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Integrating Satisfiability Solving in the Assessment of System Reliability Modeled by
Dynamic Fault Trees

Margaux Duroeulx1,2, Nicolae Brı̂nzei1, Marie Duflot2, Stephan Merz2
1 University of Lorraine, CNRS, CRAN, F-54000 Nancy, France.
2 University of Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France. email: margaux.duroeulx@loria.fr

Fault trees (FTs) and their extensions are diagrammatic formalisms that are commonly used for reliability assessment
and that represent the structure function of systems. The structure function determines tie sets and cut sets, and
minimal tie sets are instrumental for assessing systems reliability. In a previous paper, we used satisfiability (SAT)
techniques to compute tie sets from the structure function. In this paper we define minimal tie sets with sequences
(MTSSs) as an extension of minimal tie sets for analyzing dynamic fault trees (DFTs), and we extend our previous
techniques for computing MTSSs. We illustrate our approach using a standard case study and assess its performance
over several industrial-size benchmarks.
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1. Introduction
While SFTs (standard, or static, FTs) provide in-
tuitive diagrammatic representations for reliability
assessment, they lack in expressivity for modeling
spare management, dependent events, and dif-
ferent operational modes (Ruijters and Stoelinga
(2015)). In order to take into account this type
of phenomena, several extensions have been de-
veloped, such as dynamic fault trees (DFTs).
DFTs contain standard gates like AND, OR and
KooN (K-out-of-N); but also dynamic gates, such
as FDEP, PAND and SPARE. Each standard gate
(AND, OR, KooN) is associated with a Boolean
expression that defines how failures located at the
inputs of these gates propagate. The Boolean
expression associated with the gate at the root of
the fault tree is called the structure function; it
indicates under which conditions the system fails.

Systems represented by DFTs can be simulated
and analyzed using Monte Carlo techniques but
the computational effort is high if tight confi-
dence intervals are required. Boudali et al. (2007)
consider representing DFTs as interactive Markov
chains in order to make existing techniques avail-
able for simulating and analyzing DFTs. Zhu et al.
(2014) study a stochasic approach for analyzing
DFTs, but they only consider PAND gates. Xing
et al. (2011) introduce a combinatorial technique
based on sequential BDDs to compute the dy-
namic analogue of cut sets and from there derive
quantitative analyses, and Ge et al. (2015) refine
this work.

In a previous paper (Duroeulx et al. (2017)) we
presented algorithms based on Boolean satisfiabil-
ity solving to compute the minimal tie sets (MTSs)
of SFTs. A tie set, also called a path set, is a set

of system components whose simultaneous func-
tioning ensures that the system functions properly.

The main contributions of the present paper are
the definition of the structure function represented
by a DFT and the extension of the SAT techniques
for analyzing this function by introducing the
analogue of MTSs for dynamic failures, namely
minimal tie sets with sequences (MTSSs).

Section 2 describes in details the fundamental
concept of a structure function corresponding to
a system modeled by a DFT, and Section 3 in-
ductively defines the structure function for a DFT.
Section 4 introduces MTSSs and develops our
approach for computing MTSSs, based on SAT
solving. Section 5 illustrates our approach by
applying it to a cardiac assist system and eval-
uates its performance using benchmark applica-
tions from the electrical and transport industries,
while Section 6 concludes the paper with some
perspectives for future work.

2. Structure functions of systems
An FT consists of a hierarchy of gates indicating
how failures of components, represented as the
leaves of the FT, propagate to system failures.
In the remainder of this paper, the term “gate”
will include the leaves of the FT corresponding to
the system components. SFTs are appropriate for
representing systems where the order of failures is
irrelevant. However, certain systems may function
or fail depending on the order in which component
failures occur. For example, consider a switch
for activating a backup component in case the
main component fails. If the switch fails before
the failure of the main component, the failure of
the latter causes a system failure; if the switch
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Fig. 1. Dynamic gates.

fails later, it does not. DFTs were introduced for
modeling such situations, and this article focuses
on them.

We consider (non-repairable) coherent systems
with a binary behavior where components and
systems can be functioning or failed. We associate
a Boolean variable with every gate of the DFT to
indicate if a failure of the subsystem correspond-
ing to the gate has occurred.

Given the fault tree representing a system, we
associate two variables with each gate γ of the
fault tree: the Boolean variable cγ of a gate is
true if and only if the subsystem corresponding
to the gate failed. The time-valued variable tγ
indicates when the failure of γ occurred; its value
is irrelevant as long as γ functions.

The structure function f : ζ → {0, 1}, where
ζ is the set of configurations, associates to a con-
figuration the state of the system. The structure
function of a coherent system is monotonous: a
component failure cannot make a failed system
function again.

For SFTs, a configuration is simply given by the
failure state of each component. In contrast, for
DFTs, the configuration records the failure state of
each component as well as the time of their failure.

3. Computing the structure function of
dynamic fault trees

Whereas the variables cγ and tγ for a leaf of a FT
are unconstrained, the variables for inner gates re-
late to the variables for their child gates according
to formulas cγ and tγ , which we now define for
each gate. In these expressions, the Boolean and
time variables corresponding to a component Ci
are identified as ci and ti , respectively.

3.1. Static gates
We consider three kinds of ordinary (“static”)
gates of fault trees, corresponding to conjunction,
disjunction, and K -out-of-N . Figure 2 contains
the graphical representation of these gates.

AND gate. The conjunction gate AND fails when
both subsystems fail. The structure function there-
fore corresponds to conjunction and the timing
function to the maximum:

cAND = c1 ∧ c2 tAND = max(t1, t2) (1)

Fig. 2. Static gates.

OR gate. Dually, the disjunction gate OR fails
when at least one of its subsystems fails. Its
structure function corresponds to disjunction and
the timing function to the minimum:

cOR = c1 ∨ c2 tOR = min(t1, t2) (2)

KooN gate. The gate 2-out-of-3 (2oo3) fails
when at least 2 of its 3 components fail. Although
it could be defined as a combination of AND
and OR gates, it is convenient to consider it as a
primitive gate. The structure and timing functions
of the gate are:

c2oo3 = (c1 ∧ c2) ∨ (c1 ∧ c3) ∨ (c2 ∧ c3) (3)

t2oo3 = min
(

max(t1, t2),
max(t1, t3),max(t2, t3)

) (4)

We have only shown the formulas for binary or
ternary instances of these gates, but their general-
izations to n-ary gates are straightforward.

3.2. Dynamic gates
Since the order of failures is important for un-
derstanding the behavior of dynamic gates, we
use chronograms to illustrate them. A low value
(0) indicates proper functioning of a gate and a
high value (1) means that it has failed. Again,
we describe the formulas associated to gates using
examples.

FDEP gate. The Functional-Dependency gate
(FDEP) of Fig. 1.a indicates that the failure of
the component C3 on the left of the gate induces
failures of the components C1 and C2 that depend
on C3.

On the left-hand chronogram of Figure 3, com-
ponents C1 and C2 fail before the component C3.
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In this case, the failure of C3 is irrelevant. On
the right-hand chronogram, C1 fails first and is
followed by the failure of C3, which induces the
failure of C2.
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Fig. 3. Chronograms of the FDEP gate.

We formally represent an FDEP gate by adding
constraints to the representation of the system in
the form of implications for the Boolean-valued
structure function and inequalities for the timing
variables corresponding to the components. These
constraints formally express the dependencies of
failures. Note that we do not need to introduce
expressions cγ or tγ for the gate itself.

c3 ⇒ c1 t1 ≤ t3 (5)
c3 ⇒ c2 t2 ≤ t3 (6)

PAND gate. The Priority-AND (PAND) gate,
shown in Figure 1.b, was defined by Vesely et al.
(1981). The gate fails when all the input events of
the gate occur in the order from left to right. As
illustrated in Fig. 4, a PAND gate with two child
gates C1 and C2 fails when C1 and C2 fail in that
order. If C2 fails before C1, the gate does not fail.
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Fig. 4. Chronograms of the PAND gate.

The structure and timing functions correspond-
ing to a binary PAND gate are therefore defined as
follows:

cpand = c1 ∧ c2 ∧ t1 < t2 (7)
tpand = t2 (8)

SPARE gate. System designers frequently intro-
duce redundant (or spare) components that are
initially in standby mode and that are activated

when the main component fails. We assume that
spare gates representing such redundancies can
only have components as input events and no
(proper) gates. However, several spare gates may
share components, and a spare component that
is used by one gate becomes unavailable for the
other gates.

The literature on DFTs distinguishes cold,
warm, and hot spare gates. The spare components
of a hot spare gate may fail in standby mode,
whereas the spare components of a cold spare
gate only fail when they are actually used. The
remainder of this section introduces the formulas
for hot spare gates. We represent cold spare gates
by adding a timing constraint to represent the fact
that the spare component cannot fail before at
least one of the main components (see Section 5).
Warm spare gates are similar to hot spare gates,
but the probabilities of failure of spare compo-
nents are different in standby and active mode.
For the purposes of this paper, they are modeled
like hot spares: the difference appears only in the
quantitative analysis.

When a spare gate does not share components
with any other spare gate, its behavior is identical
to an AND gate: it fails when all its child gates
have failed. Now consider the gates sp1 and sp2
of Fig. 1.c that share the spare component C3.
Their behavior is illustrated by the chronograms
of Fig. 5. On the chronogram shown on the left,
the component C2 fails first, and component C3
will be used to replace it. Subsequently, compo-
nent C1 fails, causing sp1 to fail since there is
no more spare component to replace C1. Simi-
larly, the failure of C2 leads to that of sp2. The
opposite situation would be symmetrical. The
chronogram on the right illustrates the situation
where the spare component fails first and then
each component failure would automatically lead
to the failure of its gate, since no more spare
component is available.
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Fig. 5. Chronograms of the SPARE gates of Fig. 1.c.

The behavior of the gate sp1 of Fig. 1.c is
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described by the following equations:

csp1
= (c1 ∧ c3) ∨ (c1 ∧ c2 ∧ t2 < t1) (9)
= c1 ∧ (c3 ∨ (c2 ∧ t2 < t1))

tsp1
=

{
max(t1, t3) if t1 < t2
t1 otherwise (10)

Figure 1.d. shows another example of a SPARE
gate. Here, C3 is a spare component that exclu-
sively replaces C1. The second spare component
C4 is shared by both gates. Possible behaviors of
sp3 and sp4 are illustrated in the chronograms of
Fig. 6. On the left-hand side, component C2 fails
first, causing it to be replaced by C4. Next, C1
fails, and C3 is used to replace it. The failures
of C3 and C4 cause those of sp3 and sp4, respec-
tively. The right-hand figure illustrates a different
sequence of failure events.
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Fig. 6. Chronograms of the SPARE gate of Fig. 1.d.

The structure and timing functions correspond-
ing to gate sp3 are

csp3 = c1 ∧ c3
∧ c4 ∨ (c2 ∧ t2 < max(t1, t3))

(11)

tsp3
=

{
max(t1, t3, t4) if max(t1, t3) < t2
max(t1, t3) otherwise

(12)

The corresponding functions for gate sp4 are:

csp4 = c2 ∧ (c4∨
c1 ∧ c3 ∧max(t1, t3) < t2)

(13)

tsp4
=

{
t2 if max(t1, t3) < t2
max(t2, t4) otherwise (14)

In order to derive these expressions for spare
gates, it is useful to identify the conditions and
times at which the components connected to a
gate become unusable for that gate. For example,
the gate sp3 fails when it cannot use any of the
components C1, C3, and C4. Since C1 and C3
are not connected to another spare gate, they are

unusable iff they fail. Component C4 becomes
unusable for sp3 if it fails, but also if it is used
by gate sp4. The latter holds iff component C2
fails before both of C1 and C3 have failed, and
this motivates equation (11).

Eliminating time variables. Combining the ex-
pressions corresponding to the individual gates of
a DFT, we obtain the structure function for the
entire system. This function is expressed in terms
of the Boolean variables cγ that model failure of
gates and the time variables tγ that represent when
those failures occur. In order to use a SAT solver
for analyzing the structure function, we now show
how the variables tγ can be eliminated.

The key idea is to observe that time variables
only occur in comparisons eα < eβ where the
expressions eα, eβ are built from time variables
by applying minima and maxima. The latter op-
erators can be removed by applying the following
equivalences:

min(eα, eβ) < eγ ⇔ eα < eγ ∨ eβ < eγ

max(eα, eβ) < eγ ⇔ eα < eγ ∧ eβ < eγ

eγ < min(eα, eβ)⇔ eγ < eα ∧ eγ < eβ

eγ < max(eα, eβ)⇔ eγ < eα ∨ eγ < eβ

We can now introduce Boolean variables tα,β to
replace the inequalities tα < tβ that occur in the
definition of the structure function and thus obtain
a purely propositional representation of the struc-
ture function. In order to minimize the number
of variables and thus help speed up the analysis
(see Section 4), we fix an order on gates. We only
keep variables tα,β where α < β and represent
the inequalities tα < tβ and tβ < tα by tα,β and
¬tα,β , respectively.

Prior to this transformation, the conditional
equations governing time variables of spare gates
can be eliminated by considering them as disjunc-
tions of cases within the formulas in which these
variables appear.

4. Analyzing the structure function.
Satisfiability (SAT) focuses on finding assign-
ments of Boolean variables such that a formula
of propositional logic is true (Biere et al. (2009)).
SAT solvers employ efficient algorithms to com-
pute a model, i.e., an assignment that satisfies
the formula, if such an assignment exists, and
return “unsat” otherwise. We now describe how
we use SAT techniques for computing minimal
tie sets of a structure function. A tie set is a set
of components whose proper functioning ensures
that the system works. Dually, a cut set is a set
of components whose failure leads to the failure
of the system. A cut set or tie set is minimal
when the removal of any component from the set
results in a set that is no longer a cut set or a tie
set. Our objective is to compute all assignments
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representing minimal tie sets because they repre-
sent the critical configurations of the system, and
they are sufficient for the assessment of the system
reliability (Brı̂nzei and Aubry (2018)).

The definition of the structure function corre-
sponding to a fault tree given in Section 3 asso-
ciates the Boolean expression cα with the failure
of gate α. A model of such an expression therefore
corresponds to a cut set. Since tie sets are dual to
cut sets, we will consider the dual of the structure
function, corresponding to the complement

f̄ = ¬f
of the structure function in which all literals (i.e.,
Boolean variables or their negations) built from cγ
or ti,j have been replaced by their complements.

The models of the dualized structure function
correspond to tie sets.

Since the structure function of a dynamic fault
tree contains Boolean variables describing failure
states as well as the temporal order between fail-
ures, we adapt the notion of tie set for dynamic
fault trees, to take these temporal constraints into
account.

We thus define tie sets with sequences (TSS)
as tie sets to which we add, when appropriate,
Boolean variables describing the temporal order
between components failure. For a given TSS
{x1, . . . , xm , li1,i2 , . . . , lin−1,in} (where lα,β is ei-
ther tα,β or ¬tα,β), we understand that if compo-
nents C1, . . . ,Cm function and failures of compo-
nents Ci1 , . . . ,Cin occurred in the indicated order,
then the system works.

The timing constraints in a TSS represent an
order and as such are subject to transitivity. We
say that a TSS T is complete if it contains the
constraint tα,γ whenever it contains both tα,β and
tβ,γ for some β, and mutatis mutandis for the con-
straints involving negative literals. We then define
the completion T ∗ of a TSS T as the smallest
complete TSS that contains T . The set T ∗ can
be computed by adding implied constraints until a
fixed point is reached.

We can now define a partial order on TSSs by
defining

T1 � T2 iff T ∗1 ⊆ T ∗2 . (15)

In other words, a TSS T1 is “smaller” than T2 iff
the set of functioning components represented by
the variables xi in T1 is a subset of those in T2 and
if the timing constraints of T1 are less restrictive
than those of T2.

The relation � is partial, and two TSSs
can be incomparable such as {x1, x3, t2,4} and
{x1, x2, t3,4}.

For the purpose of a qualitative analysis, we aim
at computing the minimal tie sets with sequences
(MTSSs), based on the partial order above.

Example 4.1. To illustrate the notion of tie sets
with sequences, we consider the system from

Fig.1.d, whose (dualized) structure function is

xsp3 = x1
∨ x3
∨ x4 ∧ x2
∨ x4 ∧ (¬x1 ∧ ¬x2 ∧ t1,2)

∧ (¬x2 ∧ ¬x3 ∧ ¬t2,3)

(16)

Its MTSSs are given by the sets:

{x1}, {x3}, {x2, x4}, {x4, t1,2,¬t2,3} (17)

Structure function

SAT solver

Satisfiable?

Minimize
Minimal Tie Sets
with Sequences

f (x )

unsat : m ′1 . . .m
′
n

sat : mi

f (x )←− f (x ) ∧ ¬m ′1
∧ . . .
∧ ¬m ′n

Fig. 7. Outline of the algorithm.

We now present an algorithm for computing the
minimal tie sets with sequences from the structure
function by using satisfiability techniques. The
method is outlined in Fig. 7. The first step is to
call a SAT solver to check if the structure function
is satisfiable and, if so, obtain a model m1. The
model computed by the SAT solver may assign
false to some Boolean variables xi , represented
as ¬xi in the output of the SAT solver. However,
since we consider coherent systems, we know that
the failure of a component cannot contribute to
the functioning of the overall system, implying
that the status of component Ci is irrelevant. We
can therefore delete negated variables xi from the
model obtained by the solver. Furthermore, we
can remove literals built from variables ti,j or tj ,i
if the model also contains xi : since component
Ci functions, the value assigned to its time of
failure ti is irrelevant, and so is its order w.r.t. the
failure of component Cj . Pruning the model m1 in
this way, we obtain a smaller assignment m ′1 that
represents a tie set (cf. Example 4.2 below).

In order to compute further TSSs, we add the
clause ¬m ′1 to the input given to the SAT solver.
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Table 1. Number of MTSs computed and time of computation.

Number of Number of Number of Number of Number Time
variables components (inner) gates TSs found of MTSs (s)

60 25 35 15 12 0.6
71 32 39 1993 960 218
80 51 29 5 5 0.2
82 53 29 131 53 5.1
84 49 35 31 19 1.1

129 89 40 > 37 000 > 3 days
186 80 106 > 25 000 > 1 day

We repeat the procedure until the SAT solver de-
clares the input formula to be unsatisfiable. At this
point, we have computed a set T of TSSs that
cover the set of all TSSs in the sense that for every
TSS T that is a model of the structure function,
T contains a TSS T ′ � T . In practice, we have
found it useful to apply an option that causes the
SAT solver to prefer assigning true to Boolean
variables in order to speed up the procedure.

Example 4.2. In order to illustrate the pruning
step, assume that the SAT solver produced the
model {x1,¬x2,¬x3,¬t1,2, t1,3,¬t2,3} at some
step during the computation. We discard ¬x2 and
¬x3 because failed components are irrelevant for
tie sets of a coherent system, as well as ¬t1,2
and t1,3 because timing constraints concerning the
functioning component 1 are irrelevant. The result
of the pruning step for this example is therefore
{x1,¬t2,3}, and we add the clause ¬x1 ∨ t2,3 for
the next round of computation.

As explained above, the set T computed as
a result of the repeated calls to the SAT solver
represents a cover for the TSSs of the system
represented by the structure function. In partic-
ular, it contains all MTSSs. However, it may
still contain some TSSs that are not minimal. It
therefore remains to remove all TSSs T from T
for which T contains some T ′ ≺ T . This step
is represented by the box labeled “Minimize” in
Figure 7.

5. Application
We implemented the approach presented in Sec-
tion 4 for computing the minimal tie sets with
sequences (MTSSs) from the structure function
obtained from dynamic fault trees and validated
it by applying it to industrial-range systems. This
section gathers our results.

5.1. Validation of the approach
In a first step, we validate our approach by com-
paring the results that we obtain to those computed
by the software GRIF (Satodev (2018)), based

on the ZBDD-calculus. Zero-suppressed BDDs
(ZBDDs) introduced by Minato (1993) are BDDs
based on a new reduction rule in order to create
a unique and compact representation of sets that
appear in many combinatorial problems.

GRIF only applies to SFTs and computes their
minimal cut sets. Since cut sets are the dual of
tie sets, it is straightforward to adapt our approach
for computing minimal cut sets (MCSs) instead of
minimal tie sets. For each system considered, we
obtained the same MCSs using GRIF and using
our approach.

In a second step, we compute the tie sets (TSs)
for the same benchmarks. The results appear in
Table 1. The time of computation of the minimal
tie sets (MTSs) depends on the number of com-
ponents of the system and the number of (inner)
gates of the structure function, which determine
the number of variables that appear in the structure
function. However, it also depends on the shape of
the structure function.

Whereas our approach yields satisfactory re-
sponse times for systems with less than a (few)
hundred MTSs, we had to interrupt the compu-
tation for two systems with more than a hundred
variables for which the SAT solver found several
tens of thousands of tie sets. Indeed the more
TSs we compute, the longer the SAT solver takes
to produce a new model. We believe that the
response times could be significantly improved
by filtering out non-minimal tie sets (or TSSs)
during the interaction loop with the SAT solver.
In particular, doing so reduces the size of the input
given to the solver.

5.2. Application to a dynamic fault tree
We now apply our method to the analysis of a sys-
tem whose structure function is obtained from a
DFT. The considered case study of a Hypothetical
Cardiac Assist System (HCAS) was proposed by
Boudali and Dugan (2005), inspired by a Cardiac
Assist System described in Vemuri et al. (1999).
Merle et al. (2014, 2016) computed the probability
of appearance of the top event and then estimated
the failure probabilities using Monte Carlo simu-
lation.



May 29, 2019 13:42 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book final

Integrating Satisfiability Solving in the Assessment of System Reliability Modeled by Dynamic Fault Trees 7

Fig. 8. Dynamic fault tree of the HCAS.

The HCAS is designed to treat mechanical and
electrical failures of the heart. The system is
divided into four subsystems: trigger, CPU unit,
motor section, and pumps. The crossbar switch
(CS) and the system supervisor (SS) represent the
trigger, because the failure of either CS or SS
triggers the failure of both CPUs. The CPU unit
is modeled as a warm spare gate with a primary
P and a redundant unit B, which corresponds to
the backup CPU. For the motor section, either the
motor (M) or the motor cable (MC) needs to be
working. The pump unit consists of two cold spare
gates csp1 and csp2. Each one has a primary pump
(P1 and P2), and they share a common redundant
pump (BP ). In order for the pump unit to fail, all
three pumps have to fail, and the gate csp1 needs
to fail before the gate csp2.

The dynamic fault tree that models the potential
failure of the HCAS is shown in Fig. 8. We com-
pute the corresponding structure function cHCAS as
explained in Section 3.

cHCAS =cCPU ∨ cMotors ∨ cPumps

cCPU =cP ∧ cB.

cMotors =cM ∧ cMC

cPumps =ccsp1 ∧ ccsp2 ∧ tcsp1,csp2

ccsp1 =cP1
∧ (cBP ∨ (cP2

∧ tP2,P1
))

ccsp2 =cP2 ∧ (cBP ∨ (cP1 ∧ tP1,P2))

cT =cCS ∧ cSS

cT ⇒cP ∧ cB

thcas = min(tCPU, tMotors, tPumps)

tCPU = min(tT,max(tP, tB))

tMotors = max(tM, tMC)

tPumps =tcsp2

tT = min(tCS, tSS)

tcsp1 =

{
max(tP1

, tBP) if tP1
< tP2

tP1
otherwise

tcsp2 =

{
max(tP2 , tBP) if tP2 < tP1

tP2
otherwise

As explained at the end of Section 3, we elim-
inate conditional equations, maxima and minima
and obtain:

tcsp1,csp2
= tP1,P2

∧max(tP1
, tBP) < tP2

∨ tP2,P1
∧ tP1

< max(tP2
, tBP)

= tP1,P2
∧ tBP,P2

∨ tP2,P1 ∧ tP1,BP

For cold spare gates, a timing constraint is
added to show that the spare component can only
fail after being activated, and therefore after a
main component: tBP > min(tP1 , tP2) ∨ ¬cBP.

We therefore add the constraint

(tP1,BP ∧ cP1
∧ cBP)∨ (tP2,BP ∧ cP2

∧ cBP)∨¬cBP

to the Boolean representation of the structure
function.

The transitivity between the temporal variables
results in the following implications:

tP2,P1 ∧ tP1,BP ⇒ tP2,BP

¬tP2,P1
∧ tP2,BP ⇒ tP1,BP (18)

tP2,BP ∧ ¬tP1,BP ⇒ tP2,P1

Applying our algorithm from Section 4, we
compute the 16 MTSSs of the system:

{xCS, xSS, xP, xM, tP2,BP, tBP,P1}
{xCS, xSS, xP, xMC, tP2,BP, tBP,P1}
{xCS, xSS, xP, xM, tP1,P2

, tP2,BP}
{xCS, xSS, xP, xMC, tP1,P2

, tP2,BP}
{xCS, xSS, xP, xM, tP1,BP, xP2

}
{xCS, xSS, xP, xMC, tP1,BP, xP2}
{xCS, xSS, xP, xM, tP2,P1 , xBP}
{xCS, xSS, xP, xMC, tP2,P1

, xBP}
{xCS, xSS, xB, xM, tP2,BP, tBP,P1

}
{xCS, xSS, xB, xMC, tP2,BP, tBP,P1

}
{xCS, xSS, xB, xM, tP1,P2 , tP2,BP}
{xCS, xSS, xB, xMCtP1,P2 , tP2,BP}
{xCS, xSS, xB, xM, tP1,BP, xP2

}
{xCS, xSS, xB, xMC, tP1,BP, xP2

}
{xCS, xSS, xB, xM, tP2,P1

, xBP}
{xCS, xSS, xB, xMC, tP2,P1 , xBP}

The components CS and SS appear in each
MTSS and are the most critical components of
the system, since they are essential and have no
redundancy.

6. Conclusion
This paper is a first step towards the reliability
analysis of dynamic systems, in which we adapted
the format of the structure function to dynamic
fault trees. We also extended the notion of tie sets
and defined the minimal tie sets with sequences
to enable the qualitative analysis of dynamic fault
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trees. We validated our approach by applying it
to several case studies, and we believe that some
more algorithmic optimizations can make it even
more competitive.

Kaufmann et al. (1977) proposed an approach
for the direct analytical calculus of the reliability
of a system based on the knowledge of the mini-
mal tie sets. Brı̂nzei and Aubry (2018) proposed
an approach that enables quantitative reliability
assessment based on graph models and more par-
ticularly the organization of tie and cut sets as a
Hasse diagram. Based on these approaches, we
will extend this work to the quantitative analy-
sis of systems modeled by DFTs by defining the
Hasse diagrams of tie and cut sets with orders
and by extending the methods for computing the
reliability function to such systems. Then we will
use the work of Merle et al. (2010) to determine
the reliability of the system from the reliability
function.

A more detailed representation of spare gates
would distinguish three possible states (stand-by,
in operation, and failed) rather than just represent
them using a Boolean variable. Besides, finer
analyses could be obtained by considering more
than two states of components that would corre-
spond to degraded modes of operations. In future
work, we are interested in extending our SAT-
based approach to consider multi-state systems
where component and system states can take more
than two values.
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