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1 Introduction

The specification language TLA+ was designed by Lamport for formally de-
scribing and reasoning about distributed algorithms. It is described in Lam-
port’s book “Specifying Systems” [30], which also gives good advice on how
to make best use of TLA+ and its supporting tools. Systems are specified in
TLA+ as formulas of the Temporal Logic of Actions TLA, a variant of linear-
time temporal logic also introduced by Lamport [28]. The underlying data
structures are specified in (a variant of) Zermelo-Fränkel set theory, the lan-
guage accepted by most mathematicians as the standard basis for formalizing
mathematics. This choice is motivated by a desire for conciseness, clarity, and
formality that befits a language of formal specification where executability
or efficiency are not of major concern. TLA+ specifications are organized in
modules that can be reused independently.

In a quest for minimality and orthogonality of concepts, TLA+ does not
formally distinguish between specifications and properties: both are written
as logical formulas, and concepts such as refinement, composition of systems
or hiding of internal state are expressed using logical connectives of impli-
cation, conjunction, and quantification. Despite its expressiveness, TLA+ is
supported by tools such as model checkers and theorem provers to aid a de-
signer carry out formal developments.

This chapter attempts to formally define the core concepts of TLA and
TLA+ and to motivate some choices, in particular with respect to competing
formalisms. Before doing so, an introductory overview of system specification
in TLA+ is given using the example of a resource allocator. Lamport’s book
remains the definitive reference for the language itself and on the method-
ology for using TLA+. In particular, the module language of TLA+ is only
introduced by example, and the rich standard mathematical library is only
sketched.

The outline of this chapter is as follows. Sect. 2 introduces TLA+ by way
of a first specification of the resource allocator and illustrates the use of the
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tlc model checker. The logic TLA is formally defined in Sect. 3, followed by
an overview of TLA+ proof rules for system verification in Sect. 4. Section 5
describes the version of set theory that underlies TLA+, including some of the
constructions most frequently used for specifying data. The resource allocator
example is taken up again in Sect. 6, where an improved high-level specifi-
cation is given and a step towards a distributed refinement is made. Finally,
Sect. 7 contains some concluding remarks.

2 Example: A Simple Resource Allocator

We introduce TLA+ informally, by way of an example that will also serve as
a running example for this chapter. After stating the requirements informally,
we present a first system specification, and use the TLA+ model checker tlc

to analyse its correctness.

2.1 Informal Requirements

The purpose of the resource allocator is to manage a (finite) set of resources
that are shared among a number of client processes. Allocation of resources
is subject to the following constraints.

1. A client that currently does not hold any resources and that has no pend-
ing requests may issue a request for a set of resources.

Rationale: We require that no client should be allowed to “extend” a pending
request, possibly after the allocator has granted some resources. A single client
process might concurrently issue two separate requests for resources by appear-
ing under different identities, and therefore the set of “clients” should really be
understood as identifiers for requests, but we will not make this distinction here.

2. The allocator may grant access to a set of available (i.e., not currently
allocated) resources to a client.

Rationale: Resources can be allocated in batches, so an allocation need not
satisfy the entire request of the client: the client may be able to begin working
with a subset of the resources it requested.

3. A client may release some resources that it holds.

Rationale: Similarly to allocation, clients may return just a subset of the re-
sources they currently hold, freeing them for allocation to a different process.

4. Clients are required to eventually free the resources they hold once their
entire request has been satisfied.

The system should be designed such that it ensures the following two
properties.

• Safety: no resource is simultaneously allocated to two different clients.
• Liveness: every request issued by some client is eventually satisfied.
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2.2 A First TLA+ Specification

A first TLA+ specification of the resource allocator appears in Fig. 1. Short-
comings of this model will be discussed in Sect. 6, where a revised specification
will appear.

TLA+ specifications are organised in modules that contain declarations
(of parameters), definitions (of operators), and assertions (of assumptions
and theorems). Horizontal lines separate different sections of the module
SimpleAllocator ; these aid readability, but have no semantic content. TLA+

requires that an identifier must be declared or defined before it is used, and
that it cannot be reused, even as a bound variable, in its scope of validity.

The first section declares that module SimpleAllocator is based on the
module FiniteSet , which is part of the TLA+ standard library (discussed
in Sect. 5). Next, the constant and variable parameters are declared. The
constants Clients and Resources represent the set of client processes and of
resources managed by the resource allocator. Constant parameters represent
entities whose values are fixed during system execution, although they are
not defined in the module because they may change from one system instance
to the next. Observe that there are no type declarations: TLA+ is based on
Zermelo-Fränkel (ZF) set theory, so all values are sets. The set Resources is
assumed to be finite – the operator IsFiniteSet is defined in module FiniteSet .
The variable parameters unsat and alloc represent the current state of the
allocator by recording the outstanding requests of the client processes, and
the set of resources allocated to the clients. In general, variable parameters
represent entities whose values change during system execution; in this sense,
they correspond to program variables.

The second section contains the definition of the operators TypeInvariant

and available. In general, definitions in TLA+ take the form

Op(arg1, . . . , argn )
∆

= exp.

In TLA+, multi-line conjunctions or disjunctions are written as lists “bul-
leted” with the connective, and indentation indicates the hierarchy of nested
conjunctions and disjunctions [27]. The formula TypeInvariant states the in-
tended “types” of the state variables unsat and alloc, which are functions that
associate a set of (requested or received) resources to each client.1 Observe,
again, that the variables are not constrained to these types: TypeInvariant

just declares a formula, and a theorem towards the end of the module asserts
that the allocator specification respects the typing invariant. This theorem
will have to be proven by considering the possible system transitions. The set
available is defined to contain those resources that are currently not allocated
to any client.

The third section contains a list of definitions, which constitute the main
body of the allocator specification. The state predicate Init represents the

1 In TLA+, the power set of a set S is written as subset S .
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module SimpleAllocator

extends FiniteSet
constants Clients, Resources
assume IsFiniteSet(Resources)
variables

unsat, unsat [c] denotes the outstanding requests of client c
alloc alloc[c] denotes the resources allocated to client c

TypeInvariant
∆
=

∧ unsat ∈ [Clients → subset Resources]
∧ alloc ∈ [Clients → subset Resources]

available
∆
= set of resources free for allocation

Resources \ (union {alloc[c] : c ∈ Clients})

Init
∆
= initially, no resources have been requested or allocated

∧ unsat = [c ∈ Clients 7→ {}]
∧ alloc = [c ∈ Clients 7→ {}]

Request(c, S)
∆
= Client c requests set S of resources

∧ S 6= {} ∧ unsat [c] = {} ∧ alloc[c] = {}
∧ unsat ′ = [unsat except ![c] = S ]
∧ unchanged alloc

Allocate(c,S)
∆
= Set S of available resources are allocated to client c

∧ S 6= {} ∧ S ⊆ available ∩ unsat [c]
∧ alloc′ = [alloc except ![c] = @ ∪ S ]
∧ unsat ′ = [unsat except ![c] = @ \ S ]

Return(c, S)
∆
= Client c returns a set of resources that it holds.

∧ S 6= {} ∧ S ⊆ alloc[c]
∧ alloc′ = [alloc except ![c] = @ \ S ]
∧ unchanged unsat

Next
∆
= The system’s next−state relation

∃c ∈ Clients,S ∈ subset Resources :
Request(c, S) ∨ Allocate(c, S) ∨ Return(c, S)

vars
∆
= 〈unsat , alloc 〉

SimpleAllocator
∆
= The complete high−level specification

∧ Init ∧ 2[Next ]vars
∧ ∀c ∈ Clients : WFvars(Return(c, alloc[c]))
∧ ∀c ∈ Clients : SFvars(∃S ∈ subset Resources : Allocate(c, S))

Safety
∆
= ∀ c1, c2 ∈ Clients : c1 6= c2 ⇒ alloc[c1] ∩ alloc[c2] = {}

Liveness
∆
= ∀ c ∈ Clients, r ∈ Resources : r ∈ unsat [c] ; r ∈ alloc[c]

theorem SimpleAllocator ⇒ 2TypeInvariant
theorem SimpleAllocator ⇒ 2Safety
theorem SimpleAllocator ⇒ Liveness

Fig. 1. A Simple Resource Allocator.
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initial condition of the specification: no client has requested or received any
resources. The action formulas Request(c,S ), Allocate(c,S ), and Return(c,S )
model a client c requesting, receiving or returning a set S of resources. In these
formulas, unprimed occurrences of state variables (e.g., unsat) denote their
values in the state before the transition, whereas primed occurrences (e.g.,
unsat ′) denote their values in the successor state, and unchanged t is just
a shorthand for t ′ = t . Also, function application is written using square
brackets, so unsat [c] denotes the set of resources requested by client c. The
except construct models function update; more precisely, when t denotes a

value in the domain of function f , the expression [f except ![t ] = e] denotes
the function g that agrees with f except that g[t ] equals e. In the right-hand
side e of such an update, @ denotes the previous value f [t ] of the function at
the argument position being updated. For example, the formule Allocate(c,S )
requires that S be a non-empty subset of available resources that are part of
the request of client c, allocates those resources to c, and removes them from
the set of outstanding requests of c.

The action formula Next is defined as the disjunction of the request, allo-
cate, and return actions, for some client and some set of resources; it defines
the next-state relation of the resource allocator. Again, there is nothing spe-
cial about the names Init and Next , they are just conventional for denoting
the initial condition and the next-state relation.

The overall specification of the resource allocator is given by the temporal
formula SimpleAllocator . It is defined as a conjunction of the form

I ∧ 2[N ]v ∧ L

where I is the initial condition (a state predicate), N is the next-state relation,
and L is a conjunction of fairness properties, each concerning a disjunct of the
next-state relation. While not mandatory, this is the standard form of system
specifications in TLA+, and it corresponds to the definition of a transition
system (or state machine) with fairness constraints. More precisely, the for-
mula 2[N ]v specifies that every transition either satisfies the action formula
N or leaves the expression v unchanged. In particular, this formula admits
“stuttering transitions” that do not affect the variables of interest. Stutter-
ing invariance is a key concept of TLA that simplifies the representation of
refinement, as well as compositional reasoning, and we will explore temporal
formulas and stuttering invariance in more detail in Sect. 3.4.

The initial condition and the next-state relation specify how the system
may behave. Fairness conditions complement this by asserting what actions
must occur (eventually). The weak fairness condition for the return action
states that clients should eventually return the resources they hold. The strong
fairness condition for resource allocation stipulates that for each client c, if it
is infinitely often possible to allocate some resources to c, then the allocator
should eventually give some resources to c.

The following section defines the two main correctness properties Safety

and Liveness . Formula Safety asserts a safety property [10] of the model
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CONSTANTS

Clients = {c1,c2,c3}
Resources = {r1,r2}

SPECIFICATION

SimpleAllocator

INVARIANTS

TypeInvariant Safety

PROPERTIES

Liveness

Fig. 2. Sample configuration file for tlc.

by stating that no resource is ever allocated to two distinct clients. For-
mula Liveness represents a liveness property that asserts that whenever some
client c requests some resource r , that resource will eventually be allocated
to c.2 Observe that there is no formal distinction in TLA+ between a system
specification and a property: both are expressed as formulas of temporal logic.
Asserting that specification S has property F amounts to claiming validity
of the implication S ⇒ F . Similarly, refinement between specifications is ex-
pressed by (validity of) implication, and a single set of proof rules is used
to verify properties and refinement; we will explore deductive verification in
Sect. 4.

Finally, module SimpleAllocator asserts three theorems stating that the
specification satisfies the typing invariant as well as the safety and liveness
properties defined above. A formal proof language for TLA+, based on a
hierarchical proof format [29], is currently being designed.

2.3 Model Checking the Specification

Whereas programs can be compiled and executed, TLA+ models can be val-
idated and verified. In this way, confidence is gained that a model faithfully
reflects the intended system, and that it can serve as a basis for more detailed
designs, and ultimately for implementations. Tools can assist the designer in
carrying out these analyses. In particular, simulation lets a user explore some
traces, possibly leading to the detection of deadlocks or other unanticipated
behavior. Deductive tools such as model checkers and theorem provers assist
in the formal verification of properties. The TLA+ model checker tlc is a
powerful and eminently usable tool for verification and validation, and we
will now illustrate its use for the resource allocator model of Fig. 1.

tlc can compute and explore the state space of finite-state instances of
TLA+ models. Besides the model itself, tlc requires a second input file, called
the configuration file, that defines the finite-state instance of the model to

2 The formula P ; Q asserts that any state that satisfies P will eventually be
followed by a state satisfying Q .
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TLC Version 2.0 of January 16, 2006

Model-checking

Parsing file SimpleAllocator.tla

Parsing file /sw/tla/tlasany/StandardModules/FiniteSets.tla

Parsing file /sw/tla/tlasany/StandardModules/Naturals.tla

Parsing file /sw/tla/tlasany/StandardModules/Sequences.tla

Semantic processing of module Naturals

Semantic processing of module Sequences

Semantic processing of module FiniteSets

Semantic processing of module SimpleAllocator

Implied-temporal checking--satisfiability problem has 6 branches.

Finished computing initial states: 1 distinct state generated.

--Checking temporal properties for the complete state space...

Model checking completed. No error has been found.

Estimates of the probability that TLC did not check

all reachable states because two distinct states had

the same fingerprint:

calculated (optimistic): 2.673642557349254E-14

based on the actual fingerprints: 6.871173129000332E-15

1633 states generated, 400 distinct states found,

0 states left on queue.

The depth of the complete state graph search is 6.

Fig. 3. tlc output.

analyse, and that declares which of the formulas defined in the model rep-
resents the system specification and which are the properties to verify over
that finite-state instance.3 Figure 2 shows a configuration file for analysing
module SimpleAllocator . Definitions of sets Clients and Resources fix specific
instance of the model that tlc should consider. In our case, these sets consist
of symbolic constants. The keyword SPECIFICATION indicates which formula
represents the main system specification, and the keywords INVARIANTS and
PROPERTIES define the properties to be verified by tlc. (For a more detailed
description of the format and the possible directives in configuration files, see
Lamport’s book [30] and the tool documentation [24].)

Running tlc on this model produces an output similar to that shown in
Fig. 3; some details may vary according to the version and the installation of
tlc. First, tlc parses the TLA+ input file and checks it for well-formedness.
It then computes the graph of reachable states for the instance of our model
defined by the configuration file, verifying the invariants “on the fly” as it
computes the state space. Finally, the temporal properties are verified over
the state graph. In our case, tlc reports that it has not found any error. In
order to improve efficiency, tlc compares states based on a hash code (“fin-
gerprint”) during the computation of the state space, rather than comparing

3
tlc ignores any theorems asserted in the module.
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them precisely. In the case of a hash collision, tlc will mistakenly identify two
distinct states and may therefore miss part of the state space. tlc attempts to
estimate the probability that such a collision occurred during the run, based
on the distribution of the fingerprints. tlc also reports the number of states
it generated during its analysis, the number of distinct states, and the depth
of the state graph, i.e. the length of the longest cycle. These statistics can be
valuable information; for example, if the number of generated states is lower
than expected, some actions may have pre-conditions that never evaluate to
true. It is a good idea to use tlc to verify many, even trivial, properties, as
well as some non-properties. For example, one can attempt to assert the nega-
tion of each action guard as an invariant in order to let tlc compute a finite
execution that ends in a state where the action can actually be activated. For
our example, the tlc run completes in a few seconds; most of the running
time is spent on the verification of property Liveness , which is expanded into
six properties, for each combination of clients and resources.

After this initial success, we can try to analyse somewhat larger instances,
but this quickly leads to the well-known problem of state-space explosion. For
example, increasing the number of resources from 2 to 3 in our model results in
a state graph that contains 8000 distinct states (among 45697 states generated
in all), and the analysis will take a few minutes instead of seconds.

One may observe that the specification and the properties to be verified
are invariant with respect to permutations of the sets of clients and resources.
Such symmetries are frequent, and tlc implements a technique known as
symmetry reduction, which can counteract the effect of state-space explosion.
In order to enable symmetry reduction, we simply extend the TLA+ module
by the definition of the predicate

Symmetry
∆

= Permutations(Clients) ∪ Permutations(Resources)

(the operator Permutations is defined in the standard TLC module, which
must therefore be added to the extends clause) and to indicate

SYMMETRY Symmetry

in the configuration file. Unfortunately, the implementation of symmetry re-
duction in tlc is not compatible with checking liveness properties, and in
fact, tlc reports a meaningless “counter-example” when symmetry reduc-
tion is enabled during the verification of the liveness property of our example.
However, when restricted to checking the invariants, symmetry reduction with
respect to both parameter sets reduces the number of states explored to 50
(respectively 309 for three clients and three resources), and the runtimes are
similarly reduced to fractions of a second for either configuration.

We can use tlc to explore variants of our specification. For example,
verification succeeds when the strong fairness condition

∀ c ∈ Clients : SFvars(∃S ∈ subset Resources : Allocate(c,S ))

is replaced by the following condition about individual resources:
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∀ c ∈ Clients , r ∈ Resources : SFvars(Allocate(c, {r})).

However, the liveness condition is violated when the strong fairness condition
is replaced by either of the two following fairness conditions:

∀ c ∈ Clients : WFvars(∃S ∈ subset Resources : Allocate(c,S ))
SFvars(∃ c ∈ Clients ,S ∈ subset Resources : Allocate(c,S )).

It is a good exercise to understand these alternative fairness hypotheses in
detail and to explain the verification results. Fairness conditions and their
representation in TLA are formally defined in Sect. 3.3.

3 TLA: the Temporal Logic of Actions

TLA+ combines TLA, the Temporal Logic of Actions [28], and mathemati-
cal set theory. This section introduces the logic TLA by defining its syntax
and semantics. In these definitions, we aim at formality and rigor; we do not
attempt to explain how TLA is used to specify algorithms or systems. Sec-
tions 4 and 5 explore respectively the verification of temporal formulas and
the specification of data structures in set theory.

3.1 Rationale

The logic of time has its origins in philosophy and linguistics, where it was
intended to formalize temporal references in natural language [23,39]. Around
1975, Pnueli [38] and others recognized that such logics could be useful as a
basis for the semantics of computer programs. In particular, traditional for-
malisms based on pre- and post-conditions were found to be ill-suited for
the description of reactive systems that continuously interact with their en-
vironment and are not necessarily intended to terminate. Temporal logic, as
it came to be called in computer science, offered an elegant framework to
describe safety and liveness properties [10, 26] of reactive systems. Different
dialects of temporal logic can be distinguished according to the properties
assumed of the underlying model of time (e.g., discrete or dense) and the
connectives available to refer to different moments in time (e.g., future vs.
past references). For computer science applications, the most controversial
distinction has been between linear-time and branching-time logics. In the
linear-time view, a system is identified with the set of its executions, modeled
as infinite sequences of states, whereas the branching-time view also considers
the branching structure of a system. Linear-time temporal logics, including
TLA, are appropriate for formulating correctness properties that must hold
of all the runs of a system. In contrast, branching-time temporal logics can
also express possibility properties, such as the existence of a path, from every
reachable state, to a “reset” state. The discussion of the relative merits and
deficiencies of these two kinds of temporal logics is beyond the scope of this
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paper, but see, e.g., Vardi [44] for a good summary, with many references to
earlier papers.

Despite initial enthusiasm about temporal logic as a language to describe
system properties, attempts to actually write complete system specifications
as lists of properties expressed in temporal logic revealed that not even a
component as simple as a FIFO queue could be unambiguously specified [41].
This observation has led many researchers to propose that reactive systems
should be modelled as state machines, while temporal logic was retained as
a high-level language to describe the correctness properties. A major break-
through came with the insight that temporal logic properties are decidable
over finite-state models, and this has led to the development of model checking
techniques [15], which are today routinely applied to the analysis of hardware
circuits, communication protocols, and software.

A further weakness of standard temporal logic becomes apparent when
one attempts to compare two specifications of the same system, written at
different levels of abstraction. Specifically, atomic system actions are usually
described via a “next-state” operator, but the “grain of atomicity” typically
changes during refinement, making comparisons between specifications more
difficult. For example, in Sect. 6 we will develop a specification of the resource
allocator of Fig. 1 as a distributed system where the allocator and the clients
communicate by asynchronous message passing. Each of the actions will be
split into a subaction performed by the allocator, the corresponding subaction
performed by the client, and the message transmission over the network, and
these subactions will be interleaved with other system events. On the face
of it, the two specifications are hard to compare because they use different
notions of “next state”.

TLA has been designed as a formalism where system specifications and
their properties are expressed in the same language, and where the refinement
relation is reduced to logical implication. The problems mentioned above are
addressed in the following ways: TLA is particularly suited for writing state
machine specifications, augmented with fairness conditions, as we have seen in
the case of the resource allocator. It is often desirable to expose only that part
of the state used to specify a state machine that makes up its externally visible
interface, and TLA introduces quantification over state variables to hide the
internal state, which a refinement is free to implement in a different manner.
The problem with incompatible notions of “next state” at different levels of
abstraction is solved by systematically allowing for stuttering steps that do
not change the values of the (high-level) state variables. Low-level steps of
an implementation that change only new variables are therefore allowed by
the high-level specification. Similar ideas can be found in Back’s refinement
calculus [11] and in Abrial’s Event-B method [9,13]. Whereas finite stuttering
is desirable for a simple representation of refinement, infinite stuttering is usu-
ally undesirable, because it corresponds to livelock, and the above formalisms
rule it out via proof obligations that are expressed in terms of well-founded
orderings. TLA adopts a more abstract and flexible approach because it as-
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sociates fairness conditions, stated in temporal logic, with specifications, and
these must be shown to be preserved by the refinement, typically using a mix
of low-level fairness hypotheses and well-founded ordering arguments.

Based on these concepts, TLA provides a unified logical language to ex-
press system specifications and their properties. A single set of logical rules is
used for system verification and for proving refinement.

3.2 Transition formulas

The language of TLA distinguishes between transition formulas, which de-
scribe states and state transitions, and temporal formulas, which characterize
behaviors (infinite sequences of states). Basically, transition formulas are or-
dinary formulas of untyped first-order logic, but TLA introduces a number of
specific conventions and notations.

Assume a signature of first-order predicate logic4, consisting of:

• at most denumerable sets LF and LP of function and predicate symbols,
each symbol of given arity, and

• a denumerable set V of variables, partitioned into denumerable sets VF

and VR of flexible and rigid variables.

These sets should be disjoint from one another; moreover, no variable in V
should be of the form v ′. By VF ′ , we denote the set {v ′ | v ∈ VF} of primed
flexible variables, and by VE , the union V ∪ VF ′ of all variables (rigid and
flexible, primed or unprimed).

Transition functions and transition predicates (also called actions) are
first-order terms and formulas built from the symbols in LF and LP , and
from the variables in VE . For example, if f is a ternary function symbol, p is
a unary predicate symbol, x ∈ VR, and v ∈ VF , then f (v , x , v ′) is a transition
function, and the formula

C
∆

= ∃ v ′ : p(f (v , x , v ′)) ∧ ¬(v ′ = x )

is an action. Collectively, transition functions and predicates are called tran-

sition formulas in the literature on TLA.
Transition formulas are interpreted according to ordinary first-order logic

semantics: an interpretation I defines a universe |I| of values and interprets
each symbol in LF by a function and each symbol in LP by a relation of
appropriate arities. In preparation for the semantics of temporal formulas, we
distinguish between the valuations of flexible and rigid variables. A state is
a mapping s : VF → |I| of the flexible variables to values. Given two states
s and t and a valuation ξ : VR → |I| of the rigid variables, we define the
combined valuation αs,t,ξ of the variables in VE as the mapping such that

4 Recall that TLA can be defined over an arbitrary first-order language. The logic of
TLA+ is just TLA over a specific set-theoretical language that will be introduced
in Sect. 5.
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αs,t,ξ(x ) = ξ(x ) for x ∈ VR, αs,t,ξ(v) = s(v) for v ∈ VF , and αs,t,ξ(v
′) = t(v)

for v ′ ∈ VF ′ . The semantics of a transition function or transition formula E ,
written JEKI,ξ

s,t , is then simply the standard predicate logic semantics of E

with respect to the extended valuation αs,t,ξ. We omit any of the super- and
subscripts if there is no danger of confusion.

We say that a transition predicate A is valid for the interpretation I iff
JAKI,ξ

s,t is true for all states s , t and all valuations ξ. It is satisfiable iff JAKI,ξ
s,t

is true for some s , t , and ξ.
The notions of free and bound variables in a transition formula are defined

as usual, with respect to the variables in VE , as is the notion of substitution
of a transition function a for a variable v ∈ VE in a transition formula E ,
written E [a/v ]. We assume that capture of free variables in a substitution is
avoided by an implicit renaming of bound variables. For example, variables v

and x are free in the action C defined above, whereas v ′ is bound. Observe
in particular that at the level of transition formulas, we consider v and v ′ to
be distinct, unrelated variables.

State formulas are transition formulas that do not contain free primed flex-
ible variables. For example, the action C above is actually a state predicate.
Because the semantics of state formulas only depends on a single state, we
simply write JPKξ

s when P is a state formula. Transition formulas all of whose
free variables are rigid variables are called constant formulas ; their semantics
depends only on the valuation ξ.

Beyond these standard concepts from first-order logic, TLA introduces
some specific conventions and notations. If E is a state formula then E ′ is
the transition formula obtained from E by replacing each free occurrence of a
flexible variable v in E with its primed counterpart v ′ (where bound variables
are renamed as necessary). For example, since the action C above is a state
formula with v as its single free flexible variable, the formula C ′ is formed
by substituting v ′ for v . In doing so, the bound variable v ′ of C has to be
renamed, and we obtain the formula ∃ y : p(f (v ′, x , y)) ∧ ¬(y = x ).

For an action A, the state formula Enabled A is obtained by existential
quantification over all primed flexible variables that have free occurrences
in A. Thus, JEnabled AKξ

s holds if JAKξ
s,t holds for some state t ; this is a

formal counterpart of the intuition that action A may occur in state s . For
actions A and B , the composite action A ·B is defined as ∃ z : A[z/v ′]∧B [z/v ]
where v is a list of all flexible variables vi such that vi occurs free in B or
v ′
i occurs free in A, and z is a corresponding list of fresh variables. It follows

that JA · BKξ
s,t holds iff both JAKξ

s,u and JBKξ
u,t hold for some state u.

Because many action-level abbreviations introduced by TLA are defined
in terms of implicit quantification and substitution, their interplay can be
quite delicate. For example, if P is a state predicate then Enabled P is
obviously just P , and therefore (Enabled P)′ equals P ′. On the other hand,
Enabled (P ′) is a constant formula – if P does not contain any rigid variables
then Enabled (P ′) is valid iff P is satisfiable. Similarly, consider the action
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A
∆

= v ∈ Z ∧ v ′ ∈ Z ∧ v ′ < 0

in the standard interpretation where Z denotes the set of integers, 0 denotes
the number zero, and ∗ and < denote multiplication and the “less than”
relation. It is easy to see that Enabled A is equivalent to the state predicate
v ∈ Z, hence (Enabled A)[(n ∗ n)/v , (n ′ ∗ n ′)/v ′] simplifies to (n ∗ n) ∈ Z.
However, substituting in the definition of the action yields

A[(n ∗ n)/v , (n ′ ∗ n ′)/v ′] ≡ (n ∗ n) ∈ Z ∧ (n ′ ∗ n ′) ∈ Z ∧ (n ′ ∗ n ′) < 0,

which is equivalent to false, and so Enabled (A[(n ∗ n)/v , (n ′ ∗ n ′)/v ′]) is
again equivalent to false: substitution does not commute with the enabled

operator. Similar pitfalls exist for action composition A · B .
For an action A and a state function t one writes [A]t (pronounced “square

A sub t”) for A∨ t ′ = t , and dually 〈A〉t (“angle A sub t”) for A∧ ¬(t ′ = t).
Therefore, [A]t is true of any state transition that satisfies A, but in ad-
dition permits so-called stuttering steps that leave (at least) the value of t

unchanged. Similarly, 〈A〉t demands that not only A be true but also that the
value of t changes during the transition. As we will see below, these constructs
are used to encapsulate action formulas in temporal formulas.

3.3 Temporal formulas

Syntax.

We now define the temporal layer of TLA, again with the aim of giving pre-
cise definitions of syntax and semantics. The inductive definition of temporal
formulas (or just “formulas”) is given as follows:

• Every state formula is a formula.
• Boolean combinations (connectives ¬, ∧, ∨, ⇒, and ≡) of formulas are

formulas.
• If F is a formula then so is 2F (“always F”).
• If A is an action and t is a state function then 2[A]t is a formula (pro-

nounced “always square A sub t”).
• If F is a formula and x ∈ VR is a rigid variable then ∃ x : F is a formula.
• If F is a formula and v ∈ VF is a flexible variable then ∃∃∃∃∃∃ v : F is a formula.

In particular, an action A by itself is not a temporal formula, not even in
the form [A]t . Action formulas occur within temporal formulas only in subfor-
mulas 2[A]t . We assume quantifiers to have lower syntactic precedence than
the other connectives, so their scope extends as far to the right as possible.

At the level of temporal formulas, if v ∈ VF is a flexible variable, then
we consider unprimed occurrences v as well as primed occurrences v ′ to be
occurrences of v , and the quantifier ∃∃∃∃∃∃ binds both kinds of occurrences. More
formally, the set of free variables of a temporal formula is a subset of VF ∪VR.
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The free occurrences of (rigid or flexible) variables in a state formula P , con-
sidered as a temporal formula, are precisely the free occurrences in P , consid-
ered as a transition formula. However, variable v ∈ VF has a free occurrence
in 2[A]t iff either v or v ′ has a free occurence in A, or if v occurs in t . Sim-
ilarly, the substitution F [e/v ] of a state function e for a flexible variable v

substitutes both e for v and e ′ for v ′ in the action subformulas of F , after
bound variables have been renamed as necessary. For example, substitution
of the state function h(v), where h ∈ LF and v ∈ VF , for w in the temporal
formula

∃∃∃∃∃∃ v : p(v ,w) ∧ 2[q(v , f (w , v ′),w ′)]g(v ,w)

results in the formula, up to renaming of the bound variable,

∃∃∃∃∃∃ u : p(u, h(v)) ∧ 2[q(u, f (h(v), u ′), h(v ′))]g(u,h(v)).

Because state formulas do not contain free occurrences of primed flexible
variables, the definitions of free and bound occurrences and of substitutions
introduced for transition formulas and for temporal formulas agree on state
formulas, and this observation justifies the use of the same notation at both
levels of formulas. Substitutions of terms for primed variables or of proper
transition functions for variables are not defined at the temporal level of TLA.

Semantics.

Given an interpretation I, temporal formulas are evaluated with respect to
an ω-sequence σ = s0s1 . . . of states si : VF → |I| (in the TLA literature, σ
is usually called a behavior), and with respect to a valuation ξ : VR → |I|
of the rigid variables. For a behavior σ = s0s1 . . ., we write σi to refer to
state si , and we write σ|i to denote the suffix sisi+1 . . . of σ. The following
inductive definition assigns a truth value JF KI,ξ

σ ∈ {t, f} to temporal formulas;
the semantics of the quantifier ∃∃∃∃∃∃ over flexible variables is deferred to Sect. 3.4.

• JPKI,ξ
σ = JPKI,ξ

σ0
: state formulas are evaluated at the initial state of the

behavior.
• The semantics of Boolean operators is the usual one.
• J2F KI,ξ

σ = t iff JF KI,ξ
σ|i

= t for all i ∈ N: this is the standard “always”

connective from linear-time temporal logic.
• J2[A]tK

I,ξ
σ = t iff for all i ∈ N, either JtKI,ξ

σi
= JtKI,ξ

σi+1
or JAKI,ξ

σi ,σi+1
= t

holds: the formula 2[A]t holds iff every state transition in σ that modifies
the value of t satisfies A.

• J∃ x : F KI,ξ
σ = t iff JF KI,η

σ = t for some valuation η : VR → |I| such that
η(y) = ξ(y) for all y ∈ VR \ {x}: this is standard first-order quantification
over (rigid) variables.

Validity and satisfiability of temporal formulas are defined as expected.
We write |=I F (or simply |= F when I is understood) to denote that F is
valid for (all behaviors based on) the interpretation I.
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Derived temporal formulas.

Abbreviations for temporal formulas include the universal quantifiers ∀ and ∀∀∀∀∀∀
over rigid and flexible variables. The formula 3F (“eventually F”), defined as
¬2¬F , asserts that F holds of some suffix of the behavior; similarly, 3〈A〉t
(“eventually angle A sub t”) is defined as ¬2[¬A]t and asserts that some
future transition satisfies A and changes the value of t . We write F ; G

(“F leads to G”) for the formula 2(F ⇒ 3G), which asserts that whenever
F is true, G will become true eventually. Combinations of the “always” and
“eventually” operators express “infinitely often” (23) and “always from some
time onward” (32). Observe that a formula F can be both infinitely often
true and infinitely often false, thus 32F is strictly stronger than 23F . These
combinations are at the basis of expressing fairness conditions. In particular,
weak and strong fairness for an action 〈A〉t are defined as

WFt(A)
∆

= (23¬Enabled 〈A〉t ) ∨ 23〈A〉t

≡ 32Enabled 〈A〉t ⇒ 23〈A〉t

≡ 2(2Enabled 〈A〉t ⇒ 3〈A〉t )

SFt(A)
∆

= (32¬Enabled 〈A〉t ) ∨ 23〈A〉t

≡ 23Enabled 〈A〉t ⇒ 23〈A〉t

≡ 2(23Enabled 〈A〉t ⇒ 3〈A〉t)

Informally, fairness conditions assert that an action should eventually oc-
cur if it is “often” enabled; they differ in the precise interpretation of “often”.
Weak fairness WFt (A) asserts that the action 〈A〉t must eventually occur if it
remains enabled from some point onwards. In other words, the weak fairness
condition is violated if eventually Enabled 〈A〉t remains true without 〈A〉t
ever occurring.

The strong fairness condition, expressed by the formula SFt(A), requires
〈A〉t to occur infinitely often provided that the action is infinitely often en-
abled, although it need not remain enabled forever. Therefore, strong fairness
is violated if from some point onward, the action is repeatedly enabled, but
never occurs. It is a simple exercise in expanding the definitions of temporal
formulas to prove that the different formulations of weak and strong fairness
given above are actually equivalent, and that SFt(A) implies WFt(A).

When specifying systems, the choice of appropriate fairness conditions for
system actions often requires some experience. Considering again the allocator
example of Fig. 1, it would not be enough to require weak fairness for the
Allocate actions because several clients may compete for the same resource:
allocation of the resource to one client disables allocating the resource to any
other client until the first client returns the resource.
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3.4 Stuttering invariance and quantification

The formulas 2[A]t are characteristic of TLA. As we have seen, they allow for
“stuttering” transitions that do not change the value of the state function t .
In particular, repetitions of states can not be observed by formulas of this
form. Stuttering invariance is important in connection with refinement and
composition [26], see also Sect. 3.5.

To formalize this notion, for a set V of flexible variables we define two
states s and t to be V-equivalent, written s =V t , iff s(v) = t(v) for all v ∈ V .
For any behavior σ, we define its V -unstuttered variant ♮V σ as the behavior
obtained by replacing every maximal finite subsequence of V-equivalent states
in σ by the first state of that sequence. (If σ ends in an infinite sequence of
states all of which are V-equivalent, that sequence is simply copied at the end
of ♮V σ.)

Two behaviors σ and τ are V-stuttering equivalent, written σ ≈V τ , if
♮V σ = ♮V τ . Intuitively, two behaviors σ and τ are V-stuttering equivalent
if one can be obtained from the other by inserting and/or deleting finite
repetitions of V-equivalent states. In particular, the relation ≈VF

, which we
also write as ≈, identifies two behaviors that agree up to finite repetitions of
identical states.

TLA is insensitive to stuttering equivalence: the following theorem states
that TLA is not expressive enough to distinguish stuttering-equivalent behav-
iors.

Theorem 0.1 (stuttering invariance). Assume that F is a TLA formula

whose free flexible variables are among V, that σ ≈V τ are V-stuttering equiv-

alent behaviors, and that ξ is a valuation. Then JF KI,ξ
σ = JF KI,ξ

τ .

For the fragment of TLA formulas without quantification over flexible
variables, whose semantics has been defined in Sect. 3.3, it is not hard to
prove Thm. 0.1 by induction on the structure of formulas [6,28]. However, its
extension to full TLA requires some care in the definition of quantification
over flexible variables: it would be natural to define that J∃∃∃∃∃∃ v : F KI,ξ

σ = t iff
JF KI,ξ

τ = t for some behavior τ whose states τi agree with the corresponding
states σi on all variables except for v . This definition, however, would not
preserve stuttering invariance. As an example, consider the formula F defined
below:

F
∆

= ∧ v = c ∧ w = c

∧ 3(w 6= c) ∧ 2[v 6= c]w

-σ

v

w

c

c

d

c

d

d

· · ·

· · ·

Formula F asserts that both variables v and w initially equal the con-
stant c, that eventually w should be different from c, and that v must be
different from c whenever w changes value. In particular, F implies that the
value of v must change strictly before any change in the value of w , as illus-
trated in the picture. Therefore, σ1(w) must equal c.
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Now consider the formula ∃∃∃∃∃∃ v : F , and assume that τ is a behavior that
satisfies ∃∃∃∃∃∃ v : F , according to the above definition. It follows that τ0(w) and
τ1(w) must both equal c, but that τi(w) is different from c for some (smallest)
i > 1. The behavior τ |i−1 cannot satisfy ∃∃∃∃∃∃ v : F because, intuitively, “there
is no room” for the internal variable v to change before w changes. However,
this is in contradiction to Thm. 0.1 because τ and τ |i−1 are {w}-stuttering
equivalent, and w is the only free flexible variable of ∃∃∃∃∃∃ v : F .

This problem is solved by defining the semantics of ∃∃∃∃∃∃ v : F in such a way
that stuttering invariance is ensured. Specifically, the behavior τ may contain
extra transitions that modify only the bound variable v . Formally, we say that
two behaviors σ and τ are equal up to v iff σi and τi agree on all variables
in VF \ {v}, for all i ∈ N. We say that σ and τ are similar up to v , written
σ ≃v τ iff there exist behaviors σ′ and τ ′ such that

• σ and σ′ are stuttering equivalent (σ ≈ σ′),
• σ′ and τ ′ are equal up to v , and
• τ ′ and τ are again stuttering equivalent (τ ′ ≈ τ).

Being defined as the composition of equivalence relations, ≃v is itself an equiv-
alence relation.

Now, we define J∃∃∃∃∃∃ v : F KI,ξ
σ = t iff JF KI,ξ

τ = t holds for some behavior
τ ≃v σ. This definition can be understood as “building stuttering invariance
into” the semantics of ∃∃∃∃∃∃ v : F . It therefore ensures that Thm. 0.1 holds for all
TLA formulas.

3.5 Properties, refinement, and composition

We have already seen in the example of the resource allocator that TLA
makes no formal distinction between system specifications and their proper-
ties: both are represented as temporal formulas. It is conventional to write
system specifications in the form

∃∃∃∃∃∃ x : Init ∧ 2[Next ]v ∧ L

where v is a tuple of all state variables used to express the specification, the
variables x are internal (hidden), Init is a state predicate representing the
initial condition, Next is an action that describes the next-state relation, usu-
ally written as a disjunction of individual system actions, and where L is a
conjunction of formulas WFv (A) or SFv (A) asserting fairness assumptions of
disjuncts of Next . However, other forms of system specifications are possible
and can occasionally be useful. Asserting that a system (specified by) S sat-
isfies a property F amounts to requiring that every behavior that satisfies
S must also satisfy F ; in other words, it asserts the validity of the implica-
tion S ⇒ F . For example, the theorems asserted in module SimpleAllocator

(Fig. 1) state three properties of the resource allocator.



410 Stephan Merz

System refinement.

TLA was designed to support stepwise system development based on a notion
of refinement. In such an approach, a first, high-level specification formally
states the problem at a high level of abstraction. A series of intermediate
models then introduce detail, adding algorithmic ideas. The development is
finished when a model is obtained that is detailed enough so that an imple-
mentation can be read off immediately or even mechanically generated (for
example, based on models of shared-variable or message-passing systems).
The fundamental requirement for useful notions of refinement is that they
must preserve system properties, such that properties established at a higher
level of abstraction are guaranteed to hold for later models, including the final
implementation. In this way, crucial correctness properties can be proven (or
errors can be detected) early on, simplifying their proofs or the correction of
the model, and these properties need never be reproven for later refinements.

A lower-level model, expressed by a TLA formula C , preserves all TLA
properties of an abstract specification A if and only if for every formula F ,
if A ⇒ F is valid, then so is C ⇒ F . This condition is in turn equivalent to
requiring the validity of C ⇒ A. Because C is expressed at a lower level of
abstraction, it will typically admit transitions that are invisible at the higher
level, acting on state variables that do not appear in A. The stuttering invari-
ance of TLA formulas is therefore essential to make validity of implication a
reasonable definition of refinement.

Assume that we are given two system specifications Abs and Conc in
standard form

Abs
∆

= ∃∃∃∃∃∃ x : AInit ∧ 2[ANext ]v ∧ AL and

Conc
∆

= ∃∃∃∃∃∃ y : CInit ∧ 2[CNext ]w ∧ CL.

Proving that Conc refines Abs amounts to showing the validity of the impli-
cation Conc ⇒ Abs , and using standard quantifier reasoning, this reduces to
proving

(CInit ∧ 2[CNext ]w ∧ CL) ⇒ (∃∃∃∃∃∃ x : AInit ∧ 2[ANext ]v ∧ AL).

The standard approach for proving the latter implication is to define a state
function t in terms of the free variables w (including y) of the left-hand side,
and to prove

(CInit ∧ 2[CNext ]w ∧ CL) ⇒ (AInit ∧ 2[ANext ]v ∧ AL)[t/x ].

In the computer science literature, the state function t is usually called a
refinement mapping. Proof rules for refinement will be considered in some
more detail in Sect. 4.5. A typical example for system refinement in TLA+

will be given in Sect. 6.3 where a “distributed” model of the resource allocator
will be developed that distinguishes between actions of the allocator and those
of the clients.
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-in -out
q

(a) Pictorial representation.

module InternalFIFO

extends Sequences
constant Message
variables in, out, q

NoMsg
∆
= choose x : x /∈ Message

Init
∆
= q = 〈〉 ∧ in = NoMsg ∧ out = NoMsg

Enq
∆
= in ′ ∈ Message \ {in} ∧ q ′ = Append(q , in ′) ∧ out ′ = out

Deq
∆
= q 6= 〈〉 ∧ out ′ = Head(q) ∧ q ′ = Tail(q) ∧ in ′ = in

Next
∆
= Enq ∨ Deq

vars
∆
= 〈in,out , q〉

IFifo
∆
= Init ∧ 2[Next ]vars ∧ WFvars(Deq)

(b) Internal specification.

module FIFO

constant Message
variables in, out

Internal(q)
∆
= instance InternalFIFO

Fifo
∆
= ∃∃∃∃∃∃ q : Internal(q)!IFifo

(c) Interface specification.

Fig. 4. Specification of a FIFO queue.

Composition of systems.

Stuttering invariance is also essential for obtaining a simple representation of
the (parallel) composition of components, represented by their specifications.
In fact, assume that A and B are specifications of two components that we
wish to compose in order to form a larger system. Each of these formulas
describes the possible behaviors of the “part of the world” relevant for the
respective component, represented by the state variables that have free occur-
rences in the component specification. A system that contains both compo-
nents (possibly among other constituents) must therefore satisfy both A and
B : composition is conjunction. Again, state transitions that correspond to a
local action of one of the components are allowed because they are stutter-
ing transitions of the other components. Any synchronisation between the two
components is reflected in changes of a common state variable (the component
interfaces), and these changes must be allowed by both components.
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As a test of these ideas, consider the specification of a FIFO queue shown
in Fig. 4 that is written in the canonical form of TLA specifications. The
queue receives inputs via the channel in and sends its outputs via the channel
out ; it stores values that have been received but not yet sent in an internal
queue q. Initially, we assume that the channels hold some “null” value and
that the internal queue is empty. An enqueue action, described by action Enq,
is triggered by the reception of a new message (represented as a change of the
input channel in); it appends the new input value to the internal queue. A
dequeue action, specified by action Deq, is possible whenever the internal
queue is non-empty: the value at the head of the queue is sent over channel
out and removed from the queue.

We expect that two FIFO queues in a row implement another FIFO queue.
Formally, let us assume that the two queues are connected by a channel mid ,
then the above principles lead us to expect that the formula5

Fifo[mid/out ] ∧ Fifo[mid/in] ⇒ Fifo

is valid. Unfortunately, this is not true, for the following reason: formula Fifo

implies that the in and out channels never change simultaneously, whereas the
conjunction on the left-hand side allows such changes (if the left-hand queue
performs an Enq action, while the right-hand queue performs a Deq). This
technical problem can be attributed to a design decision taken in the specifi-
cation of the FIFO queue to disallow simultaneous changes to its input and
output interfaces, a specification style known as “interleaving specifications”.
In fact, the above argument shows that the composition of two queues speci-
fied in interleaving style does not implement an interleaving queue. The choice
of an interleaving or a non-interleaving specification style is made by the per-
son who writes the specification; interleaving specifications are usually found
easier to write and to understand. The problem disappears if we explicitly
add an “interleaving” assumption for the composition: the implication

Fifo[mid/out ] ∧ Fifo[mid/in] ∧ 2[in ′ = in ∨ out ′ = out ]in,out

⇒ Fifo
(1)

is valid and its proof will be considered in Sect. 4.5. Alternatively, one can
write a non-interleaving specificationof a queue that allows for input and out-
put actions to occur simultaneously.

3.6 Variations and extensions

We discuss some of the choices that we have made in the presentation of TLA,
as well as possible extensions.

5 TLA+ introduces concrete syntax, based on module instantiation, for writing
substitutions such as Fifo[mid/out ].
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Transition Formulas and Priming.

Our presentation of TLA is based on standard first-order logic, to the ex-
tent possible. In particular, we have defined transition formulas as formulas
of ordinary predicate logic over a large set VE of variables where v and v ′ are
unrelated. An alternative presentation would consider ′ as an operator, resem-
bling the next-time modality of temporal logic. The two styles of presentation
result in the same semantics of temporal formulas. The style adopted in this
paper corresponds well to the verification rules of TLA, explored in Sect. 4,
where action-level hypotheses are considered as ordinary first-order formulas
over an extended set of variables.

Compositional Verification.

We have argued in Sect. 3.5 that composition is represented in TLA as con-
junction. Because components can rarely be expected to operate correctly in
arbitrary environments, their specifications usually include some assumptions
about the environment. An open system specification is one that does not con-
strain its environment; it asserts that the component will function correctly
provided that the environment behaves as expected. One way to write such
specifications is in the form of implications E ⇒ M where E describes the
environment assumptions and M , the component specification. However, it
turns out that often a stronger form of specifications is desirable that requires
the component to adhere to its description M for at least as long as the envi-
ronment has not broken its obligation E . In particular, when systems are built
from “open” component specifications, this form, written E

+−⊲ M , admits a
strong composition rule that can discharge mutual assumptions between com-
ponents [4,16]. It can be shown that the formula E

+−⊲ M is actually definable
in TLA, and that the resulting composition rule can be justified in terms
of an abstract logic of specifications, supplemented by principles specific to
TLA [5,7].

TLA*.

The language of TLA distinguishes the tiers of transition formulas and tem-
poral formulas; transition formulas must be guarded by “brackets” to ensure
stuttering invariance. Although the separation between the two tiers is nat-
ural when writing system specifications, it is not a prerequisite to obtaining
stuttering invariance. The logic TLA* [37] generalizes TLA in that it distin-
guishes between pure and impure temporal formulas. Whereas pure formulas
of TLA* contain impure formulas in the same way that temporal formulas of
TLA contain transition formulas, impure formulas generalize transition for-
mulas in that they admit Boolean combinations of F and cG, where F and
G are pure formulas and c is the next-time modality of temporal logic. For
example, the TLA* formula

2
[

A ⇒ c3〈B〉u
]

t
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requires that every 〈A〉t action must eventually be followed by 〈B〉u . Assuming
appropriate syntactic conventions, TLA* is a generalization of TLA because
every TLA formula is also a TLA* formula, with the same semantics. On
the other hand, it can be shown that every TLA* formula can be expressed
in TLA using some additional quantifiers. For example, the TLA* formula
above is equivalent to the TLA formula6

∃∃∃∃∃∃ v : ∧ 2((v = c) ≡ 3〈B〉u)
∧ 2[A ⇒ v ′ = c]t

where c is a constant and v is a fresh flexible variable. TLA* thus offers a
richer syntax without increasing the expressiveness, allowing high-level re-
quirement specifications to be expressed more directly. (Kaminski [22] shows
that TLA* without quantification over flexible variables is strictly more ex-
pressive than the corresponding fragment of TLA). Besides offering a more
natural way to write temporal properties beyond standard system specifica-
tions, the propositional fragment of TLA* admits a straightforward complete
axiomatization. (No complete axiomatization is known for propositional TLA,
although Abadi [1] axiomatized an early version of TLA that was not invariant
under stuttering.) For example,

2[F ⇒ cF ]v ⇒ (F ⇒ 2F )

where F is a temporal formula and v is a tuple containing all flexible variables
with free occurrences in F , is a TLA* formulation of the usual induction axiom
of temporal logic; this is a TLA formula only if F is in fact a state formula.

Binary Temporal Operators.

TLA can be considered as a fragment of the standard linear-time temporal
logic LTL [35]. In particular, TLA does not include binary operators such as
until. The main reason for that omission is the orientation of TLA towards
writing specifications of state machines, where such operators are not neces-
sary. Moreover, nested occurrences of binary temporal operators can be hard
to interpret. Nevertheless, binary temporal operators are definable in TLA
using quantification over flexible variables. For example, suppose that P and
Q are state predicates whose free variables are among the tuple w of vari-
ables, that v is a flexible variable that does not appear in w , and that c is a
constant. Then P until Q can be defined as the formula

∃∃∃∃∃∃ v : ∧ (v = c) ≡ Q

∧ 2[(v 6= c ⇒ P) ∧ (v ′ = c ≡ (v = c ∨Q ′))]〈v ,w〉

∧ 3Q

The idea is to use the auxiliary variable v to remember whether Q has already
been true. As long as Q has been false, P is required to hold. For arbitrary

6 Strictly, this equivalence is true only for universes that contain at least two distinct
values; one-element universes are not very interesting.
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TLA formulas F and G, the formula F until G can be defined along the
same lines, using a similar technique as shown for the translation of TLA*

formulas above.

4 Deductive System Verification in TLA

Because TLA formulas are used to describe systems as well as their properties,
proof rules for system verification are just logical axioms and rules of TLA.
More precisely, a system described by formula Spec has property Prop if and
only if every behavior that satisfies Spec also satisfies Prop, that is, iff the im-
plication Spec ⇒ Prop is valid. (To be really precise, the implication should be
valid over the class of interpretations where the function and predicate sym-
bols have the intended meaning.) System verification, in principle, therefore
requires reasoning about sets of behaviors. The TLA proof rules are designed
to reduce this temporal reasoning, whenever possible, to the proof of verifi-
cation conditions expressed in the underlying predicate logic, a strategy that
is commonly referred to as assertional reasoning. In this section, we present
some typical rules and illustrate their use. We are not trying to be exhaustive,
more information can be found in Lamport’s original TLA paper [28].

4.1 Invariants

Invariants characterize the set of states that can be reached during system
execution; they are the basic form of safety properties and the starting point
for any form of system verification. In TLA, an invariant is expressed by a
formula of the form 2I , for a state formula I .

A basic rule for proving invariants is given by

I ∧ [N ]t ⇒ I ′

(INV1)
I ∧ 2[N ]t ⇒ 2I

This rule asserts that whenever the hypothesis I ∧ [N ]t ⇒ I ′ is valid as
a transition formula, the conclusion I ∧ 2[N ]t ⇒ 2I is a valid temporal
formula. The hypothesis states that every possible transition (stuttering or
not) preserves I ; thus, if I holds initially it is guaranteed to hold forever.
Formally, the correctness of rule (INV1) is easily established by induction on
behaviors. Because the hypothesis is a transition formula, it can be proven
using ordinary first-order reasoning, including “data” axioms that characterize
the intended interpretations.

For example, we can use the invariant rule (INV1) to prove the invari-
ant 2(q ∈ Seq(Message)) of the FIFO queue that was specified in module
InternalFIFO of Fig. 4(b). We have to prove

IFifo ⇒ 2(q ∈ Seq(Message)) (2)
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which, by rule (INV1), the definition of formula IFifo, and propositional logic
can be reduced to proving

Init ⇒ q ∈ Seq(Message) (3)

q ∈ Seq(Message) ∧ [Next ]vars ⇒ q ′ ∈ Seq(Message) (4)

Because the empty sequence is certainly a finite sequence of messages, the
proof obligation (3) follows from the definition of Init and appropriate data
axioms. Similarly, the proof of (4) reduces to proving preservation of the in-
variant by the Deq and Enq actions, as well as under stuttering, and these
proofs are again straightforward.

The proof rule (INV1) requires that the invariant I is inductive: it must
be preserved by every possible system action. As with ordinary mathematical
induction, it is usually necessary to strengthen the assertion and find an “in-
duction hypothesis” that makes the proof go through. This idea is embodied
in the following derived invariant rule

Init ⇒ I I ∧ [Next ]t ⇒ I ′ I ⇒ J
(INV)

Init ∧ 2[Next ]t ⇒ 2J

In this rule, I is an inductive invariant that implies J . The creative step
consists in finding this inductive invariant. Typically, inductive invariants con-
tain interesting “design” information about the model and represent the over-
all correctness idea. Some formal design methods, such as the B method [8,13]
therefore demand that an inductive invariant be documented with the system
model.

For example, suppose we wish to prove that any two consecutive elements
of the queue are different. This property can be expressed in TLA+ by the
state predicate

J
∆

= ∀ i ∈ 1..Len(q) − 1 : q[i ] 6= q[i + 1]

We have used some TLA+ syntax for sequences in writing formula J ; in par-
ticular, a sequence s in TLA+ is represented as a function whose values can be
accessed as s [1], . . . , s [Len(s)]. The sequence formed of the values e1, . . . , en
is written as 〈e1, . . . , en〉, and the concatenation of two sequences s and t is
written s ◦ t .

The invariant rule (INV1) is not strong enough to prove that J is an
invariant, because J is not necessarily preserved by the Enq step: there is no
information about how the old value in of the input channel relates to the
values in the queue. (Try this proof yourself to see why it fails.) The proof
succeeds using rule (INV) and the inductive invariant

Inv
∆

= let oq
∆

= 〈out〉 ◦ q

in ∧ in = oq[Len(oq)]
∧ ∀ i ∈ 1..Len(oq) − 1 : oq[i ] 6= oq[i + 1]



The Specification Language TLA+ 417

which asserts that the current value of the input channel can either be found
as the last element of the queue or (if the queue is empty) as the current value
of the output channel.

4.2 Step simulation

When proving refinement between two TLA specifications, a crucial step is to
show that the next-state relation of the lower-level specification, say expressed
as 2[M ]t , simulates the next-state relation 2[N ]u of the higher-level one, up
to stuttering. The following proof rule is used for this purpose; it relies on a
previously proven state invariant I :

I ∧ I ′ ∧ [M ]t ⇒ [N ]u
(TLA2)

2I ∧ 2[M ]t ⇒ 2[N ]u

In particular, it follows from (TLA2) that the next-state relation can be
strengthened by an invariant:

2I ∧ 2[M ]t ⇒ 2[M ∧ I ∧ I ′]t

Note that the converse of this implication is not valid: the right-hand side
holds of any behavior where t never changes, independently of the formula I .

We may use (TLA2) to prove that the FIFO queue never dequeues the
same value twice in a row:

IFifo ⇒ 2[Deq ⇒ out ′ 6= out ]vars (5)

For this proof, we make use of the inductive invariant Inv introduced in
Sect. 4.1 above. By rule (TLA2), we have to prove

Inv ∧ Inv ′ ∧ [Next ]vars ⇒ [Deq ⇒ out ′ 6= out ]vars (6)

The proof of (6) reduces to the three cases of a stuttering transition, an
Enq action, and a Deq action. Only the last case is non-trivial. Its proof
relies on the definition of Deq, which implies that q is non-empty and that
out ′ = Head(q). In particular, the sequence oq contains at least two elements,
and therefore Inv implies that oq[1], which is just out , is different from oq[2],
which is Head(q). This suffices to prove out ′ 6= out .

4.3 Liveness properties

Liveness properties, intuitively, assert that something good must eventually
happen [10,25]. Because formulas 2[N ]t are satisfied by a system that always
stutters, the proof of liveness properties must ultimately rely on fairness prop-
erties assumed of the specification. TLA provides rules to deduce elementary
liveness properties from the fairness properties assumed of a specification.
More complex properties can then be inferred with the help of well-founded
orderings.
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The following rule can be used to prove a leads-to formula from a weak
fairness assumption, a similar rule exists for strong fairness.

I ∧ I ′ ∧ P ∧ [N ]t ⇒ P ′ ∨ Q ′

I ∧ I ′ ∧ P ∧ 〈N ∧ A〉t ⇒ Q ′

I ∧ P ⇒ Enabled 〈A〉t (WF1)
2I ∧ 2[N ]t ∧ WFt (A) ⇒ (P ; Q)

In this rule, I , P , and Q are state predicates, I is again an invariant, [N ]t
represents the next-state relation, and 〈A〉t is a “helpful action” [34] for which
weak fairness is assumed. Again, all three premises of (WF1) are transition
formulas. To see why the rule is correct, assume that σ is a behavior satisfying
2I ∧ 2[N ]t ∧ WFt (A), and that P holds of state σi . We have to show that
Q holds of some σj with j ≥ i . By the first premise, any successor of a state
satisfying P has to satisfy P or Q , so P must hold for as long as Q has not
been true. The third premise ensures that in all of these states, action 〈A〉t
is enabled, and so the assumption of weak fairness ensures that eventually
〈A〉t occurs (unless Q has already become true before). Finally, by the second
premise, any 〈A〉t -successor (which, by assumption, is in fact an 〈N ∧ A〉t -
successor) of a state satisfying P must satisfy Q , which proves the claim.

For our running example, we can use rule (WF1) to prove that every
message stored in the queue will eventually move closer to the head of the
queue or even to the output channel. Formally, let the state predicate at(k , x )
be defined by

at(k , x )
∆

= k ∈ 1..Len(q) ∧ q[k ] = x

We will use (WF1) to prove

FifoI ⇒
(

at(k , x ) ; (out = x ∨ at(k − 1, x ))
)

(7)

where k and x are rigid variables. The following proof outline illustrates
the application of rule (WF1), the lower-level steps are all inferred by non-
temporal reasoning and are omitted.

1. at(k , x ) ∧ [Next ]vars ⇒ at(k , x )′ ∨ out ′ = x ∨ at(k − 1, x )′

1.1. at(k , x ) ∧ m ∈ Message ∧ Enq ⇒ at(k , x )′

1.2. at(k , x ) ∧ Deq ∧ k = 1 ⇒ out ′ = x

1.3. at(k , x ) ∧ Deq ∧ k > 1 ⇒ at(k − 1, x )′

1.4. at(k , x ) ∧ vars ′ = vars ⇒ at(k , x )′

1.5. Q.E.D.
From steps 1.1–1.4 by the definitions of Next and at(k , x ).

2. at(k , x ) ∧ 〈Deq ∧ Next〉vars ⇒ out ′ = x ∨ at(k − 1, x )′

Follows from steps 1.2 and 1.3 above.
3. at(k , x ) ⇒ Enabled 〈Deq〉vars

For any k , at(k , x ) implies that q 6= 〈〉 and thus the enabledness condition.

However, rule (WF1) cannot be used to prove the stronger property that
every input to the queue will eventually be dequeued, expressed by the TLA
formula
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FifoI ⇒ ∀m ∈ Message : in = m ; out = m (8)

because there is no single “helpful action”: the number of Deq actions nec-
essary to produce the input element on the output channel depends on the
length of the queue. Intuitively, the argument used to establish property (7)
must be iterated. The following rule formalizes this idea as an induction over
a well-founded relation (D ,≻), i.e. a binary relation such that there does not
exist an infinite descending chain d1 ≻ d2 ≻ . . . of elements di ∈ D .

(D ,≻) is well−founded
F ⇒ ∀ d ∈ D :

(

G ; (H ∨ ∃ e ∈ D : d ≻ e ∧G[e/d ])
)

(LATTICE)
F ⇒ ∀ d ∈ D : (G ; H )

In this rule, d and e are rigid variables such that d does not occur in H and
e does not occur in G. For convenience, we have stated rule (LATTICE) in a
language of set theory. Also, we have taken the liberty to state the assumption
that (D ,≻) is well-founded as if it were a logical hypothesis. As an illustration
of the expressiveness of TLA, we observe in passing that in principle this
hypothesis could be stated by the temporal formula

∧ ∀ d ∈ D : ¬(d ≻ d)
∧ ∀∀∀∀∀∀ v : 2(v ∈ D) ∧ 2[v ≻ v ′]v ⇒ 32[false]v

whose first conjunct expresses the irreflexivity of ≻ and whose second conjunct
asserts that any sequence of values in D that can only change by decreasing
with respect to ≻ must eventually become stationary. In system verification,
well-foundedness is however usually considered as a “data axiom” and is out-
side the scope of temporal reasoning.

Unlike the premises of the rules considered so far, the second hypothe-
sis of rule (LATTICE) is itself a temporal formula that requires that every
occurrence of G, for any value d ∈ D , be followed either by an occurrence
of H , or again by some G, for some smaller value e. Because there cannot
be an infinite descending chain of values in D , eventually H must become
true. In applications of rule (LATTICE), this hypothesis must be discharged
by another rule for proving liveness, either a fairness rule such as (WF1) or
another application of (LATTICE).

Choosing (N, >), the set of natural numbers with the standard “greater-
than” relation as the well-founded domain, the proof of the liveness property
(8) that asserts that the FIFO queue eventually outputs every message it
receives can be derived from property (7) and the invariant Inv of Sect. 4.1
using rule (LATTICE).

Lamport [28] lists further (derived) rules for liveness properties, including
introduction rules for proving formulas WFt (A) and SFt (A) that are necessary
when proving refinement.
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(STL1)
F

2F
(STL4) 2(F ⇒ G) ⇒ (2F ⇒ 2G)

(STL2) 2F ⇒ F (STL5) 2(F ∧ G) ≡ (2F ∧ 2G)

(STL3) 22F ≡ 2F (STL6) 32(F ∧ G) ≡ (32F ∧ 32G)

Fig. 5. Rules of simple temporal logic.

4.4 Simple temporal logic

The proof rules considered so far support the derivation of typical correctness
properties of systems. In addition, TLA satisfies standard axioms and rules of
linear-time temporal logic that are useful when preparing the application of
verification rules. Figure 5 contains the axioms and rules of “simple temporal
logic”, adapted from Lamport [28]. It can be shown that this is just a non-
standard presentation of the modal logic S4.2 [20], implying that these laws by
themselves characterize a modal accessibility relation for 2 that is reflexive,
transitive, and locally convex (confluent). The latter condition asserts that for
any state s and states t , u that are both accessible from s there is a state v

that is accessible from t and u.
Many derived laws of temporal logic are useful for system verification.

Particularly useful are rules about the “leadsto” operator such as

F ⇒ G

F ; G

F ; G G ; H

F ; H

F ; H G ; H

(F ∨ G) ; H

F ⇒ 2G F ; H

F ; (G ∧ H )

In principle, such temporal logic rules can be derived from the rules of
Fig. 5. In practice, it can be easier to justify them from the semantics of
temporal logic. Because validity of propositional temporal logic is decidable,
they can be checked automatically by freely available tools.

4.5 Quantifier rules

Although we have seen in section 3.4 that the semantics of quantification over
flexible variables is non-standard, the familiar proof rules from first-order logic
are sound for both types of quantifiers:

F [c/x ] ⇒ ∃ x : F (∃ I)
F ⇒ G

(∃E)
(∃ x : F ) ⇒ G

F [t/v ] ⇒ ∃∃∃∃∃∃ v : F (∃∃∃∃∃∃ I)
F ⇒ G

(∃∃∃∃∃∃E)
(∃∃∃∃∃∃ v : F ) ⇒ G
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In these rules, x is a rigid and v is a flexible variable. The elimination rules
(∃E) and (∃∃∃∃∃∃E) require the usual proviso that the bound variable should not
be free in formula G. In the introduction rules, t is a state function, while c

is a constant function. Observe that if we allowed an arbitrary state function
in rule (∃ I), we could prove

∃ x : 2(v = x ) (9)

for any state variable v from the premise 2(v = v), provable by (STL1).
However, formula (9) asserts that v remains constant throughout a behavior,
which can obviously not be valid.

Since existential quantification over flexible variables corresponds to hiding
of state components, the rules (∃∃∃∃∃∃ I) and (∃∃∃∃∃∃E) play a fundamental role in
proofs of refinement for reactive systems. In this context, the “witness” t

is often called a refinement mapping [2]. For example, the concatenation of
the two low-level queues provides a suitable refinement mapping to prove
the validity of formula (1), which claimed that two FIFO queues in a row
implement a FIFO queue, assuming interleaving of changes to the input and
output channels.

Although the quantifier rules are standard, one should recall from Sect. 3.2
that care has to be taken when substitutions are applied to formulas that
contain implicit quantifiers. In particular, the formulas WFt(A) and SFt(A)
contain the subformula Enabled 〈A〉t , and therefore WFt (A)[e/v ] is not gen-
erally equivalent to the formula WFt[e/v ](A[e/v , e ′/v ′]). The consequences of
this inequivalence for system verification are discussed in more detail in Lam-
port’s original TLA paper [28].

In general, refinement mappings need not always exist. For example, (∃∃∃∃∃∃ I)
cannot be used to prove the TLA formula

∃∃∃∃∃∃ v : 23〈true〉v (10)

that is valid, except over universes that contain a single element. Formula (10)
asserts the existence of a flexible variable whose value changes infinitely often.
(Such a variable can be seen as an “oscillator”, triggering system transitions.)
In fact, an attempt to prove (10) by rule (∃∃∃∃∃∃ I) would require exhibiting a state
function t whose value is certain to change infinitely often in any behavior.
Such a state function cannot exist: consider a behavior σ that ends in infinite
stuttering, then the value of t never changes over the stuttering part of σ.

An approach to solving this problem, introduced in [2], consists of adding
auxiliary variables such as history and prophecy variables. Formally, this ap-
proach consists in adding special introduction rules for auxiliary variables.
The proof of G ⇒ ∃∃∃∃∃∃ v : F is then reduced to first proving a formula of the
form G ⇒ ∃∃∃∃∃∃ a : Gaux using a rule for auxiliary variables, and then use the
rules (∃∃∃∃∃∃E) and (∃∃∃∃∃∃ I) above to prove G ∧ Gaux ⇒ ∃∃∃∃∃∃ v : F . The details are
beyond the scope of this introductory overview.
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5 Formalized Mathematics: the Added Value of TLA+

The definitions of the syntax and semantics of TLA in Sect. 3 were given
with respect to an arbitrary language of predicate logic and its interpretation.
TLA+ instantiates this generic definition of TLA with a specific first-order
language, namely Zermelo-Fränkel set theory with choice. By adopting a stan-
dard interpretation, TLA+ specifications are precise and unambiguous about
the “data structures” on which specifications are based. We have seen in the
example proofs in Sect. 4 that reasoning about data accounts for most of the
steps that need to be proved during system verification. Besides fixing the vo-
cabulary of the logical language and the intended interpretation, TLA+ also
introduces facilities for structuring a specification as a hierarchy of modules,
for declaring parameters, and most importantly, for defining operators. These
facilities are essential for writing actual specifications and must therefore be
mastered by any user of TLA+. However, from the foundational point of view
adopted in this paper, they are just syntactic sugar. We will therefore con-
centrate on the set-theoretic foundations, referring the reader to Lamport’s
book [30] for a detailed presentation of the language of TLA+.

5.1 Elementary data structures: basic set theory

Elementary set theory is based on a signature that consists of a single binary
predicate symbol ∈ and no function symbols. TLA+ heavily relies on Hilbert’s
choice operator. The syntax of transition-level terms and formulas defined in
Sect. 3.2 is therefore extended by an additional term formation rule that de-
fines choose x : A to be a transition function whenever x ∈ VE is a variable
and A is an action.7 The occurrences of x in the term choose x : A are
bound. To this first-order language corresponds a set-theoretic interpretation:
every TLA+ value is a set. Moreover, ∈ is interpreted as set membership and
the interpretation is equipped with an (unspecified) choice function ε map-
ping every non-empty collection C of values to some element ε(C ) of C , and
mapping the empty collection to an arbitrary value. The interpretation of a
term choose x : P is defined as

Jchoose x : PKξ
s,t = ε({d | JPKαs,t,ξ[d/x ] = t})

This definition employs the choice function to return some value satisfying
P provided there is some such value in the universe of set theory. Observe
that in this semantic clause, the choice function is applied to a collection that
need not be a set (i.e., an element of the universe of the interpretation); in
set-theoretic terminology, ε applies to classes and not just to sets. Because ε
is a function, it produces the same value when applied to equal arguments. It
follows that choice satisfies the laws

7 Temporal formulas are defined as indicated in section 3.3; in particular, choose

is never applied to a temporal formula.
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union union S
∆
= choose M : ∀ x : (x ∈ M ≡ ∃T ∈ S : x ∈ T )

binary union S ∪ T
∆
= union {S , T}

subset S ⊆ T
∆
= ∀ x : (x ∈ S ⇒ x ∈ T )

powerset subset S
∆
= choose M : ∀ x : (x ∈ M ≡ x ⊆ S)

comprehension 1 {x ∈ S : P}
∆
= choose M : ∀ x : (x ∈ M ≡ x ∈ S ∧ P)}

comprehension 2 {t : x ∈ S}
∆
= choose M : ∀ y : (y ∈ M ≡ ∃ x ∈ S : y = t)

Fig. 6. Basic set-theoretic operators.

(∃ x : P) ≡ P [(choose x : P)/x ] (11)

(∀ x : (P ≡ Q)) ⇒ (choose x : P) = (choose x : Q) (12)

TLA+ avoids undefinedness by underspecification [19], so choose x : P

denotes a value even if no value satisfies P . To ensure that a term involv-
ing choice actually denotes the expected value, the existence of some suitable
value should be proven. If there is more than one such value, the expression
is underspecified, and the user should be prepared to accept any of them. In
particular, any properties should hold for all possible values. However, ob-
serve that for a given interpretation, choice is deterministic, and that it is
not “monotone”: no relationship can be established between choose x : P

and choose x : Q even when P ⇒ Q is valid (unless P and Q are actually
equivalent). Therefore, whenever some specification Spec contains an under-
specified application of choice, any refinement Ref is constrained to make the
same choices in order to prove Ref ⇒ Spec; this situation is fundamentally
different from non-determinism where implementations may narrow the set of
allowed values.

In the following, we will freely use many notational abbreviations of TLA+.
For example, ∃ x , y ∈ S : P abbreviates ∃ x : ∃ y : x ∈ S ∧ y ∈ S ∧ P . Local
declarations are written as let in , and if then else is used for
conditional expressions.

From membership and choice, one can build up the conventional language
of mathematics [33], and this is the foundation for the expressiveness of TLA+.
Figure 6 lists some of the basic set-theoretic constructs of TLA+; we write

{e1, . . . , en}
∆

= choose S : ∀ x : (x ∈ S ≡ x = e1 ∨ . . . ∨ x = en)

to denote set enumeration and assume the additional bound variables in the
defining expressions of Fig. 6 to be chosen such that no variable clashes occur.
The two comprehension schemes act as binders for variable x , which must
not have free occurrences in S . The existence of the sets defined in terms of
choice can be justified from the axioms of Zermelo-Fränkel set theory [43],
which provide the deductive counterpart to the semantics underlying TLA+.
However, it is well-known that without proper care, set theory is prone to
paradoxes. For example, the expression

choose S : ∀ x : (x ∈ S ≡ x /∈ x )
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is a well-formed constant formula of TLA+, but the existence of a set S

containing precisely those sets that do not contain themselves would lead to
the contradiction that S ∈ S iff S /∈ S ; this is of course Russell’s paradox.
Intuitively, S is “too big” to be a set. More precisely, the universe of set theory
does not contain values that are in bijection with the collection of all sets.
Therefore, when evaluating the above TLA+ expression, the choice function
is applied to the empty collection, and the result depends on the underlying
interpretation. Perhaps unexpectedly, we can however infer from (12) that

(choose S : ∀ x : (x ∈ S ≡ x /∈ x )) = (choose x : x ∈ {})

Similarly, a generalized intersection operator dual to the union operator
of Fig. 6 does not exist, because generalized intersection over the empty set
of sets cannot be sensibly defined.

On the positive side, we have exploited the fact that no set can contain all
values in the definition

NoMsg
∆

= choose x : x /∈ Message

that appears in figure 4(b). Whatever set is denoted by Message, NoMsg will
denote some value that is not contained in Message. If a subsequent refinement
wanted to fix a specific “null” message value null /∈ Message, it could do so
by restricting the class of admissible interpretations via an assumption of the
form

assume (choose x : x /∈ Message) = null

Because all properties established of the original specification hold for all
possible choices of NoMsg, they will continue to hold for this restricted choice.

5.2 More data structures

Besides elementary set operations, functions are a convenient way to repre-
sent different kinds of data structures. A traditional construction of functions
within set theory, followed in Z and B [8,42], is to construct functions as spe-
cial kinds of relations, which are represented as ordered pairs. TLA+ takes a
different approach: it assumes functions to be primitive and assumes tuples to
be a particular kind of functions. The set of functions whose domain equals
S and whose codomain is a subset of T is written as [S → T ], the domain
of a function f is denoted by domain f , and the application of function f to
an expression e is written as f [e]. The expression [x ∈ S 7→ e] denotes the
function with domain S that maps any x ∈ S to e; again, the variable x must
not occur in S and is bound by the function constructor. (This expression
can be understood as the TLA+ syntax for a lambda expression λx ∈ S : e.)
Thus, any function f obeys the law

f = [x ∈ domain f 7→ f [x ]] (13)
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and this equation can in fact serve as a characteristic predicate for functional
values. TLA+ introduces a notation for overriding a function at a certain
argument position (a similar “function update” is central in Gurevich’s ASM
notation [12, 40]). Formally,

[f except ! [t ] = u]
∆

= [x ∈ domain f 7→ if x = t then u else f [x ]]

where x is a fresh variable. Again, this notation generalises to updates of
a function at several argument positions; also, the notation @ can be used
within the subexpression u to denote the original value of f [t ].

Combining choice, sets, and function notation, one obtains an expressive
language for defining mathematical structures. For example, the standard
TLA+ module introducing natural numbers defines them as an arbitrary
set with constant zero and successor function satisfying the usual Peano ax-
ioms [30, p. 345], and Lamport goes on to similarly define the integers and
the real numbers, ensuring that the integers are a subset of the reals. In par-
ticular, the arithmetic operators over these sets are identical rather than just
overloaded uses of the same symbols.

Recursive functions can be defined in terms of choice, e.g.

factorial
∆

=
choose f : f = [n ∈ Nat 7→ if n = 0 then 1 else n ∗ f [n − 1]]

which TLA+, using some syntactic sugar, offers to write more concisely as

factorial [n ∈ Nat ]
∆

= if n = 0 then 1 else n ∗ factorial [n − 1]

Of course, as with any construction based on choice, such a definition should
be justified by proving the existence of a function that satisfies the recursive
equation. Unlike standard semantics of programming languages, TLA+ does
not commit to the least fixed point of a recursively defined function in cases
where there are several solutions.

Tuples are represented in TLA+ as functions:

〈t1, . . . , tn〉
∆

= [i ∈ 1..n 7→ if i = 1 then t1 . . . else tn ]

where 1..n denotes the set {j ∈ Nat : 1 ≤ j ∧ j ≤ n} (and i is a “fresh”
variable). Selection of the i-th element of a tuple is therefore just function
application. Strings are defined as tuples of characters, and records are rep-
resented as functions whose domains are finite sets of strings. The update
operation on functions can thus be applied to tuples and records as well. The
concrete syntax of TLA+ offers special support for record operations. For
example, one writes acct .balance instead of acct [“balance”].

The standard TLA+ module Sequences that has already appeared as a
library module used for the specification of the FIFO queue in Fig. 4(b),
represents finite sequences as tuples. The definitions of the standard opera-
tions, some of which are shown in Fig. 7, is therefore quite simple. However,
this simplicity can sometimes be deceptive. For example, these definitions do
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Seq(S)
∆
= union {[1..n] → S : n ∈ Nat}

Len(s)
∆
= choose n ∈ Nat : domain s = 1..n

Head(s)
∆
= s[1]

Tail(s)
∆
= [i ∈ 1..Len(s) − 1 7→ s[i + 1]]

s ◦ t
∆
= [i ∈ 1..Len(s) + Len(t) 7→

if i ≤ Len(s) then s[i ] else t [i − Len(s)]]

Append(s, e)
∆
= s ◦ 〈e〉

SubSeq(s, m,n)
∆
=

ˆ

i ∈ 1..(1 + n − m) 7→ s[i + m − 1]
˜

Fig. 7. Finite sequences.

not reveal that the Head and Tail operations are “partial”. They should be
validated by proving the expected properties, such as

∀ s ∈ Seq(S ) : Len(s) ≥ 1 ⇒ s = 〈Head(s)〉 ◦ Tail(s).

6 The Resource Allocator Revisited

Armed with a better understanding of the language TLA+, let us reconsider
the resource allocator specification of Sect. 2. We have already verified several
properties of the simple allocator specification of Fig. 1 by model checking,
and we could use the deduction rules of Sect. 4 to prove these properties in
full generality. Does this mean that the specification is satisfactory?

Consider the following scenario: two clients c1 and c2 both request re-
sources r1 and r2. The allocator grants r1 to c1 and r2 to c2. From our in-
formal description in Sect. 2.1, it appears that we have reached a deadlock
state: neither client can acquire the missing resource as long as the other one
doesn’t give up the resource it holds, which it is not required to do. Why then
didn’t tlc report any deadlock, and how could we prove liveness?

Formally, the model contains no deadlock because, according to require-
ment (3), each client is allowed to give up the resource it is holding. The
problem with the model is that it actually requires clients to eventually give
up the resources, even if they have not yet received the full share of resources
they asked for. This requirement is expressed by the seemingly innocous fair-
ness condition

∀ c ∈ Clients : WFvars(Return(c, alloc[c]))

whereas the informal requirement (4) only demands that clients return their
resources once their entire request has been satisfied. We should therefore
have written

∀c ∈ Clients : WFvars

(

unsat [c] = {} ∧ Return(c, alloc[c])
)

Rerunning tlc on the modified specification produces the expected counter-
example.
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The bigger lesson of this example is that errors can creep into formal speci-
fications just as easily as into programs, and that a model can be inappropriate
even if it satisfies all correctness properties. Validation, for example by sim-
ulation runs or model review are extremely important to avoid this kind of
errors. We will now revisit the allocator specification and present a corrected
model. We will then present a refinement of that model that prepares an
implementation as a distributed system.

6.1 A scheduling allocator

Specification SimpleAllocator is too simple because the allocator is free to
allocate resources in any order. Therefore, it may “paint itself into a corner”,
requiring cooperation from the clients to recover. We can prevent this from
happening by having the allocator fix a schedule according to which access
to resources will be granted. Figures 8 and 9 contain a formal TLA+ model
based on this idea.

Compared to the specification of the simple allocator of Fig. 1, the new
specification contains two more state variables pool and sched . The variable
sched contains a sequence of clients, representing the allocation schedule. The
variable pool contains a set of clients that have requested resources but that
have not yet been scheduled for allocation. Consequently, the request action
merely inserts the client into the pool. The allocation action is restricted to
give out some resources to a client only if no client that appears earlier in the
schedule demands any of them.

The specification contains a new action Schedule, which establishes the
allocation schedule. Because this is a high-level specification, we do not com-
mit to any specific scheduling policy: we show the protocol to be correct if
the processes in the pool are scheduled in an arbitrary order. The auxiliary
operator PermSeqs(S ) recursively computes the set of permutation sequences
of a finite set S . The idea is that 〈x1, . . . , xn〉 is a permutation of a non-empty
finite set S if and only if 〈x1, . . . , xn−1〉 is a permutation of S \ {xn}. The
formal expression in TLA+ makes use of an auxiliary, recursively defined,
function perms that computes the set of permutations perms [T ] of any subset
T ⊆ S , in a style that is similar to the recursive definition of functions over
inductive data types in a functional programming language. We could have
used a simpler, more declarative, definition of the action Schedule, such as

Schedule
∆

=
∧ pool 6= {} ∧ pool ′ = {}
∧ ∃ sq ∈ Seq(Clients) : ∧ {sq[i ] : i ∈ domain sq} = pool

∧ ∀ i , j ∈ 1..Len(sq) : sq[i ] = sq[j ] ⇒ i = j

∧ unchanged 〈unsat , alloc 〉.

In this formulation, the schedule is simply required to be any injective se-
quence (containing no duplicates) formed from the elements of pool . The two
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module SchedulingAllocator

extends FiniteSet, Sequences, Naturals
constants Clients, Resources
assume IsFiniteSet(Resources)
variables unsat, alloc, pool, sched

TypeInvariant
∆
=

∧ unsat ∈ [Clients → subset Resources]
∧ alloc ∈ [Clients → subset Resources]
∧ pool ∈ subset Clients ∧ sched ∈ Seq(Clients)

available
∆
= Resources \ (union {alloc[c] : c ∈ Clients})

PermSeqs(S)
∆
= set of permutations of finite set S , represented as sequences

let perms[ss ∈ subset S ]
∆
=

if ss = {} then 〈 〉

else let ps
∆
=

ˆ

x ∈ ss 7→
˘

Append(sq , x) : sq ∈ perms[ss \ {x}]
¯˜

in union {ps[x ] : x ∈ ss}
in perms[S ]

Drop(seq , i)
∆
= SubSeq(seq , 1, i − 1) ◦ SubSeq(seq , i + 1,Len(seq))

Init
∆
=

∧ unsat = [c ∈ Clients 7→ {}] ∧ alloc = [c ∈ Clients 7→ {}]
∧ pool = {} ∧ sched = 〈 〉

Request(c, S)
∆
=

∧ unsat [c] = {} ∧ alloc[c] = {} ∧ S 6= {}
∧ unsat ′ = [unsat except ![c] = S ] ∧ pool ′ = pool ∪ {c}
∧ unchanged 〈alloc, sched 〉

Allocate(c, S)
∆
=

∧ S 6= {} ∧ S ⊆ available ∩ unsat [c]
∧ ∃ i ∈ domain sched :

∧ sched [i ] = c ∧ ∀ j ∈ 1..i − 1 : unsat [sched [j ]] ∩ S = {}
∧ sched ′ = if S = unsat [c] then Drop(sched , i) else sched

∧ alloc′ = [alloc except ![c] = @ ∪ S ] ∧ unsat ′ = [unsat except ![c] = @ \ S ]
∧ unchanged pool

Return(c, S)
∆
=

∧ S 6= {} ∧ S ⊆ alloc[c]
∧ alloc′ = [alloc except ![c] = @ \ S ]
∧ unchanged 〈unsat , pool , sched 〉

Schedule
∆
=

∧ pool 6= {} ∧ pool ′ = {}
∧ ∃ sq ∈ PermSeqs(pool) : sched ′ = sched ◦ sq
∧ unchanged 〈unsat , alloc 〉

Next
∆
=

∨ ∃c ∈ Clients, S ∈ subset Resources :
Request(c, S) ∨ Allocate(c, S) ∨ Return(c, S)

∨ Schedule

vars
∆
= 〈unsat , alloc, pool , sched 〉

Fig. 8. Specification of an allocator with scheduling (part 1).
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Allocator
∆
= ∧ Init ∧ 2[Next ]vars

∧ ∀c ∈ Clients : WFvars(unsat [c] = {} ∧ Return(c, alloc[c]))
∧ ∀c ∈ Clients : WFvars(∃S ∈ subset Resources : Allocate(c, S))
∧ WFvars(Schedule)

Fig. 9. Specification of an allocator with scheduling (part 2).

definitions are logically equivalent. However, this definition would not be ac-
ceptable for tlc because the set Seq(Clients) is infinite, even if Clients is
finite.

Looking at the fairness conditions, observe that the fairness requirement on
the return action has been amended as indicated above, so that it agrees with
the informal specification. The fairness condition for the allocation action is
similar to the one adopted for the simple allocator specification, but with weak
fairness substituted for strong fairness. The idea behind this change is that
the non-determinism present in the original specification has been resolved by
the introduction of the allocation schedule, so that the simpler condition now
suffices. (Of course, this intuition will have to be formally verified!) There is
an additional weak fairness requirement for the scheduling action, asserting
that the allocator should periodically update its schedule when new clients
have issued requests.

6.2 Analysis Using Model Checking

We can again ask tlc to verify the safety and liveness properties described
in Sect. 2.3. For an instance consisting of three clients and two resources, tlc

computes 1690 distinct states and requires about 30 seconds for verification.
What sets tlc apart from more conventional model checkers is its ability to
evaluate an input language where models can be expressed at the high level
of abstraction at which it has been presented in Figs. 8 and 9: neither the
definition of the operator PermSeqs nor the relatively complicated fairness
constraints pose a problem. (For better efficiency, we could override the defi-
nition of PermSeqs by a method written in Java, but this is not a big concern
for a list that contains at most three elements.)

Given the experience with the verification of the simple allocator model,
one should be suspicious of the quick success with the new model. As Lam-
port [30, ch. 14.5.3] writes, it is a good idea to verify as many properties as pos-
sible. Figure 10 contains a lower-level invariant of the scheduling allocator that
can be verified using tlc. The first conjunct of formula AllocatorInvariant

says that all clients in set pool have requested resources, but do not hold any.
The second conjunct concerns the clients in the schedule; it is split into three
sub-conjuncts: first, each client in the schedule has some outstanding requests,
second, no client may hold some resource that is requested by some prioritized
client (appearing earlier in the schedule), and finally, the set of outstanding
requests of a client in the schedule is bounded by the union of the set of
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UnscheduledClients
∆
= set of clients that are not in the schedule

Clients \ {sched [i ] : i ∈ domain sched}

PrioResources(i)
∆
= bound on resources requested by i-th client in schedule

available
∪ union {unsat [sched [j ]] ∪ alloc[sched [j ]] : j ∈ 1..i − 1}
∪ union {alloc[c] : c ∈ UnscheduledClients}

AllocatorInvariant
∆
=

∧ ∀ c ∈ pool : unsat [c] 6= {} ∧ alloc[c] = {}
∧ ∀ i ∈ domain sched : ∧ unsat [sched [i ]] 6= {}

∧ ∀ j ∈ 1..i − 1 : alloc[sched [i ]] ∩ unsat [sched [j ]] = {}
∧ unsat [sched [i ]] ⊆ PrioResources(i)

Fig. 10. Lower-level Invariant of the Scheduling Allocator.

currently available resources, the resources requested or held by prioritized
clients and the resources held by clients that do not appear in the schedule.
The idea behind this last conjunct is to assert that a client’s requests can
be satisfied using resources that are either already free or that are held by
prioritized clients. It follows that prioritized clients can obtain their full set
of resources, after which they are required to eventually release them again.
Therefore, the scheduling allocator works correctly even under the worst-case
assumption that clients will only give up resources after their complete request
has been satisfied.

Verification by Refinement.

Beyond these correctness properties, tlc can also establish a formal refine-
ment relationship between the two allocator specifications. The scheduling
allocator operates under some additional constraints. Moreover, it introduces
the variable sched , which did not appear in the specification of the simple
allocator, and which is therefore not constrained by that specification. More
interestingly, the scheduling policy and the (weaker) liveness assumptions im-
ply that the (original) fairness constraints are effectively met. The scheduling
allocator therefore turns out to be a refinement of the simple allocator, im-
plying the correctness properties by transitivity!

We can use tlc to verify this refinement, for small finite instances, using
the module AllocatorRefinement that appears in Fig. 11. It extends module
SchedulingAllocator , thus importing all declarations and definitions of that
module, and defines an instance Simple of module SimpleAllocator , whose
parameters are (implicitly) instantiated by the entities of the same name in-
herited from module SchedulingAllocator . All operators Op defined in the
instance are available as Simple!Op. (It would have been illegal to extend
both modules SchedulingAllocator and SimpleAllocator because they declare
constants and variables, as well as define operators, of the same names.)
The module then asserts that specification Allocator implies the specification
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module AllocatorRefinement

extends SchedulingAllocator

Simple
∆
= instance SimpleAllocator

SimpleAllocator
∆
= Simple!SimpleAllocator

theorem Allocator ⇒ SimpleAllocator

Fig. 11. Asserting a Refinement Relationship.

SimpleAllocator . In order to have this implication checked by tlc, we again
define an instance consisting of three clients and two resources and stipulate

SPECIFICATION Allocator

PROPERTIES SimpleAllocator

in the configuration file. tlc finds the implication to be valid, requiring just
6 seconds.

6.3 Towards a Distributed Implementation

The specification Allocator defined in module SchedulingAllocator of Figs. 8
and 9 describes an overall algorithm (or rather a class of algorithms) for re-
source allocation; analysis by tlc has indicated that this algorithm satisfies
the desired correctness properties, even under worst-case assumptions about
the clients’ behavior. However, the model does not indicate the architecture
of the system as a set of independent, communicating processes. Our next
goal is therefore to refine that specification into one that is implementable as
a distributed system. In particular, we will assume that the allocator and the
clients may run on different processors. Therefore, each process should have
direct access only to its local memory, and explicit, asynchronous message
passing will be used to communicate with other processes. Instead of a cen-
tralized representation of the system state based on the variables unsat and
alloc, we will distinguish between the allocator’s view and each client’s view
of its pending requests and allocated resources. Similarly, the basic actions
such as the request for resources will be split into two parts, with different
processes being responsible for carrying them out: in a first step, the client
issues a request, updates its local state, and sends a corresponding message
to the allocator. Subsequently, the allocator receives the message and updates
its table of pending requests accordingly.

Figures 12 and 13 contain a TLA+ model based on this idea. It contains
variables unsat , alloc, and sched as before, but these are now considered to
be local variables of the allocator. New variables requests and holding repre-
sent the clients’ views of pending resource requests and of resources currently
held; we interpret requests [c] and holding[c] as being local to the client pro-
cess c. The communication network is (very abstractly) modeled by the vari-
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module AllocatorImplementation

extends FiniteSets, Sequences, Naturals
constants Clients, Resources
assume IsFiniteSet(Resources)
variables unsat, alloc, sched, requests, holding, network

Sched
∆
= instance SchedulingAllocator

Messages
∆
=

[type : {“request”, “allocate”, “return”}, clt : Clients, rsrc : subset Resources]

TypeInvariant
∆
=

∧ Sched !TypeInvariant
∧ requests ∈ [Clients → subset Resources]
∧ holding ∈ [Clients → subset Resources]
∧ network ∈ subset Messages

Init
∆
=

∧ Sched !Init
∧ requests = [c ∈ Clients 7→ {}] ∧ holding = [c ∈ Clients 7→ {}] ∧ network = {}

Request(c, S)
∆
= client c requests set S of resources

∧ requests[c] = {} ∧ holding [c] = {} ∧ S 6= {}
∧ requests ′ = [requests except ![c] = S ]
∧ network ′ = network ∪ {[type 7→ “request”, clt 7→ c, rsrc 7→ S ]}
∧ unchanged 〈unsat , alloc, sched , holding 〉

RReq(m)
∆
= allocator handles request message sent by some client

∧ m ∈ network ∧ m.type = “request” ∧ network ′ = network \ {m}
∧ unsat ′ = [unsat except ![m.clt ] = m.rsrc]
∧ unchanged 〈alloc, sched , requests, holding 〉

Allocate(c, S)
∆
= allocator decides to allocate resources S to client c

∧ Sched !Allocate(c, S)
∧ network ′ = network ∪ {[type 7→ “allocate”, clt 7→ c, rsrc 7→ S ]}
∧ unchanged 〈requests, holding 〉

RAlloc(m)
∆
= some client receives resource allocation message

∧ m ∈ network ∧ m.type = “allocate” ∧ network ′ = network \ {m}
∧ holding ′ = [holding except ![m.clt ] = @ ∪ m.rsrc]
∧ requests ′ = [requests except ![m.clt ] = @ \ m.rsrc]
∧ unchanged 〈unsat , alloc, sched 〉

Return(c, S)
∆
= client c returns resources in S

∧ S 6= {} ∧ S ⊆ holding [c]
∧ holding ′ = [holding except ![c] = @ \ S ]
∧ network ′ = network ∪ {[type 7→ “return”, clt 7→ c, rsrc 7→ S ]}
∧ unchanged 〈unsat , alloc, sched , requests 〉

RRet(m)
∆
= allocator receives returned resources

∧ m ∈ network ∧ m.type = “return” ∧ network ′ = network \ {m}
∧ alloc′ = [alloc except ![m.clt ] = @ \ m.rsrc]
∧ unchanged 〈unsat , sched , requests, holding 〉

Schedule
∆
= Sched !Schedule ∧ unchanged 〈requests, holding ,network 〉

Fig. 12. An implementation of the allocator (part 1).
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Next
∆
=

∨ ∃ c ∈ Clients,S ∈ subset Resources :
Request(c, S) ∨ Allocate(c,S) ∨ Return(c, S)

∨ ∃m ∈ network : RReq(m) ∨ RAlloc(m) ∨ RRet(m)
∨ Schedule

vars
∆
= 〈unsat , alloc, sched , requests, holding ,network 〉

Liveness
∆
=

∧ ∀ c ∈ Clients : WFvars(requests[c] = {} ∧ Return(c, holding [c]))
∧ ∀ c ∈ Clients : WFvars(∃S ∈ subset Resources : Allocate(c, S))
∧ WFvars(Schedule)
∧ ∀m ∈ Messages :

WFvars(RReq(m)) ∧ WFvars(RAlloc(m)) ∧ WFvars(RRet(m))

Implementation
∆
= Init ∧ 2[Next ]vars ∧ Liveness

theorem Implementation ⇒ Sched !Allocator

Fig. 13. An implementation of the allocator (part 2).

able network that holds the set of messages in transit between the different
processes.

Except for the action Schedule, which is a private action of the allocator, all
actions that appeared in specification SchedulingAllocator have been split into
two actions as explained above. For example, client c is considered to perform
action Request(c,S ) because only its local variables and the state of the com-
munication network are modified by the action. The allocator later receives
the request message m and performs action RReq(m). The fairness conditions
of our previous specification are complemented by weak fairness requirements
for the actions RReq(m), RAlloc(m), and RRet(m) that are associated with
message reception (for all possible messages m); these requirements express
that messages will eventually be received and handled.

The observant reader may be somewhat disappointed with the form of
the specification of this “distributed” implementation because the formula
Implementation is again written in the standard form

Init ∧ 2[Next ]v ∧ L

that we have seen so often in this chapter. From the discussion of system
composition as conjunction in Sect. 3.5, one could have expected to see a
conjunction of specifications, one for each process. There are two technical
problems with doing so: first, the clients’ variables requests and holding are
represented as arrays such that each client accesses only the corresponding
array field. The specification of client c should really only specify requests [c]
and holding[c], but the composition should ensure the type correctness and
ensure that the remaining array fields remain unchanged. This is possible, but
cumbersome to write down. (Lamport discusses this issue in more detail in [30,
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STATE 7:

/\ holding = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

/\ requests = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

/\ sched = << >>

/\ network = {[type |-> "return", clt |-> c1, rsrc |-> {r1}]}

/\ unsat = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

STATE 8:

/\ holding = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

/\ requests = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

/\ sched = << >>

/\ network = { [type |-> "request", clt |-> c1, rsrc |-> {r1}],

[type |-> "return", clt |-> c1, rsrc |-> {r1}] }

/\ unsat = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

STATE 9:

/\ holding = (c1 :> {} @@ c2 :> {} @@ c3 :> {})

/\ alloc = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

/\ requests = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

/\ sched = << >>

/\ network = {[type |-> "return", clt |-> c1, rsrc |-> {r1}]}

/\ unsat = (c1 :> {r1} @@ c2 :> {} @@ c3 :> {})

Fig. 14. Model checking the correctness of the implementation.

Chap. 10].) Second, the current implementation of tlc expects specifications
in standard form and does not handle conjunctions of process specifications.

Module AllocatorImplementation claims that the model obtained in this
way is a refinement of the scheduling allocator specification, and we can again
use tlc to verify this theorem for finite instances. However, tlc quickly pro-
duces a counterexample that ends in the states shown in Fig. 14.

In state 7, client c1 has returned resource r1 to the allocator. In the
transition to state 8, it issues a new request for the same resource, which
is handled by the allocator (according to action RReq) in the transition to
state 9. This action modifies the variable unsat at position c1 although the
value of alloc[c1] is not the empty set – a transition that is not allowed by
the scheduling allocator.

Intuitively, the problem is due to the asynchronous communication net-
work underlying our model, which makes the allocator receive and handle the
request message before it receives the earlier return message. Indeed, it is easy
to see that if one allowed the allocator to handle the new request before releas-
ing the old one, it may become confused and deregister r1 for client c1 even
though the client still holds the resource (granted in response to the second
request). It depends on the underlying communication network whether such
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RequestsInTransit(c)
∆
= requests sent by c but not yet received

˘

msg .rsrc : msg ∈ {m ∈ network : m.type = “request” ∧ m.clt = c}
¯

AllocsInTransit(c)
∆
= allocations sent to c but not yet received

˘

msg .rsrc : msg ∈ {m ∈ network : m.type = “allocate” ∧ m.clt = c}
¯

ReturnsInTransit(c)
∆
= return messages sent by c but not yet received

˘

msg .rsrc : msg ∈ {m ∈ network : m.type = “return” ∧ m.clt = c}
¯

Invariant
∆
= ∀ c ∈ Clients :

∧ Cardinality(RequestsInTransit(c)) ≤ 1
∧ requests[c] = unsat [c]

∪ union RequestsInTransit(c)
∪ union AllocsInTransit(c)

∧ alloc[c] = holding [c]
∪ union AllocsInTransit(c)
∪ union ReturnsInTransit(c)

Fig. 15. Relating the allocator and client variables by an invariant.

a race condition can occur or not. If messages between any pair of processes
are delivered in order, the TLA+ model could represent the communication
network as a set of message queues. If communication is truly asynchronous
and message order is not guaranteed, one should add the precondition

alloc[m.clt ] = {}

to the definition of the action RReq(m) so that a new request will be processed
only after the return message corresponding to the previous grant has been
received. With this correction, tlc confirms the refinement theorem for our
small instance in about 2 minutes.

Finally, we can assert the invariant shown in Fig. 15 to confirm the in-
tuition about how the variables associated with the clients and the allocator
relate to each other. The verification of this invariant for the usual small in-
stance of the model with three clients and two resources generates 64414 states
(17701 of which are distinct) and takes about 12 seconds.

6.4 Some Lessons Learnt

Starting from the informal requirements for the allocator problem presented
in Sect. 2.1, it would have been tempting to directly come up with a model
similar to the “implementation” presented in Sect. 6.3, or even a more de-
tailed one. However, a low-level specification is at least as likely to contain
errors as a program, and the whole purpose of modelling is to clarify and
analyse a system at an adequate level of abstraction. The seemingly trivial
SimpleAllocator specification of Fig. 1 helped us discover the need for fixing
a schedule for resource allocation. It also illustrated the need for validating
models: success in model checking (or proving) correctness properties by itself
does not guarantee that the model is meaningful. A similar problem would
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have been more difficult to detect at the level of detail of the final specification,
where there are additional problems of synchronisation and message passing
to worry about. The specification SchedulingAllocator introduced the idea of
determining a schedule and thereby fixed the problem of the original specifi-
cation while remaining at the same high level of abstraction. Finally, module
AllocatorImplementation introduced a step towards a possible implementa-
tion by attributing the state variables and the actions to separate processes,
and by introducing explicit communication.

For each model, tlc was of great help in analysing various properties. Al-
though only small instances can be handled by model checking before running
into the state explosion problem, doing so greatly increases the confidence in
the models. Variants of the specifications can be checked without great effort,
and various properties (invariants and more general temporal properties) can
be verified in a single run. Deductive verification, based on the proof rules
of Sect. 4, can then establish system properties in a fully rigorous way. In
our own work, we have defined a format of “predicate diagrams” for TLA+

specifications [14]. We have found these diagrams to be helpful in determining
appropriate fairness hypotheses. The format is supported by a tool [18] that
uses model checking to identify abstract counter-examples, indicating either
too weak an abstraction or missing fairness or ordering annotations.

7 Conclusions

The design of software systems requires a combination of ingenuity and care-
ful engineering. While there is no substitute for intuition, the correctness of a
proposed solution can be checked by precise reasoning over a suitable model,
and this is the realm of logics and (formalized) mathematics. The rôle of a for-
malism is to help the user in the difficult and important activity of writing and
analysing formal models. TLA+ builds on the experience of classical math-
ematics and adds a thin layer of temporal logic in order to describe system
executions, in particular to express fairness properties. A distinctive feature of
TLA is its attention to refinement and composition, reflected in the concept of
stuttering invariance. Unlike property-oriented specification languages based
on temporal logic, TLA favors the specification of systems as state machines,
augmented by fairness conditions and by hiding.

Whereas the expressiveness of TLA+ undoubtedly helps in writing concise,
high-level models of systems, it is not so clear a priori that it lends itself as well
to the analysis of these models. For example, we have pointed out several times
the need to prove conditions of “well-definedness” related to the use of the
choice operator. These problems can to some extent be mastered by adhering
to standard idioms, such as primitive-recursive definitions, that ensure well-
definedness. For the specification of reactive systems, TLA adds some proper
idioms that control the delicate interplay between temporal operators. For
example, restricting fairness conditions to subactions of the next-state relation
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ensures that a specification is machine closed [3], i.e. that its allowed behavior
is entirely described by the initial condition and its next-state relation. Having
an expressive specification language is also helpful when new classes of systems
arise. For example, Abadi and Lamport [3] describe a format for specifying
real-time systems in TLA+, and Lamport [31] describes how discrete real-time
systems can be verified using tlc.

The main tool supporting TLA+ is the model checker tlc [45]. It can
analyse system specifications in standard form written in a sublanguage of
TLA+ that ensures that the next-state relation can be effectively computed.
All the TLA+ specifications that appeared in this chapter fall into this frag-
ment, and indeed the input language of tlc is more expressive than that of
most other model checkers. Deductive verification of TLA+ specifications can
be supported by proof assistants, and in fact several encodings of TLA in the
logical frameworks of different theorem provers have been proposed [17,21,36],
although no prover is yet available that fully supports TLA+.

Lamport has recently defined the language +CAL, a high-level algorith-
mic language for describing concurrent and distributed algorithms. The ex-
pressions of +CAL are those of TLA+, but +CAL provides standard pro-
gramming constructs such as assignment, sequencing, conditionals, loops, non-
deterministic choice, and procedures. The +CAL compiler generates a TLA+

specification from a +CAL program that can then be verified using tlc [32]. A
useful complement could be the generation of executable code from a fragment
of +CAL for specific execution platforms.
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TLA+ Indexes

Symbol Index

∆

= , 395
@ , 397
′ , 404
· , 404
|I| , 403
ξ , 403
[A]t , 405
〈A〉t , 405
2, 405
2[A]t , 397
3 , 407
3〈A〉t , 407
; , 407
∃∃∃∃∃∃ , 405 , 407
σ|i , 406

JAKI,ξ
s,t , 404

JF KI,ξ
σ , 406

|= , 406
♮V σ , 408
≈ , 408
≈V , 408
≃v , 409
[S → T ] , 424
[x ∈ S 7→ t ] , 424
m..n , 425
〈t1, . . . , tn〉 , 425
◦ , 426

Append , 426

choose, 422

domain, 424

enabled, 404
except, 397

Head , 426

Len, 426
LF , 403

LP , 403

Seq, 426
SF, 407
SubSeq, 426
subset, 423

Tail , 426

union, 423
until, 414

VE , 403
VF , 403
VR, 403

WF, 407

Concept Index

action (formula), 397, 403
action composition, 404
allocator

distributed, 431
informal requirements, 394
scheduling, 427
simple specification, 395

always operator, 405
assertion, 395
assertional reasoning, 415
auxiliary variables, 421

behavior, 406
binary temporal operators, 414
bound variable

in temporal formula, 406
in transition formula, 404

branching-time temporal logic, 401

choice operator, 422
axiomatisation of, 422

composition, 411
configuration file, 398

INVARIANTS, 399
PROPERTIES, 399
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SPECIFICATION, 399
SYMMETRY, 400

constant formula, 404
constant parameter, 395

declaration
of parameters, 395

definition
of operators, 395

enabledness, 404
external specification, 402

fairness
strong, 407
weak, 407

fairness condition, 397
flexible variable, 403
free variable

in temporal formula, 406
in transition formula, 404

function, 424
construction, 424
recursive, 425
update, 397

interface specification, 402
internal specification, 402
interpretation

of first-order logic, 403
invariant, 415

inductive, 416
proving, 415

leads to, 407
linear-time temporal logic, 401
liveness property, 398

verification of, 417

model checking, 398
module, 395

next-state operator, 402

open system, 413
operator

definition, 395
of set theory, 423

parameter
declaration, 395

Peano’s axioms, 425
priming, 404
proof rule

(INV), 416
(INV1), 415
(LATTICE), 419
(TLA2), 417
(WF1), 418
quantification, 420
temporal logic, 420

property
liveness, 398, 417
safety, 397

quantification
over flexible variables, 405, 408
proof rules, 420

race condition, 435
record, 425
recursive function, 425
refinement, 398, 410

proof rules, 421
refinement mapping, 410
rigid variable, 403
Russell’s paradox, 424

safety property, 397
satisfiability

of temporal formulas, 407
of transition formulas, 404

semantics
of transition formulas, 404

sequence, 425
operations, 426

Sequences module, 425
set comprehension, 423
set theory, 422
set-theoretic operators, 423
signature, 403
similarity up to, 409
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specification
interleaving style, 412
of state machine, 397
of transition system, 397

state, 403
state formula, 404
state machine specification, 397
state predicate, 397
state space explosion, 400
step simulation, 417
strong fairness, 407
stuttering equivalence, 408
stuttering invariance, 397
stuttering transition, 397
substitution

in temporal formula, 406
in transition formula, 404

symmetry reduction, 400
system specification

standard form, 397

temporal formula, 397
temporal logic, 401

branching-time, 401
linear-time, 401
proof rules, 420

TLA*, 413
tlc

model checker, 398
configuration file, 398

transition formula, 403
transition function, 403
transition predicate, 403
transition system specification, 397
tuple, 425
type, 395

universe, 403
unstuttered variant, 408

validation
of formal specifications, 427

validity
of temporal formulas, 407
of transition formulas, 404

valuation, 403
variable

bound
in temporal formula, 406
in transition formula, 404

flexible, 403
free

in temporal formula, 406
in transition formula, 404

rigid, 403
variable parameter, 395

weak fairness, 407
well-founded relation, 419
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