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ABSTRACT

Software-defined networking offers new opportunities for
protecting end users by designing dynamic security policies.
In particular, security chains can be built by combining se-
curity functions, such as firewalls, intrusion detection systems
and services for preventing data leakage. The configuration
of these security functions and their associated policies is
based on behavioural models of end-user applications when
accessing the network. In this demo, we present our tool
Synaptic, a SDN-based framework intended for the formal
verification of security policies as well as for automatically
generating such policies based on automata learning methods
applied on NetFlow records of end-user applications collected
at the device level.

I. BACKGROUND

The programmability that characterizes SDN [1] simplifies
the specification of network policies by decoupling the control
and the data planes. Based on this paradigm, it is possible
to enforce chains of security functions, such as described
in [2] for protecting end users. Such chains are composed
of security functions, such as intrusion detection systems,
firewalls or data leakage prevention mechanisms, combined
in sequence or in parallel. However, due to their complexity
and dynamics, these chains of security functions may give
rise to misconfigurations in the network. Formal methods
provide techniques that can help the validation of security
chains before they are deployed. Formal verification of SDN
policies is an important topic in the literature [3], [4]. Current
approaches focus mostly on the verification of the data plane,
and miss aspects related to the control plane. Nevertheless,
the Pyretic language [5], part of the Frenetic framework [6],
provides an intuitive way for specifying SDN security policies,
and verification facilities are provided for the control plane,
through its Kinetic extension [7].

II. SYNAPTIC: GENERATING AND CHECKING POLICIES

Synaptic combines two functionalities. First, it provides
techniques for verifying both the control and data planes re-
lated to security chains, as described in [8]. These chains cor-
respond to security policies combining security functions using
software-defined networking. Second, it includes a component
for profiling applications based on logs of their behavior,
and for configuring SDN security policies from the inferred
profiles. We developed the prototype using Python 2.7, as an
extension of Pyretic and Kinetic.

The interactions among the different components of Synap-
tic for the verification of a policy is depicted in Fig. 1. The
input received by our checker is a security policy specified
in Pyretic together with several logical properties. This input
is then translated into either a SMTlib model that can be
verified by SMT solving, or into a nuXmv model that can
be verified by model checking. If the behavior of this policy
is controlled by a Kinetic automaton, Synaptic will use the
verification procedure implemented by this framework, then
verify the correctness of each data plane policy used by this
control automaton. Otherwise, Synaptic will directly verify the
data plane policy that it receives. Concerning the possibilities
in terms of formal verification, we integrated the following
SMT solvers: CVC4 [9] v1.4 and veriT [10] v201506. We also
included the nuXmv [11] v1.0.1 model checker, as a backend
of our tool.

Figure 1. The verification steps of a SDN-based security policy.

While the checker accepts arbitrary (such as hand-written)
security policies expressed in Pyretic, we also support their
automatic generation based on automata learning [12]. Synap-
tic includes a component for learning a Markovian model
that captures the networking behavior of an application and
for deriving a corresponding security policy in Pyretic. This
generation process is divided into four phases depicted in
Fig. 2: NetFlow acquisition, NetFlow aggregation, automata
learning and rule generation. NetFlow records are collected
directly on the end-user device by a dedicated probe, such
as Flowoid [13] developed in our research team or from
available datasets. Collected NetFlows are transmitted to the
aggregation module deployed in the cloud: it will aggregate
NetFlows based on the responses of whois requests for the
IP addresses and on the ranges of ports contained in the
traces. From the aggregated NetFlows, the automaton learning
module will infer a Markov chain summarizing the behavior
of the application: to do so, we create a state for each pair of



Figure 2. Generation and verification of SDN-based security policies based on application profiling.

netname/port range and we compute the probability of each
outgoing transition. Finally, this automaton is provided to the
rule generation module that will generate a Kinetic automaton
matching the behavior of the application.

III. THE DEMONSTRATION

In this demo, we will present both the verification and
the process learning features of Synaptic. The verification
feature will be illustrated with several examples, including
the verification of a Kinetic based control automaton or the
verification of a stateless firewall. For each of these examples,
we will show (1) the policy that input to Synaptic, (2) the
properties to be verified, and (3) the verification options
offered by Synaptic. We will exhibit correct and erroneous
policies, show the corresponding responses of our checker,
and provide timing information.

For the automata learning feature, we collected traces of
different applications. For each of them, we will show how
Synaptic can be used for learning a probabilistic model of their
networking behavior, and how this can be used to synthesize
and then verify a security chain. Through these different
examples, we will show how the complexity of NetFlow
records influences the automata produced by Synaptic and the
response time of the subsequent verification procedure. We
will also show how to configure the aggregation module in
order to reduce this complexity as much as possible. Finally,
we will illustrate how automata can be stored in external files
in order to be processed by other services: an example of such
an automaton appears in Fig. 3.

Figure 3. Automaton describing the behavior of the Dropbox application.
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