Joint Conference on Automated Reasoning (IJ-
CAR'12). Springer LNCS, 2012.

4. E. Fredkin. Trie memory. Commun. ACM, 3(9):490�499, 1960.
5. P. Jackson. Computing prime implicates incrementally. Automated Deduction

CADE-11, pages 253�267, 1992.
6. A. Kean and G. Tsiknis. An incremental method for generating prime impli-

cants/implicates. Journal of Symbolic Computation, 9(2):185�206, 1990.
7. A. Matusiewicz, N. Murray, and E. Rosenthal. Prime implicate tries. Automated

Reasoning with Analytic Tableaux and Related Methods, pages 250�264, 2009.
8. C. S. Peirce. Philosophical Writings of Peirce. Dover Books, Justus Buchler editor,

1955.
9. A. Ramesh, G. Becker, and N. Murray. Cnf and dnf considered harmful for comput-

ing prime implicants/implicates. Journal of Automated Reasoning, 18(3):337�356,
1997.

10. R. Rymon. An se-tree-based prime implicant generation algorithm. Annals of
Mathematics and Arti�cial Intelligence, 11(1):351�365, 1994.

11. P. Tison. Generalization of consensus theory and application to the minimization
of boolean functions. Electronic Computers, IEEE Transactions on, (4):446�456,
1967.

3 For instance, given the clauses a ' b ∨ c 6' d and c ' d, one should be able to prove
that a ' b is an implicate, hence to perform inferences on c 6' d even if a, b � c, d.

