
Specification and Verification With the TLA+

Trifecta: TLC, Apalache, and TLAPS?

Igor Konnov1, Markus Kuppe2, and Stephan Merz3

1 Informal Systems, Vienna, Austria
2 Microsoft Research

3 University of Lorraine, CNRS, Inria, LORIA, Nancy, France

Abstract. Using an algorithm due to Safra for distributed termina-
tion detection as a running example, we present the main tools for ver-
ifying specifications written in TLA+. Examining their complementary
strengths and weaknesses, we suggest a workflow that supports differ-
ent types of analysis and that can be adapted to the desired degree of
confidence.

Keywords: Specification · TLA+· Model checking · Theorem proving.

1 Introduction

TLA+ [13] is a formal language for specifying systems, in particular concurrent
and distributed algorithms, at a high level of abstraction. The foundations of
TLA+ are classical Zermelo-Fraenkel set theory with choice for representing the
data structures on which the algorithm operates, and the Temporal Logic of
Actions (TLA), a variant of linear-time temporal logic, for describing executions
of the algorithm.

Most users write TLA+ specifications using one of the two existing IDEs
(integrated development environments): the TLA+ Toolbox [11], a standalone
Eclipse application, and a Visual Studio Code Extension, which can be run in a
standard Web browser. To different degrees, both IDEs also integrate the three
main tools for verifying TLA+ specifications: the explicit-state model checker
tlc [16], the symbolic SMT-based model checker apalache [8], and the TLA+

Proof System tlaps [2], an interactive proof assistant.
In this paper, we use a non-trivial algorithm for detecting termination of

an asychronous distributed system [5] as a running example for presenting the
three tools. Based on their complementary strengths and weaknesses, we sug-
gest a workflow that can serve as a guideline for analyzing different kinds of
properties of a TLA+ specification, to different degrees of confidence. This is the
first paper that applies all three tools to a common specification and identifies
their complementary qualities. We hope that future TLA+ users will find our
presentation useful for applying these tools to their own specifications. All of our
TLA+ modules and ancillary files for running the tools are available online [9].
? Support by the Inria-Microsoft Research Joint Centre and Interchain Foundation,
Switzerland is gratefully acknowledged.

2 I. Konnov, M. Kuppe, and S. Merz

0

3

2

1

(a) Visual representation.

module AsynchronousTerminationDetection
extends Naturals
constant N
assume NAssumption ∆

= N ∈ Nat \ {0}
Node ∆

= 0 ..N−1
variables active, pending , termDetect
TypeOK ∆

= ∧ active ∈ [Node → boolean]
∧ pending ∈ [Node → Nat]
∧ termDetect ∈ boolean

vars ∆
= 〈active, pending , termDetect〉

terminated ∆
=

∀n ∈ Node : ¬active[n] ∧ pending [n] = 0

(b) TLA+ representation of the state space.

Fig. 1: The ring of nodes and its TLA+ representation.

Outline of the paper. Section 2 presents a high-level specification of the problem
of termination detection written as a TLA+ state machine, whose properties
are verified in Section 3. Safra’s algorithm is informally presented in Section 4.
Section 5 describes different approaches for verifying the properties of the algo-
rithm using model checking and theorem proving, including checking that the
algorithm refines the high-level specification introduced earlier. Finally, Section 6
concludes the paper and outlines ideas for future work.

2 Specifying Termination Detection

Before presenting Safra’s algorithm for detecting termination of processes on a
ring, we formally state the problem to be solved. Although this is not strictly
required for using TLA+, it will allow us to succinctly state correctness of the
algorithm in terms of refinement, and to introduce the TLA+ tools on a small
specification.

As illustrated in Fig. 1a, we assume N nodes that perform some distributed
computation. Each node can be active (indicated by a double circle) or inactive
(single circle). When a node is active, it may perform some local computation,
and it can send messages to other nodes. Messages can be understood as car-
rying tasks to be performed by the receiver: an inactive node can still receive
messages and will then become active. The purpose of the algorithm is to detect
whether all nodes are inactive. Note that the ring structure indicated in Fig. 1a
is unimportant for the statement of the problem: it will become relevant for the
termination detection algorithm to be introduced later.

Figure 1b contains the initial part of a TLA+ specification that formally
states the problem of termination detection. Specifications appear in TLA+

modules that contain declarations of constant and variable parameters, state-
ments of assumptions and theorems, but mainly contain operator definitions of

Specification and Verification With the TLA+ Trifecta 3

the form Op(args) ∆
= expr ; if the operator does not take arguments, the empty

pair of brackets is omitted.
Whereas constant parameters are interpreted by fixed (state-independent)

values, variable parameters correspond to state variables that represent the evo-
lution of a system: a state assigns values to variables. TLA+ expressions are
classified in four levels: constant formulas4 do not contain any variables, thus
their value is the same at all states during the execution of a system. State
formulas may contain constants and unprimed variables, and such formulas are
evaluated at individual states. Action formulas may additionally contain primed
variables; they are evaluated over pairs (s, t) of states: an unprimed variable v
denotes the value of v in s whereas the primed variable v ′ denotes the value of v
in t . Finally, temporal formulas involve operators of temporal logic such as 2

(always) and 3 (eventually), and they are evaluated over (infinite) sequences
of states. By abuse of language, we will sometimes say that a module defines a
state predicate rather than that it defines an operator representing a Boolean
state formula, and similarly for the other levels.

TLA+ modules form a hierarchy by extending and instantiating other mod-
ules. Module AsynchronousTerminationDetection extends module Naturals from
the standard library in order to import the definition of the set Nat of natural
numbers and standard arithmetic operations. It declares a constant parameter N
and defines the constant Node as the interval of integers between 0 and N − 1.
It also declares variable parameters active, pending , and termDetect , intended
to represent the status of each node (active or inactive), the number of pending
messages at each node, and whether termination has been detected or not. TLA+

is untyped, but it is good engineering practice to document the expected types of
constants and variables using a formula of the shape v ∈ S where S is a set that
denotes the type of v . Thus, assumption NAssumption states that N must be a
non-zero natural number, and the state predicate TypeOK indicates the expected
types of the variables:5 active and pending are Boolean and natural-number val-
ued functions over Node, whereas termDetect is a Boolean value. The formal
status of the two typing predicates is quite different: an instance of the module
that does not satisfy NAssumption is considered illegal, whereas TypeOK just
defines a predicate. (We will later check that the predicate indeed holds at every
state during any execution.) Finally, the module declares a predicate terminated
that is true at states in which the system has globally terminated: all nodes are
inactive, and no message is pending at any node.

The part of the specification shown in Fig. 1b corresponds to the static
model of the system. Module AsynchronousTerminationDetection continues as
shown in Fig. 2 with the specification of a transition system that abstractly
represents the problem of distributed termination detection. The initial condition
Init expresses that the variable active can take any type-correct value and that no
messages are pending. As for termDetect , it will usually be false initially, but it

4 In TLA+ jargon, the term “formula” denotes any expression, not necessarily Boolean.
5 In TLA+, long conjunctions and disjunctions are conventionally written as lists
whose “bullets” are the logical operator, with nesting indicated by indentation.

4 I. Konnov, M. Kuppe, and S. Merz

Init ∆
=

∧ active ∈ [Node → boolean]
∧ pending = [n ∈ Node 7→ 0]
∧ termDetect ∈ {false, terminated}

Terminate(i) ∆
=

∧ active[i]
∧ active ′ = [active except ![i] = false]
∧ pending ′ = pending
∧ termDetect ′ ∈ {termDetect , terminated ′}

SendMsg(i , j) ∆
=

∧ active[i]
∧ pending ′ = [pending except ![j] = @ + 1]
∧ unchanged 〈active, termDetect〉

RcvMsg(i) ∆
=

∧ pending [i] > 0
∧ active ′ = [active except ![i] = true]
∧ pending ′ = [pending except ![i] = @− 1]
∧ unchanged termDetect

DetectTermination ∆
=

∧ terminated
∧ termDetect ′ = true
∧ unchanged 〈active, pending〉

Next ∆
=

∨ ∃i ∈ Node : RcvMsg(i)
∨ ∃i ∈ Node : Terminate(i)
∨ ∃i , j ∈ Node : SendMsg(i , j)
∨ DetectTermination

Spec ∆
=

∧ Init ∧ 2[Next]vars
∧ WFvars(DetectTermination)

Fig. 2: End of module AsynchronousTerminationDetection.

could be true in case the predicate terminated holds.6 The transition formulas
Terminate(i), SendMsg(i , j), RcvMsg(i), and DetectTermination describe the
allowed transitions. For example, Terminate(i) describes local termination of
node i . The action is possible if node i is active, the value of variable active after
the transition is similar to its previous value, except that active[i] is false, and
variable pending is left unchanged. The variable termDetect may also remain
unchanged, but a clever termination algorithm may set it to true provided the
predicate terminated has become true with the termination of node i . Note that
updates of function-valued variables are expressed using except clauses, which
describe for which arguments the function is set to a new value. On the right-
hand side of such a clause, the symbol @ refers to the old value of the function
at the argument that is updated. The definitions of the remaining actions are
similar.

The action Next is defined as the disjunction of the actions introduced before,
and the temporal formula Spec corresponds to the overall specification of the
system behavior. It has the standard form

Init ∧2[Next]vars ∧ L

of a TLA+ specification, asserting that executions must start in a state satisfying
the initial condition and that all transitions must either correspond to a system
transition (described by formula Next) or leave the variables vars unchanged.

6 Remember that the purpose of this specification is not to describe a specific ter-
mination detection algorithm, but rather an abstract transition system meant to
represent any such algorithm.

Specification and Verification With the TLA+ Trifecta 5

The supplementary condition L is usually a conjunction of fairness conditions;
in our example, we require that termination detection should eventually occur
provided that it remains enabled. Indeed, the formula WFv (A) is defined in
TLA+ as

2
(
(2enabled 〈A〉v)⇒ 3〈A〉v

)
which asserts that the action 〈A〉v , defined as A∧ v ′ 6= v , must eventually occur
if it ever remains enabled. Enabledness of an action is defined as

enabled A ∆
= ∃v ′ : A

where v is the tuple of variables that have (free) primed occurrences in A.
One may consider assuming stronger fairness conditions for this specification,

such as that any pending message should eventually be received. However, weak
fairness of the action DetectTermination is all that is required to ensure that
global termination will be detected.

3 Verification by Model Checking and Theorem Proving

Module AsynchronousTerminationDetection provides a high-level specification
of termination detection; it does not describe a mechanism for solving the prob-
lem. Nevertheless, we can already use the TLA+ tools in order to verify some
correctness properties, including type correctness, safety, and liveness.

The safety property asserts that termination is not detected unless the system
has indeed terminated, while liveness asserts that termination will eventually be
detected. These properties can be expressed as the temporal formulas

Safe ∆
= 2SafeInv , where SafeInv ∆

= termDetect ⇒ terminated ,
Live ∆

= terminated ; termDetect .

The formula F ; G is shorthand for 2(F ⇒ 3G), and it asserts that when-
ever F is true, G must eventually become true. Correctness of the specification
means proving the theorems that Spec implies the above properties. We may
also want to verify that once the system has terminated, it will remain quies-
cent, expressed as

Quiescence ∆
= 2(terminated ⇒ 2terminated).

Note that the two properties Safe and Quiescence imply the derived property

2(termDetect ⇒ 2terminated)

asserting that once termination has been detected, the system will remain glob-
ally inactive.

6 I. Konnov, M. Kuppe, and S. Merz

INIT Init
NEXT Next

CONSTANT N = 4
INVARIANTS TypeOK Safe

Fig. 3: A tlc configuration file: It fixes N as 4, the initial and transition predi-
cates as Init and Next , and the invariants to be verified as TypeOK and Safe.

3.1 Finite-State Model Checking Using tlc

tlc is an explicit-state model checker for checking safety and liveness of finite
instances of TLA+ specifications [16]. In order to describe the finite instance and
to indicate the properties to be checked, tlc requires, in addition to the TLA+

specification, a configuration file. In our example, we have to provide a value
for the constant parameter N representing the number of nodes. For example,
the configuration file in Figure 3 instructs tlc to check the invariants TypeOK
and Safe against the instance of four nodes. tlc is integrated into both IDEs
for TLA+, the TLA+ Toolbox and the Visual Studio code extension. Both IDEs
generate tlc configuration files in the background.

Since in our specification, nodes may send arbitrarily many messages, the
state space is infinite even for a fixed number of nodes. We therefore add a state
constraint bounding the number of pending messages to K messages per node.7
tlc quickly verifies all four properties introduced earlier and reports that the
system has 4,097 distinct reachable states for N = 4 and K = 3. For N = 6
and K = 3, we obtain 262,145 states, illustrating the well-known problem of
state-space explosion.

It is instructive to observe what happens when a specification contains an
error. For example, let us assume that we forgot the conjunct active[i] in the defi-
nition of action SendMsg(i). Running tlc on the modified specification indicates
that the invariant Safe is violated.8 tlc produces a counter-example containing
a step where all processes are inactive and termination has been detected, but
where a message is sent. In the successor state, terminated is therefore false,
while the variable termDetect is still true, violating the asserted invariant.

Besides checking the invariants TypeOK and Safe, tlc can also check prop-
erties of specifications expressed as temporal formulas, including Quiescence and
Live. For the latter, it is important to include the fairness assumption in the spec-
ification of the instance to be verified by replacing the INIT and Next entries in
the configuration file by SPECIFICATION Spec.

3.2 Bounded Model Checking with Apalache

apalache [8] is a symbolic model checker that leverages the SMT (satisfiability
modulo theories) solver Z3 [4] for checking TLA+ executions of bounded lengths
as well as proving inductive invariants. Similar to tlc, apalache can check
7 More precisely, tlc will not compute any successors of states at which the constraint
does not hold.

8 Property Quiescence is also violated, but invariant violations are found earlier.

Specification and Verification With the TLA+ Trifecta 7

constant
* @type: Int;
N

variables
* @type: Int -> Bool;
active,
* @type: Int -> Int;
pending,
* @type: Bool;
termDetect

Fig. 4: Type annotations for apalache.

instances of specifications where the size of data structures remains bounded.
Reusing the configuration file shown in Fig. 3, apalache does not actually
require a bound K for the number of pending messages, as it can reason about
unbounded integers.

Whereas tlc enumerates the reachable states one by one, apalache encodes
bounded symbolic executions as a set of constraints, which are either proven to
be unsatisfiable or solved by an SMT solver. apalache uses the standard many-
sorted first-order logic of SMT, and it infers types of expressions in a TLA+

specification based on an annotation of constants and variables with types, as
shown in Fig. 4. Its type checker ensures that these annotations are consistent
with the use of the constants and variables in the expressions that appear in the
specification.

Similar to the foundational paper on bounded model checking [1], we write

Spec |=k 2Inv

to denote that a state formula Inv holds true in all states of all bounded ex-
ecutions of specification Spec that perform at most k transitions. By abuse of
notation, we also allow Inv to be an action formula, which must then be true
for all pairs of subsequent states within these bounded executions, and we call
Inv an action invariant.

apalache can check that the state invariants TypeOK and SafeInv hold of
an instance of our specification where N = 4 and k ≤ 10, in less than a minute.
Figure 5a shows the performance of apalache when checking the combined
invariant TypeOK ∧ SafeInv , for N ∈ 3 .. 6 and execution length k up to 20
steps. As can be seen, apalache suffers from considerable slowdown when the
parameters N and k are increased. This is caused by combinatorial explosion
of the underlying SMT problem, similar to state explosion of state enumeration
in tlc.

We can also direct apalache to check that the invariant

IndInv ∆
= TypeOK ∧ SafeInv

8 I. Konnov, M. Kuppe, and S. Merz

5 10 15 20
Bound on execution length, k

101

102
Ti

m
e,

 se
co

nd
s,

lo
gs

ca
le

N=6
N=5
N=4
N=3

(a) Bounded model checking.

20 40 60 80 100
Number of nodes, N

101

102

Ti
m

e,
 se

co
nd

s,
lo

gs
ca

le IndInv

(b) Inductive invariant checking.

Fig. 5: Checking TypeOK ∧ SafeInv using apalache.

is inductive and therefore holds for executions of arbitrary length. Informally,
this means that IndInv holds true for the initial states specified with Init , and
that it is preserved by all transitions specified with Next .

Using the notation introduced above, we frame these two properties as the
apalache queries (1) and (2) below. The first query establishes that IndInv is
a state invariant of the original specification for all executions of length 0, and
therefore it must hold in all states that satisfy Init . The second query confirms
that IndInv is a state invariant for all executions of length 1 when using IndInv
as the initialization predicate instead of Init . Therefore, any step of an execution
starting in a state in which IndInv holds preserves the invariant.

Init ∧2[Next]vars |=0 2IndInv (1)
IndInv ∧2[Next]vars |=1 2IndInv (2)

Both of these runs take only a second on a standard laptop for N = 4. In fact,
we can show the inductiveness of IndInv for N = 100 in 20 seconds. Figure 5b
shows the performance of apalache when checking property (2) for various
values of N . Comparing Figs. 5a and 5b, it becomes apparent that we can prove
inductive invariants of instances of specifications that have astronomically larger
state spaces than those for which standard bounded model checking is feasible.
Moreover, inductive invariants guarantee that the property holds for executions
of arbitrary length. However, as we will see in Sect. 5, finding useful inductive
invariants is not always as easy as it was in this example.

We cannot directly check the property Quiescence with apalache, as it is
written as a temporal property. One way of doing so would be to introduce a
history variable that records the sequence of states seen so far and formulate the
property as a state invariant over this history. apalache offers support for this
approach in the form of checking so-called trace invariants.

However, we can avoid the encoding as a trace invariant by observing that
the property Quiescence can be verified by checking that the action invariant
terminated ⇒ terminated ′ holds for all transitions taken from the reachable

Specification and Verification With the TLA+ Trifecta 9

states. Since we have shown that IndInv is an inductive invariant, it suffices to
use apalache to check the following:

IndInv ∧2[Next]vars |=1 2(terminated ⇒ terminated ′) (3)

It takes apalache 3 seconds and 11 seconds to show that property (3) holds for
N = 4 and N = 100, respectively.

3.3 Theorem Proving Using tlaps

Model checking is invaluable for finding errors, and the counter-examples com-
puted in the case of property violations help designers understand their root
cause. However, it is restricted to the verification of finite instances, and it suf-
fers from combinatorial explosion. The TLA+ Proof System (tlaps) [2] can be
used to prove properties of arbitrary instances of a specification. The effort is
independent of the size of the state space, but it requires the user to write a
proof, which is then checked by the system.

tlaps does not implement a foundational proof calculus for TLA+, but relies
on automatic back-end provers to establish individual proof steps. Correspond-
ingly, TLA+ proofs are written as a collection of steps that together entail the
overall theorem. A proof step may be discharged directly by a back-end, or it
may recursively be proved as the consequence of lower-level steps, leading to
a hierarchical proof format [12]. The proof of an inductive invariant such as
TypeOK is written as follows.

theorem TypeCorrect ∆
= Spec ⇒ 2TypeOK

〈1〉1. Init ⇒ TypeOK
〈1〉2. TypeOK ∧ [Next]vars ⇒ TypeOK ′

〈1〉3. qed by 〈1〉1, 〈1〉2, ptl def Spec

It consists of three top-level steps 〈1〉1 – 〈1〉3.9 The first two steps assert that
the initial condition implies the invariant, and that the invariant is preserved by
any transition allowed by [Next]vars . The final qed step corresponds to proving
the theorem, assuming the preceding steps could be proved. The by clause di-
rects tlaps to check the proof of this step by invoking the ptl back-end (for
“propositional temporal logic”), assuming steps 〈1〉1 and 〈1〉2, and expanding
the definition of formula Spec. ptl can discharge this proof obligation, which
essentially corresponds to an application of the proof rule

I ⇒ J J ∧ [N]v ⇒ J ′

I ∧2[N]v ⇒ 2J

of temporal logic. By relying on the ptl back-end, which implements a decision
procedure for linear-time temporal logic, the user does not have to indicate
a specific proof rule, and tlaps can discharge more complex steps involving
temporal logic.
9 Steps are named 〈l〉n where l indicates the nesting level of the step and n is arbitrary.

10 I. Konnov, M. Kuppe, and S. Merz

In order to complete the proof of the theorem, we must provide proofs for
steps 〈1〉1 and 〈1〉2. These steps assert (the validity of) a state and an action
formula, respectively, and therefore do not require temporal logic.10 The first
step can be proved by invoking the assumption NAssumption and expanding the
definitions of Init , TypeOK , and the defined operators used therein. The second
step requires some more interaction and is decomposed into one sub-proof per
disjunct in the definition of Next . The TLA+ Toolbox provides an assistant for
such syntactic decompositions. The proofs of the invariant Safe and of the safety
property Quiescence are similar, but they also use theorem TypeCorrect in order
to introduce predicate TypeOK as an assumption.

The proof of the liveness property makes use of the fairness hypothesis that
appears as part of the specification. Since the fairness formula is defined in
terms of enabled (cf. Sect. 2), we first prove a lemma that reduces the relevant
enabledness condition to a simple state predicate.

lemma EnabledDT ∆
=

assume TypeOK
prove (enabled 〈DetectTermination〉vars)

⇔ (terminated ∧ ¬termDetect)

The proof of this lemma makes use of specific directives for reasoning about
enabled provided by tlaps. The proof of the liveness property is then finished
in a few lines of interaction:

theorem Liveness ∆
= Spec ⇒ Live

〈1〉. define P ∆
= terminated ∧ ¬termDetect

〈1〉1. TypeOK ∧ P ∧ [Next]vars ⇒ P ′ ∨ termDetect ′
〈1〉2. TypeOK ∧ P ∧ 〈DetectTermination〉vars ⇒ termDetect ′
〈1〉3. TypeOK ∧ P ⇒ enabled 〈DetectTermination〉vars
〈1〉4. qed by 〈1〉1, 〈1〉2, 〈1〉3, TypeCorrect , ptl def Spec, Live

The first two steps are proved by expanding the required definitions, the third
step is a consequence of lemma EnabledDT , and the final step follows from the
preceding ones, and theorem TypeCorrect , by propositional temporal reason-
ing. More complex cases would typically require induction over a well-founded
ordering, which is supported by a standard library of TLA+ lemmas.

4 Safra’s Algorithm for Termination Detection

In his note EWD998 [5], Dijkstra describes an algorithm due to Safra for de-
tecting termination on a ring of processes. Safra’s algorithm extends a simpler
algorithm due to Dijkstra, described in note EWD840 [6], which assumes that
message passing between processes is instantaneous. In both algorithms, node 0
plays the role of a master node that will detect global termination.
10 tlaps replaces primed variables occurring in action formulas by fresh variables,

unrelated to their unprimed counterparts.

Specification and Verification With the TLA+ Trifecta 11

In addition to the activation status and message counter represented by the
variables active and pending introduced for the state machine of Sect. 2, each
node now has a color (white or black) and maintains an integer counter that
represents the difference between the numbers of messages it has sent and re-
ceived during the execution. In addition, a token circulates on the ring whose
attributes are its color token.c, its position token.p (i.e., the number of the node
that the token is currently at), and an integer counter token.q that represents
the sum of the counter values of the nodes visited so far. Safra’s algorithm does
not have the variable termDetect .

Informally, the algorithm relies on the idea that when the system has globaly
terminated, each node is locally inactive and the sum of the differences between
sent and received messages is 0. By visiting each node, checking its activation
status and accumulating the counter values, the token reports these conditions
to the master node. Colors are used in order to rule out false positives: nodes
color themselves black at message reception (i.e., when they may have become
active again), and the token becomes black when it passes a black node. A round
in which a black token returns to node 0 is deemed inconclusive.

Formally, the algorithm is described by a state machine. The initial values
of each node’s activation status and color are arbitrary, all node counters are 0,
and there are no pending messages. The token is initially black (ensuring that it
will perform at least one full round of the ring), and its initial counter value is 0.
The token can be located at any of the nodes. The transitions of the algorithm
are as follows.

InitiateProbe. Node 0 may initiate a new round of the token when it holds
the token (i.e., token.p = 0) and when the previous round did not detect
termination: either the token is black, node 0 is black, or the sum of the
counter of node 0 and token.q is positive. Node 0 transfers a fresh white
token to its neighbor node (i.e., token.p = N − 1, token.c = white, and
token.q = 0) and repaints itself white.

PassToken. A non-zero node i may pass the token to its neighbor when it holds
the token (i.e., token.p = i) and when it is inactive. After the transition,
token.p will be i − 1, token.q is augmented by node i ’s counter value, and
the token will be black if node i is black or if it was already black, whereas
node i becomes white.

SendMsg . This action is similar to the corresponding action of the abstract state
machine, except that the sender’s counter value is incremented by 1.

RcvMsg . Again, this action is similar to the corresponding action of the abstract
state machine. However, the receiver’s counter value is decremented by 1, and
the receiver becomes black.

Terminate. This action is analogous to the corresponding action of the abstract
state machine.

Node 0 declares global termination when it is inactive, has no pending mes-
sages, holds a white token, its color is white, and the sum of token.q and its own
counter value is 0. A TLA+ specification of the algorithm is available online [9].

12 I. Konnov, M. Kuppe, and S. Merz

5 Analyzing Safra’s Algorithm

As for the high-level specification of Section 2, we use the model checkers tlc
and apalache to gain confidence in the correctness of the algorithm by check-
ing its properties for small instances, and then start writing a full correctness
proof using tlaps. Instead of rechecking the elementary correctness properties
introduced in Section 3, an attractive way of verifying the correctness of the algo-
rithm in TLA+ is to formally relate it to the high-level algorithm by establishing
refinement.

5.1 Model Checking Correctness Properties

We start by writing a type-correctness invariant for the TLA+ specification of
Safra’s algorithm and define the predicate of termination detection as follows:

termDetect ∆
= ∧ token.p = 0 ∧ token.c = “white”
∧ color [0] = “white” ∧ ¬active[0] ∧ pending [0] = 0
∧ token.q + counter [0] = 0

We use tlc to verify type correctness, as well as the properties Safe, Live, and
Quiescence introduced in Sect. 3, for fixed values of N . Again, we need a state
constraint for bounding the number K of pending messages at each node, but
also the maximum counter values C and token counter Q . The state space of
this specification is significantly larger than that of the higher-level model: fixing
N = 3, K = C = 3 and Q = 9, tlc finds 1.3 million distinct states and requires
42 seconds on a desktop-class machine. For N = 4 and the same bounds for
the other parameters, we obtain 219 million distinct states, and tlc requires
about 50 minutes. While tlc scales to multiple cores and can, e.g., verify safety
of EWD998 for N = 4 on a machine with 32 cores and 64 GB of memory in
around 10 minutes, it would be hopeless to model check the specification for
larger values such as N = 6 in reasonable time.

Experience indicates that by exhaustively checking all reachable states, in-
cluding corner cases that would arise very rarely in actual executions of the algo-
rithm, model checking finds errors in small instances of a specification. Choosing
suitable parameter values is a matter of engineering judgment. For example, an
error introduced into the definition of action PassToken such that the token
adopts the color of the visited node, independently of the current token color, is
found by tlc when N ≥ 4, but the definition is correct for N ≤ 3.

If exhaustive model-checking is infeasible due to the size of the state space,
tlc can verify safety and liveness properties on randomly generated behaviors.
Since randomized state exploration has no notion of state-space coverage, tlc
runs until either it finds a violation, is manually stopped, or up to a given re-
source limit. Because randomized state exploration is an embarrassingly parallel
problem, it scales with the number of available cores.

To illustrate the effectiveness of randomized state exploration with tlc, we
separately introduced six bugs in the specification of Safra’s algorithm that we

Specification and Verification With the TLA+ Trifecta 13

observed while teaching TLA+ classes. Beyond the previously mentioned bug of
not taking into account the token color when non-initiator nodes pass the token,
we initialize the token to white, allow an active node to pass the token, omit to
whiten a node that passes the token, or prevent the initiator from initiating a
new token round when its color is black. Half of these bugs violate property Inv ,
while the other half violate TD !Spec (see below). With the parameter value fixed
to N = 7 and no state constraint, randomized state exploration, with a resource
limit of 2 to 3 seconds and for behaviors of length up to 100 states, finds violations
of Inv and TD !Spec in the majority of runs for any of the six bugs. Thus, the
minimal resource usage makes it feasible, and the high likelihood of findings bugs
makes it desirable to automatically run randomized state exploration repeatedly
in the background while writing specifications. Users can run randomized state
exploration with the Visual Studio Code Extension whenever its editors are
saved. Once a spec has matured and randomized state exploration stops finding
bugs, users can switch to exhaustive model-checking.

For more complex specifications, the likelihood of finding bugs with repeated,
brief randomized state exploration can usually be increased further. If a candi-
date inductive invariant IndInv is known, using it as the initial condition makes
tlc explore states that are located at arbitrary depths in the state space. Should
the set of all states defined by IndInv be too large or even infinite, tlc can ran-
domly select a subset from that set with the help of operators defined in the
standard Randomization module. This technique is described in more detail as
part of a note on validating candidates for inductive invariants with tlc [14].

apalache again is particularly useful when it comes to checking inductive
invariants. Dijkstra’s note [5] introduces the following inductive invariant Inv
(written in TLA+):

Sum(f ,S) ∆
= FoldFunctionOnSet(+, 0, f ,S)

Rng(a, b) ∆
= {i ∈ Node : a ≤ i ∧ i ≤ b}

Inv ∆
= ∧ Sum(pending ,Node) = Sum(counter ,Node)
∧ ∨ ∧ ∀i ∈ Rng(token.p + 1,N − 1) : active[i] = false
∧ token.q = Sum(counter ,Rng(token.p + 1,N − 1))
∨ Sum(counter ,Rng(0, token.p)) + token.q > 0
∨ ∃i ∈ Rng(0, token.p) : color [i] = “black”
∨ token.c = “black”

The expression Sum(f ,S) represents the sum of f [x] for all x ∈ S ; it is de-
fined in terms of the operator FoldFunctionOnSet from the TLA+ Community
Modules [10], a collection of useful libraries for use with TLA+.

As explained in Sect. 3.2, we can use apalache to check that Inv is indeed an
inductive invariant for finite instances of the specification. For N = 4, this takes
11 seconds. It is not hard to see that Inv , together with predicate termDetect ,
implies terminated . Indeed, termDetect implies that the three final disjuncts of
the invariant are false, hence the first disjunct must be true. Thus, all nodes are
inactive, and token.q equals the sum of the counter values of nodes 1 ..N −1. By
termDetect , it follows that the sum of the counter values of all nodes must be

14 I. Konnov, M. Kuppe, and S. Merz

0, and by the first conjunct of Inv it follows that there are no pending messages
at any node, hence terminated is true.

5.2 Safra’s Algorithm Implements Termination Detection

Instead of verifying the TLA+ specification of Safra’s algorithm against cor-
rectness properties such as Safe and Live, we can show that it implements the
high-level state machine of Sect. 2. It then follows that the properties verified for
that state machine are “inherited” by the low-level specification. Since in TLA+,
refinement is implication, this assertion can be stated by inserting the following
lines in the module representing Safra’s algorithm:

TD ∆
= instance AsynchronousTerminationDetection

theorem Refinement ∆
= Spec ⇒ TD !Spec

The first line declares an instance TD of the high-level specification in which
the constant parameter N and the variable parameters active, pending and
termDetect are instantiated by the expressions of the same name in the spec-
ification of Safra’s algorithm.11 Theorem Refinement asserts that every run of
Spec (the specification of Safra’s algorithm) also satisfies TD !Spec, defined in
Fig. 2.

tlc can reasonably verify refinement for values of N < 5, and with a similar
state constraint as before, simply by indicating TD !Spec as the temporal prop-
erty to be checked. apalache cannot handle the fairness condition that is part
of TD !Spec, but it can verify initialization and step simulation. Technically, this
is done by checking one state invariant and one action invariant with apalache:

Init ∧2[Next]vars |=0 2TD !Init (4)
TypeOK ∧ Inv ∧2[Next]vars |=1 2[TD !Next]TD!vars (5)

Checking condition (4) with the apalache machinery is equivalent to show-
ing Init ⇒ TD !Init , which is needed to show the initialization property of refine-
ment. To prove step simulation, we have to show that any transition described
by [Next]vars , starting in any reachable state of the low-level specification, sim-
ulates a high-level transition according to [TD !Next]TD!vars . As expressed in
condition (5), the previously established inductive invariants TypeOK and Inv
are sufficient for proving step simulation.

The TLA+ specification of Safra’s algorithm as described in Sect. 4 can be
refined further by introducing explicit message channels and node addresses.
We refer readers to the modules EWD998Chan and EWD998ChanID [9] that
contain corresponding TLA+ specifications for which refinement can be checked
using the TLA+ tools.

11 In general, instance allows constant and variable parameters to be instantiated by
expressions defined in terms of the operators defined in the current context.

Specification and Verification With the TLA+ Trifecta 15

5.3 Proving Correctness Using tlaps

After gaining confidence in the validity of our specification of Safra’s algorithm,
we again use tlaps for proving its correctness for arbitrary instances. The type
correctness proof is quite similar to that of the high-level specification described
in Section 3.3. We also used tlaps for proving the inductive invariant Inv in-
troduced in Sect. 5.1. However, at the time of writing, no theorem libraries exist
in tlaps for operators such as FoldFunctionOnSet , and we therefore stated ele-
mentary properties without proof, and specialized them for the derived operator
Sum such as

lemma SumIterate ∆
=

assume new fun ∈ [Node → Int],
new inds ∈ subset Node, new e ∈ inds

prove Sum(fun, inds) = fun[e] + Sum(fun, inds \ {e})

The invariance proof itself was written in one person-day and required about
230 lines in the proof language of TLA+. The hierarchical proof style helps to
focus on individual steps without having to remember the overall proof.

Based on the inductive invariant and the following lemma

lemma Safety ∆
= TypeOK ∧ Inv ∧ termDetect ⇒ Termination

that formalizes the argument presented at the end of Sect. 5.1, it is not hard
to use tlaps for proving the safety part of the refinement relation, i.e. the
implications expressed by properties (4) and (5), for arbitrary instances of the
specification. The proofs of the lemma and the safety part of the refinement
theorem require about 110 lines of TLA+ proof and were written in half a person-
day.

In order to prove liveness of the algorithm, we first reduce the enabledness
condition of the action for which fairness is assumed, to a simple state predicate,
as we did in Sect. 3.3. We must then show that any state satisfying predicate
terminated must be followed by one where termDetect holds. Relying on the
already proved invariants, we set up a proof by contradiction and define

BSpec ∆
= 2TypeOK ∧2Inv ∧2¬termDetect ∧2[Next]vars ∧WFvars(System)

where the last conjunct corresponds to the fairness assumption of the specifica-
tion, in which System represents the disjunction of the token-passing transitions.
Informally, detecting termination may require three rounds of the token:

1. The first round brings the token back to node 0, while terminated remains
true.

2. After the second round, the token is back at node 0, all nodes are white
(since no messages could be received), and terminated is still true.

3. At the end of the third round, the same conditions hold, and additionally
the token is white and the token counter holds the sum of the counters of
the nodes in the interval 1 ..N − 1.

16 I. Konnov, M. Kuppe, and S. Merz

We prove a lemma corresponding to each of the rounds. For example, for the
first round we assert

lemma Round1 ∆
= BSpec ⇒ (terminated ; (terminated ∧ token.p = 0))

The proof proceeds by induction on the current position k of the node: if k = 0,
the assertion is trivial. For the case k+1, any step of the system either leaves the
token at node k+1 or brings it to node k . Moreover, the token-passing transition
from node k + 1 is enabled, and it takes the token to node k .

The statements and proofs of the two other lemmas are similar. Finally,
the post-condition of the third round, together with Inv , implies termDetect ,
concluding the proof. As a corollary, we can finish the refinement proof: we
showed in Sect. 3.3 that the enabledness condition of TD .DetectTermination
corresponds to the conjunction terminated ∧ ¬termDetect , and we just proved
that this predicate cannot hold forever, implying the fairness condition. The
TLA+ proof takes 245 lines and was written in less than one person-day, aided
by the fact that the three main lemmas and their proofs are quite similar.

6 Conclusion

TLA+ is a language for the formal and unambiguous description of algorithms
and systems. In this paper, we presented the three main tools for verifying prop-
erties of TLA+ specifications: the explicit-state model checker tlc, the symbolic
model checker apalache, and the interactive proof assistant tlaps, at the hand
of a formal specification of a non-trivial distributed algorithm. The ProB model
checker can also verify TLA+ specifications through a translation to B [7], but
we did not evaluate its use on the case study presented here. The three tools
that we considered have complementary strengths and weaknesses. They offer
various degrees of proof power in exchange for manual effort or computational
resources. Whereas tlc is essentially a push-button tool, tlaps requires signifi-
cant user effort for inventing a proof. Likewise, apalache can sometimes prove
invariants of specifications that have significantly larger (or even infinite) state
spaces than tlc can handle, but it requires human ingenuity to find an inductive
invariant. Hence, we advocate the following basic workflow.

Since errors in specifications are usually found for small instances, it is easiest
to start by using tlc for checking basic invariant properties. The same proper-
ties can also be checked using apalache for short execution prefixes. However,
apalache really shines for checking inductive (state and action) invariants since
doing so only requires considering a single transition. Once reasonable confidence
has been obtained for safety properties, liveness properties can be verified us-
ing tlc. One potential pitfall here is that the use of a state constraint may
mask non-progress cycles in which some variable value exceeds the admissible
bounds. Both model checkers suffer from combinatorial explosion; for apalache
the length of the execution prefixes that need to be examined tends to be the
limiting factor. For very large state spaces, tlc provides support for random-
ized state exploration, which empirically tends to find bugs with good success

Specification and Verification With the TLA+ Trifecta 17

when exhaustive exploration fails. When model checking finds no more errors
and even more confidence is required, one can start writing a proof and check it
using tlaps. In this way, properties of arbitrary instances can be verified, at the
expense of human effort that can become substantial in the presence of complex
formulas.

All three tools accept the same input language TLA+. Whereas apalache
requires writing typing annotations for state variables and certain operator def-
initions, these are usually not very difficult to come up with. Not surprisingly,
the tools pose additional restrictions on the input specifications. For example:

1. tlc rejects action formulas of the form x ′ ∈ S when S is an infinite set,
and no unique value has been determined for the variable x ′ by an earlier
conjunct: in this case, the formula would require tlc to enumerate an infinite
set. However, the user can override operator definitions such as S during
model-checking without modifying the original specification.

2. apalache has recently dropped support for recursive operators and func-
tions in favor of fold operations, e.g., FoldSet and FoldFunction. Folding a
set S of bounded cardinality, that is, |S | ≤ n, for some n, needs up to n
iterations, which is easy to encode in SMT as opposed to general recursion.

3. tlaps currently does not handle recursive operator definitions, and support
for proving liveness properties has only recently been added. In practice,
reasoning about operators that are not supported natively by its backends
requires well-developed theorem libraries.

Despite these limitations, all three tools share a large common fragment
of TLA+. This ability to use different tools for the same specification is extremely
valuable in practice, for example for using the model checkers to verify a putative
inductive invariant in the middle of writing an interactive proof.

Future work should focus on improving the capabilities of each tool. Although
tlc is quite mature, it could benefit from better parallelization of liveness check-
ing. Recent work has focused on improved presentation of counter-examples, in-
cluding their visualization and animation [15], and on randomized exploration
of state spaces. For apalache, alternative encodings of bounded verification
problems as SMT problems could help with performance degradation when con-
sidering longer execution prefixes. It would also be useful to lift the current
restriction to the verification of safety properties and consider bounded verifica-
tion of liveness properties. tlaps users would appreciate better automation, such
as the tool being able to indicate which operator definitions should be expanded,
better support for higher-order problems, and for verifying liveness properties.
The IDEs could help with using the tools synergistically, such as starting an
exploratory model checking run that corresponds to a given step in a proof.

Besides the work on verifying properties of formal specifications, there is in-
terest in relating TLA+ specifications to system implementations. The two main
lines of research are model-based test case generation from formal specifications
and trace validation, in which the specification serves as a monitor for supervis-
ing an implementation. Davis et al. [3] present an interesting real-life case study,
in which trace validation was found to be particularly successful.

18 I. Konnov, M. Kuppe, and S. Merz

References

1. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS. LNCS, vol. 1579, pp. 193–207 (1999)

2. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.:
TLA+ proofs. In: Giannakopoulou, D., Méry, D. (eds.) 18th Intl. Symp. Formal
Methods (FM 2012). LNCS, vol. 7436, pp. 147–154. Springer, Paris, France (2012)

3. Davis, A.J.J., Hirschhorn, M., Schvimer, J.: Extreme modelling in practice. Proc.
VLDB Endow. 13(9), 1346–1358 (2020)

4. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Budapest,
Hungary (2008)

5. Dijkstra, E.W.: Shmuel Safra’s version of termination detection (1987), available
online at https://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF

6. Dijkstra, E.W., W.H.J.Feijen, van Gasteren, A.: Derivation of a termination detec-
tion algorithm for distributed computations. Inf. Proc. Letters 16, 217–219 (1983)

7. Hansen, D., Leuschel, M.: Translating TLA+ to B for validation with ProB. In:
Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) 9th Intl. Conf. Integrated
Formal Methods (iFM 2012). LNCS, vol. 7321, pp. 24–38. Springer, Pisa, Italy
(2012)

8. Konnov, I., Kukovec, J., Tran, T.: TLA+ model checking made symbolic. Proc.
ACM Program. Lang. 3(OOPSLA), 123:1–123:30 (2019)

9. Konnov, I., Kuppe, M., Merz, S.: TLA+ specifications of EWD998 (2021),
https://github.com/tlaplus/Examples/tree/ISoLA2022/specifications/ewd998

10. Kuppe, M.A., Merz, S., Rafael Feodrippe, P., Lamport, L., Schultz, W., Fernan-
des, A., Ryndzionek, M., Konnov, I., Halterman, J., Wayne, H., Jobvs: TLA+
Community Modules, https://github.com/tlaplus/CommunityModules

11. Kuppe, M.A., Lamport, L., Ricketts, D.: The TLA+ toolbox. In: Monahan, R.,
Prevosto, V., Proença, J. (eds.) Fifth Workshop on Formal Integrated Development
Environment (F-IDE). EPTCS, vol. 310, pp. 50–62. Porto, Portugal (2019)

12. Lamport, L.: How to write a proof. American Mathematical Monthly 102(7), 600–
608 (1995)

13. Lamport, L.: Specifying Systems. Addison-Wesley, Boston, Mass. (2002)
14. Lamport, L.: Using TLC to check inductive invariance (2018),

https://lamport.azurewebsites.net/tla/inductive-invariant.pdf
15. Schultz, W.: An Animation Module for TLA+ (2018), https://easychair.org/smart-

slide/slide/8V76
16. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In:

Pierre, L., Kropf, T. (eds.) Correct Hardware Design and Verification Methods
(CHARME’99). LNCS, vol. 1703, pp. 54–66. Springer Verlag, Bad Herrenalb, Ger-
many (1999)

