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Abstract Shortly before Larry Wos passed away, he sent a manuscript for dis-
cussion to Sophie Tourret, the editor of the AAR newsletter. We present excerpts
from this final manuscript, put it in its historic context, and explain its relevance
for today’s research in automated reasoning.

Larry Wos wrote the president’s column of the AAR Newsletter from its first
installment in March 1983 till #131 in May 2020. The text below was not originally
planned for the AAR newsletter, but was written for a colleague of his, to show
a student how such a column can be written. Larry sent this final manuscript to
Sophie Tourret in 2020 asking for feedback, but passed away before they could
even start a discussion about it. We do not know if the text ever made its way
to the intended recipient, but, for sure, it would have made it to a later issue of
the AAR newsletter, had Larry had time to finish it. Thus, we have decided to
publish excerpts from this final manuscript, put them into the historic context,
and explain their relevance to automated reasoning research today.

The typical column by Larry contained at least two elements: anecdotes on
the (early) history of automated reasoning followed by an open problem. Open
problems came mainly from three areas: (finite) group theory, properties of met-
alogic formulations from the condensed detachment or equivalential calculus, or
logic puzzles. We present three excerpts from Larry’s final manuscript: two anec-
dotes from the early history of automated reasoning—namely on the relevance of
instances and the set of support strategy—and the Candy Puzzle.

Finding Relevant Instances: A key technique in (refutation-based) automated rea-
soning is to identify relevant instances of universally quantified formulas. The
unpublished column contains several remarks by Larry emphasizing the role of
finding such instances.

Max Planck Institute for Informatics, Saarland Informatics Campus E1 4, 66123 Saarbrücken,
Germany
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By definition, automated reasoning refers to a field in which

a computer program is written that applies logical reasoning.

A person can reason in a manner that is unavailable to an

automated reasoning program, a way that is called instantiation.

Instantiation is a type of reasoning in which variables can be

replaced with other variables or with terms.

Instantiation of first-order logic formulas was actually the basis of early at-
tempts to automated reasoning (Gilmore, 1960; Davis and Putnam, 1960) able
to already automatically prove simple valid first-order formulas. While Gilmore
(1960) resolved quantifier alternations by so called “multiplications” of ground
instances of the formula, Davis and Putnam (1960) already applied Skolemization
to existentially quantified variables and instantiated with ground Herbrand terms.
Noneveless, citing Prawitz “the main weakness of the first programs for theorem
proving was the manner of generating substitution instances” (Prawitz, 1983).
Resolution was seen as—and actually still is—a major breakthrough, because it
does not require guessing ground instances. However, if the set of ground instances
of clauses needed for a proof is small, then explicitely generating these ground in-
stances is to be preferred over resolving among the clauses. This fact is reflected
by state-of-the-art research where, e.g., InstGen (Ganzinger and Korovin, 2003) is
currently the best single reasoning approach to first-order problems where a rather
small set of ground instances from the input clause set suffices. InstGen is based
on the instantiation of clauses guided by an abstraction of the first-order clauses
to propositional clauses. However, building resolvents on input clauses can lead to
exponentially shorter proofs compared to solely reasoning on instances, even for
decidable fragments and small clause sets with only a few constants as the only
function symbols (Pérez and Voronkov, 2008; Fiori and Weidenbach, 2019). For
an overview of recent reasoning methods incorporating instantiation see Bonacina
et al. (2015).

For example, if you are studying groups in which the square of

every element is the identity e, and if you are employing the

function f to mean product, then, with instantiation, you can

obtain f(f(u, v), f(u, v)) = e from f(x, x) = e. Since instantiation is

unavailable for an automated reasoning program, the obtaining of

the preceding equation, f(f(u, v), f(u, v)) = e, will not occur.

The statement “instantiation is unavailable for an automated reasoning pro-
gram” by Larry means that finding the “relevant” instances towards a proof is of-
ten as hard as finding the proof itself. Since validity is not decidable in equational
logic, finding the right instances cannot be decidable as well, in general, hence
instantiation by relevant instances is unavailable for an automated reasoning pro-
gram. Technically, almost all automated reasoning calculi enable the addition of
instances. The work of (Ganzinger and Korovin, 2003), see above, was actually
an important step towards finding relevant instances through an abstraction into
a decidable fragment, in this case propositional logic. For an overview on possi-
bilities towards finding relevant instances, consider again Bonacina et al. (2015).
Reasoning by SMT Nieuwenhuis et al. (2006) (Satisfiability Modulo Theories) is
built on these ideas, see below.

Neverthreless, group theory, and equational reasoning in general is a nice exam-
ple for the power of instantiation. Ground equations can always be oriented, e.g., by
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a Knuth-Bendix ordering (Knuth and Bendix, 1970), and Knuth-Bendix comple-
tion terminates on a set of ground equalities and disequalities. Oriented equations
are rewrite systems that are fundamental for many concepts in computer science
such as the semantics of programming languages and have therefore obtained a
lot of attention (Lankford Dallas, 1975; Dershowitz and Plaisted, 2001; Comon
et al., 2001). An alternative approach, typically implemented in SMT (Nieuwen-
huis et al., 2006; Barrett et al., 2009; Monniaux, 2016) solvers, is to decide the
satisfiability of a set of ground equations by congruence closure (Nelson and Op-
pen, 1980). Therefore, if a finite set of needed (ground) instances for a refutation
is known in advance, then the problem of whether a conjectured equation is a
consequence of other equations turns from being undecidable, in general, into a
decidable problem.

1979 was the year that Veroff began to express an interest in

automated reasoning, and he has remained interested ever since.

In 1996, Veroff introduced his hints strategy for directing a

program’s reasoning in a manner that proved to be more effective

than is weighting. He introduced his "sketches" in 2001, an

approach that enabled him to answer various open questions.

Veroff introduced hints (Veroff, 1996) to direct the proof search, integrated in
Otter (McCune, 1990), the role model of all modern theorem provers, designed
by Bill McCune. Otter has a sophisticated weight system for clauses. In its sim-
plest form, the weight of the clause is the sum of the weights of its symbols, and
clauses with a small weight are preferred for performing inferences during proof
search. A clause weighting mechanism is an inherent ingredient of all of today’s
implementations of saturation-based theorem provers (Weidenbach et al., 2009;
Riazanov and Voronkov, 2002; Schulz et al., 2019; Tammet, 2019; Duarte and Ko-
rovin, 2020; Bentkamp et al., 2021). The hint technique introduced by Veroff adds
to the clause weighting mechanism: clauses subsumed by the hint clause or clauses
subsuming the hint clause receive special treatment with respect to their weight.
For example, if certain clauses sharing some abstract structure are thought to be
essential in finding a proof, then a clause representing this abstract structure can
be used as a hint clause. Then any clause that is subsumed, i.e., a superset of
an instance of the hint clause, can be preferred for performing further inferences.
In an extreme setting, hints can simulate the restriction of inferences to certain
ground instances. Veroff successfully used the clause hint technique to find and
analyze proofs (Veroff, 2001) and combined it with another technique called proof

sketches. A proof sketch is an incomplete, possibly incorrect proof that is then
used to guide the search for a correct proof. A proof sketch may be obtained by
an abstraction of the actual problem, for example by replacing non-variable terms
with fresh variables.

This idea of restricting inferences and instantiation to certain patterns plays
also an important role in SMT solving. Based on ideas from the Nelson-Oppen
combination procedure (Nelson and Oppen, 1979; de Moura and Bjørner, 2008a;
Bruttomesso et al., 2009; Bonacina et al., 2019; Chocron et al., 2020) modern
SMT solvers are highly efficient decision procedures for the ground combination of
several theories, e.g., ground first-order logic with equality combined with ground
arithmetic—on this topic, see also The Candy puzzle, page 6. If this approach
needs to consider problems that also contain universally quantified formulas, it
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does so by consecutive additions of ground instances of these formulas. The re-
search on this topic started with the Simplify system (Detlefs et al., 2005), where
so called triggers are used to generate ground instances out of universally quanti-
fied formulas. A trigger is a term and only instances of this term are used for proof
search, similar to the concept of hints. Simplify makes additional use of the decid-
ability of equational reasoning on the ground level. It builds an explicit model of
the generated congruence and then prefers instances of the trigger that are related
to the congruence. This idea was generalized to consider ground models not only
for an equational theory, but also for other theories for restricting the generation
of ground instances (de Moura and Bjørner, 2007; Ge and de Moura, 2009). More
recently it has turned out that, as a last resort and if done with care, even an enu-
meration of possible ground instances can result in an efficient system (Reynolds
et al., 2018). In summary, the ideas suggested by Larry and his collaborators have
influenced future research and are still further developed nowadays, in particular
in the areas of first-order theorem proving and SMT solving.

The Set Of Support Strategy: Another anecdote by Larry is on the origin of the set
of support strategy (Wos et al., 1965).
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In a summer visit, Willam F. Miller, Director of the Applied

Mathematics Division at Argonne National Laboratory, invited John

Alan Robinson. Miller introduced Robinson to Larry Wos and to Dan

Carson, an introduction that had unbelievable consequences for the

field that would eventually be called automated reasoning. While

Robinson was visiting Argonne, he introduced his new inference

rule that he called binary resolution. The introduction of the

inference rule binary resolution changed the course of history for

automated reasoning forever.

[...]

When Carson, who was a brilliant programmer in IBM assembly,

learned of the new inference rule, he wrote a mechanical

theorem-proving program encoding the rule. Carson and Wos used

his program in an attempt to prove a trivial theorem in group

theory. Carson’s program was unable to find the sought-after

proof. The theorem asserts that, if the square of every element

x in the group is the identity e, then the group is a commutative

group, f(x, y) = f(y, x) for every element in the group. Carson

called me by phone and said that, if I had nothing to suggest,

we were finished, and he gave me forty-five minutes to come up

with something. After thirty-two minutes had elapsed, he called

again, and I told him about the set of support strategy. Carson

eagerly asked for permission to extend his program so that the

program could apply the new strategy. The rest is history: with

the extended program, the sought-after proof was found and found

in less than 3 CPU-seconds. If Carson had not been so impatient,

the use of some type of strategy would never have occurred. He is

a hero for, without strategy, proofs would almost never be found

with a program that reasons logically.

[...]

Learning about the set of support strategy, Robinson set about to

prove that the strategy is refutation complete.

The encoding of the group theory used at that time by Wos and his collab-
orators was the following (Wos et al., 1964, 1965): the group operation is mod-
eled by a ternary predicate P , where P (x, y, z) stands for the group multiplica-
tion of x and y resulting in z. Using this predicate, basic properties of a group
can be axiomatized. For example, associativity was represented by clauses like
¬P (x, y, u)∨¬P (y, z, v)∨¬P (u, z, w)∨P (x, v, w) by introducing explicit result vari-
ables for the sub-products. However, a group theory axiomatization solely built on
this predicate P is not complete, in general, because P is a relation and does not
represent that the group operation is a function nor that it is total. For cases where
this is needed, e.g., proving that a group where the square of each element is the
identity is commutative, an additional binary predicate R for equality was added
together with the equivalence relation axioms for R and the congruence axioms for
P and used functions. For example, for the function f expressing totality by the
unit P (x, y, f(x, y)) the congruence axiom ¬R(x, x′)∨¬R(y, y′)∨R(f(x, y), f(x′, y′))
was added, for the group multiplication the congruence axiom ¬R(x, x′)∨¬R(y, y′)∨
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¬R(z, z′) ∨ ¬P (x, y, z) ∨ P (x′, y′, z′). The motivation for this encoding was to not
expose the group multiplication to full equational reasoning which turned out to
be far more successfull, because Knuth-Bendix completion and equational rea-
soning (Knuth and Bendix, 1970; Robinson and Voronkov, 2001) were not yet
developed at this time. The problem was attacked by resolution through a partial
axiomatization of equality, depending on what was needed for the actual problem
at hand. A number of different axiomatizations following this approach can be
found in Wos et al. (1964). Using such a formulation without specific equational
reasoning, such problems are still a challenge to today’s automated reasoning sys-
tems. Examples of such encodings are contained in the TPTP (Sutcliffe, 2017),
e.g., the above mentioned problem is called GRP001-1 in the TPTP.

The set of support strategy consists of dividing an unsatisfiable clause set into
two disjoint sets N and S. Then, any resolution inference is restricted to use at
least one clause from S, the set of support. Newly derived clauses are added to S.
Wos together with his collaborators showed (Wos et al., 1965) that this restric-
tion of the resolution calculus is complete if N is satisfiable. In a setting where a
conjecture is to be shown from a set of satisfiable axioms, such a setup can easily
be obtained by putting the axiom formulas into N and the (negated) conjecture
into S. Recently, it has been shown that for completeness of the set of support
strategy, it is necessary and sufficient that there exists a resolution refutation with
at least one clause from S (Haifani et al., 2021). The set of support strategy has
become an integral part of many approaches to automated reasoning. It is imple-
mented in all first-order logic resolution-based theorem provers (Weidenbach et al.,
2009; Riazanov and Voronkov, 2002; Schulz et al., 2019; Tammet, 2019; Duarte
and Korovin, 2020; Bentkamp et al., 2021). In case of additional ordering restric-
tions, it is still complete if the set N is closed under non-redundant inferences. In
the purely equational case, this boils down to the generation of all critical pairs
modulo rewriting and elimination of trivial equations, and in the case of first-
order logic with equality to the generation of all superposition inferences modulo
redundancy (Bachmair and Ganzinger, 1994).

The Candy Puzzle: Puzzles have a long history in motivating automated reasoning
research by showing deficiencies of state-of-the-art reasoning calculi or systems. An
early example is Schubert’s Steamroller problem (Stickel, 1986), a puzzle that was
not easy to solve without a concept of typing and, therefore, motivated research
in this direction. Larry’s manuscript contained the following puzzle.

Candy Puzzle

Jane’s Confections is an old-fashioned sweet shop next to the

old post office in Chicago, and sweet-toothed Illinois residents

traveled many a mile to buy chocolate and caramels, as they did

when they were kids.
This afternoon, four locals, all on their way to collect their

children from a nearby junior high school, have popped in to buy a

bag of something scrumptious. From the clues, can you say at what

time each customer called, and what weight of what sugary treat

Jane sold them?
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1. Tobias nipped in later than Sarah and bought one and a

quarter pound more of his chosen sweet than the purchaser

of toffee bought of toffee.

2. The customer who bought 3 pounds of creams was not the

customer who came in as the clock struck 3.

3. The second customer of these four bought one and a half

pounds more humbugs than Ursula bought of her favorite

confection.

4. Virgil bought one and a half pounds more of his selected

sweet than did the person who walked into the shop at 3:10

but who did not buy lemondrops.

5. The customers called at 3, 3:05, 3:10, and 3:15.

6. They bought one and three quarter pounds, three pounds,

three pounds and a quarter pound, and four and a half

pounds.

The first exercise is to solve the puzzle with the help of an automated reasoning
system:

Challenge:

(1) Formulate the puzzle in logic and let an automated reasoning system find
the solution.

Implicitly, the assumption is that all mentioned constants occur exactly once
in the solution. For example, every customer does exactly one purchase, each dif-
ferent sweet is bought exactly once, etc. Then the puzzle boils down to a finite
domain problem with 44 different possibilities of a single purchase. It can then
be formalized in pure first-order logic—without theories—or even translated into
propositional logic and solved that way. Solving the puzzle amounts to finding a
model for the formalization, a task that is more difficult than finding a refutation
(proof). We did a formalization in first-order logic and both SPASS (Weidenbach
et al., 2009) and Vampire (Riazanov and Voronkov, 2002) find a solution in less
than a second thanks to splitting (Weidenbach, 2001). Also the grounding of the
first-order formulization can be immediately solved by any SAT solver starting at
the performance of MiniSat (Eén and Sörensson, 2003). However, these formaliza-
tions require the explicit axiomatization of the needed arithmetic and linear-order
concepts and properties involved in the puzzle. A more natural formulization is
possible in a first-order logic over linear arithmetic. We could use a four-place
predicate P where P (u, x, y, z) means that u bought the amount x of y at time z.
For the timing we use the values 300, 305, 310, and 315 and for the amount the
values in quarter pounds, i.e., 7, 12, 13, and 18. Then a complete formalization is
as follows. Firstly, we declare the existence of the four purchases

P (Tobias, at, bt, ct) ∧ P (Sarah, as, bs, cs) ∧
P (Ursula, au, bu, cu) ∧ P (Virgil, av, bv, cv)

where all symbols starting with a, b, or c are constants (existentially quantified
variables). Then, we get from the first clue

1.a P (Tobias, x, y, z) ∧ P (Sarah, x′, y′, z′)→ z > z′

1.b P (Tobias, x, y, z) ∧ P (u, x′, toffee, z′)→ x = x′ + 5
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where all variables x, y, z, u (with primes) are universally quantified and ∧ binds
stronger than →. The second clue becomes

2 P (c21, 12, creams, c22) ∧ c22 6= 300

where the constants c21 and c22 are finally mapped by the finite domain axioms
to the available timings, and persons. The clues three and four become

3 P (c31, au + 6,humbugs, 305) ∧ c31 6= Ursula
4 P (c41, av − 6, c42, 310) ∧ c41 6= Virgil ∧ c42 6= lemondrops

and the remaining clues are contained in the finite domain axioms.

5 P (u, x, y, z)→ (z = 300 ∨ z = 305 ∨ z = 310 ∨ z = 315)
6 P (u, x, y, z)→ (x = 7 ∨ x = 12 ∨ x = 13 ∨ x = 18)
7 P (u, x, y, z)→ (y = toffee ∨ y = creams ∨ y = humbugs ∨ y = lemondrops)
8 P (u, x, y, z)→ (u = Tobias ∨ u = Sarah ∨ u = Ursula ∨ u = Virgil)

Solving the puzzle formulated this way is a challenge. To the best of our knowledge,
there is no automated reasoning tool that can, without further massage, derive a
solution from this formalization. We tried the SMT solvers CVC4 (Barrett et al.,
2011) and Z3 (de Moura and Bjørner, 2008b) without success. Also, approaches
based on resolution-style reasoning over constraint clauses will not succeed as long
as the finite domain axioms do not get special treatment (Bachmair et al., 1994;
Bromberger et al., 2021). One reason is the combination of constants and univer-
sally quantified variables over numbers which, together with first-order predicates,
leads to a logic that is no longer compact, in general. Recall that compactness here
means that for every infinite unsatisfiable set of clauses there exists always finite
unsatisfiable subset. For example, the combination of first-order predicates and
linear rational arithmetic already enables the definition of the natural numbers
and the introduction of a single constant can then cause non-compactness (Fiori
and Weidenbach, 2020). The formulas

Nat(0)
Nat(x)→ Nat(x + 1)
x < 0→ ¬Nat(x)
0 < x < 1→ ¬Nat(x)
x > 0 ∧Nat(x + 1)→ Nat(x)

define the natural numbers with respect to a universally quantified variable x

ranging over the rationals using the predicate Nat. Non-compactness arises when
this definition is combined with the four formulas

Nat(a)
P (0)
P (x)→ P (x + 1)
¬P (a)

for some constant a. The combination of all the formulas is unsatisfiable, however
every finite grounding of the formulas has a model. Still the above formulation
of the puzzle is solvable, and even decidable because of the finite domain axioms.
Further challenges are the following:

Challenge:

(2) Is the solution from the clues unique?
(3) If clue six is removed, is it possible to derive automatically the amounts

for the purchases?
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Conclusion: The scientific contributions by Larry Wos have shaped automated rea-
soning. Even in his later years, his columns continued to offer relevant insight into
the past of automated reasoning and presented challenges that are still relevant to
automated reasoners nowadays. Larry Wos was a founder of automated reasoning.
He died on 20 August 2020.
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