
Electronic Notes in Theoretical Computer Science 47(2001)
URL: http://www.elsevier.nl/locate/entcs/volume47.html pp. 1 – 13

Model Checking
UML State Machines and Collaborations

Timm Scḧafer and Alexander Knapp and Stephan Merz

Ludwig-Maximilians-Universiẗat München
Institut für Informatik, Oettingenstraße 67, 80 538 München, Germany

+(49) 89 2178 2179
majnu@gmx.net, {knapp, merz}@informatik.uni-muenchen.de

http://www.pst.informatik.uni-muenchen.de/projekte/hugo/

Abstract

The Unified Modeling Language provides two complementary notations, state machines
and collaborations, for the specification of dynamic system behavior. We describe a proto-
type tool,HUGO, that is designed to automatically verify whether the interactions expressed
by a collaboration can indeed be realized by a set of state machines. We compile state
machines into aPROMELA model and collaborations into sets of Büchi automata (“never
claims”). The model checkerSPIN is called upon to verify the model against the automata.

1 Introduction

It is general consensus that verification techniques such as model checking are best
applied in the early stages of system design when the costs are relatively low and
the potential benefits are high. Adoption of formal methods will be eased when they
can be applied within standard development processes and when they are based on
standard notation. The Unified Modeling Language (UML [8]) has become ac-
cepted as the de facto standard notation for the design of object-oriented software.
Beyond diagrams that represent the static structure of a system, it also defines dia-
grams to model the dynamic behavior of systems. First, state machines may be as-
sociated with UML classes to specify the states an object can be in and to describe
its reactions to incoming events. Second, interaction diagrams such as sequence
and collaboration diagrams describe how the objects of a system may interact by
exchanging events over links. These two types of diagrams represent complemen-
tary views of system behavior and are often used in different phases of system
design. In this paper we describeHUGO, a prototype tool designed to automatically
verify whether the interactions expressed by a collaboration diagram can indeed
be realized by a set of state machines. Technically, this is achieved by compiling
state machines into aPROMELA [1] model, and collaborations into sets of Büchi

c©2001 Published by Elsevier Science B. V.

mailto:majnu@gmx.net
mailto:knapp@informatik.uni-muenchen.de
mailto:knapp@informatik.uni-muenchen.de
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/


Schäfer, Knapp, Merz

automata (“never claims”). The model checkerSPIN is then called upon to verify
the model against the automata.

The idea to analyze UML state machines and other variants of Statecharts using
model checking has been suggested before [2,3,4,5,6], although we are not aware
of other tools that verify state machines against collaboration diagrams. In contrast
to most other encodings of Statecharts, ours is based on a dynamic computation of
Statechart behavior rather than a pre-determined, static calculation of possible state
transitions in response to input events. Our approach has the advantage of being
more modular, more flexible, and easier to adapt to variants of Statechart seman-
tics, including possible changes to the semantics of UML state machines. In this
way, we are able to handle more constructs present in UML state machines than are
supported by most other encodings, and we expect to add the remaining constructs,
except for time and change events, to a forthcoming version of the tool. While a
näıve programming approach to Statechart semantics might be expected to result in
a prohibitive overhead in the number of states and transitions that need to be consid-
ered during model checking, our experience has so far indicated that this overhead
can largely be avoided without compromising the result of the verification.

Besides model checking,HUGO also supports animation and the generation of
Java code from UML state machine models, based on the same structure of im-
plementation. Our aim is to ensure the correctness of the generated code with
respect to the properties verified from thePROMELA model. The present version
is still somewhat limited in this respect because guards and statements have to be
expressed in the respective host languages (PROMELA or Java), and because the
model checker lacks some of the constructs that are supported by code generation.

The structure of this paper is as follows: section 2 introduces the relevant UML
notations. The translation of state machines toPROMELA is explained in section 3,
whereas the verification of collaborations is described in section 4. Section 5 gives
a more detailed comparison with related work, and section 6 concludes the paper.

2 UML State Machines and Collaborations

We use a simple UML model of an automatic teller machine (ATM), shown in fig. 1,
as our running example: The class diagram in fig. 1(a) specifies two (active) classes
ATM andBank connected by an association such that instances ofATM can refer to
an instance ofBank via the role namebank, and, vice versa, instances ofBank can
refer to an instance ofATM via atm. Classes defineattributes, i.e., local variables of
its instances, andoperationsandsignalsthat may be invoked on instances by call
or send actions, respectively.

State machines for the classesATM andBank are shown in fig. 1(d) and 1(e),
consisting ofstatesand transitionsbetween states. States can besimple(such as
the statesPINEntry andAmountEntry) or composite(statesGivingMoney andVer-
ifying); a concurrentcomposite state contains severalorthogonal regions, sepa-
rated by dashed lines. Moreover,fork and join (pseudo-)states, shown as bars,
synchronize several transitions to and from orthogonal regions;junction(pseudo-)

2



Schäfer, Knapp, Merz

«signal» done
verifyPIN()

«signal» PINVerified

«signal» abort
«signal» reenterPIN

1

atm

1

bank Bank

int maxNumIncorrect = 2
int numIncorrect = 0
boolean cardValid = true

ATM

(a) Class diagram

atm bank
a : ATM b : Bank

1: verifyPIN()
3: verifyPIN()

4: PINVerified
2: reenterPIN

(b) Collaboration diagram 1

atm bank
a : ATM b : Bank

3: verifyPIN()

4: PINVerified
2: abort

1: verifyPIN()

(c) Collaboration diagram 2

ReturningCard

AmountEntryVerification

CardEntry

Counting

Dispensing

PINEntry

Giving Money

PINVerified

abort

/ ^bank.done

/ ^bank.verifyPIN()

reenterPIN

(d) State machine diagram for classATM

CardValidVerifyingCard

Idle

PINCorrect

entry / numIncorrect = 0

PINIncorrect

VerifyingPIN

[else] / ^atm.abort

[cardValid]

[else] / cardValid = false; ^atm.abort

/ ^atm.PINVerified

[numIncorrect < maxNumIncorrect]
/ numIncorrect++; ^atm.reenterPIN

done

Verifying

verifyPIN()

(e) State machine diagram for classBank

Fig. 1. UML model of an ATM

3



Schäfer, Knapp, Merz

states, represented as lozenges, chain together multiple transitions. Finally,history
(pseudo-)states (not contained in the state machines shown in fig. 1) record pre-
vious state information of a composite state. Transitions between states are trig-
gered byevents. Transitions may also be guarded by conditions and specify actions
to be executed or events to be emitted when the transition is fired. (The UML
does not specify a concrete syntax for guards and actions;HUGO allowsPROMELA

code.) For example, the transition leading from stateVerification to stateReturning-
Card requires signalabort to be present; the transition branch fromVerifyingCard
to CardValid requires the guardcardValid to be true; the transition fromPINEntry
to Verification causes a call eventverifyPIN to be sent to the instance referred to
by bank. Events may also be emitted byentry andexit actions that are executed
when a state is activated or deactivated, and by(do-)activitiesthat are performed as
long as the state is active. Transitions without an explicit trigger (e.g. the transition
leavingAmountEntry), are calledcompletion transitionsand are triggered bycom-
pletion eventswhich are emitted when a state completes all its internal activities.

The actual state of a state machine is given by itsactive state configurationand
by the contents of itsevent queue. The active state configuration is the tree of ac-
tive states; in particular, for every concurrent composite state each of its orthogonal
regions is active. The event queue holds the events that have not yet been handled
by the machine. Theevent dispatcherdequeues the first event from the queue; the
event is then processed in arun-to-completion(RTC) step. First, a maximally con-
sistent set of enabled transitions is chosen: a transition isenabledif all of its source
states are contained in the active state configuration, if its trigger is matched by the
current event, and if its guard is true; two enabled transitions areconsistentif they
do not share a source state. For each transition in the set, itsleast common ancestor
(LCA) is determined, i.e. the lowest composite state that contains all the transition’s
source and target states. The transition’s main source state, that is the direct sub-
state of the LCA containing the source states, is deactivated, the transition’s actions
are executed, and its target states are activated.

The example state machines simulate the interaction of an ATM with a single
hypothetical user and a bank computer. The simulation focuses on card and PIN
validation and we abstract from all other interactions by using completion transi-
tions on most of the states, serving to sustain the progress of the simulation. After
the user has entered his bank card, the ATM requests a PIN to be entered and then
asks the bank to verify the entry, waiting for a reply. If both card and PIN are valid,
the ATM may proceed to dispense money; if the PIN is invalid the ATM will have
the user reenter the PIN; if the card is invalid the ATM will be requested to abort
the transaction and return the card immediately (this ATM does not keep invalid
cards). After having retrieved his card, the user may reenter the same card as many
times as he wishes or end the interaction. As shown in fig. 1(e), the bank computer
validates the bank card concurrently to the PIN code. If the card is not valid, the
concurrent validation is exited immediately and the ATM is requested to abort the
transaction. The completion transition leavingVerifyingPIN simulates any possible
PIN entry by branching non-deterministically into the statesPINCorrect andPIN-

4



Schäfer, Knapp, Merz

Incorrect. The two join transitions evaluate the results of the concurrent validations.
If an incorrect PIN has been entered and the card is valid, the counter of invalid PIN
entries is incremented; however, if the counter has exceeded a maximum value, the
card is invalidated and the transaction aborted. In contrast, if a correct PIN has been
entered, the counter is reset to zero.

The collaboration diagrams shown in figs. 1(b) and 1(c) introduce instancesa
of ATM andb of Bank that are connected by a link. The collaboration in fig. 1(b)
specifies the following expected interaction: in a first message the ATMa asks
its corresponding bankb to verify a PIN by sending the call eventverifyPIN. The
bankb replies with signalreenterPIN, thus requiring the ATM to ask the user for
another PIN entry. The third message, again of typeverifyPIN, is finally acknowl-
edged by the bankb via the signalPINVerified. The collaboration diagram specifies
messages of typeverifyPIN to be transmitted synchronously, meaning that the caller
should wait for a reply from the callee before proceeding. All other messages are
exchanged via asynchronous signals, i.e., without waiting for a reply. The collabo-
ration in fig. 1(c) specifies undesirable behavior: After the card has been invalidated
by the bank, as acknowledged by sendingabort, no PIN entry should be valid.

3 Representation of UML State Machines inPROMELA

We now describe our encoding of a system of state machines inSPIN’s input lan-
guagePROMELA. The code fragments shown in the following are simplified ver-
sions of the actual translations produced byHUGO.

Every state of a state machine is modeled by an individualPROMELA process.
For every state machine, two additional processes serve to dispatch events stored in
the event queue and to handle transitions. Communication among the processes that
are associated with a single state machine occurs via unbuffered channels, whereas
the event queue is modeled as a buffered channel.

Basic definitions. For every state, we record its currently active substate and its
container. A state process listens for requests to arrive on channelchanAction-
Request and sends results along channelchanDone.

typedef ActionRequestType {
short action;
EventType event;

}
typedef RetvalType {

byte val;
}
typedef StateType {

chan chanActionRequest = [0] of {ActionRequestType};
chan chanDone = [0] of {RetvalType};
short activeSubstate; // id of active substate
short container; // id of container

}

5



Schäfer, Knapp, Merz

A state machine maintains an array of its states and two queues of pending
ordinary and completion events. The length of the event queue is set to the constant
eventQueueCapacity, which can be increased ifSPIN reports a channel overflow.
In case of a synchronous call event, the sending machine includes its id with the
event and waits for a notification from the receiving machine along channelchan-
SCDone, indicating that the call event has been processed. The arraysm holds the
data for all state machines of the model.

typedef EventType {
short id;
short synchronousCaller; // id of calling machine (call events)
short completedState; // id of completed state (compl. evts)

}
typedef StateMachineType {

StateType state[numStates]; // numStatesinferred from UML model
chan eventQueue = [eventQueueCapacity] of {EventType};
chan eventQueueCompletion[numCompletionEvents] of {EventType};
chan chanSCDone = [1] of {bool};

}
StateMachineType sm[numStateMachines];

A transition is represented as a record that contains its triggering event and its
source and target states. (The compiler first decomposes any compound transitions
that contain conditional branches into several simple transitions by considering all
possible paths.) The actions associated with a transition are determined by the
transition’s id and are coded into the states and the transition handler, as explained
below. Each state process maintains an array of its outgoing transitions.

Dispatching events. The event dispatcher process dequeues events and passes
them on to the active state configuration, thus triggering an RTC step. If there are
any pending completion events, they will be handled before ordinary events. An
ordinary event is passed on to the top state of the state machine. A completion
event is directly passed on to the completed state if that state is still active; another
completion event may have already deactivated it. If, however, the completed state
is the top state, all processes of the state machine will be terminated. The event
dispatcher waits for a return value to be sent from the handling state. If the current
event was a synchronous call event, the calling machine is informed of the fact
that its request has been processed. At this point the RTC cycle resumes. The
initialization of the state machine is similarly performed by passing the special
action requestact_ensureInitialization to the top state.

Because different state machines communicate exclusively by message passing,
their internal operations cannot interfere with each other. We take advantage of
this observation by having such internal operations execute atomically, guarded
by a global semaphore (cf. the macrosenterMutex andexitMutex in the code
fragment below). The semaphore is released after the execution of an RTC step
and whenever events are generated during the execution of actions. This strategy
leads to a significant reduction of the number of states thatSPIN needs to generate

6



Schäfer, Knapp, Merz

during verification runs, without affecting the result of the analysis.

proctype eventDispatcher(byte smID, byte topID) {
StateType top = sm[smID].state[topID];
...
enterMutex
actionRequest.action = act_ensureInitialization;
top.chanActionRequest!actionRequest;
top.chanDone?retval;

continueProcess:
exitMutex
if // wait for event to arrive, prioritize completion events
:: nempty(sm[smID].eventQueueCompletion) ->

sm[smID].eventQueueCompletion?currentEvent;
enterMutex
handlingState = sm[smID].state[currentEvent.completedState];
if
:: handlingState == top ->

goto terminate
:: handlingState != top && handlingState.isActive ->

actionRequest.action = act_handleEvent;
actionRequest.event = currentEvent;
handlingState.chanActionRequest!actionRequest;
handlingState.chanDone?retval;

:: else ->
fi;

:: (empty(sm[smID].eventQueueCompletion) &&
nempty(sm[smID].eventQueue)) ->
sm[smID].eventQueue?currentEvent;
enterMutex
actionRequest.action = act_handleEvent;
actionRequest.event = currentEvent;
top.chanActionRequest!actionRequest;
top.chanDone?retval;

fi;
if
:: currentEvent.synchronousCaller != -1 ->

sm[currentEvent.synchronousCaller].chanSCDone!true;
:: else -> skip
fi;
goto continueProcess

terminate: // terminate all processes of state machine
...

}

Implementation of states. States wait for action requests to arrive on the channel
chanActionRequest. There are different types of requests, including the initial-
ization of a state and its substates, handling of events, and activation or deactiva-

7



Schäfer, Knapp, Merz

tion. After an action request has been processed, a return value is passed to the
requesting process via channelchanDone.

Requests to handle non-completion events traverse the active state configuration
as follows: A non-concurrent composite state passes the event to its active substate,
giving it a chance to consume the event first. Similarly, a concurrent composite state
lets its orthogonal regions handle the event one by one. If some region consumes the
event and fires a transition that leaves the concurrent composite state, thus causing
it to be deactivated, the remaining orthogonal regions will not handle the event,
since these transitions would be in conflict. Symmetrically, if some region fires a
transition that does not leave the concurrent composite state, the remaining regions
will also be constrained to firing transitions that remain within the concurrent state.

If the event has not been consumed by a substate (in particular, if the current
state is a simple state), the state will try to fire one of its own transitions. If some
outgoing transitions are enabled, one of them is chosen non-deterministically and
passed on to the transition handler. The traversal algorithm outlined above en-
sures that transitions from substates have higher priority than transitions originat-
ing at containing states, as stipulated by the UML semantics, and also that transi-
tions originating from states in separate orthogonal regions have the same priority.
Moreover, the algorithm computes precisely the maximally consistent sets of tran-
sitions [8, p. 2-173f.]. Note that the ordering of regions is unspecified by the UML.
The PROMELA model will therefore by default non-deterministically choose some
permutation of the orthogonal regions. While this non-determinism is irrelevant for
many models, it carries a hefty performance penalty during verification, because
SPIN has to consider all possible orderings. A run-time switch therefore allows to
restrict verification to a fixed ordering of orthogonal regions.

States handle a completion event by firing one of their enabled completion
transitions; we consider a completion transition with more than one source state
(involving a join pseudo-state) to be enabled when all of its source states are com-
pleted.

Transition handler. The transition handler first determines the LCAL of the
transition to be fired. It will then request the main source state of the transition to
deactivate itself and, recursively in a bottom-up order, all of its active substates.
The actions associated with the transition are executed and any emitted events are
sent to the event queues of the receiving state machines. It is at this point that the
global mutex mentioned above is yielded so that some other state machine may
proceed. If a synchronous call action is to be executed, the sending state machine
will only proceed after the receiving state machine has signaled that the call has
been processed. Subsequently, the transition handler requests the transition’s target
states to activate themselves and their containers up to the LCAL. Finally, proper
initialization of the newly activated substate ofL is ensured. This is necessary, as
some target states may be composite states, or may be nested in orthogonal regions,
thus requiring other orthogonal regions to be initialized.

Activities. Activities are modeled as separate processes that run while their cor-

8



Schäfer, Knapp, Merz

responding state is active. Although activities run concurrently to a state machine,
simulating an entirely concurrent execution leads to an unnecessarily high verifica-
tion complexity, forcingSPIN to analyze every possible interleaving of execution
sequences. Therefore we have activities take part in the global mutex. The user is
required to indicate at which points the activity should be interruptible by inserting
the special macroyieldDoActivity in its body. The activity will be aborted when
its containing state is deactivated.

Completion. A completion event is raised when a state completes all its internal
activities, as follows: a simple state completes internal activity when both its entry
action and its activity (if present) have terminated. A non-concurrent composite
state completes when its active substate is a final state and its activity has termi-
nated. Finally, a concurrent composite state completes when all its regions have
completed and its activity has terminated.

When a final stateF is activated a completion event for its containerCF is
generated ifCF has any outgoing completion transitions. However, ifCF is an
orthogonal region inside a concurrent composite stateCC with outgoing completion
transitions, a counter indicating the number ofCC’s orthogonal regions that have
completed is incremented, and a completion event is generated when that counter
equals the number of orthogonal regions contained inCC. The counter will be
decremented upon deactivation ofCF .

Analogously, an activity raises a completion event upon termination, provided
its corresponding state has an outgoing completion transition. In particular, in our
implementation, a composite state with an activity only fires a completion transition
when completion events have been raised for its final states as well as for its activity.

History states. History states contain a composite state’s history information.
Like ordinary states, they are modeled as processes, yet they only handle action
requests to update and retrieve history data. Whenever a composite state is deac-
tivated it requests its shallow and deep history states to update their history data.
When the transition handler fires a transition that targets a history state, it first
retrieves its history data. If a history does not contain any history data, or only
contains final states, it returns the states that are targeted by its default transition.

4 Verifying Collaborations

HUGO is mainly intended to verify whether certain specified collaborations are in-
deed feasible for a set of UML state machines. To do so, it generates Büchi au-
tomata that accept all executions that conform to the collaboration, and calls on
SPIN to verify that no execution of the model is accepted by these “never claims”.
If the collaboration is possible,SPIN will produce a “counter example” that allows
the successful execution to be replayed.

Generation of never claims. Simple sequential collaborations such as the one
shown in fig. 1(b) could be represented by LTL formulae such as

9



Schäfer, Knapp, Merz

n n n n nlq0 q1 q2 q3 q4

���

- - - -aˆbank.verifyPIN() bˆatm.reenterPIN aˆbank.verifyPIN() bˆatm.PINVerified

� �
?

� �6
� �

?

� �6& %6
� �

?

7

	

I

	

o

Fig. 2. Never claim for sample collaboration 1.

♦(aˆbank.verifyPIN∧♦(bˆatm.reenterPIN∧♦(aˆbank.verifyPIN∧♦(bˆatm.PINVerified))))

However, the algorithm built intoSPIN to produce never claims from LTL formu-
lae becomes ineffective for collaborations that specify more than about five action
occurrences, andHUGO therefore generates its own never claims. The never claim
generated for collaboration 1 of our running example is shown in fig. 2 where, e.g.,
the transition from stateq0 to q2 is labeled byaˆbank.verifyPIN()∧bˆatm.reenterPIN
and self loops are labeled bytrue—the UML semantics allows arbitrary actions to
occur in between those explicitly shown in the collaboration diagram.

Beyond simple sequential collaborations,HUGO can also verify activations due
to synchronous call actions. Collaborations that include concurrent actions will
be translated into a set of never claims; such a collaboration is satisfied ifSPIN

produces a counter example for at least one never claim in the set. However, in-
stantiation of objects at run-time is presently not supported, and therefore the�cre-
ate� stereotype defined by the UML cannot be handled byHUGO.

Verification. As outlined in section 3,HUGO first compiles the UML model into
PROMELA code. Given a configuration of instances, each with its corresponding
state machine, it will useSPIN to check whether the model contains any deadlocks.
If the user has also specified a collaboration to be satisfied,HUGO generates never
claims as described above and calls onSPIN to generate an analyzer and run the
verification. If SPIN finds a way to satisfy the collaboration, it will generate a trail,
andHUGO causes that trail to be executed. The operation of the state machines can
be traced with the help ofprintf statements embedded into thePROMELA code,
each state machine being represented in a different column. Figure 3(a) contains
the first few lines from the trail that is generated for collaboration 1 of our running
example, giving an example of how this interaction is possible; fig. 3(b) shows
SPIN’s statistics for the exhaustive search proving that the interaction specified in
collaboration 2 is indeed impossible.

5 Related Work

The application of model checking techniques to variants of Statecharts has, among
others, been described in [2,3,4,5,6]. Usually, the encoding is based on a static pre-
computation of the possible transitions between state configurations. For example,
Lilius and Paltor [4] have also defined an operational semantics of UML state ma-
chines inPROMELA as a basis for vUML, also based on theSPIN model checker.
Their compilation relies on a statically pre-computed table of possible transitions
and conflicts. Our motivations for computing the transitions dynamically have been

10



Schäfer, Knapp, Merz

atm:
bank:

...
CardEntry
PINEntry
ˆbank.verifyPIN()

Idle
VerifyingPIN
VerifyingCard
PINIncorrect
CardValid
ˆatm.reenterPIN
Idle

Verification
PINEntry
ˆbank.verifyPIN()
...

(a) Trail for collaboration 1

State-vector 3780 byte,
depth reached 33904, ...
456478 states, stored
114229 states, matched
570707 transitions

(= stored+matched)
478 atomic steps

...
Stats on memory usage (in Megabytes):
1730.965 equivalent memory usage ...
25.006 actual memory usage for states

State-vector as stored =
43 byte + 12 byte overhead

40.905 total actual memory usage
...
67.110user 0.150system 1:07.27elapsed

(b) Statistics for collaboration 2

Fig. 3. Results of model checking.

to arrive at a clear structure of the translation whose correctness should be jus-
tifiable by inspection, and to be able to adapt easily to changes in state machine
semantics, as can be anticipated for the forthcoming version 2.0 of the UML. A
programming approach to implementing operational semantics should also make it
easier to support the full range of UML constructs. For example, althoughHUGO

presently does not support choice states (as does none of the other encodings), it
is obvious how they can be implemented, while they pose non-trivial problems for
encodings based on static pre-computation.

Interestingly, the overhead incurred by our approach does not seem to be pro-
hibitive. We avoid state explosion by having state machines compute their RTC
steps atomically, guarded by a global mutex. Therefore, the number of states gen-
erated during verification runs increases only by a linear factor. As far as state
representation is concerned, we use a rather naı̈ve approach, but rely onSPIN’s
state space compression algorithm to weed out the irrelevant part of the state vec-
tor, cf. the statistics on memory consumption shown in fig. 3(b). We have compared
vUML and HUGO on the dining philosophers example contained in the vUML dis-
tribution. Both tools find the deadlock in less than one second of verification time.
For larger models, however, even a linear factor can make a noticeable difference.
We have found that vUML compiles the model from our running example into
much more compactPROMELA code, which can be used to analyse the feasibility
of the collaborations in a couple of seconds, compared to well over a minute. We
are currently working on optimizingHUGO’s compiler. Unfortunately,PROMELA

does not allow synchronous communication between processes to occur inside a
d_step, unlike inside anatomic block.

11



Schäfer, Knapp, Merz

The most distinctive difference between vUML andHUGO lies in their respec-
tive verification capabilities: whereas vUML is restricted to deadlock checking
(collaboration diagrams are used only to define the links between objects), we fo-
cus on ensuring that the different views represented by collaborations and state ma-
chines are indeed coherent. For better usability,HUGO imports state machines from
models produced by standard UML editors using NovoSoft’s XMI (XML metadata
interchange) parser [7], whereas vUML requires a proprietary, Python-based input
format.

The format of extended hierarchical automata has been very popular to define
the semantics of Statechart variants [3,5,6], and Latella, Majzik, and Massink [3]
have provided a semantics for a behavioral subset of UML state machines, imple-
mented inPROMELA. However, activities, entry and exit actions, completion events
and transitions, history states, and context are missing in their paper; transition ef-
fects may only generate new events. Moreover, this approach does not directly
support the verification of collaborations, as it is limited to a single state machine.
We have not been able to compare their model checker withHUGO because it ap-
pears to be no longer available.

6 Discussion

The UML provides an opportunity to apply model checking technology to abstract
software design models. Because the semantics of UML state machines is rather
non-trivial, we hope thatHUGO will find applications in the design of control-
intensive and distributed object-oriented applications.

Development ofHUGO is an ongoing project whose intention is to allow users to
apply model checking technology “behind the scenes” to object-oriented designs.
Beyond optimizing the translation, we are working to remove some of the limita-
tions of the current prototype: events cannot be parameterized, there can only be
one instance of any given class, and some of the more advanced constructs of state
machines, such as synch and choice states and deferred events need to be imple-
mented. Collaborations must currently be specified in plain textual form; a future
version will be able to input collaboration diagrams from XMI files. More am-
bitiously, we would like to make use ofSPIN’s additional verification capabilities
based on appropriate OCL constraints in the model.

We have noticed a few ambiguities in the semantics of UML state machines
as described in [8]. For example, the semantics is vague about completion tran-
sitions with several concurrent source states; we consider such a transition to be
enabled when completion events have been generated for all of its source states.
Similarly, it is not clear to us what the semantics prescribes in case the guards of
all completion transitions leaving a given state are false when the completion event
is being handled. Our implementation consumes the completion event without fir-
ing any completion transition. If completion events could be marked as deferred
events, the user would be able to indicate that the event should be reconsidered later.
Moreover, the semantics does not clearly specify when a composite state with an

12



Schäfer, Knapp, Merz

activity completes; we require that all final states have been reached and that the
activity has terminated. Concerning synchronous call events, we let the callee send
a return signal when the RTC step that has consumed the synchronous call event
has been completed (the same strategy has been adopted by Lilius and Paltor [4]).
It could be argued instead that the return signal should be sent explicitly by the
callee, possibly after several steps of internal computation, but it is not obvious to
us how to denote such behavior in a UML model.

Beyond model checking,HUGO also features Java code generation, either for
animation or for direct inclusion into any Java application. It is based on the same
overall structure, but the implementation is more complete and encompasses full
UML state machines except for time and change events. In particular, the ambigu-
ities that we have noticed about the semantics of UML state machines have been
resolved in the same way, and users may therefore expect the Java implementation
generated from a UML model to behave correctly with respect to thePROMELA

translation produced from the same model. The present version ofHUGO may still
require the use of different models because guards and actions have to be expressed
in the respective host languages. We are considering to support at least a subset of
UML’s object constraint logic (OCL) instead ofPROMELA or Java annotations.

References

[1] Holzmann, G. J.,The SPIN Model Checker, IEEE Trans. Softw. Eng.23 (1997),
pp. 279–295.

[2] Kwon, G., Rewrite Rules and Operational Semantics for Model Checking UML
Statecharts, in: A. Evans, S. Kent and B. Selic, editors,Proc. 3nd Int. Conf. UML, Lect.
Notes Comp. Sci.1939(2000), pp. 528–540.

[3] Latella, D., I. Majzik and M. Massink,Automatic Verification of a Behavioural Subset
of UML Statechart Diagrams Using the SPIN Model-Checker, Formal Aspects Comp.
11 (1999), pp. 637–664.

[4] Lilius, J. and I. P. Paltor,Formalising UML State Machines for Model Checking, in:
R. B. France and B. Rumpe, editors,Proc. 2nd Int. Conf. UML, Lect. Notes Comp. Sci.
1723(1999), pp. 430–445.

[5] Mikk, E., Y. Lakhnech and M. Siegel,Hierarchical Automata as Model for Statecharts,
in: R. K. Shyamasundar and K. Ueda, editors,Proc. 3rd Asian Computing Science Conf.,
Lect. Notes Comp. Sci.1345(1997), pp. 181–196.

[6] Mikk, E., Y. Lakhnech, M. Siegel and G. J. Holzmann,Implementing Statecharts
in Promela/SPIN, in: Proc. IEEE Wsh. Industrial-Strength Formal Specification
Techniques(1999).

[7] Novosoft UML API, Available athttp://nsuml.sourceforge.net.

[8] Object Management Group,Unified Modeling Language Specification, Version 1.4,
Draft, OMG (2001),http://cgi.omg.org/cgi-bin/doc?ad/01-02-14.

13

http://nsuml.sourceforge.net
http://cgi.omg.org/cgi-bin/doc?ad/01-02-14

	Introduction
	UML State Machines and Collaborations
	Representation of UML State Machines in promela
	Verifying Collaborations
	Related Work
	Discussion
	References

