
Generalized Completeness for SOS Resolution
and its Application to a New Notion of

Relevance

Fajar Haifani 1,2, Sophie Tourret 1,3, and Christoph Weidenbach 1

1 Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken
Germany

2 Graduate School of Computer Science, Saarbrücken, Germany
3 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

Abstract. We prove the SOS strategy for first-order resolution to be
refutationally complete on a clause set N and set-of-support S if and only
if there exists a clause in S that occurs in a resolution refutation from N∪
S. This strictly generalizes and sharpens the original completeness result
requiring N to be satisfiable. The generalized SOS completeness result
supports automated reasoning on a new notion of relevance aiming at
capturing the support of a clause in the refutation of a clause set. A clause
C is relevant for refuting a clause set N if C occurs in every refutation of
N . The clause C is semi-relevant, if it occurs in some refutation, i.e., if
there exists an SOS refutation with set-of-support S = {C} from N \{C}.
A clause that does not occur in any refutation fromN is irrelevant, i.e., it is
not semi-relevant. Our new notion of relevance separates clauses in a proof
that are ultimately needed from clauses that may be replaced by different
clauses. In this way it provides insights towards proof explanation in
refutations beyond existing notions such as that of an unsatisfiable core.

1 Introduction

Shortly after the invention of first-order resolution [14] its first complete refine-
ment was established: set-of-support (SOS) resolution [18]. The idea of the SOS
strategy is to split a current clause set into two sets, namely N and S and re-
strict resolution inferences to have one parent from the set-of-support S. Wos
et al. [18] proved the SOS strategy complete if N is satisfiable. The motivation
by Wos et. al. for the SOS strategy was getting rid of “irrelevant” inferences.
If N defines a theory and S contains the negation of a conjecture (goal) to be
refuted, the strategy puts emphasis on resolution inferences with the conjecture.
This can be beneficial, because resolution is deductively complete (modulo sub-
sumption) [11, 13], i.e., resolution inferences solely performed on clauses from N
will enumerate all semantic consequences, not necessarily only consequences that
turn out to be useful in refuting N ∪ S. Even in more restrictive contexts, the
SOS strategy can be shown complete, e.g., if N is saturated by superposition
and does not contain the empty clause, then the SOS strategy is also complete

http://orcid.org/0000-0001-5139-4503
http://orcid.org/0000-0002-6070-796X
http://orcid.org/0000-0001-6002-0458

in the context of the strong superposition inference restrictions on N and a
set-of-support S [2].

In this paper, we generalize and sharpen the original completeness result for
the SOS strategy: The resolution calculus with the SOS strategy is complete if and
only if there is at least one clause in S that is contained in a resolution refutation
from N ∪ S, Theorem 11. The proof is performed via proof transformation. Any
(non SOS) refutation from N ∪ S can be transformed into an SOS refutation
with SOS S, if the original refutation contains at least one clause from S.

The generalized SOS completeness result supports our new notion of relevance
that is meant to be a first stop towards explaining the gist of a refutation. A
clause C ∈ N is relevant if it is needed for any refutation of the clause set N .
The clause C is semi-relevant if there is a refutation from N using C and C is
irrelevant otherwise, Definition 12. Applying our generalized SOS completeness
result, a clause C ∈ N is semi-relevant if and only if there is an SOS refutation
from N \ {C} with SOS {C}.

The interest in semi-relevant clauses comes from real-world applications. In
an industrial scenario where different products are built out of a building set,
the overall product portfolio is often defined by a set of clauses (rules). Roughly,
every clause describes the integration of some part out of the building set in a
product. Different proofs for the existence of some product correspond to different
builds of the product. For example, answering a question like “Can we build car
x with part y?” from the automotive world boils down to the semi-relevance
of the clauses defining part y in a refutation showing the existance of a car x.
All German car manufacturers maintain such clause sets defining their product
portfolio [6, 17].

Our new notion of relevance is related to other notions capturing aspects of
a refutation. A minimal unsatisfiable core of an unsatisfiable clause set contains
only semi-relevant clauses. The intersection of all minimal unsatisfiable cores is
the set of relevant clauses. The notion of a minimal unsatisfiable core does not
provide a test for semi-relevance of a specific clause. There are various notions
from the description logic community related to unsatisfiable cores of a translation
to first-order and/or to our notion of relevance [1,4,8,16]. An in-depth discussion
of these relationships can be found in our description logic workshop paper [7].
The notion of relevant clauses is also related to what has been studied in the
field of propositional satisfiability under the name of lean kernels [9, 10]: Given
an unsatisfiable set N of propositional clauses, the lean kernel consists exactly
of those clauses that are involved in at least one refutation proof of N in the
resolution calculus, and thus, in our terminology, the set of semi-relevant clauses. A
different notion of relevance was previously defined in the context of propositional
abduction [5]. The authors provide algorithms and complexity results for various
abduction settings in the propositional logic context. In addition to the fact
that our notion of relevance is defined with respect to first-order clauses, in their
context of propositional abduction, if a propositional variable is relevant, it must
be satisfiability preserving when added to the theory (clause set). In our case, if

2

a clause C ∈ N is (semi-)relevant, then N is unsatisfiable and N \ {C} may be
unsatisfiable as well.

The paper is organized as follows. After fixing some notations and notions at
the beginning of Section 2 we introduce our proof transformation technique. First
on an example, Figure 1, then in general. The following Section 3 proves important
properties of the transformation, yielding our generalized completeness result for
SOS, Theorem 11. We then link the SOS completeness result to our notion of
semi-relevance in Section 4. The paper ends with a summary, a discussion of the
contributions, and directions for future work, Section 5.

2 Resolution Proof Transformation

After fixing some common notions and notation, this section introduces our proof
transformation technique. First on an example and afterwards on resolution
refutations in general.

We assume a first-order language without equality where N denotes a clause
set; C,D denote clauses; L,K denote literals; A,B denote atoms; P,Q,R, T
denote predicates; t, s terms; f, g, h functions; a, b, c constants; and x, y, z vari-
ables, all possibly indexed. Atoms, literals, clauses and clause sets are consid-
ered as usual. Clauses are disjunctions of literals. The complement of a lit-
eral is denoted by the function comp. Semantic entailment |= considers vari-
ables in clauses to be universally quantified. Substitutions σ, τ are total map-
pings from variables to terms, where dom(σ) := {x | xσ 6= x} is finite and
codom(σ) := {t | xσ = t, x ∈ dom(σ)}. A renaming σ is a bijective substitution.
The application of substitutions is extended to literals, clauses, and sets/sequences
of such objects in the usual way. The function mgu denotes the most general
unifier of two terms, atoms, literals if it exists. We assume that any mgu of two
terms or literals does not introduce any fresh variables and is idempotent.

The resolution calculus consists of two inference rules: Resolution and Fac-
toring [14, 15]. The rules operate on a state (N,S) where the initial state for
a classical resolution refutation from a clause set N is (∅, N) and for an SOS
refutation with clause set N and initial SOS S the initial state is (N,S). We
describe the rules in the form of abstract rewrite rules operating on states (N,S).
As usual we assume for the resolution rule that the involved clauses are variable
disjoint. This can always be achieved by applying renamings to fresh variables.

Resolution (N,S] {C ∨K}) ⇒RES (N,S ∪ {C ∨K, (D ∨ C)σ})
provided (D ∨ L) ∈ (N ∪ S) and σ = mgu(L, comp(K))

Factoring (N,S] {C ∨ L ∨K}) ⇒RES (N,S ∪ {C ∨ L ∨K} ∪ {(C ∨ L)σ})
provided σ = mgu(L,K)

The clause (D ∨ C)σ is called the result of a Resolution inference between
its parents. The clause (C ∨ L)σ is called the result of a Factoring inference
of its parent. A sequence of rule applications (N,S) ⇒∗RES (N,S′) is called a

3

resolution derivation. It is called an SOS resolution derivation if N 6= ∅. In case
⊥ ∈ S′ it is a called a (SOS) resolution refutation.

Theorem 1 (Soundness and Refutational Completeness of (SOS) Res-
olution [14, 18]). Resolution is sound and refutationally complete [14]. If for
some clause set N and initial SOS S, N is satisfiable and N ∪ S is unsatisfiable,
then there is a derivation of ⊥ from (N,S) [18].

Where a resolution derivation (N,S) ⇒∗RES (N,S′) shows how new clauses
can be derived from (N,S), a deduction presents the minimal derivation of a
single clause, e.g., the empty clause ⊥ in case of a refutation. For deductions we
require every clause to be used exactly once, so deductions always have a tree
form. This is a purely technical restriction, see Corollary 5, that facilitates our
deduction transformation technique that then needs not to take care of variable
renamings except for input clauses.

Definition 2 (Deduction). A deduction πN = [C1, . . . , Cn] of a clause Cn
from some clause set N is a finite sequence of clauses such that for each Ci the
following holds:

1.1 Ci is a renamed, variable-fresh version of a clause in N , or
1.2 there is a clause Cj ∈ πN , j < i s.t. Ci is the result of a Factoring inference

from Cj, or
1.3 there are clauses Cj , Ck ∈ πN , j < k < i s.t. Ci is the result of a Resolution

inference from Cj and Ck,

and for each Ci ∈ πN , i < n:

2.1 there exists exactly one factor Cj of Ci with j > i, or
2.2 there exists exactly one Cj and Ck such that Ck is a resolvent of Ci and Cj

and i, j < k.

We omit the subscript N in πN if the context is clear.

A deduction π′ of some clause C ∈ π, where π, π′ are deductions from
N is a subdeduction of π if π′ ⊆ π, where for the latter subset relation we
identify sequences with multisets. A deduction πN = [C1, . . . , Cn−1,⊥] is called
a refutation.

Note that variable renamings are only applied to clauses from N such that
all clauses from N that are introduced in the deduction are variable disjoint.

Definition 3 (SOS Deduction). A deduction πN∪S = [C1, . . . , Cn] is called
an SOS deduction if the derivation (N,S0)⇒∗RES (N,Sm) is an SOS derivation
where C ′1, . . . , C

′
m is the subsequence from [C1, . . . , Cn] with input clauses removed,

S0 = S, and Si+1 = Si ∪ C ′i+1.

Definition 4 (Overall Substitution of a Deduction). Given a deduction π
of a clause Cn the overall substitution τπ,i of Ci ∈ π is recursively defined by

1 if Ci is a factor of Cj with j < i and mgu σ, then τπ,i = τπ,j ◦ σ,

4

2 if Ci is a resolvent of Cj and Ck with j < k < i and mgu σ, then τπ,i =
(τπ,j ◦ τπ,k) ◦ σ,

3 if Ci is an initial clause, then τπ,i = ∅,

and the overall substitution of the deduction is τπ = τπ,n. We omit the subscript
π if the context is clear.

Overall substitutions are well-defined, because clauses introduced from N
into the deduction are variable disjoint and each clause is used exactly once in
the deduction. A grounding of an overall substitution τ of some deduction π is
a substitution τδ such that codom(τδ) only contains ground terms and dom(δ)
is exactly the variables from codom(τ).

Corollary 5 (Deduction Refutations versus Resolution Refutations).
There exists a resolution refutation (N,S) ⇒∗RES (N,S′ ∪ {⊥}) if and only if
there exists a deduction refutation π(N∪S) = [C1, . . . , Cn−1,⊥] where Ci ∈ (N∪S′)
for all i, modulo variable renaming.

We prove the generalized completeness result of SOS by transforming non-
SOS refutations into SOS refutations. For illustration of our proof transformation
technique, consider the below unsatisfiable set of clauses N . Literals are labeled
in N by a singleton set of a unique natural number [12]. We will refer to the
literal labels during proof transformation in order to identify resolution and
factorization steps. The labels are inherited in a resolution inference and united
for the factorized literal in a factoring inference. See the factoring inference on
clause (3), Figure 1.

N = {(1):{1}¬Q(x3,f(a)) ∨ {2}P (f(a)), (2):{3}¬P (x4) ∨ {4}¬Q(b,x4),

(5):{5}¬Q(b,a) ∨ {6}Q(x1,f(x6)),

(6):{7}Q(b,x2) ∨ {8}R(x2) ∨ {9}T (c,x1),

(9):{10}¬R(x5), (11):{11}¬T (c, b)}

Figure 1 shows a resolution refutation
π = [(5), (6), (7), (1), (2), (3), (4), (8), (9), (10), (11), (12)]

from N . This resolution refutation is also an SOS refutation with SOS S =
{(2), (5)} and remaining clause set N \ S. It is not an SOS refutation with SOS
S = {(5)} and the remaining clause set N \S because the resolution step between
clauses (1) and (2) is not an SOS step. The shaded part of the tree belongs to
an SOS deduction with S = {(5)}.

The transformation identifies a clause closest to the leaves of the tree, obtained
by resolution, that has one parent that can be derived by the SOS strategy, but
the other parent is not in the SOS nor an input clause. For our example with
starting SOS S = {(5)} this is clause (8). The parent (7) can be derived via SOS
from S but the other parent (4) is not part of an SOS derivation. The overall
grounding substitution of π is τ = {x1 7→ b, x2 7→ a, x3 7→ b, x4 7→ f(a), x5 7→
a, x6 7→ a}. Now the idea of a single transformation step is to perform the

5

(12):⊥

(11):{11}¬T (c, b)(10):{9}T (c,b)

(8):{8}R(a) ∨ {9}T (c,b)

(4):{1, 4}¬Q(b,f(a))

(3):{1}¬Q(x3,f(a)) ∨ {4}¬Q(b,f(a))

(2):{3}¬P (x4) ∨ {4}¬Q(b,x4)

(1):{1}¬Q(x3,f(a)) ∨ {2}P (f(a))

(7):{6}Q(x1,f(x6)) ∨ {8}R(a) ∨ {9}T (c,x1)

(6):{7}Q(b,x2) ∨ {8}R(x2) ∨ {9}T (c,x1)

(5):{5}¬Q(b,a) ∨ {6}Q(x1,f(x6))

(9):{10}¬R(x5)

{x3 7→ b}

{x4 7→ f(a)}

{x1 7→ b, x6 7→ a}

{x2 7→ a}

{x5 7→ a}

Fig. 1. Refutation of π of N

resolution step on the labelled literal {1, 4}¬Q(b,f(a)) and the respective literal
{6}Q(x1,f(x6)) of the SOS derivable clause (7) already on the respective literals
from the input clauses yielding (8), here clauses (1) and (2). To this end the
derivation [(5), (6), (7)] is copied with fresh variables, see Figure 2, yielding the
clauses (7) and (7′) used in the refutation π′ below, see also Figure 3.

(7):{6}Q(x7,f(x9)) ∨ {8}R(a) ∨ {9}T (c,x7)

(6):{7}Q(b,x8) ∨ {8}R(x8) ∨ {9}T (c,x7)(5):{5}¬Q(b,a) ∨ {6}Q(x7,f(x9))

{x8 7→ a}

Fig. 2. The copied subdeductions deriving (7)

The two freshly renamed copies (7) and (7′) are resolved with the respective
input clauses (1) and (2). Finally, the rest of the deduction yielding clause (8)
is simulated with the resolved input clauses, see Figure 3. Now (8′′′) is exactly
clause (8) from the original deduction π, but (8′′′) is derived by an SOS deduction.
The deduction can then be continued the same way it was done in π and in this
case will already yield an SOS refutation.

π′ = [(5), (6), (7), (5′), (6′), (7′), (1), (1′), (2), (2′), (8′), (8′′), (8′′′),
(9), (10), (11), (12)].

The example motivates our use of literal labels. Firstly, they tell us which literals
from input clauses need to be resolved: here the literals {1}¬Q(x3,f(a)) and
{4}¬Q(b,x4) that are factorized in π to {1, 4}¬Q(b,f(a)). Secondly, they guide
additional factoring steps in π′ during the simulation of the non-SOS part from
π: here the factoring between the two literals labelled {8} in clause (8′) and

6

(8′′′):{8}R(a) ∨ {9}T (c,b)

(8′′):{8}R(a) ∨ {9}T (c,x3) ∨ {9}T (c,b)

(8′):{8}R(a) ∨ {9}T (c,x3) ∨ {8}R(a) ∨ {9}T (c,b)

(2′):{8}R(a) ∨ {9}T (c,b) ∨ {4}¬P (f(x11))

(2):{3}¬P (x4) ∨ {4}¬Q(b,x4)

(7′):{6}Q(x10,f(x11)) ∨ {8}R(a) ∨ {9}T (c,x10)

(1′):{8}R(a) ∨ {9}T (c,x3) ∨ {2}P (f(a))

(7):{6}Q(x7,f(x9)) ∨ {8}R(a) ∨ {9}T (c,x7)

(1):{1}¬Q(x3,f(a)) ∨ {2}P (f(a))

{x3 7→ b}

{x11 7→ a}

{x4 7→ f(x11)}

{x10 7→ b}

{x8 7→ a, x7 7→ x3}

Fig. 3. The new SOS deduction yielding a copy of clause (8)

the two literals with label {9} in clause (8′′). The transformation always works
because the overall grounding substitution of the initial refutation π is preserved
by the transformation. It just needs to be extended to the extra variables added
by freshly renamed copies of clauses.

The above example shows the importance of keeping track of the occurrences
of literals in a deduction. A labeled literal is a pair ML where M is a finite
non-empty set of natural numbers called the label and L is a literal. We identify
literals with labeled literals and refer explicitly to the label of a labeled literal by
the function lb. The function lb is extended to clauses via union of the respective
literal labels. We extend the notion of a clause to that of a labeled clause built on
labeled literals in the straightforward way. We call a deduction πN label-disjoint
if the clauses from N in the deduction have unique singleton labels. Labels are
inherited in a deduction as follows: in case of a resolution inference, the labels of
the parent clauses are inherited and in case of the factoring inference, the label
of the remaining literal is the union of labels of the factorized literals.

In general, we need to identify the parts of a deduction that are already
contained in an SOS deduction, this is called the partial SOS of a deduction, Def-
inition 6. Then this information can be used to perform the above transformation
on any deduction π.

Definition 6 (PSOS of a Deduction). Let π be a deduction from N] S,
then the partial SOS (PSOS) O∗ of 〈π,N, S〉 is defined as O∗ =

⋃m
i=0O

i, where
O0 = S, Oi+1 = Oi ∪ {Cj} provided Cj ∈ π, Cj 6∈ Oi and Cj is either the factor
of some clause in Oi or the resolvent of two clauses in π where at least one parent
is from Oi, and where Om is such that there is no longer such a Cj in π.

The partial SOS is well-defined because the resulting O∗ is independent of
the sequence Oi used. For example, for the deduction π from N presented in

7

Figure 1 the set O∗ = {(5), (6), (7)} is the PSOS of 〈π,N, {5}〉. Next we present
a criterion when the PSOS of a deduction actually signals an SOS deduction.

Lemma 7 (SOS Deduction). Let O∗ be the PSOS of 〈π,N, S〉. Then π is
an SOS deduction if O∗ \ S = π \ (N ∪ S)4, i.e., all inferred clauses in π are
contained in O∗.

Proof. Let πN∪S = [C1, . . . , Cn] and [C ′1, . . . , C
′
m] be the subsequence of πN∪S

with input clauses removed. LetO∗ be the PSOS of 〈π,N, S〉. Then [C ′1, . . . , C
′
m] =

O∗ \ S = π \ (N ∪ S) by assumption. We show that (N,S0) ⇒∗RES (N,Sm) is
an SOS derivation, following Definition 3 by induction on m. If m = 0 then π
only consists of input clauses and there is nothing to show. For the case m = 1,
the clause C ′1 is the result of a factoring inference from S or the result of a
resolution inference from N ∪ S such that at least one parent is in S as for
otherwise C ′1 6∈ (O∗ \ S). So (N,S0)⇒∗RES (N,S0 ∪ {C ′1}) is an SOS derivation.
For the induction case, assume the property holds for i. If C ′i+1 is the result
of a factoring inference, then its parent C ′′ is contained in Si because other-
wise C ′′ ∈ N because π being a deduction, and, therefore C ′i+1 6∈ (O∗ \ S), a
contradiction. If C ′i+1 is the result of a resolution inference, then again all its
parents are contained in N ∪ Si because π is a deduction. If both parents are
from N , then C ′i+1 6∈ (O∗ \ S), a contradiction. So, by the induction hypothesis,
(N,S0)⇒∗RES (N,Si)⇒RES (N,Si+1) is an SOS derivation.

The rest of this section is devoted to describing the transformation in detail.
In the next section, we then prove the new completeness result for SOS.

Let π be a label-disjoint deduction from N ∪ S and let Ck ∈ π be a clause of
minimal index such that Ck is the result of a resolution inference from clauses
Cj ∈ O∗ and Ci 6∈ (N ∪ O∗). Let τ be an overall ground substitution for π.
We transform π into π′ by changing the deduction of Ci such that the overall
deduction gets “closer” to an SOS derivation and preserves τ . Let

Cj = C ′j ∨ L
Ci = C ′i ∨K
Ck = (C ′i ∨ C ′j)σ

(1)

where σ = mgu(K, comp(L)). Without loss of generality we assume that

π = [C1, . . . , Ci, Ci+1, . . . , Cj , Ck, Ck+1, . . . , Cn] (2)

where [C1, . . . , Ci] and [Ci+1, . . . , Cj] are subdeductions of π, and the prefixes
of these sequences are exactly the introduced renamed copies of input clauses from
N that are used to derive Ci and Cj , respectively. The transformed derivation
will be

π′ = [C1
i+1, . . . , C

1
j , . . . , C

m
i+1, . . . , C

m
j , D1, . . . , Dl, C

′
k+1, . . . , C

′
n] (3)

where

4 Here we refer to the removal of all input clauses from O∗ and π, respectively.

8

(a) the subsequences [Coi+1, . . . , C
o
j] are freshly variable-renamed copies of the

sequence [Ci+1, . . . , Cj] where m = | lb(K)|. For the copies [Coi+1, . . . , C
o
j] we

keep the labels of literals of the original sequence [Ci+1, . . . , Cj] for reference
in the transformation. The clauses Coj are decomposed into C ′oj ∨ L′, in
the same way that the clause Cj is decomposed into C ′j ∨ L. Thus, for
each clause from N in the sequence [C1, . . . , Ci] containing a literal K ′ with
lb(K ′) ⊆ lb(K) we add a deduction deriving a renamed copy of Cpj ; let δp

be the renaming substitution from the old to the freshly renamed sequence,
then we extend τ to τ ′ as follows: τ ′0 = τ , τ ′p+1 = τ ′p ◦ {xδp+1 7→ t | x ∈
dom(δp+1), t = xτ} for 1 ≤ p ≤ m yielding the overall new grounding
substitution τ ′ = τ ′m for π′;

(b) the clauses D1, . . . , Dl are generated by simulating the deduction [C1, . . . , Ci]
eventually producing Ck, up to possible variable renamings: Let Cp be the cur-
rent clause out of this deduction and let D1, . . . , Dq be the clauses generated
so far until Cp−1;

(i) if Cp is an input clause not containing a literal K ′ with lb(K ′) ⊆ lb(K),
then Dq+1 = Cp and we associate Dq+1 with Cp;

(ii) if Cp is an input clause containing a literal K ′ with lb(K ′) ⊆ lb(K), then
Dq+1 = Cp and Dq+2 is the resolvent between Dq+1 and a so far unused
clause Coj on the literals K ′ ∈ Dq+1 and L′ ∈ Coj where lb(K ′) ⊆ lb(K)
and lb(L′) = lb(L) and we associate Dq+2 with Cp;

(iii) if Cp is the resolvent between two clauses Ci′ , Cj′ then we perform the
respective resolution step between the associated clauses and respective
associated literals from Dq′ , Dq′′ yielding Dq+1 and associate Dq+1 with
Cp;

(iv) ifCp is the factor on some literalK ′ with lb(K ′) ⊆ lb(K), then we perform
the respective factoring steps Dq+1, . . . , Dq+s for respective literals with
labels from C ′j , where s = |C ′j | and we associate Dq+s with Cp,

(v) ifCp is the factor on some literalK ′ with lb(K ′) 6⊆ lb(K), then we perform
the respective factoring step on the respective literals with identical labels
from clause Dq′ yielding Dq+1 and we associate Dq+1 with Cp;

(c) the clauses C ′k+1, . . . , C
′
n are obtained by simulating the generation of clauses

Ck+1, . . . , Cn where Ck is substituted with Dl.

Note that by assumption, the generation of clauses Ck+1, . . . , Cn does not
depend on clauses C1, . . . , Ci, Ci+1, . . . , Cj but only on Ck and the input clauses.
We will prove that Ckτ = Ckτ

′ = Dlτ
′ which is then sufficient to prove Cnτ =

Cnτ
′ = C ′nτ

′ and for the above to be well-defined. In general, the clause Dl is
not identical to Ck because we introduce fresh variables in π′ and do not make
any specific assumptions on the unifiers used to derive Dl.

Mapping the transformation to our running example, Figure 1: Cj = (7),
Ci = (4), and Ck = (8). We need two copies of (7) because K = {1, 4}¬Q(b, f(a))
so m = |{1, 4}| = 2 and L = {6}Q(x1, f(x6)).

9

3 A Generalized Completeness Proof for SOS

In this section, we prove that repeated applications of the transformation intro-
duced in the previous section can actually transform an arbitrary deduction into
an SOS deduction, given that at least one clause from the SOS occurs in the
original deduction. Firstly, we show that associated clauses of the transformed
deduction preserve main properties of the original deduction. The extended sub-
stitution is identical to the original substitution on old clauses and the changed
part of the deduction ends in exactly the same clause.

Lemma 8 (Properties of Associated Clauses). Let Cj, Ci, Ck, L, K, π,
π′, τ , τ ′ be as defined in (1), (2), and (3), page 8. For each clause C out of
[C1, . . . , Ci] and clause D associated with C:

1. Cτ = Cτ ′,
2. K ′τ ′ = L′τ ′ if lb(K ′) = lb(L′) for any K ′, L′ occurring in either π or π′,
3. lb(C) \ lb(K) = lb(D) \ lb(C ′oj) and lb(C ′oj) ⊆ lb(D) if there is K ′ ∈ C with

lb(K ′) ⊆ lb(K),
4. Cτ \ {K ′τ ∈ C | lb(K ′) ⊆ lb(K)} = Dτ ′ \ {L′τ ′ ∈ Dτ ′ | lb(L′) ∈ lb(C ′oj)}

and C ′oj τ
′ ⊆ Dτ ′ if there is K ′ ∈ C with lb(K ′) ⊆ lb(K),

5. Ckτ = Dlτ
′.

Proof. 1. By definition of τ ′ the additional variables in τ ′ do not occur in C
while τ ′ is identical to τ on the variables of C, hence Cτ = Cτ ′.

2. By induction on the generation of π′. For the base case, every literal occurring
in N ∪ S has a unique label and any renamed clause Com for some Cm ∈ (N ∪ S)
has the labels kept. So, for any two literals K ′ and L′ in any non inferred clauses
in π and π′, K ′τ ′ = L′τ ′ when the labels are equal. For the induction step, for
inferred clauses, lb(K ′) = lb(L′) happens when the label of K ′ is inherited from
L′ through an inference. The inference uses an mgu which is compatible with τ ′

due to τ ′ being an overall ground substitution, so K ′τ ′ = L′τ ′.

3. We prove this property by induction on the length of the derivation [C1, . . . , Ci].
Let C = Cp, 1 ≤ p ≤ i, and let D1, . . . , Dq be the clauses generated until Cp−1
for which, by the induction hypothesis the property already holds.

(i) If C is an input clause not containing a literal K ′ with lb(K ′) ⊆ lb(K), we
have C = Cp = Dq+1 = D and {K ′ ∈ Cτ | lb(K ′) ⊆ lb(K)} = {L′ ∈ Dqτ

′ |
lb(L′) ⊆ lb(C ′oj)} = ∅.

(ii) If C is an input clause containing a literal K ′ with lb(K ′) ⊆ lb(K) then
D = Dq+2 results from a resolution inference between C = Cp and an unused
Coj on the literals K ′ and L′ ∈ Coj with lb(L′) = lb(L). Let C = C ′ ∨ K ′.
Then Dτ ′ = (C ′ ∨C ′oj)τ ′ and hence lb(C) \ lb(K) = lb(D) \ lb(C ′oj) because
lb(C) ∩ lb(Coj) = ∅ as π is a label-disjoint deduction and lb(Cj) = lb(Coj) by
construction.

(iii) If C is a resolvent of Ci′ = C ′i′ ∨ L′i′ and Cj′ = C ′j′ ∨ L′j′ on literals L′i′ , L
′
j′ ,

then Cτ = C ′i′τ ∨ C ′j′τ , and Dq+1 is a resolvent of some Dq′ = D′q′ ∨ L′′q′
and Dq′′ = D′q′′ ∨ L′′q′′ associated with Ci′ and Cj′ respectively. We have

10

lb(L′i′) = lb(L′′q′′) and lb(L′j′) = lb(L′′q′′) and none of these literals has a
label from lb(K) or lb(C ′oj). Hence, the conjecture holds by the induction
hypothesis.

(iv) If C results from a factoring on K ′ from Cp−1, we get Dq+s by a sequence
of s factoring inferences from Dq+1 associated with Cp−1. Any factorings
on Cp−1 and Dq+1 do not change literal labels because we factorize literals
of identical label. So, this property holds by the induction hypothesis. This
holds regardless of whether lb(K ′) ⊆ lb(K).

4. From Lemma 8.3 we know that lb(C) \ lb(K) = lb(D) \ lb(C ′oj) and lb(C ′oj) ⊆
lb(D) if there is K ′ ∈ C with lb(K ′) ⊆ lb(K). Since the labels coincide, using
Lemma 8.2, we have Cτ ′ \ {K ′ ∈ Cτ ′ | lb(K ′) ⊆ lb(K)} = Dτ ′ \ {L′ ∈ Dτ ′ |
lb(L′) ∈ lb(C ′oj)} and C ′oj τ

′ ⊆ Dτ ′ if there is K ′ ∈ C with lb(K ′) ⊆ lb(K). This
hypothesis holds by applying Lemma 8.1 on literals and clauses from π in the
equation.

5. The clause Ck is the result of a resolution inference between Ci and Cj upon
K and L: Ckτ = C ′iτ ∪ C ′jτ . By translation and because {K ′ ∈ Ci | lb(K ′) ⊆
lb(K)} = {K}, the clause Ci is associated with Dl ∈ π′ and Ciτ \ {Kτ} =
Dlτ

′ \ {L′ ∈ Dlτ
′ | lb(L′) ∈ lb(C ′oj)}. Since C ′oj τ

′ = C ′jτ = Cjτ \ {Lτ}, we have
{L′′ ∈ Dlτ

′ | lb(L′′) ⊆ lb(L′) for some L′ ∈ C ′oj } = Dlτ
′∩Coj \{Lτ} = Cj \{Lτ}.

So Ci \ {Kτ} = Dlτ
′ \ (Dlτ

′ ∩ Cj \ {Lτ}) = Dlτ
′ \ (Cj \ {Lτ}). We can add

Cjτ \ {Lτ} to both sides and get Ckτ = Ciτ ∪ Cjτ \ {Kτ,Lτ} ⊇ Dlτ
′. In

addition, since lb(K) ⊆ lb(K), this means Cjτ = C ′oj τ
′ ⊆ Dqτ

′. Therefore
Ckτ = Ciτ ∪ Cjτ \ {Kτ,Lτ} = Dlτ

′.

Next we need a well-founded measure that decreases with every transformation
step and in case of reaching its minimum signals an SOS deduction. Given a
clause setN and an initial SOS S, the SOS measure of a deduction π is µ(π) where
µ(π) =

∑
Ci∈π µ(Ci, π) and µ(Ci, π) = 0 if Ci ∈ N ∪O∗ otherwise µ(Ci, π) = 1.

Lemma 9 (Properties of µ). Given a clause set N , an initial SOS S, and a
deduction π that contains at least one resolution step,

1. µ(π) ≥ 0, and
2. if µ(π) = 0 then π is an SOS deduction.

Proof. 1. Obvious.

2. Towards contradiction, suppose π = [C1, . . . , Cn] is not an SOS deduction.
This means O∗ \ S (π \ (N ∪ S) by Lemma 7. Consider a clause Ci ∈ (π \ (N ∪
S)) \ (O∗ \ S) of minimal index. Then Ci must be the result of an inference on
some Cj and Ck such that both are not in O∗. This means Ci 6∈ (N ∪O∗). For
this clause, µ assigns a nonzero value: µ(Ci, π) > 0. Therefore, µ(π) 6= 0.

Next we combine the properties of associated clauses on one transformation
step with the properties of the measure resulting in an overall deduction trans-
formation that can be recursively applied and deduces the same clause modulo
some grounding.

11

Lemma 10 (Properties of the Transformation). Given a deduction π of a
clause Cn from N∪S that contains at least one resolution step such that π∩S 6= ∅,
an overall ground substitution τ of π and the transformed deduction π′ of a clause
C ′n as defined in (1), (2), and (3) with overall ground substitution τ ′, we have:

1. π′ is a deduction from N ∪ S,
2. Cnτ = C ′nτ

′, and
3. µ(π′) < µ(π).

Proof. 1. We show that π′ is a deduction following Definition 2. These properties
will be carried over from π. Observe that, if π1 is a deduction of Ck from N ∪ S
and π2 is a deduction from N ∪S∪{Ck} using Ck only once, their concatenation
π1 ◦ π2 is a deduction from N ∪ S. Firstly, the subsequences [Coi+1, . . . , C

o
j] are

deductions of Coj from N ∪ S since they are only the renamed copies of the
subdeduction [Ci+1, . . . Cj] of π. Secondly, the subsequence [Ck, . . . , Cn] is a
deduction of Cn from N ∪ S ∪ {Ck} since the clauses after Ck do not use any
clauses before Ck by the way π is represented as a sequence. Now, by showing
that [C1

j , . . . , C
m
j , D1, . . . , Dl, Ck] is a deduction of Ck from N ∪S ∪{Coj }o∈[1,m],

the sequence [D1, . . . , Dl] would then connect the initial copied sequences and
the tailing subsequence. Each Coj is used for exactly one resolution inference
producing some Dq, the other required clauses are copied, and the later resolution
and factoring steps in [D1, . . . , Dl] are sound while the deduction properties of
[C1, . . . , Ci] are preserved in its associated clauses: for an inference where Cp′

(and Cp′′) generates Cp, we have a unique inference between their associated
clauses Dq′ , (Dq′′ ,) Dq+1 where Dq′ (and Dq′′) generates Dq+1, possibly with
additional factoring inferences in between. If Cp is an input clause not containing
a literal K ′ with lb(K ′) ⊆ lb(K), then Dq+1 = Cp ∈ N . The clause Dq+1 is used
in π′ as Cp is used in π; if Cp is an input clause containing a literal K ′ with
lb(K ′) ⊆ lb(K), the resolution between Dq+1 and a so far unused clause Coj is
sound as K ′ and comp(L′) are unifiable by τ ′. Here, all Coj will be eventually used
as there are m = | lb(K)| literals in the clauses from N ; if Cp is the resolvent
between two clauses Ci′ , Cj′ then the respective resolution step between the
associated clauses Dq′ , Dq′′ upon the respective associated literals K ′ and L′

is sound because we can get K ′τ ′ = comp(L′)τ ′ using Lemma 8; if Cp is the
factor on some literal K ′ with lb(K ′) ⊆ lb(K), then the respective factoring
steps Dq+1, . . . , Dq+s are also sound: each pair of the s associated literals M and

M ′ from Coj and Co
′

j are unifiable because Mτ ′ = M ′τ ′; if Cp is the factor of
Cp−1 upon some literal K ′ and L′ with {lb(K ′), lb(L′)} 6⊆ lb(K), the respective
factoring step on the associated clause Dq′ is also sound by Lemma 8. Therefore
π is a deduction from N ∪ S.

2. By Lemma 8.5, Ckτ = Dlτ
′. The derivation of clauses Ck, Ck+1, . . . , Cn only

depends on the input clauses by assumption. By an inductive argument we get
Ck+1τ = C ′k+1τ

′ yielding Cnτ = C ′nτ
′.

3. The clauses in [Coi+1, . . . , C
o
j] have the measure 0 as their original ones in

[Ci+1, . . . , Cj] because they are in N ∪O∗. The clauses in [Ck, . . . , Cn] also retain
their original measures. The clauses in [D1, . . . , Dl] are s.t. Σl

k=1µ(π′, Dk) <

12

Σi
k=1µ(π′, Ck). More specifically, any C ∈ [C1, . . . , Ci] that is not in N ∪O∗(with

measure µ(C, π) ≥ 1) and containing K ′ with lb(K ′) ⊆ lb(K) is associated
with Dq ∈ O∗ \N having the measure µ(Dq, π

′) = 0, while all other clauses in
[D1, . . . , Dl] are either copied from π with the same measure as before or new in
π′ but have the measure 0.

By induction on the length of the sequence [C1, . . . , Ci] we prove the following
property: if D is associated with a clause C ∈ [C1, . . . , Ci] and C contains some
literal in {K ′ | lb(K ′) ⊆ lb(K)}, then D ∈ N ∪O∗ and µ(D,π′) = 0. Let C = Cp.
Let D1, . . . , Dq be the clauses generated until Cp−1 s.t. the property already
holds.

(i) If Cp is an input clause with no literals in {K ′ | lb(K ′) ⊆ lb(K)}, it is
associated with Dq = Cp s.t. µ(Cp, π) = µ(Dq, π

′) = 0;
(ii) If Cp is an input clause containing {K ′ | lb(K ′) ⊆ lb(K)}, it is resolved with

some Coj ∈ O∗ resulting in Dq+1 ∈ O∗. Here we have µ(Cp, π) = µ(Dq, π
′) =

0;
(iii) If Cp is the resolvent between two clauses Ci′ , Cj′ then we perform the

respective resolution step between the associated clauses Dq′ , Dq′′ yielding
the clause Dq associated with Cp. If either Ci′ or Cj′ contains some literal
from {K ′ | lb(K ′) ⊆ lb(K)} then Cp contains this literal as well and either
Dq′ ∈ O∗ or Dq′′ ∈ O∗ by the induction hypothesis. So, we get Dq ∈ O∗ and
µ(Dq, π

′) = 0. Otherwise, µ(Dq, π
′) = µ(Cp, π) = 1;

(iv) If Cp is the factor of Cp−1 on some literal K ′ with lb(K ′) ⊆ lb(K), then
we have the respective factoring steps Dq+1, . . . , Dq+s where Dq+1 is as-
sociated with Cp−1. By the induction hypothesis, Dq+1 ∈ O∗. Therefore
Dq+1, . . . , Dq+s ∈ O∗ with µ(Dq+t, π

′) = 0 for 1 ≤ t ≤ s;
(v) If Cp is the factor of Cp−1 (associated with Dq) on some literal K ′ and L′ with
{lb(K ′), lb(L′)} 6⊆ lb(K), the factoring happens to the associated clauses in
π′ with similar measure.

Finally, by the choice of Ci, Cj , and Ck, there must exist at least one Cp with
some literal from {K ′ | lb(K ′) ⊆ lb(K)} but associated with some D such that
D ∈ O∗ from case (iii) or (iv) before. This also means µ(D,π′) = 0. The clause
Ci has this property as it contains K. In addition, any Cp has a nonzero measure
because Ci 6∈ N ∪O∗ and Cp is used to prove Ci. Therefore, we have µ(Cp, π) >
µ(D,π′) = 0. As these clauses are never copied to π′, µ(π′) < µ(π).

Eventually, by an inductive argument we prove our main result.

Theorem 11 (Generalized SOS Completeness). There is an SOS resolu-
tion refutation from (N,S) if and only if there is resolution refutation from N ∪S
that contains at least one clause from S.

Proof. “⇒”: Obvious: If there is no refutation from N ∪ S using a clause S then
there can also not be any SOS resolution refutation from (N,S).

“⇐”: If there is a deduction refutation π from N ∪ S that contains at least one
clause from S, then by an inductive argument on µ it can be transformed into

13

an SOS deduction refutation with SOS S, and the result follows by Corollary 5.
If µ(π) = 0 then π is already an SOS deduction, Lemma 9. For otherwise, we
transform the deduction π into a deduction π′ according to (1), (2), and (3). A
refutation always contains at least one resolution step, so by Lemma 10, π′ is also
a refutation from N ∪ S and µ(π′) < µ(π). Eventually, π′ can be transformed
into a label-disjoint deduction by assigning fresh labels to all used clauses from
N ∪ S.

As an example for the “⇒” direction consider the propositional logic clause
set N = {P,¬P} and SOS S = {Q}. Obviously, there is no refutation of N ∪ S
using Q and there is no SOS refutation. Theorem 11 also guarantees that the
consecutive application of the proof transformation steps (1), (2), and (3), page 8,
results in an effective recursive procedure that transforms non-SOS refutations
into SOS refutations.

4 A new Notion of Relevance

The idea of our notion of relevance is to separate clauses that are ultimately
needed in a refutation proof called relevant, from clauses that are useful called
semi-relevant, from clauses that are not needed called irrelevant.

Definition 12 (Relevance). Given an unsatisfiable set of clauses N , a clause
C ∈ N is relevant if for all deduction refutations π of N it holds that C ∈ π. A
clause C ∈ N is semi-relevant if there exists a deduction refutation π of N in
which C ∈ π. A clause C ∈ N is irrelevant if there is no deduction refutation π
of N in which C ∈ π.

With respect to our example clause set N from Section 2 and its refutation,
Figure 1, clause (5) is semi-relevant but not relevant, because the clauses (1), (2),
(6), (9), (11) are already unsatisfiable. The clauses (1), (2), (6), (9), (11) are all
relevant.

Lemma 13 (Relevance). Given an unsatisfiable set of clauses N , the clause
C ∈ N is relevant if and only if N \ {C} is satisfiable.

Proof. Obvious: if N \{C} is satisfiable there is no resolution refutation and since
N is unsatisfiable C must occur in all refutations. If C occurs in all refutations
there is no refutation without C so N \ {C} is satisfiable.

Lemma 14 (Semi-Relevance Test). Given a set of clauses N , and a clause
C ∈ N , C is semi-relevant if and only if (N \{C}, {C})⇒∗RES (N \{C}, S∪{⊥}).

Proof. If (N\{C}, {C})⇒∗RES (N\{C}, S∪{⊥}) then we have found a refutation
containing C. On the other hand, by Theorem 11, Lemma 7 and Corollary 5, if
there is a refutation containing C, then there is also an SOS refutation with SOS
{C}.

14

An immediate consequence of the above test and completeness of resolution
for first-order logic is the following corollary.

Corollary 15 (Complexity of the Semi-Relevance Test). Testing semi-
relevance in first-order logic is semi-decidable. It is decidable for all fragments
where resolution constitutes a decision procedure.

Fragments where our semi-relevance test is guaranteed to terminate are for
example first-order fragments enjoying the bounded model property, such as the
Bernays-Schoenfinkel fragment [3].

5 Conclusion

We have extended and sharpened the original completeness result for SOS resolu-
tion [18], Theorem 11. The generalized SOS completeness result can actually be
used to effectively test clauses for semi-relevance in case resolution constitutes a
decision procedure for the respective clause set. This is for example the case for all
fragments enjoying the bounded model property, such as the Bernays-Schoenfinkel
fragment [3]. In general, our approach yields a semi-decision procedure for semi-
relevance.

Our proof is based on deductions having an a priori tree structure. However,
this is not a principle restriction. It just simplifies the transformation introduced
in Section 2: renamings have only to be considered on input clauses. In a setting
where proofs forming directed acyclic graphs are considered, renamings have to be
carried all over a deduction, adding further technicalities to our transformation.

It is well-known that changing the ordering of resolution steps in a resolution
deduction may exponentially increase or exponentially decrease the length of the
deduction. Therefore, our transformation of a deduction into an SOS deduction
may also yield an exponential growth in the length of the deduction. It may also be
the other way round if, e.g, subsumption is added to the transformation. It is also
not difficult to find examples where the transformation of Section 2 introduces
redundant clauses. Recall that we have not made any assumption with respect to
redundancy on deductions. So an open question is whether corresponding results
hold on non-redundant deductions and what they actually mean for a respective
notion of relevance.

An open problem is the question whether a test for semi-relevance can be
established with more restricted resolution calculi such as ordered resolution. In
general, the SOS strategy is not complete with ordered resolution. However, it
is complete with respect to a clause set saturated by ordered resolution. The
technical obstacle here is that a saturated clause set may already contain the
empty clause, because for our generalized completeness result and the respective
relationship to semi-relevance, the set N may still be unsatisfiable without the
clause C to be tested for semi-relevance.

Acknowledgments: This work was funded by DFG grant 389792660 as part of
TRR 248. We thank our reviewers for their valuable comments.

15

http://perspicuous-computing.science

References

1. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput.
20(1), 5–34 (2010)

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. Journal of Logic and Computation 4(3), 217–247 (1994),
revised version of Max-Planck-Institut für Informatik technical report, MPI-I-91-
208, 1991

3. Bernays, P., Schönfinkel, M.: Zum entscheidungsproblem der mathematischen logik.
Mathematische Annalen 99, 342–372 (1928)

4. Bourgaux, C., Ozaki, A., Peñaloza, R., Predoiu, L.: Provenance for the description
logic elhr. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020. pp. 1862–1869. ijcai.org
(2020)

5. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. Journal of the
ACM 42(1), 3–42 (1995)

6. Fetzer, C., Weidenbach, C., Wischnewski, P.: Compliance, functional safety and
fault detection by formal methods. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation: Discussion, Dissemi-
nation, Applications - 7th International Symposium, ISoLA 2016, Imperial, Corfu,
Greece, October 10-14, 2016, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 9953, pp. 626–632 (2016)

7. Haifani, F., Koopmann, P., Tourret, S., Weidenbach, C.: On a notion of relevance.
In: Borgwardt, S., Meyer, T. (eds.) Proceedings of the 33rd International Workshop
on Description Logics (DL 2020) co-located with the 17th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2020), Online Event
[Rhodes, Greece], September 12th to 14th, 2020. CEUR Workshop Proceedings,
vol. 2663. CEUR-WS.org (2020)

8. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: Aberer, K., Choi, K., Noy, N.F., Allemang, D., Lee, K., Nixon,
L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) The Semantic Web, 6th International Semantic Web Conference,
2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea,
November 11-15, 2007. Lecture Notes in Computer Science, vol. 4825, pp. 267–280.
Springer (2007)

9. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185, pp. 339–401. IOS Press (2009)

10. Kullmann, O.: Investigations on autark assignments. Discret. Appl. Math. 107(1-3),
99–137 (2000)

11. Lee, C.T.: A Completeness Theorem and a Computer Program for Finding Theo-
rems Derivable from Given Axioms. Phd thesis, University of Berkeley, California,
Department of Electrical Engineering (1967)

12. Lev-Ami, T., Weidenbach, C., Reps, T.W., Sagiv, M.: Labelled clauses. In: Pfen-
ning, F. (ed.) Automated Deduction - CADE-21, 21st International Conference on
Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings. LNCS,
vol. 4603, pp. 311–327. Springer (2007)

13. Nienhuys-Cheng, S., de Wolf, R.: The equivalence of the subsumption theorem and
the refutation-completeness for unconstrained resolution. In: Kanchanasut, K., Lévy,
J. (eds.) Algorithms, Concurrency and Knowledge: 1995 Asian Computing Science

16

Conference, ACSC ’95, Pathumthani, Thailand, December 11-13, 1995, Proceedings.
Lecture Notes in Computer Science, vol. 1023, pp. 269–285. Springer (1995)

14. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal
of the ACM 12(1), 23–41 (January 1965)

15. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press (2001)

16. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) IJCAI-03, Pro-
ceedings of the Eighteenth International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, August 9-15, 2003. pp. 355–362. Morgan Kaufmann (2003)

17. Walter, R., Felfernig, A., Küchlin, W.: Constraint-based and sat-based diagnosis
of automotive configuration problems. J. Intell. Inf. Syst. 49(1), 87–118 (2017)

18. Wos, L., Robinson, G., Carson, D.: Efficiency and completeness of the set of support
strategy in theorem proving. Journal of the ACM 12(4), 536–541 (1965)

17

	Generalized Completeness for SOS Resolution and its Application to a New Notion of Relevance

