
Chapter 3

An introduction to model checking

3.1. Introduction

In formal logic, model checking designates the problem of determining whether
a formula ϕ evaluates to true or false in an interpretation K, written K |= ϕ. This
problem finds applications in computer science: for example, K might represent a
knowledge base and ϕ could be a query of which we wish to determine if it is implied
by the knowledge in the base. We are then interested in finding efficient algorithms
for determining whether K |= ϕ holds. In this chapter, we are interested in appli-
cations where K represents a system and ϕ a formula that represents a correctness
property of this system. Typically, the systems we are interested in are reactive, that
is, they interact repeatedly with their environment. They are often more concerned
with control than with data and are usually composed of several components operat-
ing in parallel. Starting from a simple lift control application, we present basic ideas
and concepts of verification algorithms in this context. The first publications about
model checking appeared in 1981 by Clarke and Emerson [CLA 81] and by Queille
and Sifakis [QUE 81]. Since then much progress has been made, and model checking
has left the academic domain to enter mainstream development, notably of embedded
systems and of communication protocols. Advances in the theory and application of
model checking are reported in several important international conferences (including
CAV, CHARME, and TACAS).

The inputs of the model checker are a description of the system to be analyzed
and the property to verify. The tool either confirms that the property is true in the
model or informs the user that it does not hold. In that case, the model checker will

Chapter written by Stephan MERZ.

81

82 Modeling and Verification of Real-Time Systems

also provide a counter-example: a run of the system that violates the property. This
answer helps find the reason for the failure and has significantly contributed to the
success of model checking in practice. Unfortunately, in practice model checking
does not always yield such clear-cut results because the resource requirements (in
terms of execution time and memory needed) can prohibit verifying more than an
approximate model of the system. The positive outcome of model checking then no
longer guaranteed the correctness of the system and, reciprocally, an error found by
the model checker may be due to an inaccurate abstraction of the system. Model
checking is therefore not a substitute for standard procedures to ensure system quality,
but it is an additional technique that can help discover design problems at early stages
of system development.

This chapter is intended as an introduction to the fundamental concepts and
techniques of algorithmic verification. It reflects a necessarily subjective reading
of the (abundant) studies. We try to give many references to original work so
that the chapter can be read as an annotated bibliography. More extensive pre-
sentations of the subject can be found in books and more detailed articles, includ-
ing [BÉR 01, CLA 99, CLA 00, HUT 04]. The structure of the chapter is as follows:
section 3.2 presents an example of verifying a lift controller using the model checker
SPIN. Basic definitions of transition systems, as well as an algorithm for verifying sys-
tem invariants, are given in section 3.3. Section 3.4 is devoted to introducing temporal
logics and ω-automata, which serve as the bases for the model checking algorithms
presented in section 3.5. Finally, some topics of research are presented in section 3.6,
which concludes the chapter. We restrict ourselves here to the case of discrete, un-
timed systems. Model checking techniques for timed systems are presented in detail
in Chapter 4.

3.2. Example: control of an elevator

We will consider a simple model for the control of an elevator serving the floors of
a building. This model serves merely to demonstrate the basic ideas, it is not intended
as a realistic model of elevator control. It is generally advisable to start model check-
ing for rough abstractions of the intended system in order to manage the complexity of
the model and to get the first results quickly. Additional features required for a more
realistic model can then be added one after another.

The model of figure 3.1 is written in the language PROMELA [HOL 03]. In this
language, a system description is given by several parallel processes that execute asyn-
chronously. Our model consists of a process that represents the lift (controller)
and as many additional processes as there are floors in the building: that num-
ber is specified by the constant . All processes are started by the process .
The externally observable interface of the elevator control is made up of the global

An introduction to model checking 83

Figure 3.1. Model of an elevator in PROMELA

84 Modeling and Verification of Real-Time Systems

Assertions Formula (3.1)
States Transitions Time Memory States Transitions Time Memory

4 6,151 35,297 0.38 2.9 8,769 164,763 1.10 6.1
5 35,721 239,788 1.11 8.1 52,052 1.38e06 9.59 9.4
6 194,556 1.48e06 9.79 21.1 288,395 1.01e07 76.64 58.5

Figure 3.2. Model size and resource consumption by SPIN

variables whose value gives the floor where the lift is currently situated, and
, a Boolean array that indicates the requests to be served by the lift.

Each process represents the behavior of passengers who may call the
lift to serve floor . The process contains a non-terminating loop (. . .) in the
body of which the lift can be requested at that floor provided the lift is currently
located at a different floor. In this model we do not distinguish between calls from
within the lift cabin and from the floors.

The process declares the local Boolean variables and
that indicate if the lift is currently moving and, if so, in which direction. The integer
variable is used as an auxiliary scratch variable. The body of that process again
consists of an infinite loop that models the elevator control. There are four branches
(introduced by) according to the different states the lift can be in. If it is currently
moving, it will arrive at the next-higher or next-lower floor; it will stop there in case
there is a pending request and then reset the request. If the lift is stopped at a floor,
the controller checks first if there is another request in the current direction or, if that
is not the case, in the opposite direction. In the case of a pending request, the lift will
start moving in the required direction, otherwise it will remain stopped at the current
floor.

The two final branches of the loop contain assertions that are used to verify el-
ementary correctness properties of the model. The first assertion states that the lift
never moves out of the range of legal floor values – this is not completely obvious
from the way the model is written. The second assertion verifies that the lift does not
pass a floor for which there is a pending request. Assertions are a particular kind of
safety properties, which state that “nothing bad ever happens”.

Beyond these assertions, an important correctness property of the elevator is that
every request will eventually be served. This is an example of a liveness property
which state that “something good happens eventually”. For the first floor, this property
is expressed in temporal logic (see section 3.4) by the formula

G(⇒ F(= 1)). (3.1)

An introduction to model checking 85

The model checker SPIN can be used to verify assertions as well as temporal logic
formulas over PROMELA models. For the verification of the liveness property (3.1),
we have to specify the option with weak fairness in order to ensure that the process

will not remain inactive forever. Figure 3.2 shows the size of the models (in
terms of numbers of states and transitions), as well as the memory consumption (in
MB) and the time (in seconds) required by SPIN to verify the indicated properties over
the model of Figure 3.1. We can observe that the overall cost of verification increases
by about an order of magnitude per additional floor, and that the verification of (3.1)
is significantly more expensive than just assertion checking.

3.3. Transition systems and invariant checking

The semantic framework for system models used for model checking is provided
by the concepts of transition systems and Kripke structures. We now formally define
these notions and present an algorithm for verifying invariant properties.

3.3.1. Transition systems and their runs

Transition systems describes the states, the initial states and the possible state tran-
sitions of systems. They provide a general framework for describing the (operational)
semantics of reactive systems, independently of concrete formalisms used for their
specification.

DEFINITION 3.1.– A labeled transition system T = (Q, I, E, δ) is given by:

– a set Q of states;

– a subset I ⊆ Q of initial states;
– a set E of (action) labels;

– and a transition relation δ ⊆ Q × E × Q.

We require that δ is a total relation: for every q ∈ Q there exist e ∈ E and q′ ∈ Q
such that (q, e, q′) ∈ δ. An action (label) e ∈ E is called enabled at a state q ∈ Q if
(q, e, q′) ∈ δ holds for some q′ ∈ Q.

A run of T is an ω-sequence ρ = q0
e0⇒ q1

e1⇒ . . . of states qi ∈ Q and labels ei ∈ E
such that q0 ∈ I is an initial state and (qi, ei, qi+1) ∈ δ is a transition for all i ∈ N.

A state q ∈ Q is called reachable in T if there exists some run q0
e0⇒ q1

e1⇒ . . . of T
such that qn = q for some n ∈ N.

Definition 3.1 is generic in the sets Q and E: it does not specify the structure of
the sets of states and labels of a transition system and can be specialized for differ-
ent settings. Often, states will be given as variable assignments, and labels represent
individual system actions. The latter are particularly useful for specifying fairness

86 Modeling and Verification of Real-Time Systems

constraints. Another example can be found in the definition of a timed transition sys-
tem in section 4.2. A transition system is finite if its set of states is finite. Throughout
this chapter, we will consider verification techniques for finite transition systems.

We have assumed that the transition relation δ is total in order to simplify some
of the technical development. In particular, we need only consider infinite system
executions rather than distinguish between finite and infinite ones. This hypothesis is
easily satisfied by assuming a “stuttering” action τ ∈ E with (q, τ, q′) ∈ δ if and only
if q = q′, for all q, q′ ∈ Q. In this case, the deadlock states of a transition system are
those that only enable the τ transition.

We emphasize that transition systems are a semantic concept for the description
of system behavior. In practice, verification models are usually described in modeling
languages, including (pseudo) programming languages such as PROMELA, process
algebras or Petri nets (see Chapter 1). In general, the size of the transition system
corresponding to a system description in some such language will be exponential in
the size of its description. Different model checkers are optimized for certain classes
of systems such as shared-variable or message passing programs.

Verification algorithms determine whether a transition system satisfies a given
property. As we have seen in the elevator example of section 3.2, properties are built
from elementary propositions that can be true or false in a system state. The following
definition formalizes this idea with the concept of a Kripke structure that extends a
transition system with an interpretation of atomic propositions in states.

DEFINITION 3.2.– Let V be a set. A Kripke structure K = (Q, I, E, δ,λ) extends a
transition system by a mapping λ : Q → 2V that associates with every state q ∈ Q
the set of propositions true at state q. The runs of a Kripke structure are just the runs
of its underlying transition system.

The labeling λ of the states of a Kripke structure with sets of atomic propositions
allows us to evaluate formulae of propositional logic built from the propositions in V .
We write q |= P if state q satisfies propositional formulaP . Let us note in passing that
in principle, propositional logic is expressive enough for describing state properties of
finite transition systems.

3.3.2. Verification of invariants

A system invariant is a state property P such that q |= P holds for all reachable
system states q. Invariants are elementary safety properties. In the particular case
of an inductive invariant, P is supposed to hold true for every initial state and to be
preserved by all transitions, i.e. q |= P and (q, E, q′) ∈ δ implies that q |= P . Of
course, every inductive invariant is a system invariant, but the converse is not neces-
sarily true. In particular, a system invariant need not be preserved by transitions from

An introduction to model checking 87

Figure 3.3. Checking invariants by state enumeration

non-reachable states. Inductive invariants are the basis for deductive system verifica-
tion, but less important for model checking.

Verifying that a finite Kripke structure K satisfies an invariant property P is a
conceptually simple problem, and it illustrates well the basic ideas of algorithms for
model checking. We can simply enumerate the reachable system states and verify that
P is satisfied by every one of them. Termination is guaranteed by the finiteness of K.
A basic algorithm for invariant checking is presented in Figure 3.3: the variable
contains the set of states that have already been visited, whereas represents a
set of states that need to be explored. For each state s in , the algorithm checks
whether the predicate holds at s and otherwise aborts the search, returning false. It
then adds to all successors s′ of s (with respect to arbitrary labels) that have not
yet been seen. The algorithm returns when there are no more states to explore.

In an implementation of this algorithm, the set will be represented by a hash
table so that membership of an element in that set can be decided in quasi-constant
time. The set will typically be represented by a stack or a queue, corresponding
to depth-first or breadth-first search. If is a stack, it is easy to produce a counter-
example in case the invariant does not hold: the algorithm can be organized such that
when a state s violating the predicate is found, the stack contains a path from an initial
state to s, which can be displayed to the user. If is a queue, we are certain to
find invariant violations at a minimum depth in the state-space graph, and this makes
it easier for the user to understand why the invariant fails to hold. However, the gener-
ation of counter-examples in a queue-based implementation requires an auxiliary data
structure for retrieving the predecessor of a state.

88 Modeling and Verification of Real-Time Systems

SPIN uses the algorithm of Figure 3.3 for the verification of assertions. The user
can choose whether depth-first or breadth-first search should be used. There are spe-
cialized tools for invariant checking such as Murφ [DIL 92], and the main challenge
in implementing such a tool is to be able to search large state spaces, beyond 106–
107 states. For such system sizes, the set can no longer be stored in the main
memory. Although the disk can be used in principle, suitable access strategies must
be found to simulate random access, and verification will be slowed down consider-
ably. Combinations of the three following principles are useful for the analysis of
large systems in practice (see also section 3.6 for an additional discussion of these
techniques):

– Compression techniques rely on compact representations of data structures such
as states and sets of states in memory. For example, the implementation may decide to
store state signatures (hash codes) instead of proper states in the set . A collision
between the signatures of two distinct states could then lead to cutting off parts of the
search space, hence possibly missing invariant violations. However, any error reported
by the algorithm would still correspond to a valid counter-example. By estimating the
probability of collisions and using different hash functions during several runs over the
same model, we can estimate the coverage of verification and improve the reliability
of the result.
– Reduction-based techniques attempt to determine a subset of the runs whose ex-

ploration guarantees the correctness of the system invariant over the overall system.
In particular, independence of different transitions enabled in a given state or symme-
try relations among data or system parameters can significantly reduce the number of
runs that need to be explored by the algorithm.
– Finally, abstraction can help to construct a significantly smaller model that can

be verified exhaustively and whose correctness guarantees the correctness of the orig-
inal model. Whereas abstractions are usually constructed during system modeling in
an ad-hoc manner, this relation can be formalized and the construction of abstractions
can be done automatically. In general, failure of verification over an abstract model
does not imply that the invariant does not hold over the original model because the ab-
straction could have identified reachable and unreachable states of the original model.
However, a spurious counter-example produced over an abstract model often helps to
suggest an improvement of the abstraction.

3.4. Temporal logic

Given a Kripke structureK, we are interested in their properties, such as:
– Does (the reachable part of) K contain “bad” states, such as deadlock states

where only the τ action is enabled, or states that do not satisfy an invariant?
– Are there executions of K such that, after some time, a “good” state is never

reached or a certain action never executed? Such executions correspond to livelocks
where some process does not make progress yet the entire system is not blocked.

An introduction to model checking 89

– Can the system be re-initialized? In other words, is it always possible to reach
an initial system state?

Temporal logic provides a language in which such properties can be formulated.
Different temporal logics can be distinguished according to their syntactic features, or
to the semantic structures over which their formulae are evaluated. Linear time tempo-
ral logic and branching time temporal logic are the two main kinds of temporal logic,
and they will be introduced in the following. We will then present some principles
of the theory of ω-automata and its connection with linear time temporal logic. This
correspondence will be useful for the presentation of a model checking algorithm in
section 3.5.

3.4.1. Linear time temporal logic

Linear time temporal logic extends classical logic by temporal modalities to refer
to different (future or past) time points. Its formulae are interpreted over infinite se-
quences of states, such as the runs of Kripke structures from which the labels have
been omitted. We will consider here a propositional version PTL of this logic. As
before, we assume given a set V of atomic propositions. The interpretation of PTL is
based on a function λ : Q → 2V that evaluates the atomic propositions over states,
just as in the definition 3.2 of a Kripke structure. For a sequence σ = q0q1 . . . of
states, we denote by σi the state qi, and by σ|i the suffix qiqi+1 . . . of σ.

DEFINITION 3.3.– Formulae of the logic PTL and their semantics over sequences
σ = q0q1 . . . of states (with respect to a function λ : Q → 2V) are inductively defined
as follows:

– an atomic proposition v ∈ V is a formula and σ |= v iff v ∈ λ(σ0),

– propositional combinations of formulae (by means of the operators ¬, ∧, ∨,⇒,
and⇔) are formulae and their semantics are the usual ones,

– if ϕ is a formula then so is Xϕ (“next ϕ”) and σ |= Xϕ if and only if σ|1 |= ϕ,

– if ϕ and ψ are formulae then ϕ U ψ (“ϕ until ψ”) is a formula and σ |= ϕ U ψ
if and only if there exists some k ∈ N such that σ|k |= ψ and σ|i |= ϕ for all i with
0 ! i < k.

The setMod(ϕ) of themodels of a formulaϕ of PTL is the set of those state sequences
σ such that σ |= ϕ.

Formula ϕ is valid if σ |= ϕ holds for all σ. It is satisfiable if σ |= ϕ holds for some
σ. Formula ϕ is valid in a Kripke structure K, written K |= ϕ, if σ |= ϕ holds for all
runs σ of K.

The formula ϕ U ψ requires that ψ eventually becomes true and that ϕ holds at
least until that happens. Other useful formulae are defined as abbreviations. Thus, Fϕ

90 Modeling and Verification of Real-Time Systems

(“eventually ϕ”) is defined as true U ϕ, and holds true of σ if ϕ is true of some suffix
of σ. The dual formula Gϕ (“always ϕ”) is defined as ¬F¬ϕ and requires that ϕ
holds true of all suffixes of σ. Finally, the formula ϕ W ψ (“ϕ unless ψ”) abbreviates
(ϕ U ψ) ∨ Gϕ. It states that ϕ stays true while ψ is false: if ψ remains false forever
then ϕ must hold true of all suffixes.

The PTL formula GFϕ asserts that for every suffix σ|i there exists a suffix σ|j ,
where j " i, that satisfies ϕ. In other words, ϕ has to be true infinitely often. Dually,
the formula FGϕ asserts that ϕ will eventually stay true.

The notions of (general) validity and satisfiability of PTL are standard. More im-
portant for the purposes of model checking is the notion of system validity: a property
expressed by a PTL formula holds for a system if it is true for all of its runs. For ex-
ample, the following formulae express typical correctness properties of a system for
managing a resource shared between two processes. In writing these properties, we
assume that the propositions req i and own i (for i = 1, 2) represent the states in which
process i has requested (respectively, obtained) the resource.

G¬(own1 ∧ own2). This formula describes mutual exclusion for access to the re-
source: at no moment do both processes own the resource. More generally,
formulae of the form GP , for a non-temporal formula P , express invariants.

G(req1 ⇒ F own1). Every request of access to the resource by process 1 will eventu-
ally be honored in the sense that process 1will be granted access to the resource.
Formulae of the form G(P ⇒ FQ), for non-temporal formulae P and Q, are
often called response properties [MAN 90]. We have encountered a formula of
this form in the lift example; see Formula (3.1).

GF(req1 ∧ ¬(own1 ∨ own2)) ⇒ GF own1. This formula is weaker than the pre-
ceding one as it requires process 1 to obtain the resource infinitely often pro-
vided that it is requested infinitely often at a time when the resource is free.
For example, the previous property is impossible to satisfy (together with the
basic requirement of mutual exclusion) if the second process never releases the
resource after it obtained it, whereas the present property states no obligation in
such a case. Formulae of the shape GFP ⇒ GFQ can also be used to express
assumptions of (strong) fairness.

G(req1 ∧ req2 ⇒ (¬owns2 W (owns2 W (¬owns2 W owns1)))). When both pro-
cesses request the shared resource, process 2 will obtain the resource at most
once before process 2 gets access. This property, called one-bounded overtak-
ing, is an example of a precedence property, as it expresses requirements on the
relative ordering of events. Intuitively, the formula asserts the existence of four
(possibly empty or infinite) intervals during which the different propositions
hold.

An introduction to model checking 91

EXTENSIONS OF PTL.– The logic PTL is generally recognized as a useful language
for formulating correctness properties of systems. Nevertheless, its expressive power
is limited, and several authors have proposed extensions of PTL by additional opera-
tors. In particular, the modalities of PTL are all directed towards the future, and one
can obviously define symmetric operators such as Pϕ, which asserts that ϕ was true
at some preceding instant of time. Kamp [KAM 68] has shown that this extension
does not increase the expressive power of the logic (see also [GAB 94] for generaliza-
tions of this result) as far as system validity is concerned: every formula containing
past time modalities can be rewritten into a corresponding “future-only” formula that
describes the same property. For example, the formula G(own1 ⇒ P req1) which as-
serts that the resource is obtained only in response to a preceding request is equivalent
with respect to system validity to the formula ¬own1 W req1. This observation has
been used to justify the elimination of past time operators from model checking tools.
Nevertheless, past time modalities can increase the readability of formulae, and they
can be (exponentially) more succinct [LAR 02].

PTL can also be extended by operators corresponding to regular expressions
[WOL 83] or, equivalently, by operators defined as smallest or largest fixed points or
by quantification over atomic propositions. We will observe a close relationship be-
tween PTL and (ω-)regular languages in sections 3.4.3 and 3.4.4, which explains that
“regular” operators can be added to PTL without significant complications in model
checking algorithms. The language PSL [PSL 04] (property specification language),
which has been recognized as an IEEE standard in 2005, is based on an extension of
PTL by past time and regular modalities.

3.4.2. Branching time temporal logic

Whereas formulae of linear time temporal logic are evaluated over the runs of a
system, branching time temporal logic makes assertion about the system as a whole. In
particular, besides expressing properties that should be true for all system executions
it is also possible to assert the existence of runs satisfying certain conditions. For
example, the property of reinitializability states that for every reachable state there
exists some path leading back to an initial state. The following definition introduces
the branching time logic CTL (computation tree logic), which has been very popular
for model checking.

DEFINITION 3.4.– The formulae of the logic CTL and their semantics, with respect to
a state q of a Kripke structure K, are defined as follows:

– an atomic proposition v ∈ V is a formula and K, q |= v if v ∈ λ(q),

– propositional combinations of formulae (by means of the operators ¬, ∧, ∨,⇒,
and⇔) are formulae and their semantics are the usual ones,

– if ϕ is a formula then so is EXϕ and K, q |= EXϕ if and only if there exist e
and q′ with (q, e, q′) ∈ δ and K, q′ |= ϕ,

92 Modeling and Verification of Real-Time Systems

– if ϕ is a formula then so is EGϕ and K, q |= EGϕ if and only if there exists
some path q = q0

e0⇒ q1 . . . such that K, qi |= ϕ for all i ∈ N,

– if ϕ and ψ are formulae then ϕ EU ψ is a formula and K, q |= ϕ EU ψ if and
only if there exists some path q = q0

e0⇒ q1 . . . and some k ∈ N such that K, qk |= ψ
and K, qi |= ϕ for all i with 0 ! i < k.

The satisfaction set [[ϕ]]K of a formula ϕ in a Kripke structure K is the set of all states
q ∈ Q such thatK, q |= ϕ. Formula ϕ is valid in a Kripke structureK, writtenK |= ϕ,
if K, q |= ϕ for all initial states q ∈ I , that is, if I ⊆ [[ϕ]]K.

Formula ϕ is valid (satisfiable) if it is valid in every (some) Kripke structureK.

The modal operators of CTL combine temporal references with quantification over
paths. Further connectives can be defined as abbreviations. Thus, EFϕ abbreviates
true EU ϕ and asserts that ϕ will become true along some path starting at the state of
evaluation. The formulae AXϕ and AGϕ are defined as ¬EX¬ϕ and ¬EF¬ϕ, and
state that ϕ holds at all immediate successors, respectively at all states reachable from
the state of evaluation. Similar definitions can be given to introduce the operators AF,
AU, and AW. Operators of the shape A _ express universal properties that have to hold
along all possible paths starting at the current state, whereas the operators E _ express
existential properties. In particular, AGP asserts that the non-temporal formula P is
a system invariant. The formula AG(req1 ⇒ EF own1) requires that every request for
the resource by process 1 may be followed by getting access to the resource, although
there may also be some executions along which the process is never granted access.
Similarly, system validity of the formula AGEF init (for a suitable proposition init)
means that the system can be reinitialized from every reachable state.

Although they are interpreted over structures of different shape, the expressiveness
of PTL and CTL can be compared based on the notion of system validity: a PTL
formula ϕ and a CTL formula ψ correspond to each other if they are valid in the
same Kripke structures. Obviously, PTL cannot define existential properties such as
AGEF init . Perhaps more surprisingly, there also exist PTL formulae for which there
is no correspondingCTL formula, and therefore the expressive power of PTL and CTL
is incomparable [LAM 80]. Thus, reactivity properties G FP ⇒ GFQ do not have a
counterpart in CTL. A simpler example is provided by the Kripke structure K shown
in Figure 3.4 (transition labels have been omitted). It is easy to see that K |= FG v:
that property is true for the run of K that loops at q0, but also for the executions that
eventually move to state q2. On the other hand, the CTL formula1 AFAG v is not valid
in the Kripke structure K. To see this, it is enough to observe that the formula AGv

1. Obviously, this observation does not prove that there is no other CTL formula that corre-
sponds to FG v. The proof of this assertion requires a more detailed argument [LAM 80].

An introduction to model checking 93

v
q0

¬v
q1

v
q2

! ! !

" "

Figure 3.4. A Kripke structure satisfying FG v but not AFAG v

is never satisfied along the run of K that loops at q0 because from q0 we can always
move to state q1, which does not satisfy v.

OTHER BRANCHING TIME LOGICS.– This relative lack of expressiveness of CTL is
due to the strict alternation between path quantifiers (A, E) and temporal operators
(X, G, F, U, W). The logic CTL∗ relaxes this constraint and (strictly) subsumes
the logics PTL and CTL. For example, the CTL∗ formula AFG v corresponds to the
PTL formula FG v. See [EME 90, EME 86a, VAR 01] for more in-depth comparisons
between linear time and branching time temporal logics.

Themodalµ-calculus [KOZ 83, STI 01] is based on defining temporal connectives
by their characteristic recursive equivalences. For example, let us consider

EGϕ ⇔ ϕ ∧ EXEGϕ and EG2 ϕ ⇔ ϕ ∧ EXEXEG2 ϕ.

The left-hand equivalence is valid for the connective EG of CTL, the one on the
right-hand side characterizes an operator EG2 that requires the existence of a path such
that ϕ is true at all states with an even distance from the original point of evaluation.
(Formula ϕ can be true or false at the other states.) It can be shown that such an
operator is not definable in CTL or CTL∗. In the µ-calculus it can be defined by the
formula νX : ϕ ∧ EXEXX .

The temporal logic ATL (alternating time temporal logic) [ALU 97] refines the
quantification over the paths in a Kripke structure by refering to the labels of transi-
tions, interpreted as identifying the processes of a system. For example, ATL formulae
can be written to express that the controller by itself can guarantee the mutual exclu-
sion of access to the resource, or that the controller and the first process can conspire to
exclude the second process from accessing it. The logic ATL is therefore particularly
useful for the specification and analysis of open systems formed as the composition of
independent components.

3.4.3. ω-automata

The algorithm for the verification of invariants presented in section 3.3.2 is con-
ceptually simple, but it is not immediately clear how to generalize it for the verifi-
cation of arbitrary temporal properties. Transition systems, even if they are finite,

94 Modeling and Verification of Real-Time Systems

¬v

l0 l1

v
v

¬v

l0 l1

v

¬v ¬v

l0 l1

v

Figure 3.5. Three Büchi automata

usually generate an infinite set of runs, each of which is an infinite sequence of states.
Certain verification algorithms are grounded in a close correspondence between tem-
poral logics and finite automata operating on infinite objects (sequences or trees). In
contrast to the more “declarative” presentation of properties by formulae, automata
provide a more “operational” description, and are amenable to decision procedures.
We are now going to study the principles of this theory, which goes back to the work
of Büchi [BÜC 62], Muller [MUL 63], and Rabin [RAB 69], but limit the discussion
mainly to Büchi automata. Much more detailed information can be found in the ex-
cellent articles by Thomas [THO 97] or Vardi et al. [VAR 95, KUP 94]. As before,
we assume given a set V of atomic propositions, which defines the alphabet 2V of our
automata.

DEFINITION 3.5.– A Büchi automaton B = (L, L0, δ, F) is given by a finite set L
of locations, a set L0 ⊆ L of initial locations, a relation δ ⊆ L × 2V × L and a set
F ⊆ L of accepting locations.

A run of B over a sequence σ = s0s1 . . . where si ⊆ 2V is a sequence ρ = l0l1 . . . of
locations li ∈ L such that l0 ∈ L0 is an initial location and (li, si, li+1) ∈ δ holds for
all i ∈ N. The run ρ is acceptingif it contains an infinite number of locations lk ∈ F .

The language L(B) of B is the set of sequences σ for which there exists an accepting
run of B.

Observe that the structure of a Büchi automaton is just that of a non-deterministic
finite automaton (NFA). The only difference is in the definition of the acceptance con-
dition which requires that the run passes infinitely often through an accepting location.
An ω-languageL (i.e., a set of ω-sequences σ) is called ω-regular if it is generated by
a Büchi automaton, i.e. if L = L(B) for some Büchi automaton B.

Büchi automata, as we have defined them, operate on ω-sequences of subsets of
V , and this is in close correspondence with the interpretation of (linear time) temporal
logic over Kripke structures. Indeed, any run q0

e0⇒ q1
e1⇒ . . . of a Kripke structure

K can be identified with the corresponding sequence λ(q0)λ(q1) . . . where λ is the
propositional valuation of states ofK. In this sense, PTL formulae and Büchi automata
operate over the same class of structures.

Figure 3.5 shows three Büchi automata, each of which contains two locations l0
and l1, of which l0 is initial and l1 is accepting. The transitions are labeled with

An introduction to model checking 95

propositional formulae in an obvious manner: for example, the transition label ¬v
represents those subsets of V that do not contain v. The left-hand automaton is de-
terministic because for any propositional interpretation s ⊆ V , the successor of both
locations is uniquely determined. It accepts precisely those sequences where v is true
infinitely often and, intuitively, corresponds to the PTL formula GF v. The middle au-
tomaton is non-deterministic because there is a choice between staying at l0 or moving
to l1 when reading an interpretation satisfying v while in location l0. Any sequence
accepted by this automaton must contain an infinite number of interpretations satis-
fying v, followed by an interpretation satisfying ¬v. The language of this automaton
is therefore characterized by the PTL formula2 G F(v ∧ X¬v). It is not difficult to
find a deterministic Büchi automaton that accepts the same language. The right-hand
automaton is also non-deterministic, and any sequence accepted by it must terminate
in a sequence of states satisfying v. This language is also described by the PTL for-
mula FG v. It can be shown [THO 97] that there is no deterministic Büchi automaton
defining this language. Intuitively, the reason is that an infinite “prophecy” is required
when choosing to move to location l1.

In particular, and unlike standard non-deterministic finite automata over finite
words, non-deterministic Büchi automata are strictly more expressive than determinis-
tic ones. Apart from this difference, the theory ofω-regular languages closely parallels
that of ordinary regular languages. Specifically, we will make use of the decidability
of the emptiness problem.

THEOREM 3.1.– For a Büchi automaton B = (L, L0, δ, F), the emptiness problem
L(B) = ∅ can be decided in time linear in the size of the automaton.

PROOF.– Since L is a finite set, L(B) = ∅ if and only if there exists locations l0 ∈ L0

and lf ∈ F such that lf is reachable from l0 and (non-trivially) from itself, i.e. there
exist finite words x and y *= ε over 2V such that l0

x
=⇒ lf and lf

y
=⇒ lf . The exis-

tence of such a cycle in the graph of B can be decided in linear time, for example by
using the algorithm of Tarjan and Paige [TAR 72] that enumerates the strongly con-
nected components of B and checking that some SCC contains an accepting location.

QED

It follows from the proof of Theorem 3.1 that every non-emptyω-regular language
contains a word of the form xyω where x and y are finite words and yω denotes infinite
repetition of the word y.

Further important results about ω-regular languages show closure under Boolean
operation and projection. Closure under union and projection are easy to prove, using
essentially the same automaton constructions as for the corresponding results for NFA

2. Let us note that an equivalent formula is G F v ∧ GF¬v.

96 Modeling and Verification of Real-Time Systems

over finite words. Closure under intersection is essentially proved by constructing the
product automata for the two original languages, although some care must be taken
to define the acceptance condition. However, proving closure under complementation
is difficult. The standard proof known from NFA first constructs a deterministic finite
automaton, and this fails for Büchi automata because they cannot be determinized.
The original proof by Büchi was non-constructive and combinatorial in nature, and a
series of papers over the following 25 years established explicit constructions, culmi-
nating in optimal constructions of complexity O(2n log n) by Safra [SAF 88] and by
Kupferman and Vardi [KUP 97b].

OTHER TYPES OF ω-AUTOMATA.– There exist many other types of non-deterministic
ω-automata that differ essentially in the definition of the acceptance condition. In
particular, generalized Büchi automata are of the shape B = (L, L0, δ,F), with an
acceptance condition F = {F1, . . . , Fn} of sets Fi of locations. A run is accepted
if every set Fi is visited infinitely often. Using a counter modulo n, it is not hard
to simulate a generalized Büchi automaton by a standard one [VAR 94]. For Muller
automata, the acceptance condition is also a set F ⊆ 2L, and a run is accepted if the
set of all locations that appear infinitely often is an element of F . Muller automata
again define the class of ω-regular languages. Rabin and Streett automata are special
cases of Muller automata. Beyond independent interest in these classes of automata,
they are used in Safra’s complementation proof. The more recent complementation by
Kupferman and Vardi extends rather smoothly to different kinds of non-deterministic
automata [KUP 05].

Alternating automata [MUL 88, VAR 95, KUP 97b] differ from Büchi automata
in that several locations can be simultaneously active during a run. The transition
relation of an alternating automaton can be specified using propositional formulae
built from the propositions in V and the locations, where the latter are restricted to
occur positively. For example,

δ(q1) =
(

v ∧ w ∧ q1 ∧ (q3 ∨ q4)
)

∨
(

¬w ∧ (q1 ∨ q2)
)

,

specifies that if the location q1 is currently active and the current interpretation sat-
isfies v ∧ w, then q1 and q3 or q1 and q4 will be activated after the transition. If the
current interpretation satisfies ¬w, then q1 or q2 will be active. Otherwise, the au-
tomaton blocks. Alternating automata thus combine the non-determinism of Büchi
automata and parallelism, and their runs are infinite trees labeled with locations (or
directed acyclic graphs, dags, if multiple copies of the same location are merged).
With suitable acceptance conditions, these automata again define ω-regular languages
but they can be exponentially more succinct than Büchi automata. On the other hand,
the emptiness problem becomes of exponential complexity, and this trade-off can be
useful in certain model checking applications [HAM 05]. Alternating automata are
closely related to certain logical games, which have also received much attention dur-
ing recent years.

An introduction to model checking 97

3.4.4. Automata and PTL

We have already pointed out some (informal) correspondences between automata
and PTL formulae, and indeed formulaϕ can be considered as defining the ω-language
Mod(ϕ). It is therefore quite natural to compare the expressive power of formulae and
automata, and we will now sketch the construction of a generalized Büchi automaton
Bϕ that specifically accepts the models of the PTL formula ϕ.

The construction avoids the difficult complementation of Büchi automata by us-
ing a “global” algorithm that considers all subformulas of ϕ simultaneously. More
precisely, let C(ϕ) denote the set of subformulae ψ of ϕ and their complements ψ,
identifying ¬¬ψ and ψ. It is easy to see that the size of set C(ϕ) is linear in the length
of formula ϕ.

The locations of Bϕ correspond to subsets of C(ϕ), with the intuitive meaning that
whenever ρ = l0l1 . . . is an accepting run of Bϕ over σ then σ|i satisfies all formulae
in li, for all i ∈ N. Formally, the set L of locations of Bϕ consists of all sets L ⊆ C(ϕ)
that satisfy the following “healthiness conditions”:
– for all formulae ψ ∈ C(ϕ), either ψ ∈ L or ψ ∈ L but not both;

– if ψ1 ∨ ψ2 ∈ C(ϕ), then ψ1 ∨ ψ2 ∈ l if and only if ψ1 ∈ l or ψ2 ∈ l;
– similar conditions hold for the other propositional connectives;

– if ψ1 U ψ2 ∈ l, then ψ1 ∈ l or ψ2 ∈ l;
– if ¬(ψ1 U ψ2) ∈ l, then ψ2 ∈ l.

The initial locations of Bϕ are those locations containing the formula ϕ. The
transition relation δ of Bϕ consists of the triples (l, s, l′) that satisfy the following
conditions:

– s = l∩V : the state smust satisfy precisely those atomic propositions “promised”
by the source location l;

– if Xψ ∈ l, then ψ ∈ l′ and if ¬Xψ ∈ l, then ψ ∈ l′;
– if ψ1 U ψ2 ∈ l and ψ2 ∈ l, then ψ1 U ψ2 ∈ l′;

– if ¬(ψ1 U ψ2) ∈ l and ψ1 ∈ l, then ¬(ψ1 U ψ2) ∈ l′.

The last two conditions can be explained by the “recursion law” for the U operator:

ψ1 U ψ2 ⇔ ψ2 ∨ (ψ1 ∧X(ψ1 U ψ2)). (3.2)

The conditions above define the initial locations and the transition relation, it re-
mains to define the acceptance condition of the generalized Büchi automatonBϕ. The
intuitive idea is to make sure that whenever a location that contains formula ψ1 U ψ2

appears in an accepting run of Bϕ it will be followed by a location containing ψ2. Let

98 Modeling and Verification of Real-Time Systems

l2

¬(¬pUq),
¬p, ¬q, ¬ϕ

¬(p U q),
¬(¬pUq),
p, ¬q, ¬ϕ

p U q,
¬p U q,
¬p, q, ϕ

p U q,
¬(¬pUq),
p, ¬q, ϕ

¬p U q,
p, q, ϕ

¬(p U q),
¬p U q,
¬p, ¬q, ϕ

l1

l3 l4

l5 l6

¬(p U q),

p U q,

Figure 3.6. Büchi automaton Bϕ for ϕ ≡ (p U q) ∨ (¬p U q)

therefore ψ1
1 U ψ1

2 , . . . , ψ
k
1 U ψk

2 be all formulae of this shape in C(ϕ). The accep-
tance condition F = {F1, . . . Fk} of automaton Bϕ contains a set of locations Fi for
each formula ψi

1 U ψ
i
2, where l ∈ Fi if and only if ψi

2 ∈ l or ψi
1 U ψ

i
2 /∈ l.

For example, the automaton shown in Figure 3.6 results from an application of the
above construction to the formula ϕ ≡ (p U q) ∨ (¬p U q). We have omitted the
transition labels, which are just given by the sets of atomic propositions that appear
in the source states. The acceptance condition consists of sets F1 = {l1, l3, l4, l5, l6}
and F2 = {l1, l2, l3, l5, l6}, corresponding to the two subformulae p U q and ¬p U q.
For example, set F1 serves to exclude runs that terminate in the loop at location l2
because these runs “promise” p U q without ever satisfying q.

The above construction of the automaton Bϕ is similar to that of a tableau for the
logic PTL [WOL 83]. The following correctness theorem is due to Vardi et al., see for
example [VAR 94, GER 95].

PROPOSITION 3.2.– For any PTL formula ϕ of length n there is a Büchi automaton
Bϕ with 2O(n) locations such that L(Bϕ) = Mod(ϕ).

Together, Theorem 3.1 and Proposition 3.2 imply that the satisfiability and validity
problems of the logic PTL are decidable in exponential time: formula ϕ is satisfiable
if and only if L(Bϕ) *= ∅, and it is valid if and only if L(B¬ϕ) = ∅. On the other hand,
Sistla and Clarke [SIS 87] have shown that these problems are PSPACE-complete, one
can therefore not hope for a significantly more efficient algorithm in the general case.
However, the simple construction of Bϕ described above systematically generates an
automaton of exponential size. Constructions used in practice [DAN 99, GAS 01] at-
tempt to avoid this blowup whenever possible. Let us finally note that the construction
of an alternating automaton for a PTL formula is of linear complexity [VAR 95].

An introduction to model checking 99

Proposition 3.2 naturally leads to the reciprocal question whether every ω-regular
language can be defined by a PTL formula. The answer was already given by Kamp
[KAM 68] in 1968: he showed that PTL corresponds to the monadic first-order theory
of linear orders. This logical language only contains unary predicate (and no function)
symbols, the equality predicate=, the relation<, interpreted over the natural numbers;
see for example [GAB 94, THO 97]. However, Büchi [BÜC 62] proved that the class
of ω-regular languages correspond to the analogous fragment of second-order logic,
and this language is strictly more expressive. For example, the linear-time counterpart
G2 to the connective EG2 considered at the end of section 3.4.2 where G2 ϕ is true for
σ ifϕ holds for all suffixes σ|2n with even offset is definable by a Büchi automaton but
not by a PTL formula [WOL 83]. Starting from this observation, extensions of PTL by
“grammar operators” that directly correspond to ω-regular expressions [WOL 83], by
fixed-point definitions similar to the modal µ-calculus [STI 01], or by quantification
over atomic propositions, have been proposed.

Automata corresponding to branching time temporal logics can also be defined,
and they operate over infinite trees [KUP 94, THO 97]. We do not present the details
here because they are not necessary for the model checking algorithms for branching-
time logics that we will describe in section 3.5.2.

3.5. Model checking algorithms

Given a Kripke structureK and a formulaϕ of temporal logic, the model checking
problem is to determine whether ϕ is valid in K, written K |= ϕ (see Definitions 3.3
and 3.4). Beyond a yes/no answer to this question, model checking tools generally
attempt to explain their verdict. For example, a PTL model checker will produce
a counter-example, i.e. a run of K that does not satisfy ϕ if K *|= ϕ. The model
checking problems for the logics that we have considered so far are decidable when
K is a finite-state system, and we will explain in this section the principles of model
checking algorithms for PTL and for CTL.

Observe that the model checking problem has two parameters, K and ϕ. We can
therefore imagine two basic strategies for its solution: global algorithms recurse on
the syntax of formula ϕ and evaluate its subformulae at the states of K in order to
determine the satisfaction of ϕ. Local algorithms recurse on the structure of K: they
explore the parts of K that contribute to evaluating ϕ, much like how the algorithm
of section 3.3.2 uses graph search to determine satisfaction of a proposed invariant.
Global algorithms are traditionally used for CTL model checking, while PTL model
checking is mostly based on local algorithms because system validity for PTL does
not decompose along the formula structure. For example,K |= ϕ∨ψ does not require
either K |= ϕ or K |= ψ.

100 Modeling and Verification of Real-Time Systems

3.5.1. Local PTL model checking

The translation from PTL formulae to Büchi automata introduced in section 3.4.4
provides the basis for a PTL model checking algorithm, refining the procedure for
satisfiability checking described there. Indeed, K *|= ϕ if and only if there exists a
run of K that does not satisfy ϕ. If we consider K as a Büchi automaton (with trivial
acceptance condition) that defines the setL(K) of runs ofK, we arrive at the following
chain of equivalences:

K *|= ϕ ⇐⇒ L(K) ∩ Mod(¬ϕ) *= ∅ ⇐⇒ L(K) ∩ L(B¬ϕ) *= ∅,

where the second equivalence is justified by Proposition 3.2. The last problem in this
chain can be solved by determining language emptiness for the product ofK and B¬ϕ.

More formally, assume that K = (Q, I, E, δK,λ) is a Kripke structure and that
B¬ϕ = (L, L0, δB, F) is the Büchi automaton3 corresponding to the negation of ϕ.
The model checking algorithm operates on pairs (q, l) of states q of K and locations l
of B¬ϕ. The initial pairs consist of initial states and locations of the two components.
The successors of a pair (q, l) are all pairs (q′, l′) such that
– q′ is a successor state of q in K, i.e. (q, e, q′) ∈ δK for some e ∈ E, and

– l′ is a possible successor of l under the interpretation of the atomic propositions
determined by q, i.e. (l,λ(q), l′) ∈ δB.

The two automata therefore take simultaneous transitions. The acceptance con-
dition of the product is determined by that of the Büchi automaton: a pair (q, l) is
accepting if l ∈ F is an accepting state of B¬ϕ.

The Büchi automaton A thus defined recognizes the language L(K) ∩ L(B¬ϕ),
and in particular K |= ϕ if and only if L(A) = ∅. By Theorem 3.1, this condition
can be verified in linear time in the size of A by searching for an accepting cycle.
Because the size of A is proportional to the product of the sizes of K and of B¬ϕ,
the explicit construction ofA is prohibitive in practice. Courcoubetis et al. [COU 92]
invented an algorithm that constructs A “on the fly”, that is, during the search for
an acceptance cycle. This algorithm appears in Figure 3.7. The current state of the
search is represented by a stack of pairs. The algorithm combines two depth-first
search algorithms: starting from an initial pair, the procedure explores a path of
the product automaton. When this search completes, it backtracks to the last accepting
pair q and then initializes a second search (indicated by the parameter
set to true) of a path that leads back to q. Courcoubetis et al. proved that this algorithm

3. Here we assume that B¬ϕ is an ordinary (not generalized) Büchi automata. As noted in
section 3.4.3, the translation from generalized Büchi automata to ordinary Büchi automata is of
polynomial complexity.

An introduction to model checking 101

Figure 3.7. On-the-fly PTL model checking algorithm

will report an acceptance cycle if the product automaton contains one, although it may
not find all existing cycles (even if the search were to continue after the first reported
cycle).

The algorithm avoids the construction of the product automaton: the stack only
contains the prefix of the currently explored path, and the set stores the pairs
that have already been visited during the search. A possible optimization would store
only a subset of these pairs by trading some redundant search for less memory con-
sumption. Just as for the algorithm for invariant checking of Figure 3.3, when the
procedure finds an acceptance cycle, it is represented in the search stack and can
be displayed as a counter-example.

The complexity of the algorithm in Figure 3.7 is still linear in the size of the prod-
uct of K and B¬ϕ; by Theorem 3.2 it is therefore linear in the size of K and exponen-
tial in the size of ϕ. In practice, the linear factor is often more problematic because
correctness properties tend to be short formulae.

For systems where the size of the product automaton exceeds a few million pairs,
the set no longer fits into the main memory. In order to reduce memory con-
sumption, it is possible to store signatures of states as computed by a hash function,
rather than the states themselves [HOL 98]. When doing so, different pairs may gen-
erate the same signature, leading to a premature termination of the algorithm. This
risk can be reduced by repeating the verification, using different hash functions.

102 Modeling and Verification of Real-Time Systems

Different algorithms for the model checking of PTL formulae, still based on ω-
automata, have been proposed by Couvreur [COU 99] and by Geldenhuys and Val-
mari [GEL 04]; Schwoon and Esparza [SCH 05] discuss the pros and cons of these
algorithms in more detail. The on-the-fly algorithm based on alternating automata
[HAM 05] is intended for the verification of large formulae.

3.5.2. Global CTL model checking

Global model checking algorithms recurse on the syntax of the formula to be ver-
ified. We consider here an algorithm for the branching-time logic CTL that calculates
the satisfaction sets [[ψ]]K (see Definition 3.4) for the subformulae of the formula ϕ of
interest. Recall that in CTL, ϕ is system valid if I ⊆ [[ϕ]]K, where I is the set of initial
states of K. The first clauses for the recursive definition of [[ϕ]]K are quite obvious:

[[v]]K = {q ∈ Q : v ∈ λ(q)} for v ∈ V
[[¬ψ]]K = Q \ [[ψ]]K

[[ψ1 ∨ ψ2]]K = [[ψ1]]K ∪ [[ψ2]]K
[[ψ1 ∧ ψ2]]K = [[ψ1]]K ∩ [[ψ2]]K

[[EXψ]]K = δ−1([[ψ]]K)
= {q ∈ Q : there are e, q′ such that (q, e, q′) ∈ δ and q′ ∈ [[ψ]]K}

It remains to find appropriate definitions for the connectives EG and EU, and we
will make use of their recursive characterizations:

EGψ ⇔ ψ ∧ EXEGψ
ψ1 EU ψ2 ⇔ ψ2 ∨ (ψ1 ∧ EX(ψ1 EU ψ2)).

Using the above definitions of [[_]]K, these laws can be rewritten as

[[EGψ]]K = [[ψ]]K ∩ δ−1([[EGψ]]K)
[[ψ1 EU ψ2]]K = [[ψ2]]K ∪ ([[ψ1]]K ∩ δ−1([[ψ1 EU ψ2]]K)),

yielding implicit characterizations of these sets. Indeed, [[EGψ]]K and [[ψ1 EU ψ2]]K
are respectively the greatest and the least fixed points of the following functions:

fEGψ :

{

2Q → 2Q

S /→ [[ψ]]K ∩ δ−1(S)
fψ1EUψ2

:

{

2Q → 2Q

S /→ [[ψ2]]K ∪ ([[ψ1]]K ∩ δ−1(S)).

Both functions fEGψ and fψ1EUψ2
are monotonic and (by Tarski’s fixed point the-

orem) therefore have least and greatest fixed points. Moreover, since Q and therefore
2Q are finite sets, these functions are even continuous, and the fixed points can be
effectively computed as the limits of the sequences

Q ⊇ fEGψ(Q) ⊇ fEGψ(fEGψ(Q)) ⊇ . . .
∅ ⊆ fψ1EUψ2

(∅) ⊆ fψ1EUψ2
(fψ1EUψ2

(∅)) ⊆ . . .

An introduction to model checking 103

Because at least one state is removed (respectively added) at each step as long as
the fixed point has not been reached, the computation terminates after at most |Q|
iterations. The complexity of computing these functions at each iteration is linear in
|δ|, hence at worst quadratic in |Q|. Themodel checking algorithm requires computing
the sets [[ψ]]K for all subformulae ψ of ϕ, whose number is linear in the length of ϕ.
Thus, the overall complexity of this “naive”CTL model checking algorithm is linear
in |ϕ| and cubic in |Q|.

Clarke, Emerson, and Sistla [CLA 86] have defined a more efficient algorithm
whose complexity is linear in the product of the size of the formula and the size of |K|
(and therefore at worst quadratic in |Q|). For the computation of [[ψ1 EU ψ2]]K, the
idea is to perform a backward search starting from the states in [[ψ2]]K. For [[EGψ]]K,
the graph ofK is first restricted to those states satisfying ψ, and the algorithm enumer-
ates the strongly connected components (SCCs) of this subgraph. The set [[EGψ]]K
consists of all states from where such an SCC is reachable. These states are easily
enumerated using a breadth-first search algorithm.

We have observed in section 3.4.2 that fairness conditions cannot be expressed
in CTL. Verification of CTL properties under fairness hypotheses therefore requires
adapting the model checking algorithm. (For PTL this is not necessary because one
can verify formulae fair ⇒ ϕ where fair is a PTL encoding of the fairness condi-
tions.) McMillan [MCM 93] proposed to characterize “fair” states of a Kripke struc-
ture using CTL formulae. A run σ of K is fair if it contains infinitely many states
satisfying these formulae. For example, weak fairness with respect to a certain action
can be expressed in this scheme by identifying the states where the action is either
disabled or has just been taken. We can then define variants EGf and EUf of the op-
erators EG and EU whose semantics differ by asserting the existence of a fair path
(with respect to all fairness constraints) satisfying the temporal conditions, rather than
the existence of an arbitrary path. It is easy to see that the formula ψ1 EUf ψ2 is
equivalent to the formula ψ1 EU (ψ2 ∧ EGf true), and it is therefore enough to find
a model checking algorithm for formulae of the form EGf ψ. For the algorithm of
Clarke, Emerson and Sistla, it is enough to consider the SCCs of the subgraph of
K containing the states satisfying ψ that contain, for each fairness constraint, some
state satisfying that constraint. This information can be obtained while the SCCs are
searched, and the complexity of the algorithm remains linear in the size of the model
and the formula.

Global model checking algorithms can also be defined for other branching-time
logics, and in particular for the propositional µ-calculus. In that case, the complex-
ity is of the order |ϕ| · |K|qd(ϕ), where qd(ϕ) denotes the maximum nesting depth
of fixed point operators in ϕ. Emerson and Lei [EME 86b] have observed that the
computation of nested fixed points of the same type (least or greatest fixed point)
can be carried out simultaneously. In this way, they obtained an algorithm of com-
plexity |ϕ| · |K|ad(ϕ) where ad(ϕ) denotes the maximum alternation depth of fixed

104 Modeling and Verification of Real-Time Systems

point operators. In particular, the alternation-free fragment of the µ-calculus has an
algorithm of the same complexity as the logic CTL but offers a strictly greater expres-
siveness [CLE 93, EME 93].

3.5.3. Symbolic model checking algorithms

Model checking algorithms manipulate sets of states. Efficient data structures to
represent such sets are therefore critical for obtaining practically useful implementa-
tions of these algorithms. Explicit enumeration of states is limited to a few million
states. A popular alternative is to represent sets symbolically, since these represen-
tations are more sensitive to the structure of the set than its size, and they can help
verify much larger systems. In particular, the use of binary decision diagrams (BDDs,
more precisely reduced ordered BDDs) has been a technological breakthrough for the
implementation of model checking algorithms. Main advantages of BDDs are, first,
that they provide canonical representations of sets, and therefore set equality can be
decided by simple pointer comparison. Second, Boolean operations can be performed
in polynomial time.

The basic idea is to represent a set S by its characteristic predicate χS , for which
x ∈ S if and only if χS(x) is true. Without loss of generality, we assume that states
of finite transition systems are represented by a finite set {b1, . . . , bn} of Boolean
variables. The transition relation can then be represented as a predicate over the set of
variables {b1, . . . , bn, b′1, . . . , b

′
n} such that variables bi represent the source state of

the transition, and variables b′i the target state.

A BDD can be understood as an efficient representation of a binary decision tree.
For example, Figure 3.8(a) shows a decision tree that determines whether the addition
of two two-bit numbers b1b0 and c1c0 will produce a carry bit. This decision tree
represents the set

{(11, 11), (11, 01), (11, 10), (01, 11), (10, 11), (10, 10)}

of pairs of two-digit numbers; these are the labels of all paths leading to the result 1.
(Note that the variables appear in the same order b0, b1, c0, c1 along any branch in the
tree.) The same set is represented by the propositional formula

(b1 ∧ c1) ∨ (b0 ∧ c0 ∧ (b1 ∨ c1))

if we identify the values 0 and 1 with the truth values “false” and “true”.

The tree in Figure 3.8(a) contains many redundancies. For example, the values of
c0 and c1 are of no importance if b0 and b1 are both 0. A more compact representation
eliminates these redundancies. First, isomorphic subtrees can be identified, and this
results in a dag representation. Second, nodes whose children along both branches are

An introduction to model checking 105

1

c1

c1

c1

c1

c1

c1

c1

c1

b1

c0

c0

c0

b1

c0

b0

1

0 1

0

1

0

1

0

0

1

1

1

0

1

0

0

0

1

0

1

0

0

0

0

00

0

1
0

1

0

1

1

0

1

1

0

1

1

1

0

0

0

1

0

(a) Decision tree

b1

b1

c0

c1

b0
c0

1

0

1

1

0

1

00

10

1

1

0

0

(b) First BDD

0

b0

c0

b1

b1

c1

1

1

1

1

0

0

1
0

1

0

0

(c) Second BDD

Figure 3.8. Decision tree and two BDDs

identical can be eliminated. If we carry out these steps for our example, we obtain
the BDD that appears in Figure 3.8(b). This representation is more compact because
nodes are shared whenever possible. An implementation of a BDD package ensures
maximum sharing by remembering each allocated BDD so that it can be reused instead
of reallocated when it is needed a second time.

Every Boolean function is represented by a unique BDD with respect to a fixed
variable order. However, the choice of this order can significantly influence the size
of the BDD representing a given function. For example, the BDD shown in Fig-
ure 3.8(c) again represents our carry function, but with respect to the variable order
b0, c0, b1, c1. When computing the carry for a growing number of bits, this second
BDD grows linearly whereas the BDD for the original ordering grows exponentially.
Choosing an optimal variable order for a given Boolean function is an NP-complete
problem [BRY 92]. Standard implementations of BDD libraries use heuristics to de-
termine the variable order [BER 95, FEL 93], but manual tuning is often necessary. In
general, it is advisable that variables that are strongly inter-dependent are close to each
other in the variable order [END 93, FUJ 93]. Unfortunately, there exist functions for
which the size of BDD representations grow exponentially independently of the cho-
sen variable order. Examples are multiplication of bit vectors or representations of
FIFO queues.

106 Modeling and Verification of Real-Time Systems

Given two BDDs f and g (for a fixed variable order), their Boolean combinations
can be computed recursively:

– if f or g are terminal BDD nodes (0 or 1) then the result is easily determined by
the operation;

– otherwise, let b be the smallest variable according to the variable order at the
roots of BDDs f and g, and let h0 and h1 be, recursively, the results of the operation
applied to the sub-BDDs of f and g corresponding to b being 0 and 1. If h0 = h1,
then the result does not depend on the value of b, so we return h0, otherwise the result
is the BDD with root b and successors h0 and h1.

The number of sub-problems to be computed is bounded by the number of pairs of
nodes in the BDDs f and g. Assuming that the results of recursive computations are
stored in a hash table with (nearly) constant access time, the cost of the operation is
proportional to the product of the sizes of f and g.

Another useful BDD operation is projection, that is, existential quantification over
a Boolean variable. Observing that

(∃b : f) = f |b=0 ∨ f |b=1,

the BDD representing this formula can be computed by disjunction and substitution of
constants for variables. Quantification over several variables can be done simultane-
ously. Although the worst-case complexity of projection is exponential, this is rarely
observed in practice.

A symbolic CTL model checking algorithm is easily obtained by implementing the
naive recursive computation of the satisfaction sets [[ψ]]K mentioned in section 3.5.2
based on a BDD representation. For this purpose, we assume that the set of initial
states of K and the transition relation are also represented in BDD form. The compu-
tation of pre-images δ−1(s) translates into evaluating the expression

∃-b′ : δ ∧ S′

where -b′ is the set of primed variables representing the states of K, and where S′

is a copy of the BDD for S where each variable bi has been replaced by its primed
version b′i. The BDD machinery provides the necessary primitives for carrying out all
required computations. In particular, termination of the fixed point computations is
easily detected using pointer comparison.

It is interesting to compare the complexity of the BDD-based algorithm with that
of the explicit-state algorithm. The representation of the sets manipulated by the algo-
rithm can be exponentially more succinct. However, the number of iterations remains
bounded by the size of the model and can therefore be exponential in the size of the
BDD. Moreover, computing pre-images is based on quantification and therefore has

An introduction to model checking 107

exponential worst-case complexity. Fortunately, in practice the necessary fixed point
iterations tend to converge quickly, particularly for the verification of electronic cir-
cuits with short data paths. Indeed, symbolic model checking has permitted the verifi-
cation of systems with 10100 states or more [CLA 93b]. The crucial point is usually to
find a variable order that allows the model checker to represent the transition relation.

The symbolic algorithm described here can be used for the verification of PTL
formulae, using a symbolic representation of the Büchi automaton, and therefore of
the product automaton. This technique is described in detail by Clarke et al. [CLA 97]
and by Schneider [SCH 99].

BOUNDED MODEL CHECKING.– Although BDD representations have long domi-
nated as the data structure used for representing Boolean functions in the model check-
ing area, other representations can be useful. In particular, SAT algorithms for de-
ciding the satisfiability of formulae of (non-temporal) propositional logic have made
significant progress since the late 1990s [MIT 05]. These algorithms usually assume
their input to be given as a list of clauses, and are not based on canonical representa-
tions of Boolean functions, virtually ruling out the calculation of fixed points. Instead,
bounded model checking algorithms attempt to find an execution of finite length that
violates the property of interest. The maximum size of a potential counter-example
can (at least in theory) be determined from the size of the model and the formula to
be verified. For example, an invariant holds for a Kripke structure if it is true for all
prefixes of runs whose length is at most that of the longest loop in the graph of K
(called the diameter of K).

Given a bound k ∈ N, the existence of a finite run of size ! k and leading to
a state that does not verify an invariant is easily coded as a satisfiability problem in
propositional logic by providing k copies of the state variables and relating subse-
quent copies by a (non-temporal) formula encoding transition relation. If finite loops
back into the execution prefix are also considered, this idea can be generalized for
full temporal logic [BIE 03]. In practice, bounded model checking is very useful to
quickly find relatively small counter-examples. It is less appropriate for full-fledged
verification because the worst-case bound on the maximum path lengths that need to
be considered is again exponential in the size of the formula.

3.6. Some research topics

At the end of this introductory discussion of model checking concepts and tech-
niques, we list references to various current topics of research, without trying to be
exhaustive concerning either the list of topics or the references. The general objective
is to make model checking and verification techniques applicable to more classes of
systems and to larger systems.

108 Modeling and Verification of Real-Time Systems

REDUCTION TECHNIQUES.– In order to ensure that a system satisfies a given prop-
erty, it is often enough to explore a representative subset of system runs instead of
all runs. Because model checking is usually applied to reactive systems with several
parallel components, reduction techniques geared towards concurrent systems are par-
ticularly useful. Two actions e1 and e2 are called independent if at any state where
e1 and e2 are both possible, the execution of e1 leaves e2 executable and vice versa,
and if the combined effects of executing the two action sequences e1; e2 and e2; e1

are the same. For example, the actions that represent two different processes sending
messages along two different channels are independent. If the property of interest is
not sensitive to the order of execution of the two actions (for example, if the prop-
erty does not mention the communication channels), the execution of action e2 can
be delayed. Depending on the degree of independence and concurrency of a system,
the systematic application of this idea can lead to substantial reductions in the num-
ber of transitions to explore. Nevertheless, one should take care that delayed actions
will be considered eventually, and in particular before closing a loop in the reduced
state space. Different authors have proposed reduction algorithms along these lines
[ESP 94, GOD 94, HOL 94, PEL 96, VAL 90]. The key to making this idea work in
practice is to find a good compromise between the cost of determining that actions
are independent, say, by static analysis of the model, and the savings obtained during
verification.

A different form of reduction makes use of symmetries in the state spaces of sys-
tems, which are also a source of redundancy during verification. For example, commu-
nication protocols usually do not inspect the data values that are transmitted over chan-
nels, and we can identify two states if they only differ in the values that channels con-
tain. Similarly, systems often consist of several copies of identical processes whose
precise identity is not relevant for system execution. These forms of symmetries in-
duce an equivalence relation on the state space of the system, and it is enough to verify
the quotient of the original system state space with respect to this equivalence relation,
as long as the property to be verified is also symmetric [CLA 93a, IP 93, STA 91].

COMPOSITIONAL VERIFICATION.– In order to alleviate the effects of combinatorial
explosion, it can be useful to preserve the process structure of a system instead of
representing it as a “flat” transition system. In particular, specifications are written for
each system component whose combination entails the overall correctness. In order
to establish overall correctness we have to

– ensure that each component satisfies its specification, and
– verify that the correctness of each component implies system correctness.

In general, an individual component cannot be expected to operate correctly in an
arbitrary environment. Hypotheses about the functioning of the component’s envi-
ronment are therefore explicitly identified in the component specification, and must

An introduction to model checking 109

be verified for the considered system. This becomes non-trivial in the case of mu-
tual assumptions between components. Important approaches to compositional ver-
ification are presented in [ROE 98, ROE 01]. In the context of algorithmic verifi-
cation, compositional verification is often referred to as the module checking prob-
lem, see [GRU 94, KUP 97a, MCM 97], among other works. An interesting exten-
sion of this problem is to synthesize components from temporal logic specifications
[KUP 00, PIT 06, PNU 89] rather than verify the correctness of models a posteriori.

ABSTRACTION AND SOFTWARE MODEL CHECKING.– The models used for veri-
fication are generally abstract representations of real systems. Instead of manually
providing these abstractions, tools can be built that try to compute sound abstrac-
tions from a more detailed description of a system. The construction of such abstrac-
tions has been widely studied, for some foundational articles see [CLA 94, DAM 94,
LOI 95]. An intuitive and elegant presentation of abstractions consists of defining
the state space of the abstract model by a set of predicates over the concrete state
space. This representation, known as predicate abstraction, was originally consid-
ered for combinations of deductive and algorithmic verification tools, see for exam-
ple [BJO 00, CAN 01, GRA 97, KES 00]. More recently, several tools combine this
format with techniques of abstract interpretation, with the objective of model check-
ing program code. The main challenge here is to obtain a meaningful finite-state
abstraction of (usually infinite-state) software. A useful strategy is to start from the
control-flow graph and first compute an over-approximation of the state space by ab-
stracting the data values manipulated by the program. This abstraction serves as input
for a conventional finite-state model checker, which will probably return a counter-
example. Analyzing this abstract run over the concrete program, the verification tool
determines if the counter-example represents a run of the concrete system (in which
case it is reported to the user) or whether it is due to an imprecise abstraction. In
the latter case, it will construct a more detailed abstract model, and the procedure
is repeated, with the goal of eventually reaching a definitive verdict. This technique
is known as counter-example guided abstraction refinement (CEGAR); see for ex-
ample [BAL 02, HEN 04, SUW 05]. It is characterized by combining different ap-
proaches to verification, including abstract interpretation, automatic theorem proving
and model checking.

INFINITE-STATE SYSTEMS.– In this chapter we have discussed model checking al-
gorithms for finite-state systems. The extension of these techniques to infinite-state
systems (directly or in combination with abstraction techniques) is an important re-
search topic that has been studied at many different angles. Of course, real-time and
hybrid systems are examples of infinite-state systems, and they are the main topic of
this book. Probabilistic systems have also become of more and more interest, and
again we refer to Chapters 8 and 9. More generally, verification problems can be
tractable for system classes that generate sufficiently regular state spaces, such as cer-
tain properties of pushdown systems. See [ESP 01] for a classification of infinite-state
systems and an annotated bibliography about this field.

110 Modeling and Verification of Real-Time Systems

3.7. Bibliography

[ALU 97] ALUR R., HENZINGER T. A., KUPFERMAN O., “Alternating-time temporal logic”,
38th IEEE Symposium on Foundations of Computer Science, IEEE Press, p. 100–109, 1997.

[BAL 02] BALL T., RAJAMANI S. K., “The SLAM project: debugging system software via
static analysis”, Principles of Programming Languages (POPL 2002), p. 1–3, 2002.

[BER 95] BERN J., MEINEL C., SLOBODOVÁ A., “Global rebuilding of BDDs – avoiding the
memory requirement maxima”, WOLPER P., Ed., 7th Intl. Conf. Computer Aided Verifica-
tion (CAV’95), vol. 939 of Lect. Notes in Comp. Sci., Springer, p. 4–15, 1995.

[BÉR 01] BÉRARD B., BIDOIT M., FINKEL A., LAROUSSINIE F., PETIT A., PETRUCCI L.,
SCHNOEBELEN PH., Systems and Software Verification. Model-Checking Techniques and
Tools, Springer, 2001,

[BIE 03] BIERE A., CIMATTI A., CLARKE E., STRICHMAN O., ZHU Y., “Bounded model
checking”, Highly Dependable Software, vol. 58 of Advances in Computers, Academic
Press, 2003.

[BJO 00] BJORNER N., BROWNE A., COLON M., FINKBEINER B., MANNA Z., SIPMA H.,
URIBE T., “Verifying temporal properties of reactive systems: a STeP tutorial”, Formal
Methods in System Design, vol. 16, p. 227–270, 2000.

[BRY 92] BRYANT R. E., “Symbolic Boolean manipulations with ordered binary decision
diagrams”, ACM Computing Surveys, vol. 24, num. 3, p. 293–317, 1992.

[BÜC 62] BÜCHI J. R., “On a decision method in restricted second-order arithmetics”, Intl.
Cong. Logic, Method and Philosophy of Science, Stanford Univ. Press, p. 1–12, 1962.

[CAN 01] CANSELL D., MÉRY D., MERZ S., “Diagram refinements for the design of reactive
systems”, Universal Computer Science, vol. 7, num. 2, p. 159–174, 2001.

[CLA 81] CLARKE E. M., EMERSON E. A., “Synthesis of synchronization skeletons for
branching time temporal logic”, Workshop on Logic of Programs, vol. 131 of Lect. Notes
in Comp. Sci., Yorktown Heights, N.Y., Springer, 1981.

[CLA 86] CLARKE E., EMERSON E., SISTLA A., “Automatic verification of finite-state con-
current systems using temporal logic specifications”, ACM Trans. Prog. Lang. and Systems,
vol. 8, num. 2, p. 244–263, 1986.

[CLA 93a] CLARKE E. M., ENDERS R., FILKORN T., JHA S., “Exploiting symmetry in tem-
poral logic model checking”, Formal Methods in System Design, vol. 9, p. 77–104, 1993.

[CLA 93b] CLARKE E., GRUMBERG O., HIRAISHI H., JHA S., LONG D., MCMILLAN K.,
NESS L., “Verification of the Futurebus+ cache coherence protocol”, AGNEW D., CLAE-
SEN L., CAMPOSANO R., Eds., IFIP Conf. Computer Hardware Description Lang. and
Applications, Ottawa, Canada, Elsevier, p. 5–20, 1993.

[CLA 94] CLARKE E. M., GRUMBERG O., LONG D. E., “Model checking and abstraction”,
ACM Trans. Prog. Lang. and Systems, vol. 16, num. 5, p. 1512–1542, 1994.

[CLA 97] CLARKE E. M., GRUMBERG O., HAMAGUCHI K., “Another look at LTL model
checking”, Formal Methods in System Design, vol. 10, p. 47–71, 1997.

An introduction to model checking 111

[CLA 99] CLARKE E. M., GRUMBERG O., PELED D., Model Checking, MIT Press, Cam-
bridge, Mass., 1999.

[CLA 00] CLARKE E. M., SCHLINGLOFF H., “Model Checking”, ROBINSON A., VORON-
KOV A., Eds., Handbook of Automated Deduction, p. 1367–1522, Elsevier, 2000.

[CLE 93] CLEAVELAND R., STEFFEN B., “A linear-time model-checking algorithm for the
alternation-free modal µ-calculus”, Formal Methods in System Design, vol. 2, p. 121–147,
1993.

[COU 92] COURCOUBETIS C., VARDI M., WOLPER P., YANNAKAKIS M., “Memory-
efficient algorithms for the verification of temporal properties”, Formal Methods in System
Design, vol. 1, p. 275–288, 1992.

[COU 99] COUVREUR J.-M., “On-the-fly verification of linear temporal logic”, WING J.,
WOODCOCK J., DAVIES J., Eds., Formal Methods (FM’99), vol. 1708 of Lect. Notes in
Comp. Sci., Toulouse, France, Springer, p. 253–271, 1999.

[DAM 94] DAMS D., GRUMBERG O., GERTH R., “Abstract interpretation of reactive sys-
tems: abstractions preserving ∀CTL∗, ∃CTL∗ and CTL∗”, OLDEROG E.-R., Ed., Prog.
Concepts, Methods, and Calculi, Amsterdam, Elsevier, p. 561–581, 1994.

[DAN 99] DANIELE M., GIUNCHIGLIA F., VARDI M., “Improved automata generation for
linear temporal logic”, Computer Aided Verification (CAV’99), vol. 1633 of Lect. Notes in
Comp. Sci., Trento, Italy, Springer, p. 249–260, 1999.

[DIL 92] DILL D. L., DREXLER A. J., HU A. J., YANG C. H., “Protocol verification as a
hardware design aid”, Intl. Conf. Computer Design: VLSI in Computers and Processors,
IEEE Comp. Soc., p. 522–525, 1992.

[EME 86a] EMERSON E. A., HALPERN J. Y., “‘Sometimes’ and ‘not never’ revisited: on
branching time vs. linear time”, Journal of the ACM, vol. 33, p. 151–178, 1986.

[EME 86b] EMERSON E. A., LEI C. L., “Efficient model checking in fragments of the propo-
sitional µ-calculus”, 1st Symp. Logic in Comp. Sci. (LICS’86), Boston, Mass., IEEE Press,
1986.

[EME 90] EMERSON E. A., “Temporal and modal logic”, VAN LEEUWEN J., Ed., Handbook
of Theoretical Computer Science, vol. B, p. 997–1071, Elsevier, 1990.

[EME 93] EMERSON E. A., JUTLA C. S., SISTLA A. P., “On model checking for fragments
of µ-calculus”, COURCOUBETIS C., Ed., Computer-Aided Verification (CAV’93), vol. 697
of Lect. Notes in Comp. Sci., Springer, 1993.

[END 93] ENDERS R., FILKORN T., TAUBNER D., “Generating BDDs for symbolic model
checking”, Distributed Computing, vol. 6, p. 155–164, 1993.

[ESP 94] ESPARZA J., “Model checking using net unfoldings”, Science of Computer Pro-
gramming, vol. 23, p. 151–195, 1994.

[ESP 01] ESPARZA J., “Verification of systems with an infinite state space: an annotated bibli-
ography”, CASSEZ F., JARD C., ROZOY B., RYAN M. D., Eds.,Modeling and Verification
of Parallel Processes, vol. 2067 of Lect. Notes in Comp. Sci., p. 183–186, Springer, 2001.

112 Modeling and Verification of Real-Time Systems

[FEL 93] FELT E., YORK G., BRAYTON R., VINCENTELLI A. S., “Dynamic variable re-
ordering for BDD minimization”, Eur. Design Automation Conf., p. 130–135, 1993.

[FUJ 93] FUJI H., OOMOTO G., HORI C., “Interleaving based variable ordering methods for
binary decision diagrams”, Intl. Conf. Computer Aided Design, IEEE Press, 1993.

[GAB 94] GABBAY D., HODKINSON I., REYNOLDS M., Temporal Logic: Mathematical
Foundations and Computational Aspects, vol. 1, Clarendon Press, Oxford, UK, 1994.

[GAS 01] GASTIN P., ODDOUX D., “Fast LTL to Büchi automata translation”, BERRY G.,
COMON H., FINKEL A., Eds., 13th Intl. Conf. Computer Aided Verification (CAV’01),
vol. 2102 of Lect. Notes in Comp. Sci., Paris, France, Springer, p. 53–65, 2001.

[GEL 04] GELDENHUYS J., VALMARI A., “Tarjan’s algorithm makes LTL verification more
efficient”, JENSEN K., PODELSKI A., Eds., 10th Intl. Conf. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’04), vol. 2988 of Lect. Notes in Comp. Sci.,
Barcelona, Spain, Springer, p. 205–219, 2004.

[GER 95] GERTH R., PELED D., VARDI M., WOLPER P., “Simple on-the-fly automatic veri-
fication of linear temporal logic”, Protocol Specification, Testing, and Verification, Warsaw,
Poland, Chapman & Hall, p. 3–18, 1995.

[GOD 94] GODEFROID P., WOLPER P., “A partial approach to model checking”, Information
and Computation, vol. 110, num. 2, p. 305–326, 1994.

[GRA 97] GRAF S., SAIDI H., “Construction of abstract state graphs with PVS”, GRUMBERG
O., Ed., 9th Intl. Conf. Computer Aided Verification (CAV’97), vol. 1254 of Lect. Notes in
Comp. Sci., Springer Verlag, p. 72–83, 1997.

[GRU 94] GRUMBERG O., LONG D. E., “Model checking and modular verification”, ACM
Trans. Prog. Lang. and Systems, vol. 16, num. 3, p. 843–871, 1994.

[HAM 05] HAMMER M., KNAPP A., MERZ S., “Truly on-the-fly LTL model checking”,
HALBWACHS N., ZUCK L., Eds., 11th Intl. Conf. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2005), vol. 3440 of Lect. Notes in Comp. Sci., Edinburgh,
UK, Springer, p. 191–205, 2005.

[HEN 04] HENZINGER T. A., JHALA R., MAJUMDAR R., MCMILLAN K., “Abstractions
from proofs”, 31st Symp. Princ. of Prog. Lang. (POPL’04), ACM Press, p. 232–244, 2004.

[HOL 94] HOLZMANN G., PELED D., “An improvement in formal verification”, IFIP Conf.
Formal Description Techniques, Bern, Switzerland, Chapman & Hall, p. 197–214, 1994.

[HOL 98] HOLZMANN G., “An analysis of bitstate hashing”, Formal Methods in System De-
sign, vol. 13, num. 3, p. 289–307, 1998.

[HOL 03] HOLZMANN G., The SPIN Model Checker, Addison-Wesley, 2003.

[HUT 04] HUTH M., RYAN M. D., Logic in Computer Science, Cambridge University Press,
Cambridge, U.K., 2nd edition, 2004.

[IP 93] IP C. N., DILL D., “Better verification through symmetry”, 11th Intl. Symp. Comp.
Hardware Description Languages and their Applications, North Holland, p. 87–100, 1993.

[KAM 68] KAMP H. W., “Tense logic and the theory of linear order”, PhD thesis, Univ. of
California at Los Angeles, 1968.

An introduction to model checking 113

[KES 00] KESTEN Y., PNUELI A., “Verification by augmented finitary abstraction”, Informa-
tion and Computation, vol. 163, num. 1, p. 203–243, 2000.

[KOZ 83] KOZEN D., “Results on the propositional µ-calculus”, Theor. Comp. Sci., vol. 27,
p. 333–354, 1983.

[KUP 94] KUPFERMAN O., VARDI M., WOLPER P., “An automata-theoretic approach to
branching-time model checking”, 6th Intl. Conf. Computer-Aided Verification (CAV’94),
Lect. Notes in Comp. Sci., Springer, 1994.

[KUP 97a] KUPFERMAN O., VARDI M., “Module checking revisited”, 9th Intl. Conf. Com-
puter Aided Verification (CAV’97), vol. 1254 of Lect. Notes in Comp. Sci., Springer, p. 36–
47, 1997.

[KUP 97b] KUPFERMAN O., VARDI M. Y., “Weak alternating automata are not so weak”, 5th

Israeli Symp. Theory of Computing and Systems, IEEE Press, p. 147–158, 1997.

[KUP 00] KUPFERMAN O., MADHUSUDAN P., THIAGARAJAN P., VARDI M., “Open sys-
tems in reactive environments: control and synthesis”, PALAMIDESSI C., Ed., Proc.
11th Int. Conf. on Concurrency Theory, vol. 1877 of Lecture Notes in Computer Science,
Springer Verlag, p. 92–107, 2000.

[KUP 05] KUPFERMAN O., VARDI M., “Complementation constructions for nondeterministic
automata on infinite words”, HALBWACHS N., ZUCK L., Eds., 11th Intl. Conf. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2005), vol. 3440 of Lect.
Notes in Comp. Sci., Edinburgh, UK, Springer, p. 206–221, 2005.

[LAM 80] LAMPORT L., “‘Sometime’ is sometimes ‘not never”’, 7th Symp. Princ. of Prog.
Lang. (POPL’80), p. 174–185, 1980.

[LAR 02] LAROUSSINIE F., MARKEY N., SCHNOEBELEN PH., “Temporal logic with forget-
table past”, 17th IEEE Symp. Logic in Computer Science (LICS’02), Copenhagen, Denmark,
IEEE Press, p. 383–392, 2002.

[LOI 95] LOISEAUX C., GRAF S., SIFAKIS J., BOUAJJANI A., BENSALEM S., “Property
preserving abstractions for the verification of concurrent systems”, Formal Methods in
System Design, vol. 6, p. 11–44, 1995.

[MAN 90] MANNA Z., PNUELI A., “A hierarchy of temporal properties”, 9th ACM Symp.
Princ. Distributed Computing, ACM, p. 377–408, 1990.

[MCM 93] MCMILLAN K., Symbolic Model Checking, Kluwer Academic Publishers, 1993.

[MCM 97] MCMILLAN K. L., “A compositional rule for hardware design refinement”,
GRUMBERG O., Ed., 9th Intl. Conf. Computer Aided Verification (CAV’97), vol. 1254 of
Lect. Notes in Comp. Sci., Haifa, Israel, Springer, p. 24–35, 1997.

[MIT 05] MITCHELL D. G., “A SAT solver primer”, EATCS Bulletin, vol. 85, p. 112–133,
2005.

[MUL 63] MULLER D. E., “Infinite sequences and finite machines”, Switching Circuit Theory
and Logical Design, New York, IEEE Press, p. 3–16, 1963.

[MUL 88] MULLER D., SAOUDI A., SCHUPP P., “Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential time”,

114 Modeling and Verification of Real-Time Systems

3rd IEEE Symp. Logic in Computer Science (LICS’88), IEEE Press, p. 422–427, 1988.

[PEL 96] PELED D., “Combining partial order reductions with on-the-fly model-checking”,
Formal Methods in System Design, vol. 8, num. 1, p. 39–64, 1996.

[PIT 06] PITERMAN N., PNUELI A., SA’AR Y., “Synthesis of reactive designs”, EMERSON
E. A., NAMJOSHI K. S., Eds., Verification, Model Checking, and Abstract Interpretation
(VMCAI 2006), vol. 3855 of Lect. Notes in Comp. Sci., Charleston, S.C., Springer, p. 364–
380, 2006.

[PNU 89] PNUELI A., ROSNER R., “On the synthesis of a reactive module.”, Principles of
Programming Languages (POPL 1989), ACM Press, p. 179–190, 1989.

[PSL 04] PSL CONSORT., “Property Specification Language (version 1.1)”, Technical report,
Accellera, June 2004.

[QUE 81] QUEILLE J., SIFAKIS J., “Specification and verification of concurrent systems in
Cesar”, 5th Intl. Symp. Programming, vol. 137 of Lect. Notes in Comp. Sci., Springer,
p. 337–351, 1981.

[RAB 69] RABIN M. O., “Decidability of second-order theories and automata on infinite
trees”, Trans. American Math. Soc., vol. 141, p. 1–35, 1969.

[ROE 98] DE ROEVER W.-P., LANGMAACK H., PNUELI A., Eds., Compositionality: the
significant difference, vol. 1536 of Lect. Notes in Comp. Sci., Springer-Verlag, 1998.

[ROE 01] DE ROEVER W.-P., DE BOER F., HANNEMANN U., HOOMAN J., LAKHNECH Y.,
POEL M., ZWIERS J., Concurrency Verification: Introduction to Compositional and Non-
compositional Methods, Cambridge University Press, 2001.

[SAF 88] SAFRA S., “On the complexity of ω-automata”, 29th IEEE Symp. Found. Comp. Sci.
(FOCS’88), IEEE Press, p. 319–327, 1988.

[SCH 99] SCHNEIDER K., “Yet another look at LTL model checking”, IFIP Conf. Correct
Hardware Design and Verification Methods (CHARME’99), Lect. Notes in Comp. Sci., Bad
Herrenalb, Germany, Springer, 1999.

[SCH 05] SCHWOON S., ESPARZA J., “A note on on-the-fly verification algorithms”, HALB-
WACHS N., ZUCK L., Eds., 11th Intl. Conf. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2005), vol. 3440 of Lect. Notes in Comp. Sci., Edinburgh, UK,
Springer, p. 174–190, 2005.

[SIS 87] SISTLA A., VARDI M., WOLPER P., “The complementation problem for Büchi au-
tomata with applications to temporal logic”, Theor. Comp. Sci., vol. 49, p. 217–237, 1987.

[STA 91] STARKE P. H., “Reachability analysis of Petri nets using symmetries”, Syst. Anal.
Model. Simul., vol. 8, p. 293–303, 1991.

[STI 01] STIRLING C.,Modal and Temporal Properties of Processes, Springer, Berlin, 2001.

[SUW 05] SUWIMONTEERABUTH D., SCHWOON S., ESPARZA J., “jMoped: a Java bytecode
checker based on Moped”, HALBWACHS N., ZUCK L., Eds., 11th Intl. Conf. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2005), vol. 3440 of Lect.
Notes in Comp. Sci., Edinburgh, UK, Springer, p. 541–545, 2005.

An introduction to model checking 115

[TAR 72] TARJAN R. E., “Depth first search and linear graph algorithms”, SIAM Journal of
Computing, vol. 1, p. 146–160, 1972.

[THO 97] THOMAS W., “Languages, automata, and logic”, ROZENBERG G., SALOMAA A.,
Eds., Handbook of Formal Language Theory, vol. III, p. 389–455, Springer, 1997.

[VAL 90] VALMARI A., “A stubborn attack on state explosion”, 2nd Intl. Conf. Computer
Aided Verification (CAV’90), vol. 531 of Lect. Notes in Comp.Sci., Rutgers, N.J., Springer,
p. 156–165, 1990.

[VAR 94] VARDI M., WOLPER P., “Reasoning about infinite computations”, Information and
Computation, vol. 115, num. 1, p. 1–37, 1994.

[VAR 95] VARDI M. Y., “Alternating automata and program verification”, Computer Science
Today, vol. 1000 of Lect. Notes in Comp. Sci., p. 471–485, Springer, 1995.

[VAR 01] VARDI M., “Branching vs. linear time—final showdown”, MARGARIA T., YI W.,
Eds., Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2001),
vol. 2031 of Lect. Notes in Comp. Sci., Genova, Italy, Springer, p. 1–22, 2001.

[WOL 83] WOLPER P., “Temporal logic can be more expressive”, Information and Control,
vol. 56, p. 72–93, 1983.

