
Formal Verification of Consensus Algorithms
Tolerating Malicious Faults

Bernadette Charron-Bost1, Henri Debrat2, and Stephan Merz2

1 CNRS & LIX, Palaiseau, France, charron@lix.polytechnique.fr
2 INRIA Nancy & LORIA, Nancy, France, {Henri.Debrat,Stephan.Merz}@loria.fr

Abstract. Consensus is the paradigmatic problem in fault-tolerant dis-
tributed computing: it requires network nodes that communicate by mes-
sage passing to agree on common value even in the presence of (benign
or malicious) faults. Several algorithms for solving Consensus exist, but
few of them have been rigorously verified, much less so formally. The
Heard-Of model proposes a simple, unifying framework for defining dis-
tributed algorithms in the presence of communication faults. Algorithms
proceed in communication-closed rounds, and assumptions on the faults
tolerated by the algorithm are stated abstractly in the form of communi-
cation predicates. Extending previous work on the case of benign faults,
our approach relies on the fact that properties such as Consensus can be
verified over a coarse-grained, round-based representation of executions.
We have encoded the Heard-Of model in the interactive proof assistant
Isabelle/HOL and have used this encoding to formally verify three Con-
sensus algorithms based on synchronous and asynchronous assumptions.
Our proofs give some new insights into the correctness of the algorithms,
in particular with respect to transient faults.

1 Introduction

Fault-tolerant distributed computing is the art of making separate computing
nodes cooperate for achieving a common objective, even in the presence of faults.
In particular, the Consensus problem assumes that every node initially proposes
some value, and requires that nodes eventually choose a common value among
the proposed ones. Fault-tolerant distributed algorithms are often subtle, both
in their operational design and in the assumptions they make, including the
underlying model of communication and the kinds and numbers of faults they
tolerate. Benign faults prevent processes from receiving expected messages, but
do not affect the contents of messages received; these may be caused e.g. by
process crashes or link breaks. Malicious faults are more severe as they are aimed
to model any type of (process and link) malfunctioning, including corrupted
process states and corrupted messages. It is well known [8] that Consensus is
unsolvable in a fully asynchronous model of communication if at least one node
may fail by crashing, but that it can be solved in partially synchronous models [6]
even in the presence of malicious faults.

Given the subtle differences between communication and fault models, it is
all too easy to make erroneous claims about what algorithms actually achieve,

and formal statements and proofs about algorithms appear crucial for compar-
ing them. Surprisingly, few rigorous correctness proofs exist in the literature,
and even fewer of them have been fully checked with the help of formal verifi-
cation methods and tools [18,13]. We believe that this lack of formal analysis
is largely due to the absence of widely accepted frameworks in which models of
computation and faults can be expressed and compared.

Charron-Bost and Schiper [5] proposed the Heard-Of (HO) model as a sim-
ple, unifying framework for defining distributed algorithms that operate in the
presence of benign communication faults. In this model, computations are struc-
tured in rounds: during every round, each process first sends messages, then re-
ceives messages from other processes, and finally makes a local state transition.
Rounds are communication-closed layers in the sense that processes receive mes-
sages solely sent at the round they currently execute. The round-based structure
of the HO model greatly facilitates the design and understanding of distributed
algorithms: an algorithm is simply specified by defining a message sending func-
tion and a next-state function, for every process and round. This operational
description is then complemented by imposing communication predicates on ex-
ecutions, which restrict the kinds of faults that the algorithm tolerates. It has
been shown [5] that common communication and fault models can be represented
within the HO model. In previous work [3,4] we have proved that important cor-
rectness properties such as Consensus can be verified over a “coarse-grained”
model of executions in which rounds are executed atomically, and have applied
this result for formally verifying algorithms in the HO model, using model check-
ing and interactive theorem proving. Independently, Tsuchiya and Schiper [19,20]
also proposed the use of symbolic model checking for verifying HO algorithms.

In the meantime, the HO model has been augmented for supporting malicious
communication faults [2], and it is this extension that we refer to when we speak
of the HO model in the following. Extending [4], we show in this paper that
the reduction theorem that allows us to consider only round-based executions
remains valid in the presence of malicious faults. We present an encoding of the
HO model in the interactive theorem prover Isabelle/HOL [16]. We have used
this encoding to formally prove the correctness of three algorithms for achieving
Consensus in the presence of malicious faults: the UT ,E ,α and AT ,E ,α algorithms
from [2], and the well-known Exponential Information Gathering (EIGByz f)
algorithm [1,15]. The overall approach to verification is quite similar for all three
algorithms. In particular, the EIGByz f algorithm could be transposed “as is” in
the HO model, although it was originally introduced in a traditional model that
caters for faults of processes. We show that EIGByz f tolerates certain transient
faults, which could not be expressed by the original model. The precise, yet
abstract representation of hypotheses on allowed faults in the HO model lets us
not only express such faults but also analyze precisely to which property each
hypothesis contributes. The full Isabelle theories are available on the Web3.

The paper is structured as follows: Section 2 reviews the HO model, formally
defines fine-grained and coarse-grained executions, states the fundamental re-

3 http://www.loria.fr/~debrat/

2

duction theorem, and formally defines the Consensus problem. Our encoding of
the HO model in Isabelle is described in Section 3. Its application to the verifica-
tion of the three algorithms we consider appears in Section 4. Section 5 discusses
related work and concludes the article.

2 The Heard-Of Model for Distributed Algorithms

Computations in the HO model are composed of rounds, in which processes
exchange messages, take a step, and then proceed to the next round. In the
parlance of Elrad and Francez [7], each round is a communication-closed layer in
the sense that any message sent in a round can be received only in that round.
Communication faults are abstractly represented in the HO model by means of
heard-of sets (HO) that indicate which links are alive, thus capturing message
omissions, and safe heard-of sets (SHO) that indicate which links are safe, thus
capturing message corruption.

2.1 A round-based computational model

We suppose that we have a finite, nonempty set Π of process identifiers (or
simply processes) and a set of messages M . By including a designated empty
message in M that processes use to indicate absence of useful information, we
may assume that each process sends a message to every process in Π, in each
round. We denote the cardinality of Π by N > 0, let ⊥ /∈ M be a placeholder
indicating that no message has been received, and write M⊥ = M ∪ {⊥}. To
each p in Π, we associate a process specification Procp = (Statesp , Initp ,Sp ,Tp)
whose components are the following:

– Statesp is a set of p’s states, and Initp ⊆ Statesp is a nonempty subset of
initial states of process p,

– for each integer r ∈ N, a message-sending function S r
p : Statesp ×Π → M ;

– for each integer r ∈ N, a next-state function T r
p : Statesp ×MΠ

⊥ → Statesp .

The next-state function T r
p takes as its arguments the current state of process p

and a mapping from (sender) processes to messages or ⊥, and returns the next
state of p.4 In particular, the HO model is built on the assumption of point-to-
point communications, and the next-state function definition is such that in its
second argument, received messages are indexed by Π. The collection of process
specifications Procp is called an algorithm on Π.

As an example of an HO algorithm, a specification of the UT ,E ,α algorithm
introduced in [2], appears as Algorithm 1. We consider a nonempty set V , with
a specific element v0 ∈ V ; the two values ? and null are assumed not to be
in V . Each process p maintains three variables xp , votep , and decidep initialized

4 For notational simplicity, we assume here that T r
p is a function, but all results carry

over to the case of next-state relations (i.e., non-deterministic processes) [3], which
are accommodated by our Isabelle representation.

3

Algorithm 1 The UT ,E ,α algorithm

1: Initialization:
2: xp ∈ V ; initially xp = vp { vp is the initial value of p }
3: votep ∈ V ∪ {?}; initially votep = ?
4: decidep ∈ V ∪ {null}; initially decidep = null

5: Round r = 2φ
6: S r

p : send 〈 xp 〉 to all processes

7: T r
p : if received > T values equal to v with v ∈ V then votep := v

8: Round r = 2φ+ 1
9: S r

p : send 〈 votep 〉 to all processes

10: T r
p : if received > α messages with value v ∈ V then xp := v else xp := v0

11: if received > E messages with value v ∈ V then decidep := v
12: votep := ?

to some value in V , ?, and null , respectively. At each round r , every process p
sends xp or votep to all, depending whether r is odd or even. Then, provided
that p receives sufficiently many messages with the same value in V , p updates
xp , votep , or decidep . The algorithm thus involves three threshold values T , E ,
and α, which are basic parameters of how it executes.

2.2 Executing HO algorithms

Each process of an HO algorithm executes an infinite sequence of rounds, which
are numbered consecutively, starting with round 0. At the beginning of each
round r , process p first emits messages to all processes, computed according
to the message sending function S r

p . It then waits for messages to arrive for
round r before it executes a state transition according to the next-state function
T r

p , based on its current state and the messages it has just received, and starts
a new round.

We define executions with respect to a given collection of initial states (one
per process) and a given receive history µ : Π ×N×Π → M⊥ that specifies, for
each pair p, q of processes and each round r ∈ N, the message µ(p, r , q) that p
receives from q at round r . The initial states, and the receive history determine,
for each p ∈ Π, the sequence of p’s states. Then we define, for each p ∈ Π and
round r ∈ N, the heard-of set

HO(p, r) = {q ∈ Π : µ(p, r , q) 6= ⊥},

and the safe heard-of set

SHO(p, r) = {q ∈ Π : µ(p, r , q) = S r
q (sq , p)}

where sq is q ’s state at the beginning of round r . Both sets specify the discrep-
ancy between what should be sent and what is actually received. As for the benign
case [5], we make no assumption on the reason why µ(p, r , q) may be different
from S r

q (sq , p): it may be due to an incorrect sending by q , an incorrect reception
by p, or due to the corruption by the link. Obviously, SHO(p, r) ⊆ HO(p, r), and

4

HO(p, r) \ SHO(p, r) is the set of processes q whose messages for p in round r
are corrupted.

Assumptions on the underlying system model and communication network,
such as the degree of synchronism and the failure model, are formally expressed
by communication predicates P ⊆ (Π × N → 2Π × 2Π), and the correctness of
an algorithm is asserted relative to a certain communication predicate P. Note
that communication predicates may refer to the (S)HO sets at different rounds
and can therefore express assumptions about transient faults. As discussed in [5],
standard failure models with various degrees of synchronism can be represented
in this way: the weaker the communication predicate is, the more freedom the
system has to provide heard-of and safe heard-of sets, and the harder it will be
to achieve coordination among processes in the corresponding failure model. As
an example, the following communication predicate guarantees that no process
receives more than α corrupted messages in any round, but that every process
receives more than β correct messages at each round:

Pα,β :: ∀p ∈ Π,∀r ∈ N : |HO(p, r) \ SHO(p, r) | ≤ α ∧ |SHO(p, r) | > β

It is worth noting that, with α = 0 and β = −1, only benign faults may occur,
i.e., all received messages carry the expected content:

Pbenign :: ∀p ∈ Π,∀r ∈ N : HO(p, r) = SHO(p, r)

2.3 Two models of executions

We define two models of execution, whose relationship will be explored further:
the fine-grained model and the coarse-grained model. Both are based on the
notion of (global) configuration which is a tuple of process and channel states,
one per component. The state of any component c in configuration σ is denoted
σ(c). An initial configuration is one in which the state of each process p is in
Initp , and the state of each channel is the empty set. The two models differ in
the nature of the atomic steps which take a configuration to the next one.

Fine-grained executions. Each process p can execute three types of atomic ac-
tions that may change the state of p itself and the state of the channels incident
on p: the sending of a message, the reception of a message, or an internal action.
Only internal actions modify the process state, and process states at the end of
round r do not depend on the order in which messages are received at round r .
An event e consists of the execution of a single action by a process.

In the (classical) fine-grained model of execution, configuration σ′ is a suc-
cessor configuration of σ if there exists some event e that takes σ to σ′. By the
definition of process specification, the pair (σ, σ′) determines a unique event e,
and we say that (σ, σ′) corresponds to e.

A fine-grained execution of an algorithm is then defined to be an ω-sequence
σ0σ1 . . . of configurations where σ0 is an initial configuration, σi+1 is a successor
configuration of σi for all i ∈ N, and for each p ∈ Π there are infinitely many

5

i ∈ N such that (σi , σi+1) corresponds to some event by p. The last condition
specifies a condition of (local) progress for each process; since p can execute
a local transition ending round r only if it has sent messages to all processes
and has received messages from all q ∈ HO(p, r), this condition implies the
existence of sufficiently many transitions of type message sending and reception.
Obviously, each fine-grained execution defines a unique receive history.

Coarse-grained executions. We now define an execution model of HO algorithms
that is based on the much coarser abstraction where entire rounds are the unit of
atomicity. A coarse-grained execution is an ω-sequence σ0σ1 . . . of configurations
such that

– σ0 is an initial configuration, and
– at every step, all processes make a transition according to their next-state

function and messages they have received: there exists a receive history µ
such that for all p ∈ Π and all r ∈ N,

σr+1(p) = T r
p

(
σr (p), µr

p

)
where µr

p =
(
q ∈ Π 7→ µ(p, r , q)

)
.

In words, the state σr+1(p) is computed according to the next-state function T r
p

from the state σr (p), and the messages that p receives at round r . A step of a
coarse-grained execution thus encapsulates a move by each process. Channels are
considered empty in each configuration σr of such a round-by-round execution
since messages can be received only in the rounds for which they have been sent.

2.4 A reduction theorem

We now present a basic theorem, which asserts that in our model, the fine-grained
and coarse-grained execution semantics are indistinguishable from the point of
view of any process. Given a (fine-grained or coarse-grained) execution ρ and a
process q ∈ Π, we define the q-view ρq of ρ for process q as the sequence of q ’s
local states in ρ. More precisely, for a fine-grained or a coarse-grained execution
ρ = ρ0ρ1 . . ., the q-view is simply

ρq = ρ0(q) ρ1(q) . . .

Any two executions ρ1 and ρ2 can be compared with respect to the views that
they generate for the processes in Π. We say that two executions ρ1 and ρ2 are
q-equivalent (for q ∈ Π) if ρq1 ' ρ

q
2 where ' denotes stuttering equivalence [12],

i.e. if their q-views agree up to finite repetitions of states. We call ρ1 and ρ2
locally equivalent, written ρ1 ≈ ρ2, if they are q-equivalent for all q ∈ Π.

The following theorem asserts that fine-grained and coarse-grained executions
generate the same set of local views.

Theorem 1. For any fine-grained execution ξ of an HO algorithm, there exists
a coarse-grained execution σ of the same algorithm for the same receive history
such that σ ≈ ξ, and vice-versa.

6

The proof of this theorem given in [4] for benign faults extends to the more
general context of malicious faults since it is based on some commutativity prop-
erties (among events) which do not depend on the fault model.

Theorem 1 can be used to verify linear-time properties of HO algorithms
that are expressed in terms of local views of processes, and that are insensitive
to specific interleavings. Formally, we say that a property P is local if for any
(coarse- or fine-grained) executions ρ1 and ρ2 such that ρ1 ≈ ρ2 we have ρ1 |= P
iff ρ2 |= P , i.e., ρ1 satisfies P iff ρ2 does. As an immediate consequence of
Theorem 1, we obtain the following corollary:

Corollary 2. If P is a local property, then σ |= P holds for all coarse-grained
executions σ of an algorithm if and only if ξ |= P also holds for all fine-grained
executions ξ of the same algorithm.

Having to verify a given property just for all coarse-grained executions repre-
sents a significant reduction because coarse-grained executions afford a simpler
representation of the system state (channels are all empty), and because fewer
interleavings of events and fewer (types of) transitions must be considered.

We now indicate a sufficient syntactic criterion for determining when a for-
mula of LTL-X, i.e., linear-time temporal logic without the next-time operator
expresses a local property.5 We assume that the set of state variables that appear
in formulas is of the form V =

⋃
p∈Π Vp where Vp∩Vq = ∅ for different processes

p 6= q , and such that any state s ∈ Σp of a process p ∈ Π uniquely determines
the values of the variables in Vp .

We say that a formula ϕ is a p-formula, for p ∈ Π, if it contains only state
variables from Vp . It is easy to see that p-formulas are local properties, as are
first-order combinations of p-formulas, for possibly different processes p ∈ Π.
However, temporal combinations of p-formulas are in general not local because
they can express the simultaneity of local states of different processes, or assert
temporal relations between states of processes [3].

2.5 The Consensus problem

In this paper, we concentrate on the well-known agreement problem, called Con-
sensus, regarded as the fundamental problem that must be solved to implement
a fault-tolerant system by replication. We assume that the state variables Vp
include variables xp and decidep . The intuitive idea is that at the beginning of
an execution the variable xp holds the initial value of process p. Variable decidep ,
initially null , represents the decision taken by process p in the sense that decidep
is updated to the value v 6= null when process p decides value v .

Consensus is specified as the conjunction of the following formulas of LTL-X,
which are all local according to the criterion introduced in Section 2.4.

Integrity. Any decision value must be among the initial values.

∀v : v 6= null ∧
(∨

p∈Π
♦(decidep = v)

)
⇒
∨
q∈Π

xq = v .

5 LTL-X formulas are stuttering invariant [17].

7

Irrevocability. A process that has decided must never change its decision value.

∀v : v 6= null ⇒ �
(
decidep = v ⇒ �(decidep = v)

)
Agreement. The agreement property requires that if any two processes decide,

they decide on the same value.

∀v ,w : v 6= null ∧ w 6= null

∧
∨

p,q∈Π

(
♦(decidep = v) ∧ ♦(decideq = w)

)
⇒ v = w .

Termination. The preceding properties are all safety properties; the sole live-
ness property requires that all processes eventually decide.

♦(decidep 6= null).

Contrary to classical approaches, the HO model does not flag processes as
being faulty [5], and the above Consensus specification makes no exception: all
processes must decide the same initial value of some process. Such a strong
specification is not trivially unsolvable. Indeed, since there is no deviation from
the next-state functions, processes may not take arbitrary steps, such as deciding
arbitrary values. In the following, we formally prove that three HO algorithms
solve the above strong Consensus specification under suitable communication
predicates, thus demonstrating how the algorithms prevent every process from
being contaminated by corrupted messages.

3 Representing the Heard-Of model in Isabelle

The uniform presentation of algorithms in the HO model by message-sending
and next-state functions, and of system models by communication predicates, is
attractive for formal verification, and the ability to verify these algorithms over
coarse-grained executions significantly reduces the state space. Indeed, several
algorithms solving Consensus under benign faults that were presented in [5] have
been verified (for fixed-size instances) using model checking techniques [19,20,3].
Malicious faults, however, may introduce an infinite number of arbitrary values,
making model checking prohibitive. We now describe our encoding of the HO
model in the interactive proof assistant Isabelle/HOL [16], which allows us to
verify arbitrary instances of algorithms.

3.1 Representing Algorithms and Communication Predicates

In the Isabelle model, the set Π of processes is represented by a type variable
′proc. We will constrain ′proc below so that it can only be instantiated by types
with finitely many values. Similarly, the type variables ′pst and ′msg serve to rep-
resent the sets of local process states and messages, and corresponding concrete
types will be defined for particular algorithms. Assignments of HO (or SHO)
sets to processes are of type

8

type synonym ′proc HO = ′proc → ′proc set ,

i.e., functions from processes to sets of processes. The computational model is
represented using Isabelle’s locale mechanism: models of concrete algorithms are
obtained as instances of the locale, whereas generic properties of the HO model
can be proved within the locale and will be inherited by every instance.

locale SHOAlgorithm =
fixes

initState :: [(′proc :: finite), ′pst]→ bool and
sendMsg :: [nat , ′proc, ′proc, ′pst]→ ′msg and
nextState :: [nat , ′proc, ′pst , (′proc ⇀ ′msg), ′pst]→ bool and
commPerRd :: [′proc HO , ′proc HO]→ bool
commGlobal :: [nat → ′proc HO ,nat → ′proc HO]→ bool

The interface of the Isabelle locale representing HO algorithms is shown
above. It takes five parameters: initState represents a predicate (boolean func-
tion) such that initState p s is true iff s is an initial state of process p. (In
Isabelle/HOL, function application is denoted by juxtaposition.) Similarly, the
parameters sendMsg and nextState formally represent the message-sending and
next-state functions S r

p and T r
p . For convenience, the communication predicate

associated with the algorithm is split into a predicate commPerRd , which is
evaluated at every round, and a predicate commGlobal , evaluated globally over
ω-sequences of HO and SHO collections (cf. the definition of SHORun below).

3.2 Defining coarse-grained executions

By Theorem 1, it is enough to verify Consensus algorithms over coarse-grained
executions only, and we represent just these in Isabelle. As explained in Sec-
tion 2.3, a coarse-grained execution is an ω-sequence of configurations, each of
which is a function of type ′proc → ′pst . Since channels are empty in every
configuration of a coarse-grained execution, they need not be modeled.

In an initial configuration, every process is in an initial state:

definition initConfig where initConfig cfg ≡ ∀p. initState p (cfg p).

Configuration cfg ′ is a possible successor of configuration cfg at round r of an
execution, given assignments HO and SHO of HO (resp., SHO) sets if for every
process p there exists a vector µ of incoming messages compatible with HO and
SHO such that the states of p before and after the transition and the message
vector µ satisfy the nextState predicate.

definition nextConfig where nextConfig r cfg HO SHO cfg ′ ≡
∀p. ∃m ∈ msgsVectors r p cfg HO SHO . nextState r p (cfg p) m (cfg ′ p)

where the set of possible message vectors is defined as

definition msgsVectors where msgsVectors r p cfg HO SHO ≡
{m. (∀q . q ∈ SHO p ←→ m q = Some (sendMsg r q p (cfg q))) ∧

(∀q . q ∈ HO p ←→ m q 6= None)}

9

In words, vector m is compatible with HO and SHO if for all processes q in
p’s HO set, m q 6= None,6 and moreover, for q in p’s SHO set, m q equals the
message that q sent to p for the current round according to the sendMsg function.
Because the value m q is unconstrained for processes q ∈ (HO p) \ (SHO p),
any type-correct value may be received from these processes.

We now define a predicate characterizing executions of an HO algorithm, rela-
tive to collections HOs and SHOs, as infinite sequences of configurations c0c1 . . .
where c0 is an initial configuration, for all r , configuration cr+1 is a successor of
cr , and the Heard-Of collections satisfy the communication predicate.

definition SHORun where SHORun rho HOs SHOs ≡
initConfig (rho 0)

∧ ∀r . nextConfig r (rho r) (HOs r) (SHOs r) (rho (Suc r))

∧ ∀r . commPerRd (HOs r) (SHOs r)

∧ commGlobal HOs SHOs

4 Verifying Concrete Algorithms

We outline how different Consensus algorithms can be represented and verified
as instances of the locale SHOAlgorithm introduced previously.

4.1 Modeling and verifying non-synchronous algorithms in Isabelle

Biely et al. [2] introduce two non-synchronous Consensus algorithms tolerat-
ing malicious faults: the UT ,E ,α algorithm introduced in Section 2.1, and a
one-round algorithm called AT ,E ,α. We instantiate the generic Isabelle locale
SHOAlgorithm for these algorithms and verify their correctness.

Figure 1 shows the representation of UT ,E ,α in Isabelle. We begin by declar-
ing an anonymous type Proc of processes that is assumed to be finite. We then
introduce the parameters T , E and α and indicate the assumed relations be-
tween them. Process states are represented as a record pstate, and messages are
similarly represented as a data type msg . The definitions of the initial state pred-
icate and the message-sending function are straightforward. Observe that the x
field of initial states is left unconstrained, hence the initial value of processes
may be any type-correct value. The definition of the next-state relation is split
into two cases depending on the round number being even or odd.

The communication predicate for the UT ,E ,α algorithm, as specified in [2], is
defined as the conjunction of the two following predicates:

definition Ute commPerRd where Ute commPerRd HO SHO ≡
∀p. card ((HO p) \ (SHO p)) ≤ alpha

∧ card (SHO p) > N + 2 ∗ alpha − E − 1

∧ card (SHO p) > T

6 Isabelle’s None corresponds to the pseudo-value ⊥ /∈ M introduced in Section 2.

10

typedecl Proc
axiomatization where procFinite : finite (UNIV :: Proc set)
abbreviation N ≡ card (UNIV :: Proc set) – cardinality of the set of processes

axiomatization T :: nat and E :: nat and α :: nat where
E − α > N ÷ 2 and T − α > N ÷ 2 and E < N and T < N

consts defaultv :: ′val

record ′val pstate =
x :: ′val
vote :: ′val option
decide :: ′val option

datatype ′val msg =

Val ′val

| Vote ′val option

definition step where step r ≡ r mod 2

definition initState where
initState p st ≡ vote st = None ∧ decide st = None

definition sendMsg where
sendMsg r ≡ if step r = 0 then Val(x st) else Vote(vote st)

definition next0 where
next0 r p st msgs st ′ ≡

(∃v . card{q . msgs q = Some (Val v)} > T ∧ st ′ = st(|vote := Some v |))
∨ ((¬∃v . card{q . msgs q = Some (Val v)} > T) ∧ st ′ = st(|vote := None|))
definition next1 where
next1 r p st msgs st ′ ≡

vote st ′ = None

∧ (∃v . card {q . msgs q = Some (Vote (Some v))} > α ∧ x st ′ = v) ∨
((¬∃v . card {q . msgs q = Some (Vote (Some v))} > α) ∧ x st ′ = defaultv)

∧ (∃v . card {q . msgs q = Some (Vote (Some v))} > E ∧ decide st ′ = Some v) ∨
((¬∃v . card {q . msgs q = Some (Vote (Some v))} > E) ∧ decide st ′ = decide st)

definition nextState where nextState r ≡ if step r = 0 then next0 r else next1 r

Fig. 1. Isabelle representation of the UT ,E,α algorithm.

definition phase where phase r ≡ r div 2

definition Ute commGlobal where
Ute commGlobal HOs SHOs ≡ ∀r . ∃φ > phase r . ∃r ′. ∃π. ∀p.

r ′ = 2 ∗ φ+ 1

∧ π = HOs r ′ p ∧ π = SHOs r ′ p

∧ card (SHOs (r ′ + 1) p) > T ∧ card (SHOs (r ′ + 2) p) > E

The “round-by-round” predicate Ute commPerRd is just the predicate Pα,β
introduced in Section 2.2 for β = max(N + 2α−E − 1,T). It ensures the safety
properties of the algorithm. The “global” predicate Ute commGlobal is used to
prove termination. It requires that there are infinitely many phases φ such that

11

(1) the HO and SHO processes for all processes are identical in the second step
of phase φ and (2) the cardinality of the SHO sets for all processes exceeds T
(resp., E) in the first (resp., second) step of the subsequent phase.

Finally, we declare UT ,E ,α to be an instance of the generic locale for SHO
algorithms described in Section 3. This is achieved by the following Isabelle
command, which instantiates the parameters of the locale SHOAlgorithm by the
operators defined for the UT ,E ,α algorithm.

interpretation SHOAlgorithm
initState sendMsg nextStateUte commPerRd Ute commGlobal

by unfold locales

We have used Isabelle to formally prove the correctness of UT ,E ,α (for an
arbitrary number of processes). The proof is based on the informal proof given
in [2], which we have split into a sequence of lemmas. Our main contribution
is that we have been able to carry out a formal proof of a non-synchronous
algorithm tolerating malicious faults with reasonable effort (the overall size of
the verbose Isar proof script is under 900 lines, including comments). This would
not have been possible without the high level of abstraction provided by the
HO model. Based on the machine-checked proof, we can confidently assert the
correctness of UT ,E ,α.

Theorem 3. The UT ,E ,α algorithm solves Consensus under the communication
predicate specified by Ute commPerRd and Ute commGlobal .

The AT ,E ,α algorithm, introduced together with UT ,E ,α in [2], is represented
in Isabelle in an analogous way. It is a one-round HO algorithm in which a
decision is taken immediately if a sufficient number of identical messages is
received.
UT ,E ,α and AT ,E ,α differ in the algorithmic structure and rely on different

communication predicates. In particular,AT ,E ,α has a simpler “round-by-round”
predicate but a more elaborate “global” predicate:

definition Ate commPerRd where
Ate commPerRd HO SHO ≡ ∀p. card ((HO p) \ (SHO p)) ≤ α
definition Ate commGlobal where
Ate commGlobal HOs SHOs ≡
∀r p. ∃r ′ > r . card (HOs r ′ p) > T

∧ ∀r p. ∃r ′ > r . card (SHOs r ′ p) > E

∧ ∀r . ∃r ′ > r . ∃π1 π2. card π1 > E − α ∧ card π2 > T ∧
∀p ∈ π1. HOs r ′ p = π2 ∧ SHOs r ′ p = π2

These two predicates require that:

– the number of corrupted messages in each round is never greater than α,
– T and E thresholds are passed infinitely often, for every process,
– infinitely often, there exists a sufficiently big set π1 of processes whose HO

and SHO sets are all identical to some set π2 that passes the T threshold.

12

We have again formally proved in Isabelle the correctness of the AT ,E ,α

algorithm under this communication predicate. Despite the differences in the
algorithms and the predicates, the effort required for carrying out the two proofs
is quite comparable.

4.2 Verifying a synchronous algorithm

Our third case study is the well-known EIGByz f [1,15] algorithm, which decides
after f + 1 rounds and is designed for synchronous system models. Encoding
EIGByz f in the HO model is straightforward. We have proved in Isabelle that
the algorithm solves Consensus under the communication predicate defined by
the round-by-round predicate R(r) and the global predicate G, defined as

R(r) ::

∣∣∣∣ ⋂
p∈Π

SHO(p, r)

∣∣∣∣ > N + f

2
G ::

∣∣∣∣ ⋂
p∈Π,r∈N

SHO(p, r)

∣∣∣∣ ≥ N − f .

EIGByz f was designed for synchronous systems with reliable links and at
most f faulty processes. In such a system, every process receives the correct
message from at least the non-faulty processes at every round, and therefore
the predicate G is satisfied. The standard correctness proof for EIGByz f [1,15]

assumes that N > 3f , and therefore N − f > N+f
2 . Since moreover, for any

r ∈ N, we obviously have(⋂
p∈Π,r ′∈N

SHO(p, r ′)

)
⊆
(⋂

p∈Π
SHO(p, r)

)
,

it follows that any execution of EIGByz f where N > 3f also satisfies ∀r : R(r).
The standard correctness hypotheses thus imply our communication predicates.

However, our proof shows that EIGByz f can indeed tolerate more transient
faults than the standard bound can express. For example, consider the case
where N = 5 and f = 2. Our predicates are satisfied in executions where two
processes exhibit transient faults, but never fail simultaneously. Indeed, in such
an execution, every process receives four correct messages at every round r , hence
R(r) holds. Also, G is satisfied because there are three processes from which
every process receives the correct messages at all rounds. By our correctness
proof, it follows that EIGByz f then achieves Consensus, unlike what one could
expect from the standard correctness predicate. This observation underlines the
interest of expressing assumptions about transient faults, as in the HO model.

Finally, it is worth noting that, unlike UT ,E ,α and AT ,E ,α, no assumption on
the sets HO(p, r) \ SHO(p, r) is ever required for the correctness of EIGByz f :
our predicates for EIGByz f are expressed in terms of the SHO sets only. In
other words, the conditions ensuring the correctness of EIGByz f only specify
how links must be both safe and live. However, contrasting with UT ,E ,α and
AT ,E ,α, which are correct under round-by-round conditions, EIGByz f requires
a global predicate on the sequence of rounds (namely, G). Such global predicates
on just the safe heard-of sets actually correspond to what is classically called
the “synchronous approach”.

13

5 Related and Future Work

Despite the crucial need for rigorous correctness proofs, especially in the con-
text of fault-tolerance, few distributed algorithms have been formally verified.
Moreover, formal verification of these algorithms mostly concerns benign faults
(e.g., [19,20,3]) or even assumes that no fault may occur (e.g., [9,10]). We are
aware of a few contributions addressing formal verification of distributed al-
gorithms in the context of malicious faults, but all of them consider perfectly
synchronous systems (e.g., [14,18]), with the exception of recent work by Lam-
port [13]. Lamport gives a formal safety proof of a variant on the Paxos algorithm
that tolerates Byzantine faults (i.e., processes may deviate from their transition
function). This algorithm, like most non-synchronous Consensus algorithms de-
signed to tolerate malicious faults, assumes that processes can authenticate their
communications, for example based on the use of digital signatures. A digital sig-
nature for process p is an extra information that p can add to any of its outgoing
messages in order to prove that the message really originated at p, even if it has
been relayed by several other processes. This informal description actually refers
to the semantics of messages, and as pointed out by Lynch [15], no formal defi-
nition of malicious faults with authentication has ever been given. We therefore
contend that relying on properties of authenticated messages represents a gap
in the proof of an algorithm that uses them. Since neither AT ,E ,α, UT ,E ,α, nor
EIGByz need authentication, we have been able to formally verify each of these
Consensus algorithms in the context of malicious (communication) faults.

The Heard-Of model, in which we have carried out our work, lets us describe
different algorithms, designed for different communication and fault models, in
a uniform way. We verified three Consensus algorithms (UT ,E ,α, AT ,E ,α and
EIGByz f) that tolerate malicious faults in our encoding of the HO model in
the interactive proof assistant Isabelle/HOL, and we are confident that other
algorithms can be verified with similar effort. Our proofs are at least an order of
magnitude shorter than proofs for comparable algorithms under benign faults,
such as the correctness proof for DiskPaxos [11] in Isabelle/HOL. This difference
is essentially due to the higher level of abstraction gained through the use of the
HO model, which allows us to consider only coarse-grained executions.

In future work, we would like to extend the framework to also cover mali-
cious (Byzantine) transition faults. Although transition faults are indistinguish-
able from malicious communication faults to other processes in the network,
the definition of Consensus has to be adapted, since no requirements can be
placed on faulty processes. We are also interested in the representation of and
formal reasoning about properties such as authentication, atomic broadcast or
weak-interactive consistency in the HO model.

References

1. A. Bar-noy, D. Dolev, C. Dwork, and H. R. Strong. Shifting gears: Changing
algorithms on the fly to expedite Byzantine agreement. In Information and Com-
putation, pages 42–51, 1987.

14

2. M. Biely, J. Widder, B. Charron-Bost, A. Gaillard, M. Hutle, and A. Schiper.
Tolerating corrupted communication. In Proc. 26th Annual ACM Symposium on
Principles of Distributed Computing, PODC ’07, pages 244–253, New York, NY,
USA, 2007. ACM.

3. M. Chaouch-Saad, B. Charron-Bost, and S. Merz. A reduction theorem for the
verification of round-based distributed algorithms. In O. Bournez, editor, 3rd
Workshop on Reachability Problems (RP’09), volume 5797 of LNCS, pages 93–
106, Palaiseau, France, 2009. Springer.

4. B. Charron-Bost and S. Merz. Formal verification of a Consensus algorithm in the
Heard-Of model. Int. J. Software and Informatics, 3(2-3):273–303, 2009.

5. B. Charron-Bost and A. Schiper. The Heard-Of model: Computing in distributed
systems with benign failures. Distributed Computing, 2009.

6. C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, Apr. 1988.

7. T. Elrad and N. Francez. Decomposition of distributed programs into communi-
cation-closed layers. Science Comp. Prog., 2(3), Apr. 1982.

8. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

9. C. Georgiou, N. A. Lynch, P. Mavrommatis, and J. A. Tauber. Automated imple-
mentation of complex distributed algorithms specified in the IOA language. Intl.
J. Software Tools for Technology Transfer, 11(2):153–171, 2009.

10. W. H. Hesselink. The verified incremental design of a distributed spanning tree
algorithm: Extended abstract. Formal Asp. Comput., 11(1):45–55, 1999.

11. M. Jaskelioff and S. Merz. Proving the correctness of Disk Paxos. Archive of
Formal Proofs, http://afp.sourceforge.net/entries/DiskPaxos.shtml, 2005.

12. L. Lamport. What good is temporal logic? In R. E. A. Mason, editor, Information
Processing 83: Proceedings of the IFIP 9th World Congress, pages 657–668, Paris,
Sept. 1983. IFIP, North-Holland.

13. L. Lamport. Byzantining Paxos by refinement. Technical report, Microsoft Re-
search, Dec. 2010.

14. L. Lamport and S. Merz. Specifying and verifying fault-tolerant systems. In
3rd Intl. Symp. Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’94), volume 863 of LNCS, pages 41–76, Lübeck, Germany, 1994.
Springer.

15. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

16. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL. A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

17. D. Peled and T. Wilke. Stutter-invariant temporal properties are expressible with-
out the next-time operator. Inf. Proc. Letters, 63(5):243–246, 1997.

18. U. Schmid, B. Weiss, and J. M. Rushby. Formally verified byzantine agreement
in presence of link faults. In 22nd Intl. Conf. Distributed Computing Systems
(ICDCS’02), pages 608–616, Vienna, Austria, 2002. IEEE Comp. Society.

19. T. Tsuchiya and A. Schiper. Model checking of consensus algorithms. In 26th
IEEE Symp. Reliable Distributed Systems (SRDS 2007), pages 137–148, Beijing,
China, 2007. IEEE Comp. Society.

20. T. Tsuchiya and A. Schiper. Using bounded model checking to verify consensus
algorithms. In G. Taubenfeld, editor, 22nd Intl. Symp. Dist. Comp. (DISC 2008),
volume 5218 of LNCS, pages 466–480, Arcachon, France, 2008. Springer.

15

