
A High-Level Language for Modeling Algorithms
and their Properties

Sabina Akhtar, Stephan Merz, Martin Quinson
{Sabina.Akhtar,Stephan.Merz,Martin.Quinson}@loria.fr

LORIA – INRIA Nancy Grand Est and Nancy University, Nancy, France

Abstract. Designers of concurrent and distributed algorithms usually
express them using pseudo-code. In contrast, most verification techniques
are based on more mathematically-oriented formalisms such as state
transition systems. This conceptual gap contributes to hinder the use
of formal verification techniques. Leslie Lamport introduced PlusCal,
a high-level algorithmic language that has the “look and feel” of pseudo-
code, but is equipped with a precise semantics and includes a high-level
expression language based on set theory. PlusCal models can be com-
piled to TLA+ and verified using the model checker tlc. However, in
practice the use of PlusCal requires good knowledge of TLA+ and of
the translation from PlusCal to TLA+. In particular, the user needs
to annotate the generated TLA+ model in order to define the properties
to be verified and to introduce fairness hypotheses. Moreover, the Plus-
Cal language enforces certain restrictions that often make it difficult
to express distributed algorithms in a natural way. We propose a new
version of PlusCal with the aim of overcoming these limitations, and
of providing a language in which algorithms and their properties can be
expressed naturally. We have implemented a compiler of our language
to TLA+, supporting the verification of algorithms by finite-state model
checking.

1 Introduction

Algorithms for concurrent and distributed systems [11] are notoriously hard to
design, due to the number of interleavings of their constituent processes that
must communicate and synchronize properly in order to achieve the desired
function. It is all too easy to overlook corner cases, and hard to generate or
reproduce particular behaviors during testing. Formal verification of such algo-
rithms is therefore essential, and model checking in particular has been applied
with great success in this context. However, there is a conceptual gap between the
languages algorithm designers use to convey their ideas and the input languages
of model checking tools. While the former emphasize high levels of abstraction
in order to present the algorithmic ideas, their semantics is not precisely defined.
Languages for model checkers come with a more precise (at least operational)
semantics but tend to make compromises in terms of the available data types
in order to enable compact state representations and the efficient computation

of operations such as the computation of successor (or predecessor) states. Most
model checkers, in particular symbolic ones, support only low-level data types
such as fixed-size integers and records. tlc [14], the model checker for the spec-
ification language TLA+ [8], accepts a significant fragment of TLA+, which is
based on set theory; it thus provides one of the most expressive and high-level
input languages for model checking. However, TLA+ models encode transition
systems via logical formulas, losing much of the (control) structure that is present
in code.

Recently, Lamport introduced the PlusCal algorithm language [9] (origi-
nally called +Cal). While retaining the high level of abstraction of TLA+ ex-
pressions, it provides familiar constructs of imperative programming languages
for describing algorithms, such as processes, assignments, and control flow. The
PlusCal compiler generates a TLA+ model corresponding to the PlusCal
algorithm, which is then verified using tlc. PlusCal is a high-level language
that features set-based abstractions, non-determinism, and user-specified grain
of atomicity; it emphasizes the analysis, not the efficient execution of algorithms
and aims at bridging the gap that we described above.

Unfortunately, as we discuss in more detail in section 2, use of Lamport’s
PlusCal requires good knowledge of TLA+, and even of the translation of
PlusCal to TLA+. Aiming at a simple translation in order to make the re-
sulting TLA+ model human readable, Lamport imposed some limitations on
the language that can make it difficult or unnatural to express distributed algo-
rithms. After initial attempts to extend the original language and its compiler,
these limitations motivated us to develop a new version of PlusCal that retains
the basic ideas of Lamport’s language but overcomes the shortcomings that we
identified. At the same time, we aim at a translation that enables the use of
reduction techniques and hence more efficient verification.

2 Evaluation of PlusCal

TLA+ is a very expressive specification language that emphasizes the use of high-
level constructs such as sets and functions for expressing algorithms. A TLA+

module contains a list of declarations, assertions, and definitions. In particular,
an algorithm is specified as a formula of temporal logic that describes which
executions are permitted. PlusCal retains the logical basis and the expression
language of TLA+, but otherwise resembles a (pseudo) programming language
for multi-process programs, extended by non-deterministic constructs useful for
modeling algorithms. In our experience we found that thinking in terms of sets
is a strong point of PlusCal, as it can make the description of algorithms much
more perspicuous. However, as we explain now, we also identified a number of
shortcomings when trying to use PlusCal for modeling distributed algorithms.

Need to understand TLA+ and the compilation. PlusCal models are not fully
self-contained: the algorithm is described in the PlusCal language, but Plus-
Cal can express neither the correctness properties that should be verified nor

fairness assumptions assumed about the algorithm’s execution, which underly
the proof of liveness properties. Rather, the user must add these as temporal
logic formulas to the module generated by the PlusCal compiler. It is therefore
necessary to understand not only TLA+, but also the translation of PlusCal
to TLA+. An effort was made in the design of the PlusCal language to keep
the translation simple. For example, the compiler tries to preserve the names
of PlusCal variables in the TLA+ specification. However, this is not always
possible, for example if variables of the same name are declared in different pro-
cedures. Also, local variables of processes are represented as arrays in TLA+,
and the user must be aware of this when annotating the TLA+ model.

Lack of process hierarchy and of scoping. Another serious restriction motivated
by the need for a simple translation is that PlusCal processes can only be
declared at top level, without any nesting. As we will illustrate in section 3 using
Lamport’s distributed mutual exclusion algorithm, many distributed algorithms
are more naturally expressed using hierarchies of processes.

A related issue is the lack of scoping rules in PlusCal. Although variables
may be declared locally to processes, scoping is not enforced and local variables
can in fact be accessed throughout the program. Beyond being a possible cause
of errors, the lack of a proper hierarchy of processes and of scoped local variables
makes it much more difficult to implement optimizations for verification, such
as partial-order reduction.

Restrictions in specifying atomicity. An important concern in modeling con-
current and distributed algorithms is the specification of the proper unit of
atomicity: which (blocks of) statements can be considered to be executed with-
out interleaving with statements of other processes? Whereas too coarse-grained
atomicity may hide errors that arise in the implementation due to unexpected in-
terleavings, too fine-grained atomicity introduces unnecessary details and causes
state space explosion in verification. PlusCal uses a simple but powerful idea
for expressing atomicity: the user may decorate statements with labels, and in-
terleaving is only allowed at labeled statements. However, the user is not entirely
free where labels may or may not be placed, as these are also serve for internal
purposes of compilation. Typically, more labels must be introduced than would
be necessary, hence aggravating state space explosion.

Technical limitations. Lamport’s PlusCal imposes a number of other limita-
tions, again motivated by the desire to keep the translation simple. For example,
although sets are the basic construct for representing data, PlusCal does not
contain a primitive for iterating over the elements of a set. The programmer has
to introduce an auxiliary variable for iteration and keep track of the elements
that have already been handled. Without special care, these auxiliary variables
will again lead to state space explosion during model checking. Another technical
restriction enforced in PlusCal is to disallow multiple assignments to the same
variable within an atomic step.

3 Introducing a New Version of PlusCal

We now present in some more detail the main features of our version of PlusCal
and describe its compilation to TLA+. From now on, PlusCal will denote our
version, except if explicitly stated otherwise.

3.1 Structure of an Algorithm

Figures 1 and 2 show a model of Lamport’s mutual exlusion algorithm [6] in
PlusCal. This is a basic distributed algorithm and shows some of the main
ingredients of the language.

The header section indicates the name of the algorithm and lists any TLA+

modules to be imported (“extended”). These modules contain definitions of op-
erators that are used within the algorithm. Algorithm LamportMutex imports
the modules Naturals and Sequences from the TLA+ standard library. Global
constant parameters (N and maxClock in our example) are also declared in the
header section; these will later be instantiated to obtain a finite-state instance
for verification.

The following declaration section contains declarations of global variables,
procedures, and definitions. As in TLA+, variables are untyped. A variable dec-
laration may provide an initial value. In our example, we declare a global variable
network as a two-dimensional array indexed by elements of the site Site, which
contains the identities of the processes of type Site, declared below. The variable
network represents the communication network; more precisely, network[from][to]
is a queue of messages sent from site from to site to, initially empty (〈〉 denotes
the empty sequence in TLA+). The operators send and broadcast, defined next,
model point-to-point and broadcast communication over the network. Specifi-
cally, send computes the network obtained by sending a single message between
two processes1, and broadcast computes the state of the network after site from
sends a message to all sites.

The main part of a PlusCal program consists of the process section, which
introduces the processes that participate in the algorithm. Programs can declare
any number of process types, and processes can be nested. Since we are mainly
interested in finite-state model checking, all process instances are created at
initialization time and we do not provide a mechanism for process activation
at run time. In the example, we declare that N processes of type Site will be
run, each containing one instance of process Communicator. Processes may be
declared as being fair ; for example, we assume (weak) fairness for each instance
of process Communicator. Each process contains declarations of local variables,
procedures or definitions analogously to the global declaration section. These
declarations are properly scoped and visible only within the enclosing process. In
our example, process Site declares variables clock, reqQ, and acks that represent
the value of its logical clock, the sequence of requests it has received (which will
be ordered by timestamp), and the set of acknowledgements it has received for

1 The short-hand @ denotes the current value of the array cell being assigned to.

1 algorithm LamportMutex
2 extends Naturals, Sequences (* standard modules *)
3 constants N, maxClock
4

5 variable network = [from ∈ Site 7→ [to ∈ Site 7→ 〈〉]]
6 definition send(from, to, msg) ∆

=
7 [network EXCEPT ![from][to] = Append(@, msg)]
8 definition broadcast(from, msg) ∆

=
9 [network EXCEPT ![from] = [to ∈ Site 7→ Append(network[from][to], msg)]]

10

11 process Site[N]
12 variables
13 clock = 1, (* logical clock of this site *)
14 reqQ = 〈〉, (* queue of pending requests, ordered by clock values *)
15 acks = {} (* set of acknowledgements received for own request *)
16 definition beats(rq1, rq2) ∆

=
17 ∨ rq1.clk < rq2.clk
18 ∨ rq1.clk = rq2.clk ∧ rq1.site < rq2.site
19 definition insertRequest(from, c) ∆

=

20 LET entry ∆
= [site 7→ from, clk 7→ c]

21 len ∆
= Len(reqQ)

22 pos ∆
= CHOOSE i ∈ 1 .. len+1 :

23 ∧ ∀ j ∈ 1 .. i-1 : beats(reqQ[j], entry)
24 ∧ i = len+1 ∨ beats(entry, reqQ[i])
25 IN SubSeq(reqQ, 1, pos-1) ◦ 〈entry〉 ◦ SubSeq(reqQ, pos, len)
26 definition removeRequest(from) ∆

=

27 LET len ∆
= Len(reqQ)

28 pos ∆
= CHOOSE i ∈ 1 .. len : reqQ[i].site = from

29 IN SubSeq(reqQ, 1, pos-1) ◦ SubSeq(reqQ, pos+1, len)
30 definition max(x,y) ∆

= IF x<y THEN y ELSE x
31

32 fair process Communicator[1]
33 begin
34 loop
35 rcv: with from ∈ {s ∈ Site : Len(network[s][super]) > 0},
36 msg = Head(network[from][super])
37 do network[from][super] := Tail(@);
38 if msg.kind = “request”
39 then reqQ := insertRequest(from, msg.clk);
40 clock := max(clock, msg.clk) + 1;
41 network := send(super, from, [kind 7→ “ack”]);
42 elsif msg.kind = “ack”
43 then acks := acks ∪ {from};
44 elsif msg.kind = “free”
45 then reqQ := removeRequest(from);
46 end if;
47 end with;
48 end loop;
49 end process (* Communicator *)

Fig. 1. Lamport’s mutual-exclusion algorithm in extended PlusCal (part 1).

1 begin (* process Site *)
2 loop
3 ncrit: skip;
4 try: network := broadcast(self, [kind 7→ “request”, clk 7→ clock]);
5 acks := {};
6 +enter: when Len(reqQ) > 0 ∧ Head(reqQ.proc) = self ∧ acks = Sites;
7 +crit: skip;
8 +exit: network := broadcast(self, [kind 7→ “free”]);
9 end loop;

10 end process (* Site *)
11 end algorithm
12

13 invariant ∀ s, t ∈ Site : Site[s]@crit ∧ Site[t]@crit⇒ s=t
14 invariant
15 ∧ (* each queue holds at most one request per site *)
16 ∀ s ∈ Site : ∀ i ∈ 1 .. Len(reqQ[s]) : ∀ j ∈ i+1 .. Len(reqQ[s]) :
17 reqQ[s][j].site 6= reqQ[s][i].site
18 ∧ (* requests stay in queue until ‘‘free’’ message received *)
19 ∀ s, t ∈ Site :
20 (∃ i ∈ 1 .. Len(network[s][t]) : network[s][t][i].kind = “free”)
21 ⇒ ∃ j ∈ 1 .. Len(reqQ[t]) : reqQ[t][j].site = s
22 ∧ (* site is in critical section only if at the head of every request queue *)
23 ∀ s ∈ Site : Site[s]@crit⇒ ∀ t ∈ Site : Head(reqQ[t]).site = s
24 temporal ∀ s ∈ Site : Site[s]@enter ; Site[s]@crit
25

26 (* Finite instance for model checking *)
27 constants N = 3, maxclock = 5
28 constraint ∀ s ∈ Site : Site[s].clock ≤ maxClock

Fig. 2. Lamport’s mutual-exclusion algorithm (part 2).

its own request (if any). Elements of the request queue are records with fields
site and clock indicating the requesting site and the timestamp of the request.
The definitions beats, insertRequest, and removeRequest formalize the priorities
between two requests and the insertion and removal of a request in the priority
queue.

The code of a process is given in the code section between the keywords
begin and end process. We describe the statements of PlusCal in more detail
in Section 3.2.

The process section is optionally followed by a code section for the main
algorithm, which executes in parallel to the processes. No such code section is
required for algorithm LamportMutex.

The description of the algorithm itself is followed by the property and instance
sections, which state the properties (invariants and general temporal logic prop-
erties) to be verified. For our example, we state two invariants and one temporal

(liveness) property. The first invariant expresses mutual exclusion between all
sites by asserting that no two sites are simultaneously at label crit. The second
invariant states further safety properties of the algorithm that give more insight
in its functioning. The temporal property asserts that whenever some site s is
at the statement labeled enter, it will eventually access its critical section.2 Lo-
cal properties of single processes may also be stated after the code section of
processes; they are verified for every instance of the corresponding process type.

The instance section of a PlusCal program determines the finite instance
of the model that will be verified by the model checker tlc. In particular, the
user must specify concrete values for all constants that have been declared in the
header section. In our example, we instantiate the constant parameters N and
maxClock by 3 and 5. This section may also contain other declarations that are
interpreted by tlc. In particular, we define a constraint that bounds the state
space for model checking by considering only such states where no clock value
exceeds maxClock.

3.2 PlusCal Statements

The syntax of PlusCal resembles that of a standard imperative programming
language, but adds non-deterministic constructs, which are useful for modeling.
The expressions of PlusCal are just TLA+ expressions. By focusing on high-
level abstractions such as sets and functions, users are encouraged not to commit
to any particular implementation early. We have found that algorithm designers
quickly learn how to write TLA+ expressions. This section introduces the key
statements of PlusCal.

Basic statements include assignments and the skip statement, which has
no effect. Statements can be labeled (cf. the labels ncrit, try etc. in Fig. 2).
Lamport’s PlusCal introduced the key idea that labels define the atomic unit
of execution of a PlusCal model: a group of statements appearing between
two labels is executed atomically, without interleaving by other processes. For
example, reception and processing of a message is modeled as being atomic in
process Communicator of Fig. 1. However, the compiler sometimes introduces
additional labels when translating to TLA+. For example, the first statement
appearing inside a loop or statements following a procedure call must be labeled.
Our compiler adds any required labels, but since every label creates an additional
point of interleaving, we have added an atomic statement to PlusCal, which
was not present in Lamport’s language.

atomic B end atomic

The statements B in this form are executed (pseudo-)atomically, even if they
contain labels. tlc can be used to find deadlocks caused by statements inside
an atomic block being non-executable.

2 The TLA+ formula P ; Q asserts that every state satisfying predicate P will
eventually be followed by a state satisfying predicate Q.

Case distinction is expressed by a standard if statement. There is also a
when statement that blocks until the specified condition becomes true. Less
conventionally, the statement

either B1 or . . . or Bn end either

can be used to express non-deterministic choice between n possible branches. In
fact, the if, when, and either constructs are just special cases of the primitive
form

branch
P1 then B1

P2 then B2

. . .
Pn then Bn

else B
end branch

inspired by Dijkstra’s guarded commands [3]. The first n branches consist of a
condition Pi and a block of statements Bi, the final else branch is optional. The
effect of a branch statement is to non-deterministically choose some i such that
Pi evaluates to true and execute the corresponding block Bi. If no Pi is true
then the else branch is executed if it is present, otherwise execution blocks (and
another process may be executed).

Non-deterministic choice over the elements of a set (rather than a fixed num-
ber of alternatives) is expressed by the statement

with x ∈ S do B end with

which executes the statements B for some element of the set S, and blocks if S
is empty. Since the expression S may contain program variables, executing the
code of other processes may unblock a with statement.

PlusCal offers three iteration constructs. Beyond the standard while loop

while P do B end while

which is already present in Lamport’s PlusCal, we added the statement

loop B end loop

for expressing infinite loops; this simply abbreviates while true do B. More
importantly, we added a loop of the form

for x ∈ S do B end for

for iterating over the elements of a set S. (In contrast, the with statement men-
tioned above executes its body for a single, nondeterministically chosen element
of S.) The order in which the elements of S are processed is unspecified but

fixed. Exploring only one iteration order helps mitigate state space explosion,
but the correctness of the algorithm should not depend on any particular order.3

We extended PlusCal by the ability to express fairness assumptions for
algorithms inside the language rather than through TLA+ formulas that the user
must add to the generated model. Fairness assumptions are fundamental for the
verification of liveness properties. We have already mentioned (weak) fairness
annotations for processes in section 3.1; these ensure that whenever a process
instance is continually executable, it will eventually proceed. A strongly fair
process is guaranteed to make progress if it is repeatedly (though not necessarily
continually) executable. PlusCal also supports fairness annotations attached to
individual statements (i.e., labels) rather than to entire processes. For example,
the leading “+” signs decorating the labels enter, crit, and exit indicate weak
fairness assumptions for the corresponding statements.

3.3 The PlusCal Compiler

The basic idea of the translation of PlusCal to TLA+ is to represent each group
of statements between two labels, and hence executed atomically, by a TLA+

action formula. (An action formula contains unprimed and primed copies of state
variables, which represent the values of these variables before and after the state
transition.) Control flow is made explicit by adding a variable containing the
values of the program counters of all process instances and of the main program
(if present). Technically, the PlusCal compiler proceeds in three phases, as
illustrated in Fig. 3.

Parser. The PlusCal parser is generated from a JavaCC grammar. Besides
analyzing the algorithm for syntactic errors, the parser also constructs a symbol
table, maintaining information about declared identifiers and checking that their
use respects the scoping rules. This phase generates an abstract syntax tree
(AST) that represents the PlusCal algorithm.

Translation to intermediate format. For clarity and modularity, we split the
compilation into two phases. The first phase makes the control flow explicit and
converts the AST to a list of labeled guarded commands (branch statements)
whose branches contain only assignments. Each branch ends with an explicit
assignment to the program counter of the entity executing the statements. For
example, the statement

λ: while P
do B

µ: . . .
end while

ν: . . .

3 We plan to add a compile-time option to a future version of the PlusCal compiler
that will cause the model checker to explore all possible iteration orders.

Fig. 3. The compilation phases for the new version of PlusCal.

(where there are no labels within the group of statements B) would first generate
the guarded command

λ: branch
P then B; pc[self] := µ;
¬P then pc[self] := ν;

end branch

where B denotes the guarded command corresponding to B. Any nested guarded
commands resulting from this translation are subsequently flattened. Procedure
calls and returns are handled using an explicit run-time stack.

This translation may require additional labels, in particular for translating
loops and returns from procedure calls, and the translator adds those as neces-
sary, and signals labels added in this way to the user.

Generation of TLA+ code. The final phase of compilation generates the actual
TLA+ model from the list of guarded commands obtained from the preceding
phase. A guarded command

λ: branch
P1 then x := t; y[self] := u; pc[self] := µ
. . .
Pn then . . .

end branch

is essentially translated to the TLA+ action

λ(self)
∆
= ∧ pc[self] = λ

∧ ∨ ∧ P1

∧ x′ = t
∧ y′ = [y except ![self] = u]
∧ pc′ = [pc except ![self] = µ]
∧ unchanged vars \ {x, y, pc}

∨ . . .
∨ ∧ Pn

∧ . . .

where vars contains all state variables. Multiple assignments to the same variable
within a group of statements are handled by introducing intermediate let-bound
constants.

User-defined atomic blocks are implemented using a system-wide lock vari-
able that is acquired at the begin of the block and released at the end. The guards
of actions are strengthened appropriately: actions corresponding to statements
within an atomic block test whether the lock is held by the current process,
the other actions verify that the lock is free. In case some statement within an
atomic block may become non-executable during the execution of the algorithm,
tlc will signal a deadlock during verification.

After generating all actions corresponding to the individual transitions of the
PlusCal model we define the transition relation of a process as the disjunction
of the actions it may execute (including actions occurring within procedures),
and the overall next-state relation as the disjunction of the transition relations
for all process instances, and for the main code section if present. For the example
of Figs. 1 and 2 we obtain

Next
∆
= ∨ ∃self ∈ Site : Site(self)

∨ ∃self ∈ Communicator : Communicator(self)

where Site and Communicator are sets containing the process identifiers of pro-
cesses of type Site and Communicator, and Site and Communicator are the
actions representing the transitions of these processes. Fairness conditions are
generated from the fairness annotations present in the PlusCal model, e.g.

Fairness
∆
= ∧ ∀self ∈ Communicator : WFvars(Communicator(self))

∧ ∀self ∈ Site : ∧ WFvars(enter(self))
∧ WFvars(crit(self))
∧ WFvars(exit(self))

and the overall specification is obtained as

LamportMutex
∆
= Init ∧2[Next]vars ∧ Fairness

Finally, the properties and the instance sections of the PlusCal model are
processed in order to generate the configuration file, which defines the finite-
state instance and indicates the properties to be verified with tlc.

3.4 Comparison with Lamport’s PlusCal

The language that we have presented in this paper was inspired by Lamport’s
PlusCal, to which it remains close in spirit, but it attempts to overcome some
of the deficiencies that we have identified in section 2. We briefly comment on
what we believe are the main advantages of our language.

Self-contained models. Models written for the original PlusCal language can
express only the algorithm. All additional information, such as fairness assump-
tions, correctness properties or model checking constraints have to be manually
inserted into the TLA+ model generated by the compiler, requiring the user to
understand not only TLA+ but also the translation. We do not expect users to
understand our compiler in any detail, or even to read the generated TLA+ file.

Nested processes and scoped declarations. We allow for nested process declara-
tions, and this leads to a clearer representation of the (communication) structure
of algorithms. In our running example, we were able to declare the variables of
each site as local variables, with two threads (the main Site process and the
Communicator) accessing them. In the original PlusCal, one would either have
two top-level process types that need to communicate via global variables (which
then must be declared explicitly as arrays by the user) or insert the message-
handling code between all transitions of the Site process. In either case, the
model becomes hard to understand, contradicting the purpose of a high-level
modeling language.

Unlike the original PlusCal, our compiler enforces proper scoping of vari-
ables, procedures, and definitions, avoiding potential errors by inadvertently ac-
cessing the variables of a different process. In future work, we plan to take advan-
tage of this locality information in order to implement partial-order reductions
for optimizing model checking.

More flexibility. As discussed in Section 3.2, the basic idea in PlusCal is to
specify atomicity via labels. We managed to lift some of the restrictions on label
placement that were present in the original PlusCal language, and our compiler
will add labels when they are required. The user can now enforce atomicity of
code blocks containing labels using the new atomic statement.

We also introduced several extensions, such as the for statement for iterating
over a set, or the possibility to have several assignments to the same variable
within a group of statements. On the technical side, we strived for better modu-
larity of translation so that it becomes easier to experiment with new language
primitives.

While our PlusCal variant retains most of the “look and feel” of the original
PlusCal language, it does not guarantee backward compatibility. For example,
programs that modify variables that are not currently in scope will be rejected
by the new PlusCal compiler. The current version also does not provide macros
that exist in Lamport’s PlusCal.

Table 1. Number of states for some algorithms.

Algorithm # proc. original PlusCal our PlusCal

Peterson 2 37 23

FastMutex 2 2679 2679

Naimi-Trehel 3 111749 53905

There are many features that we deliberately did not implement. For exam-
ple, PlusCal does not provide primitives for message passing between processes.
Distributed algorithms use many different forms of message passing (synchronous
or not, lossy, duplicating, order preserving, . . .), and these are better defined in a
standard library of procedures or definitions than hard-wired into the language.

4 Experiments

We have tested our language and implementation by modeling several concurrent
and distributed algorithms in it and verifying them using tlc. Our experience so
far has been quite satisfactory: we found that we could represent the algorithms
in a natural way and never had to touch the generated TLA+ models. Table 1
shows the number of (distinct) states generated by tlc for the original PlusCal
and the new PlusCal models of three algorithms: Peterson’s algorithm [13], a
model of which is included in the original PlusCal distribution, Lamport’s
FastMutex algorithm [7], a model of which appears in the PlusCal reference
manual [10], and the distributed mutual-exclusion algorithm due to Naimi and
Trehel [12], which is a refinement of Lamport’s algorithm shown in Figs. 1 and 2.
Models of all but the most trivial algorithms, and in particular of distributed
algorithms, tend to be much clearer in our version of PlusCal. The numbers
in Table 1 indicate that the added expressiveness does not come at the expense
of lost efficiency in verification, as the state spaces generated from the new
PlusCal models are not bigger than those for the same algorithm written in
the original PlusCal.4 In some cases, we obtain smaller numbers of states
because of lifted labeling restrictions. The running times of tlc for these small
examples never exceeded a few seconds. In future work, we believe that we can
achieve significant improvements by exploiting the information about locality in
PlusCal for implementing partial-order reductions.

The simplicity of translation to TLA+ was an important design objective
for the original PlusCal language. In particular, it is tolerable that counter-
examples generated by the model checker are displayed in terms of the generated
TLA+ model, which the user has to understand anyway. Some of our extensions,
and in particular nested processes with local variables, complicate the translation
and the interpretation of counter-examples. We intend to implement a filter for
displaying counter-examples in terms of the original PlusCal model.

4 Moreover, handwritten TLA+ models of these algorithms that have comparable
“grain of atomicity” generate similar numbers of states.

5 Related Work

There are many languages for modeling concurrent and distributed algorithms.
Promela [4] is the modeling language for verification of distributed systems
using the Spin model checker. A Promela model consists of processes, channels
and variables. Promela does not support nested processes, has fixed primitives
for communication, and rather low-level representations of data (fixed-width
subsets of integers, records, and channels). It is therefore better suited to lower-
level descriptions of algorithms and protocols. On the other hand, Spin offers
more efficient verification techniques than tlc.

LOTOS [1] (Language of Temporal Ordering Specifications) is a formalism
for specifying distributed systems, specifically related to Open Systems Inter-
connection (OSI) computer network architecture. Estelle [2] is another formal
description technique for writing specification for concurrent and distributed
information processing systems. It is based on Extended State Transistion sys-
tems and is supported by industrial-strength tools. Both languages are similar
in purpose to Promela, whereas we are aiming at obtaining higher-level de-
scriptions of algorithms, for which abstract data representations in terms of sets
and functions are more useful.

There exist many other languages that are closer to the programming lan-
guages rather than formal specification languages. They serve as inputs to veri-
fication tools and/or for generating executable code. For example, Mace [5] is a
language for building distributed systems. It is a C++ language extension that
translates distributed system specifications into a C++ implementation. Model
checking can be performed at a higher level using the MaceMC model checker.
In contrast, PlusCal is intended as a language that algorithm designers use to
communicate (and validate) their ideas, not for generating efficient implementa-
tions.

6 Conclusion

PlusCal is a high-level language that aims at natural expression of algorithms;
it makes formal verification easily accessible to algorithm designers. We have
identified certain limitations of the original language and have defined a new
version that tries to overcome them. In particular, we have strived at making
algorithm descriptions entirely self-contained, so that knowledge of TLA+, and
in particular of the PlusCal compiler, is no longer a prerequisite for using
PlusCal. We have also made the language more uniform, removing some lim-
itations and adding features such as nested processes, scoped declarations, and
user-defined grain of atomicity. We believe that the new version significantly
simplifies the representation of algorithms in PlusCal and that it will be more
accessible to users who are not experts in formal methods.

In future work, we are planning to address reduction techniques for mitigating
the effect of state space explosion. In particular, we plan to implement partial-
order reduction for verifying models written in PlusCal. In concurrent and

distributed systems, the execution of independent events in an arbitrary order
results in the same overall system state, and it is therefore enough to consider
only one interleaving of such events. Efficiently verifying that two events are
independent is, however, non-trivial, and adding locality to PlusCal was an
important first step in identifying sufficient conditions for two statements being
independent.

On a more technical level, it would be beneficial to translate counter-examples
produced by tlc back to the level of PlusCal programs in order to make them
easier to understand for PlusCal users. We also plan to integrate our PlusCal
language into the TLA+ toolbox that has recently been released.5

Acknowledgement. We are grateful to Leslie Lamport for discussions on the
design of our variant of PlusCal and for his encouragement of our project.

References

1. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks, 14, 1987.

2. S. Budkowski and P. Dembinski. An introduction to Estelle: A specification lan-
guage for distributed systems. Comput. Netw. ISDN Syst., 14(1):3–23, 1987.

3. E. W. Dijkstra. Guarded commands, non-determinacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, 1975.

4. G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2004.

5. C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat. Mace: Language
Support for Building Distributed Systems. In PLDI, pages 179–188, 2007.

6. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

7. L. Lamport. A fast mutual-exclusion algorithm. ACM Trans. Computer Systems,
5(1):1–11, 1987.

8. L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2002.

9. L. Lamport. Checking a multithreaded algorithm with +CAL. In S. Dolev, editor,
20th Intl. Symp. Distributed Computing (DISC 2006), volume 4167 of LNCS, pages
151–163, Stockholm, Sweden, 2006. Springer.

10. L. Lamport. A +CAL user’s manual. http://research.microsoft.com/en-us/

um/people/lamport/tla/pluscal.html, 2007.
11. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
12. M. Naimi, M. Trehel, and A. Arnold. A log(n) distributed mutual exclusion algo-

rithm based on path reversal. J. Parallel Distrib. Comput., 34(1):1–13, 1996.
13. G. L. Peterson. Myths about the mutual exclusion problem. Inf. Process. Lett.,

12(3):115–116, 1981.
14. Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifications. In

L. Pierre and T. Kropf, editors, Correct Hardware Design and Verification Methods
(CHARME’99), volume 1703 of LNCS, pages 54–66, Bad Herrenalb, Germany,
1999. Springer.

5 http://www.tlaplus.net/

