An Extension of PlusCal for Modeling
Distributed Algorithms

Heba Alkayed, Horatiu Cirstea, Stephan Merz
University of Lorraine, CNRS, Inria, Nancy, France

1 Motivations

The PlusCal language [3, 4] combines the expressive power of TLAT [2] with
the “look and feel” of imperative pseudo-code in order to allow users to express
algorithms at a high level of abstraction. PlusCal algorithms are translated to
TLA™ specifications and can be formally verified using the TLA™ Toolbox. We
propose a small extension of PlusCal, tentatively called Distributed PlusCal [1],
intended for simplifying the presentation of distributed algorithms in PlusCal.
Distributed systems consist of nodes that communicate by message pass-
ing. It is convenient to model a node as running several threads that share local
memory. For example, one thread may execute the main algorithm, while a sep-
arate thread listens for incoming messages. Although PlusCal offers processes,
they have a single thread of execution. Different threads of the same node
must therefore be modeled as individual processes, and variables representing
the local memory of a node must be declared as global variables, obscuring the
structure of the code. Our first extension allows a PlusCal process to have sev-
eral code blocks that execute in parallel. Besides, Distributed PlusCal explicitly
identifies variables representing communication channels and introduces associ-
ated send and receive operations. In contrast to using ordinary variables and
writing macros or operator definitions for channel operations, making channels
part of the language gives us some more flexibility in the TLA ™ translation.

2 Distributed PlusCal Algorithms

Distributed PlusCal extends the syntax of PlusCal in two places, as shown in
Figure 1. In addition to wvariables, the declaration section may contain channel
and fifo declarations. These represent (arrays of) communication channels, with
the second kind of channels guaranteeing FIFO communication. Moreover, a
process may have several sub-processes. Each sub-process contains statements
(a CompoundStmt according to the PlusCal BNF syntax), they are executed in
parallel and may refer to the variables declared in the process.

We added an option -distpcal to the PlusCal translator in order to switch
between regular and Distributed PlusCal.

(* -- <algorithm name>
(* Declaration section *)
<variable declarations>

channels <channel declarations>
fifos <fifo declarations>
(x ... %)
(x Processes section *)

(<name> [=|\in] <Expr>))

<variable declarations>
<subprocesses>

*)

Figure 1: Syntactic extensions introduced by Distributed PlusCal.

3 Communication Channels

The syntax for a channel declaration, introduced with the keyword channel or
channels, is shown below.

channel (id)[(Expri), ..., (Expry)];

This declaration introduces an N-dimensional matrix of unordered channels
indexed by the sets (Fxzpr;), which may be omitted for a simple channel. Tt
gives rise to the following conjunct in the initial condition of the corresponding
TLA™" specification

id= [zl € Expry,...,xN € Expry — {}];

or just id = {} for a simple channel. A FIFO channel is similarly declared with
the keyword fifo or fifos and is initialized to a matrix of empty sequences.

Distributed PlusCal supports the following operations on (unordered or
FIFO) channels: send(ch,) sends a single value e on a channel, receive(ch, var)
is enabled when ch is non-empty and receives a message into variable wvar,
clear(ch) empties the channel, and

broadcast(ch, [x € S+ e(x)]) and multicast(ch, [z € S — e(x)])

send messages along several channels in an array. For the latter two operations,
if ch is a (one-dimensional) array of channels, S is expected to be the domain
of the array for broadcast and a subset of the domain for multicast.

4 Subprocesses

A process can have multiple sub-processes. In the C-Syntax, each sub-process
appears within a pair of curly braces, whereas in the P-Syntax, sub-processes are
enclosed by begin subprocess and end subprocess. Since a process may have

several threads of execution, the pc variable is represented as a two-dimensional
array indexed by process identity and sub-process number. For example, the
translation of the statement labeled exit of the mutual-exclusion algorithm of
Figure 2 is shown below.

exit(self) ==

/\ pclself][1] = "exit"

/\ clock’ = [clock EXCEPT ![self] = clock[self] + 1]

/\ network’ = [<<slf, n>> \in DOMAIN network |->
IF slf = self /\ n \in Nodes \ { self }
THEN Append(network[slf, n], Release(clock’[self]))
ELSE network[slf, n]]

/\ pc’ = [pc EXCEPT ![self][1] = "ncs"]]

/\ UNCHANGED << req, ack, sndr, msg >>

Moreover, the translation of a procedure call stores the identity of the sub-
process on the call stack so that control returns to the appropriate sub-process.

5 Evaluation

Distributed PlusCal is designed to remain backward compatible with regular
PlusCal: the translation of a regular PlusCal algorithm gives rise to a TLA™
specification that is equivalent with the one produced by the existing translator.

Our version of Lamport’s mutual-exclusion algorithm shown in Figure 2
illustrates the representation of distributed algorithms in Distributed PlusCal.
We believe that the possibility of declaring several threads per process makes
expressing such algorithms more natural. Distributed algorithms employ many
kinds of communication channels beyond unordered and FIFO channels, and we
envisage providing different semantics through standard TLA™ modules that
can be instantiated, rather than baking two kinds of channels into the language.

Beyond writing a fixed number of sub-processes, one could envisage extend-
ing PlusCal by identical sub-processes indexed by a parameter set. This could
perhaps be useful for modeling a node containing several CPU and GPU cores.

References

[1] Heba Al-kayed. Distributed PlusCal. https://github.com/hibaalkayed/
DistPcalTranslate.

[2] Leslie Lamport. Specifying Systems: The TLA™ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, USA, 2002.

[3] Leslie Lamport. The PlusCal algorithm language. In M. Leucker and C.
Morgan, editors, 6th Intl. Coll. Theor. Asp. Comp. (ICTAC 2009), volume
5684 of LNCS, pages 36—60, Kuala Lumpur, Malaysia, 2009. Springer.

[4] Hillel Wayne. Practical TLA. Apress, 2018. https://learntla.com/.

———————————————————————— MODULE LamportMutex ---------------—————————-
EXTENDS Naturals, Sequences, TLC
CONSTANT N
ASSUME N \in Nat
Nodes == .. N
(* PlusCal options (-distpcal) *)
(k% -- LamportMutex {
network [Nodes, Nodes];
{
Max(c,d) == IF ¢ > d THEN c ELSE 4
beats(a,b) == \/ reqlb] 0
\/ reqlal < reqlb] \/ (reqlal = req[b] /\ a < b)

* messages used in the algorithm

Request(c) == [type |-> "request", clock |-> c]

Release(c) == [type |-> "release", clock |-> c]

Acknowledge(c) == [type |-> "ack", clock |-> c]

(n \in Nodes)
clock = 0, req = [n \in Nodes |-> 0],
ack = {}, sndr, msg;
{ * thread ezecuting the main algorithm
ncs: (TRUE) {
; * non-critical section
try: clock := clock + 1; reql[self] := clock; ack := {self};
multicast(network, [self, nd \in Nodes |-> Request(clock)]);

enter: (ack = Nodes /\ \A n \in Nodes \ {self} : beats(self, n));
cs: ;s * critical section
exit: <clock := clock + 1;

multicast(network, [self, n \in Nodes \ {self} |->
Release(clock)]);
} * end while
} { * message handling thread
rev: (TRUE) { (n \in Nodes) {
receive(network[n,self], msg); sndr := n;
clock := Max(clock, msg.clock) + 1

handle: (msg.type = "request") {
reqlsndr] := msg.clock;
send (network[self, sndr], Acknowledge(clock))

(msg.type = "ack") { ack := ack \cup {sndr}; }
(msg.type = "release") { reqlsndr] := 0; }
} * end while
} * end message handling thread

T oxx)

Figure 2: Lamport’s mutual-exclusion algorithm.
4

