
Emptiness of Linear Weak Alternating Automata

Stephan Merz Ali Sezgin
INRIA Lorraine School of Computing

LORIA University of Utah
Nancy, France Salt Lake City, U.S.A.

Stephan.Merz@loria.fr sezgin@cs.utah.edu

December, 2003

Abstract

The automata-theoretic approach to model checking requires two basic ingre-
dients: a translation from logic to automata, and an algorithm for checking lan-
guage emptiness. LTL model checking has traditionally been based on (general-
ized) Büchi automata. Weak alternating automata provide an attractive alternative
because there is an elegant and linear-time translation from LTL. However, due to
their intricate combinatorial structure, no direct algorithm for deciding the empti-
ness problem for these automata has been known, and implementations have re-
lied on an exponential translation of weak alternating to nondeterministic Büchi
automata. In this paper, we fill this gap by proposing an algorithm to decide lan-
guage emptiness for the subclass of weak alternating automata that result from the
translation of LTL formulas. Our approach makes use of two observations: first,
runs of weak alternating automata can be represented as dags and second, the tran-
sition graphs of linear weak alternating automata are of restricted combinatorial
structure. Our algorithm computes strongly connected components of the graph of
reachable configurations, the emptiness criterion being expressed in terms of the
set of self loops that can be avoided within an SCC.

1 Introduction

The idea of using automata for decision problems in fragments of arithmetic has a long
tradition. In particular, B̈uchi [1] defined nondeterministic finite automata operating
onω-words in order to study decision problems in monadic seond-order logic of linear
orders. Recognizing that formulas of propositional linear-time temporal logic (LTL)
can be translated into this fragment of arithmetic, Vardi, Wolper, and others suggested
the use of B̈uchi automata as a basis for satisfiability and model checking algorithms
for LTL [22, 24]. This automata-theoretic approach is now considered as the standard
foundation of LTL model checking; it underlies efficient implementations in tools such
as Spin [8]. The approach relies on two basic building blocks: a translation from
an LTL formulaϕ to an automatonAϕ recognizing precisely the models ofϕ, and a
procedure to check the emptiness of (the language accepted by) an automaton. In order
to check the validity ofϕ, it is then enough to decide emptiness ofA¬ϕ. Similarly, in
order to decide the model checking problem of determining whetherϕ holds of all runs

1

of a transition systemM , one considersM as an automaton with a trivial acceptance
condition and decides emptiness of the product automaton obtained fromM andA¬ϕ.

For Büchi automata, deciding emptiness can be done in time linear in the size of
the automaton. However, the translation from LTL to Büchi automata is in general
exponential in the length of the formula. The resulting model checking algorithm for
LTL is therefore linear in the size ofM and exponential in the length ofϕ. This worst-
case complexity is asymptotically optimal as the problem is known to be PSPACE-
complete [16]. For short formulas such as invariants, the exponential factor due to
formula length is not a problem, as the overall complexity will be dominated by the
size of the model. However, this balance changes for the verification of liveness prop-
erties, whereϕ includes the necessary fairness assumptions for the system, besides the
property to be verified. The resulting formula can be quite long, and the computation
of A¬ϕ may in fact become a bottleneck of the model checking procedure. For ex-
ample, Spin computesA¬ϕ before it even starts model checking, although it then uses
an “on-the-fly” algorithm to avoid computing the product automaton. Recently, there
has been much interest in improving the classical procedure for constructing Büchi au-
tomata [7], evidenced by a series of papers [3, 4, 6, 18], that present algorithms trying
to avoid the exponential blow-up as far as possible.

Alternatingω-automata were suggested by Muller et al [13, 14] as a richer automata-
theoretic framework, because they combine non-determinism (i.e., existential branch-
ing) and its dual, universal branching, where a transition can activate several successor
locations simultaneously. In particular, there is a simple, linear-time translation from
LTL formulas to weak alternatingω-automata, suggesting their use as an alternative
basis for LTL satisfiability and model checking. In fact, the translations from LTL for-
mulas to B̈uchi automata proposed by Gastin and Oddoux [6] and by Fritz [4] employ
weak alternating automata as an intermediate format, applying minimizations at every
stage to try and obtain small Büchi automata. Still, they are ultimately relying on Büchi
automata to decide emptiness because no direct procedure for checking emptiness of
alternating automata has been known, due to the intricate combinatorial structure of
alternating automata. The translation to Büchi automata relies on a subset construction
due to Miyano and Hayashi [12], again of exponential worst-case complexity.

In this paper, we propose an algorithm to decide emptiness of linear weak alternat-
ing automata, the class of automata that result from the translation of LTL formulas,
without constructing B̈uchi automata. Our algorithm is justified in terms of a dag rep-
resentation of runs of alternating automata that was proposed by Thomas [21] and that
was also used by Kupferman and Vardi [9]. This representation is more economical
than the more traditional tree representation, because the width of the dag is bounded
by the number of states of the automaton. The second observation is that the only
cycles admitted by the transition graph of alternating automata resulting from LTL for-
mulas are self loops, and hence the emptiness criterion can be simplified. In particular,
the information about the edges followed between two successive configurations can
be reduced to one bit per automaton state that indicates whether a self loop has been
taken. Although the emptiness test is necessarily exponential in the worst case, our
preliminary experience with a prototypical implementation has been very encouraging.

This report is organized as follows. Section 2 formally introduces (linear) weak
alternating automata, their runs, and the translation from LTL formulas to automata.
Section 3 develops a criterion to determine emptiness based on finite run dags, from
which our algorithm working on graphs of configurations is justified. Section 4 con-
cludes with a discussion and indication of further work.

2

2 LTL and alternating ω-automata

This section introduces basic concepts and notation. In particular, we define (weak)
alternating automata and their runs, linear-time temporal logic LTL, and the translation
from formulas to automata.

2.1 Alternating ω-automata

Standard non-deterministic automata offer existential branching, i.e. the choice be-
tween several successor configurations for a given input. Alternating automata add the
dual possibility of universal branching, i.e. the activation of several successor locations
during one transition. Although different authors use different formats for the presen-
tation of alternating automata, it is conventional to define their transitions in terms of a
function that associates with every location and every input symbol a positive Boolean
formula whose atomic propositions are the locations of the automaton. For example,

δ(q1,a) = q2∧ (q1∨q3)

would indicate that upon reading inputa when locationq1 is active, the automaton
should activate locationq2 and one ofq1 or q3 in its successor configuration. Since in
our application, the alphabet is always the powerset of some underlying set of atomic
propositionsV (that occur in the LTL formula), we use a different format and associate
with each location a propositional formula built from propositions inV as well as the
automata locations, although the latter must again occur positively. For example, we
would write

δ(q1) = (v ∧q2∧ (q1∨q3))∨¬w

to denote that when locationq1 is active and the current input satisfiesv , a possible
transition is to activate locationsq2 and eitherq1 or q3. If the current input does not
satisfyw , no successor locations need be activated. Finally, the automaton blocks on
inputs satisfying¬v ∧w because the formula cannot be satisfied.

Our format of presenting alternating automata is formally defined as follows. We
write B(X) to denote the set of propositional formulas with atoms in the setX .

Definition 1 Analternatingω-automatonis a tupleA = (V ,Q ,q0,δ,Acc) where

• V is a finite set (of propositions),

• Q is a finite set (of locations) whereQ ∩V = /0,

• q0 ∈Q is the initial location,

• δ : Q → B(Q ∪V) is the transition function that associates a propositional for-
mulaδ(q) with every locationq ∈ Q ; locations inQ can only occur positively
in δ(q),

• andAcc ⊆Qω is the acceptance condition.

When the transition formulasδ(q) are given in disjunctive normal form, the alter-
nating automaton can be visualized as a hypergraph. For example, Fig. 1(a) represents
a fragment of an automaton whose transition formulaδ(q1) has been given above. We
write q → q ′ if q ′ is a possible successor location ofq , i.e. if q ′ appears inδ(q). For

3

��
��

q1 ��
��

q2

��
��

q3

-v �� �
?

-
v

^
¬w q

(a) Transition graph.

q1

q2

q3

{v ,w} /0 {v}r
HHH

HH

r
r��

���

H
HHHH

r
r
HHH

HH

��
���

r
r
r

(b) Prefix of run dag.

Figure 1: Visualization of alternating automata and run dags.

later use, we introduce a variantδ+ of δ that explicitly records the self loops at a lo-
cation: for every locationq ∈ Q , we assume a propositionlq /∈ Q ∪V . Thenδ+(q)
is obtained fromδ(q) by replacing every occurrence ofq by q ∧ lq . For the example
formula above, we would have

δ+(q1) = (v ∧q2∧ ((q1∧ lq1)∨q3))∨¬w

Alternatingω-automata operate onω-words (orbehaviors) over the alphabet 2V of
states, in accordance with standard LTL terminology. A run of automatonA over a be-
haviorσ = s0s1 . . . is an infinite dag (directed acyclic graph) as visualized in Fig. 1(b):
every (vertical) “slice” of the dag represents a configurationci ⊆Q of automata loca-
tions that are active before reading inputsi . The edges of the dag indicate the activation
relationship between locations. The same target location may be activated by several
source locations, but it will still occur only once in the configuration. This represen-
tation of runs has been suggested by Thomas [21, 10]; it is more economical, but oth-
erwise equivalent to the more canonical tree representation used by Muller et al. [14],
due to the existence of memoryless strategies in the word games for these automata.

Throughout the paper, we identify a set and the Boolean valuation that assigns true
precisely to the elements of the set. For example, we say that the sets{v ,q2,q3} and /0
satisfy the formulaδ(q1) above. For a relationr ⊆ X ×Y , we denote its domain and
range by dom(r) and ran(r). For a setS ⊆ X , we denote the image ofS underr by
r(S) and writer(x) for r({x}).

Definition 2 Assume given an alternating automatonA = (V ,Q ,q0,δ,Acc) and a be-
havior σ = s0s1 . . . wheresi ⊆ V . A run dagof A over σ is represented by theω-
sequence∆ = e0e1 . . . of its edgesei ⊆ Q ×Q . The configurationsc0c1 . . . of ∆ are
defined byc0 = {q0} andci+1 = ran(ei). We require that for alli ∈ N, dom(ei) ⊆ ci
and that for allq ∈ ci , the joint valuationsi ∪ei(q) satisfiesδ(q).

A pathin a run dag∆ is a maximal sequenceπ = p0p1 . . . of locationspi ∈Q such
thatpi ∈ ci and(pi ,pi+1) ∈ ei for all i such thatpi (resp.,pi+1) appears inπ.

A run dag∆ is acceptingiff π∈Acc holds for all infinite pathsπ in ∆. Thelanguage
L(A) is the set of words that admit some accepting run dag.

Definition 2 does not require the edge relations to be minimal such that the transi-
tion formulas are satisfied. However, because locations do not occur negatively inδ(q),
it is easy to see that wheneversi ∪X satisfiesδ(q) for someX ⊆ Q , so doessi ∪X ′

for any supersetX ′ ⊆ Q of X . Moreover, the set of (infinite) paths in∆ increases

4

when edges are added, making the acceptance condition harder to satisfy. Therefore,
it is enough to restrict attention to run dags whose edges correspond to minimal mod-
els, activating as few locations as possible. In analogy to (infinite) run dags, we also
consider finite run dags over finite sequencess0 . . .sn of states.

2.2 Weak alternatingω-automata

Different classes of alternating automata are characterized by their respective accep-
tance conditions. Typically, these are defined in terms of the locations that appear, or
that appear infinitely often, along the infinite paths of a run dag. In the case of weak
alternating automata, a weak parity condition is imposed: locations are assigned ranks
(natural numbers), and the least rank that appears along an infinite path determines ac-
ceptance. Moreover, it is required that no transition can lead from a location to another
one with a higher rank. Thus, the sequence of ranks taken along a path must become
stationary, and an infinite path is accepted if the limit rank is even.

Definition 3 A weak alternating automatonis presented asA = (V ,Q ,q0,δ,ρ) where
V , Q , q0, andδ are as in definition 1 and whereρ : Q → N is a ranking function such
that ρ(q ′)≤ ρ(q) wheneverq → q ′. The acceptance condition is defined as

Acc =
{
p0p1 . . . ∈Qω | min{ρ(pi)|i ∈ N} is even

}
We denote byQodd the set of locationsq such thatρ(q) is odd.

Again, there are different presentations of weak alternating automata; we are fol-
lowing the format used by L̈oding and Thomas [10] who include a proof of equivalence
with the weak automata introduced by Muller et al [13]. They also show expressive
completeness by proving that everyω-regular language can be recognized by a weak
alternating automaton.

Considering the run dags of weak alternating automata, we observe that when lo-
cations are ordered according to their ranks, no edge of a run dag can rise across a
boundary of ranks, although edges may oscillate between different locations of the
same rank. Disallowing such oscillations, we obtain the class oflinear weak alternat-
ing automata, also known asvery weak alternating automata, that define the star-free
ω-regular languages [20], which in turn correspond to the languages that can be defined
via propositional LTL formulas, see also section 2.3 below.

Definition 4 A weak alternating automaton islinear if q = q ′ wheneverq →∗ q ′ and
q ′→∗ q , for any locationsq ,q ′.

Thus, the transition graph of a linear weak alternating automatonA does not admit
cycles of length greater than 1. The accessibility relation→ on the locations ofA
determines a partial order such that when the locations are presented according to that
order, no run dag can contain a rising edge.

2.3 From LTL to alternating automata

Formulas of LTL are built from a finite setV of propositions using the connectives
of propositional logic and the temporal operatorsX (next) andU (until). They are

5

interpreted over a behaviorσ = s0s1 . . . ∈ (2V)ω as follows; we writeσ|i to denote the
suffix sisi+1 . . . of σ from statesi :

σ |= p iff p ∈ s0

σ |= ¬ϕ iff σ 6|= ϕ
σ |= ϕ∧ψ iff σ |= ϕ and σ |= ψ
σ |= X ϕ iff σ|1 |= ϕ
σ |= ϕ U ψ iff for somei ∈ N, σ|i |= ψ and for allj < i , σ|j |= ϕ

We freely use the standard derived operators of propositional logic and the follow-
ing derived temporal connectives:

Fϕ ≡ true U ϕ (eventuallyϕ)
Gϕ ≡ ¬F¬ϕ (alwaysϕ)
ϕ V ψ ≡ ¬(¬ϕ U ¬ψ) (ϕ releasesψ)

An LTL formula ϕ can be understood as defining the language

L(ϕ) = {σ ∈ (2V)ω | σ |= ϕ}

The automata-theoretic approach to model checking is based on this identification of
formulas and languages via the definition of an automatonAϕ recognizing precisely the
languageL(ϕ). This construction is particularly straightforward for weak alternating
automata. Without loss of generality, we assume that no temporal operator inϕ occurs
in the scope of a negation and therefore provide clauses for the dual operators as well.
The automaton is then given asAϕ = (V ,Q ,qϕ,δ,ρ) as follows:V is the underlying set
of propositions, and the setQ of locations contains a locationqψ for every subformula
ψ of ϕ. The transition formulas and ranks are defined inductively in Table 1 where
dre2 anddre1 denote the least even (resp., odd) number that is at leastr .

locationq δ(q) ρ(q)

qψ (ψ non-temporal) ψ 0

qψ∧ψ′ δ(qψ)∧δ(qψ′) max{ρ(qψ),ρ(qψ′)}
qψ∨ψ′ δ(qψ)∨δ(qψ′) max{ρ(qψ),ρ(qψ′)}
qX ψ qψ ρ(qψ)

qψUψ′ δ(qψ′)∨ (δ(qψ)∧qψUψ′) dmax{ρ(qψ),ρ(qψ′)}e1

qψVψ′ δ(qψ′)∧ (δ(qψ)∨qψVψ′) dmax{ρ(qψ),ρ(qψ′)}e2

Table 1: Transition and ranking functions for automatonAϕ.

The idea of the construction is simply to decompose temporal operators according
to their fixpoint characterizations. Because a subformulaψ U ψ′ corresponds to a least
fixpoint, the corresponding location must be of odd rank in order to forbid paths that
keep activating that location without satisfying formulaψ′. On the other hand, the dual
formula ψ V ψ′ corresponds to a greatest fixpoint, and the corresponding location is
of even rank. It is easy to verify that the automatonAϕ is a linear weak alternating
automaton; in particular, for different locationqψ andqψ′ , the definition ofδ(qψ) im-
plies thatqψ → qψ′ holds only if ψ′ is a proper subformula ofψ. The correctness of

6

"!

GFp
(2)

"!

Fp
(1)

�
�

�
p

�
�

�
¬p

rp

	6
?
¬p

"!

q U r
(1)

�
�
�
�

p U (q U r)
(1)

�
�

�
p ∧¬r

A
A
AArr

�
�

���

q ∧¬r

rr
Figure 2: AutomataAGFp andApU(qUr)

the construction has been shown by Vardi [23], see also [11] for a formalization in the
theorem prover Isabelle. Conversely, Löding and Thomas [10] and Rohde [15] show
that for every linear weak alternating automatonA there is an LTL formulaϕA such
thatL(ϕA) = L(A).

Because the number of subformulas of a formulaϕ is linear in the length|ϕ| of the
formula, the number of locations ofAϕ is also linear in|ϕ|. However, in practice the
automaton should be minimized further. Clearly, unreachable locations can be elimi-
nated. Moreover, whenever locationq can activate two setsX ⊂Y ⊆Q upon reading
states satisfyingpX andpY , the smaller of the sets should be preferred, as it will give
rise to fewer paths, making the acceptance condition easier to satisfy. Therefore,¬pX

can be conjoined to the activation conditionpY for activatingY . Figure 2 shows two
linear weak alternating automata obtained by applying these principles (the location
labels show the corresponding formula and the rank). Fritz and Wilke [5] discuss more
elaborate optimizations based on simulation relations on the setQ of locations.

3 Emptiness of linear weak alternatingω-automata

3.1 A criterion on finite dags

In general, deciding language emptiness for alternatingω-automata is non-trivial due to
their rather involved combinatorial structure: at any point, the currently active locations
have to “synchronize” on the current input state to make a joint transition according to
their transition formulas. Existing algorithms for emptiness checking [4, 6] therefore
first convert alternating automata to Büchi automata and then perform emptiness check-
ing on Büchi automata for which there are well-known and efficient algorithms [2].
However, the conversion to B̈uchi automata is in general exponential. Even if an on-
the-fly algorithm is later used for model checking, avoiding the explicit construction of
the entire product automaton, the Büchi automaton needs nevertheless to be computed
(and stored in memory).

For linear weak alternating automata, the situation is simpler because the transition
graph can contain only trivial cycles. In fact, a run dag is non-accepting only if it
contains a path ending in a self-loop at an odd-ranking location. It is therefore enough
to search for a finite dag∆ = e0e1 . . .en over a finite sequences0 . . .sn of states such
that∆ contains two identical configurations, say,ck = cn+1 for k ≤ n, and that every
self-loop at locations of odd rank is avoided at least once: for all locationsq ∈ Qodd

7

�

�

�

�

�

�

s s s
s s

s
s
s

s
s

s s
Z

Z
Z

Z
Z

Z
Z

Z
ZZ

Z
Z

Z
Z

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

Z

s0 s1 s2 s3

q0 (2)

q1 (1)

q2 (1)

Figure 3: Two finite run dags.

there exists somej ∈ {k , . . . ,n} such thatq /∈ ej (q). An accepting run dag∆′ can
then be obtained by iterating the loop, i.e.∆′ = e0 . . .ek−1(ek . . .en)ω; this will clearly
be a run dag over the behaviors0 . . .sk−1(sk . . .sn)ω. For example, consider the finite
dags represented in Fig. 3: whereas the dag without the dashed edge gives rise to an
accepting run dag, iterating the loop of the dag containing the dashed line would not
result in an accepting run dag because there is a path that keeps activating locationq1,
which is of odd rank. Conversely, because the set of configurations is finite, it is easy
to see that every accepting run dag must contain a finite prefix as above. The following
theorem formalizes this idea.

Theorem 5 Assume thatA = (V ,Q ,q0,δ,ρ) is a linear weak alternating automaton.
ThenL(A) 6= /0 iff there exists a finite run dag∆ = e0e1 . . .en with configurations
c0c1 . . .cn+1 over a finite sequences0s1 . . .sn of states and somek ≤ n such that

1. ck = cn+1 and

2. for everyq ∈Qodd , q /∈ ej (q) holds for somej wherek ≤ j ≤ n.

Proof. “If”: Assume that∆ = e0 . . .en satisfies the above properties, and consider
the infinite dag∆′ = e0 . . .ek−1(ek . . .en)ω. Becauseck = cn+1, it is obvious that∆′
is a run dag over the behaviorσ = s0 . . .sk−1(sk . . .sn)ω. It remains to prove that∆′ is
accepting. Assume, to the contrary, thatπ = p0p1 . . . is some infinite path in∆′ such
thatr = min{ρ(pi) | i ∈ N} is odd. BecauseA is a weak alternating automaton, there
exists somem ∈ N such thatρ(pj) = r for all j ≥m. Moreover, becauseA is linear,
the suffix ofπ must become stationary, i.e. there is somem ′ ≥m such thatpj = q for
all j ≥m ′, for someq ∈Qodd . In particular, we obtain thatq ∈ cj andq ∈ ej (q) for all
j ≥m ′, which is impossible by assumption (2) and the construction of∆′. Therefore,
∆′ must be accepting, andσ ∈ L(A).

“Only if”: Assume thatL(A) 6= /0, and let∆′ = e0e1 . . . be some accepting run
dag ofA over some behaviorσ = s0s1 . . . ∈ (2V)ω. SinceQ is finite, ∆′ can contain
only finitely many different configurationsc0c1 . . ., thus there is some configuration
c ⊆ Q such thatci = c for infinitely manyi ∈ N. Denote byi0, i1, . . . theω-sequence
of indexes such thatcij = c. Now consider the suffixei0ei0+1 . . . of ∆′. If there were
someq ∈ Qodd such thatq ∈ ej (q) for all j ≥ i0 (and thus in particularq ∈ cj for all
j > i0 by definition 2),∆′ would contain an infinite path ending in a self-loop atq , and
would thus be non-accepting. Therefore, for every stateq ∈Qodd there is somejq ≥ i0
such thatq /∈ ejq (q). Choosingk = i0 andn = im −1 for somem such thatim ≥ jq
for all q ∈Qodd of odd rank, we obtain a finite run dag∆ as required. Q.E.D.

8

Observe that the condition of theorem 5 allows the finite dag to contain intermediate
repeating configurations. In fact, this may be unavoidable because some transitions
may avoid a self-loop at some location while looping at another location. For example,
consider the finite dag of Fig. 3 (without the dashed edge): the three final configurations
of the dag are identical, but neither of them can be suppressed as the transition taken for
s2 avoids the self loop at locationq2 whereas the transition taken fors3 avoids the loop
atq1. However, the transition graph contains only finitely many self loops to avoid, and
we may thus infer a bound on the length of the dags that need to be considered:

Theorem 6 If A is a linear weak alternating automaton andL(A) 6= /0 then there
exists a finite run dag satisfying the conditions of theorem 5 and whose length is at most
(m +2) · (2|Q |+1) wherem is the number of locationsq ∈Qodd such thatq → q .

Proof. SinceL(A) 6= /0, theorem 5 ensures that there is a finite run dag∆ = e0e1 . . .en
with configurationsc0c1 . . .cn+1 and somek ≤ n such that the conditions are satisfied.
By removing the sub-dags between any repeating configurations that appear beforeck ,
we obtain a similar finite dag that still satsifies the conditions of theorem 5. Since there
are at most 2|Q | different reachable configurations, we may assume thatk ≤ 2|Q |. Now
consider the suffixek . . .en of the dag. For everyq ∈Qodd there must be somej such
that q /∈ ej (q), wherek ≤ j ≤ n. Fix some subsequencej1 ≤ . . . ≤ jm such that for
everyq ∈ Qodd there is somejk such thatq /∈ ejk (q). Clearly, we may assume that
m ≤ |Qodd |. Let j0 = k andjm+1 = n. As above, we may avoid repeating configura-
tions within the sub-dagsejk+1, . . . ,ejk+1−1, and thus assume thatjk+1− jk ≤ 2|Q |+1.
Therefore, we obtainn− k ≤ (m +1) · (2|Q |+1) and establish the asserted bound on
the length of∆. Q.E.D.

3.2 Inspecting the graph of configurations to decide emptiness

Theorems 5 and 6 suggest a naive decision procedure for testing emptiness ofL(A):
enumerate all finite dags up to the bound stated in theorem 6 and test whether they sat-
isfy the criterion of theorem 5. In fact, we have implemented a symbolic variant of this
search using a SAT solver, via an encoding of finite run dags as propositional formu-
las. The results have been mixed: whereas the SAT solver usually finds an accepting
run dag almost immediately if it exists (within a specified bound on the length of the
dag), obtaining a negative answer already takes several seconds for a dag length of
30, beyond which the run time quickly becomes unmanageable. Moreover, while one
can formulate a tighter bound than that given by theorem 6 on the length of run dags
that need to be searched for a given automaton, in terms of the actual configurations
attained and the set of transitions that can be taken from these configurations, encoding
this bound by a propositional formula appears unwieldy.

We have therefore implemented a different decision procedure, based on an analysis
of the graph of reachable configurations of the automaton. More precisely, we consider
the graphGA = (V ,E ,λ) whereV is the set of configurationsc ⊆Q of A , and where
the setE of edges contains(c,c′) iff for some input states, c′ is a minimal successor
configuration ofc, i.e. s ∪ c′ |= δ(q) for all q ∈ c while this holds for noc′′ ⊂ c′. The
edge labelling functionλ : E → 2Qodd assigns to every edge the set of odd-ranking
locationsq ∈ Qodd such that no transition ofA from c to c′ can avoid performing a
self-loop atq , i.e.q ∈ e(q) holds for all transitionse from c to c′, for all possible states
s ∈ 2V .

9

procedure Visit(c):
inComp[c] := false ; root[c] := c; labels[c] := OddSet;
cnt[c] := cnt; cnt := cnt+1;
push(c);
for c’ in Succ(c) do

if c’ is not already visited then Visit(c’) end if ;
if ¬inComp[c’] then

if cnt[root[c’]] < cnt[root[c]] then
labels[root[c’]] := labels[root[c’]] ∩ labels[root[c]];
root[c] := root[c’]

end if ;
labels[root[c]] := labels[root[c]] ∩ Label(c,c’);
if labels[root[c]]= /0 then raise Good_Cycle end if

end for ;

if root[c]=c then
repeat
d := pop;
inComp[d] := true ;

until d=c;
end if

end Visit ;

procedure Check:
stack := empty;
cnt := 0;
Visit(init_node)

end Check ;

Figure 4: Algorithm for checking emptiness.

Theorem 7 Assume thatA is a linear weak alternating automaton. ThenL(A) 6= /0 iff
GA contains a nontrivial strongly connected componentC reachable from configura-
tion {q0} such that the intersection ofλ(c,c′), for all edges(c,c′) in C , is empty.

Proof. “Only if”: If L(A) 6= /0 thenA admits a finite dag∆ satisfying the conditions
of theorem 5; by the remark following definition 2 we may assume that∆ contains
only minimal configurations. Now consider the (nontrivial) SCC ofGA containing the
configurationsck , . . . ,cn of the loop of∆, which is clearly reachable fromc0 = {q0}.
Because for everyq ∈ Qodd , we haveq /∈ ej (q) for somek ≤ j ≤ n, we find that
q /∈ λ(cj ,cj+1) and thus the intersection of all setsλ(c,c′) is empty.

“If:” Assume given a nontrivial SCCC of GA that is reachable from{q0} and such
that the intersection of all setsλ(c,c′), for edges(c,c′) between configurations inC is
empty. We can construct a finite dag as in theorem 5 as follows: first, construct a dag
from {q0} to the root ofC fromGA . Second, for everyq ∈Qodd , C must contain some
transition(c,c′) such thatq /∈ λ(c,c′), hence there must be some transitione (for some
states) from c to c′ such thatq /∈ e(q). BecauseC is a strongly connected component,
we can construct a finite path within SCCC that contains all these transitions, for every
q ∈Qodd . Q.E.D.

Notice that the same transition(c,c′) in GA can avoid self-loops for different lo-
cations inQodd , possibly for different states, and that the path constructed in the proof
may therefore have to visit the same configurations, and even follow the same edges of
GA several times.

Theorem 7 underlies our prototype implementation of an emptiness checker for lin-
ear weak alternatingω-automata, represented by the pseudo-code of Fig. 4. It employs
a rather straightforward variant of Tarjan’s algorithm to enumerate strongly connected

10

components [19]. The main addition is to maintain the intersection of all labels of
edges between nodes of the same SCC at the candidate root of the SCC while com-
puting the SCC. This intersection is initialized to the setOddSet of all odd-ranking
locations, and the search aborts as soon as the intersection is found to be empty. In this
case, an accepting run dag can be computed by the procedure outlined in the proof of
theorem 7.

The pseudo-code of Fig. 4 makes use of functionsSucc andLabel that compute
the set of possible successor nodes and the label of an edge inGA . These functions
can easily be computed in terms of the transition formulas of the automatonA : the
set of minimal successor configurations of a configurationc is obtained as the set of
valuations that satisfy the quantified propositional formula

∃V :
∧
q∈c

δ(q) (1)

For example, assume that

δ(q1) = v ∧ (q2∨q3)
δ(q2) = (v ∧q2)∨ (¬w ∧q1∧q3)

For c = {q1,q2}, formula 1 is equivalent to

q2∨ (q1∧q3)

identifying the configurations{q2} and{q1,q3} as the minimal successor configura-
tions ofc. A naive enumeration of all possible successors would instead also contain
{q2,q3} (corresponding to av -transition) and{q1,q2,q3} (for a state satisfyingv∧¬w).

Similarly, the functionLabel representing the edge labeling functionλ can be com-
puted in terms of the transition formulas of the automatonA by observing that

q ∈ λ(c,c′) iff q ∈ c and |=
(∧

p∈c

δ+(p)
)
∧

(∧
p′∈c′

p ′
)
⇒ lq (2)

Our current implementation represents transition formulas as BDDs, and (1) and (2)
imply that both functionsSucc andLabel are easy to implement in terms of BDD
operations.

3.3 Extensions for LTL model checking

The algorithm described in section 3.2 determines whether the language of a linear
weak alternatingω-automaton is empty. Coupled with the translation from LTL for-
mulas to automata of section 2.3, this immediately yields a satisfiability (or validity)
checker for LTL.

In order to obtain a model checking algorithm for LTL, recall that the model check-
ing problem for LTL consists in deciding, given a transition systemM and an LTL
formula ϕ, whetherϕ holds along all computations ofM . Following the standard
automata-theoretic approach to model checking, one searches for an execution ofM
satisfying¬ϕ. Our decision procedure for emptiness of linear weak alternating au-
tomata can be modified in the standard way to operate on pairs(s,c) wheres is a state
of the transition system andc is a configuration ofA¬ϕ. The functionsSucc andLabel
that compute the successor configuration and the label have to be modified in order to
respect the next-state relation ofM . Again, this is easiest if that relation is represented
as a BDD, as is often the case in symbolic approaches to model checking. However,
we have not yet implemented the extension to a model checking procedure.

11

4 Discussion and further work

We have presented an algorithm for deciding language emptiness for linear weak al-
ternatingω-automata that does not require translation to nondeterministic automata.
Because this class of automata characterizes precisely the languages definable by LTL
formulas, our algorithm can be used for LTL validity and model checking. In this sense,
it is testimony to Vardi’s observation [23] that “the advantage of alternating automata
is that they enable to decouple the logic from the combinatorics”.

In the presentation of the algorithm, we made use of two observations: first, runs
of weak alternating automata can be represented as dags, bounding the width of the
run. Second, the transition structure of linear weak alternating automata does not allow
for non-trivial cycles, and it suffices to inspect the self loops that are followed during
runs. In fact, in order to decide whether a dag is accepted or not, it is enough to
store the sequence of configurations and one bit per odd-ranking location in order to
indicate whether a self loop at that location was followed or not. While simplifying
the exposition, the dag representation is not essential for the implementation, which is
based on a classical depth-first search in the graph of configurations. On the other hand,
dropping the requirement of linearity looks harder because one then has to keep track
of strongly connected components of odd-ranking locations in the transition graph.

We have prototypically implemented the algorithm described in section 3.2 as an
OCaml program, using the CUDD package [17] for the underlying BDD manipula-
tions. Because it is not optimized, we have not performed extensive performance eval-
uations. As a rough indication, we have encoded the two-process mutual-exclusion
algorithm due to Peterson as an LTL formula and have verified the exclusion and live-
ness properties in respectively 0.18 and 0.28 seconds on a Pentium IV notebook run-
ning Linux. The corresponding automata have respectively 15 states and 56 transitions
for the safety property and 20 states and 67 transitions for the liveness property.

Compared to the traditional automata-theoretic approach based on Büchi automata,
our algorithm has the same worst-case complexity but represents a different tradeoff:
the translation from formulas to automata is linear for alternating automata, while it
is exponential for (generalized) Büchi automata where each location represents a set
of subformulas promised to be true. On the other hand, checking emptiness is linear
for Büchi automata while it is exponential for alternating automata where each node
in the configuration graph represents a set of active locations. A potential benefit of
using alternating automata is that an accepting SCC may be found quickly, whereas
the standard approach requires computing the Büchi automaton before the search for
acceptance cycles can be started. On the other hand, recent algorithms for generating
Büchi automata [4, 6] use alternating automata as an intermediate representation and
have devised clever minimisation schemes. Minimisation of automata is clearly im-
portant for the application of our procedure. Moreover, one should investigate to adapt
the memory-efficient search algorithm of Courcoubetis et al. [2] to weak alternating
automata.

Acknowledgements. Most of the work presented here was carried out during a visit
of Ali Sezgin to Nancy during the summer of 2003. We would like to thank Ganesh
Gopalakrishnan and Dominique Méry for making possible and supporting this visit.
Support by Universit́e Henri Poincaŕe is gratefully acknowledged.

12

References

[1] J. R. B̈uchi. On a decision method in restricted second-order arithmetics. In
International Congress on Logic, Method and Philosophy of Science, pages 1–
12. Stanford University Press, 1962.

[2] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties.Formal methods in system
design, 1:275–288, 1992.

[3] M. Daniele, F. Giunchiglia, and M. Vardi. Improved automata generation for
linear temporal logic. InComputer Aided Verification (CAV’99), volume 1633 of
Lecture Notes in Computer Science, pages 249–260, Trento, Italy, 1999. Springer-
Verlag.

[4] Carsten Fritz. Constructing B̈uchi automata from linear temporal logic using
simulation relations for alternating Büchi automata. In Oscar H. Ibarra and Zhe
Dang, editors,8th Intl. Conf. Implementation and Application of Automata (CIAA
2003), volume 2759 ofLecture Notes in Computer Science, pages 35–48, Santa
Barbara, CA, USA, 2003.

[5] Carsten Fritz and Thomas Wilke. State space reductions for alternating Büchi au-
tomata: Quotienting by simulation equivalences. In Manindra Agrawal and Anil
Seth, editors,22nd Conf. Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2002), volume 2556 ofLecture Notes in Computer
Science, pages 157–168, Kanpur, India, 2002.

[6] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In
G. Berry, H. Comon, and A. Finkel, editors,13th Intl. Conf. Computer Aided
Verification (CAV’01), number 2102 in Lecture Notes in Computer Science, pages
53–65, Paris, France, 2001. Springer-Verlag.

[7] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verifica-
tion of linear temporal logic. InProtocol Specification, Testing, and Verification,
pages 3–18, Warsaw, Poland, 1995. Chapman & Hall.

[8] Gerard Holzmann. The Spin model checker.IEEE Trans. on Software Engineer-
ing, 23(5):279–295, may 1997.

[9] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not so weak.
In 5th Israeli Symposium on Theory of Computing and Systems, pages 147–158.
IEEE Press, 1997.

[10] Christof Löding and Wolfgang Thomas. Alternating automata and logics over
infinite words. InIFIP Intl. Conf. Theoret. Comp. Sci. (TCS 2000), volume 1872
of Lecture Notes in Computer Science, pages 521–535, Sendai, Japan, 2000.

[11] Stephan Merz. Weak alternating automata in Isabelle/HOL. In J. Harrison and
M. Aagaard, editors,13th Intl. Conf. Theorem Proving in Higher Order Logics
(TPHOLs 2000), volume 1869 ofLecture Notes in Computer Science, pages 423–
440. Springer-Verlag, 2000.

[12] S. Miyano and T. Hayashi. Alternating finite automata onω-words. Theoretical
Computer Science, 32:321–330, 1984.

13

[13] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak
monadic theory of the tree and its complexity. In13th ICALP, volume 226 of
Lecture Notes in Computer Science, pages 275–283. Springer-Verlag, 1986.

[14] D.E. Muller, A. Saoudi, and P.E. Schupp. Weak alternating automata give a sim-
ple explanation of why most temporal and dynamic logics are decidable in ex-
ponential time. In3rd IEEE Symposium on Logic in Computer Science, pages
422–427. IEEE Press, 1988.

[15] Scott Rohde. Alternating automata and the temporal logic of ordinals. PhD
thesis, Dept. of Mathematics, Univ. of Illinois, Urbana-Champaign, IL, 1997.

[16] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal
logic. Journal of the ACM, 32:733–749, 1985.

[17] Fabio Somenzi. CUDD: CU decision diagram package, release 2.3.1.http:
//vlsi.colorado.edu/˜fabio/CUDD/cuddIntro.html.

[18] Fabio Somenzi and Roderick Bloem. Efficient Büchi automata from LTL formu-
lae. In E.A. Emerson and A.P. Sistla, editors,12th Intl. Conf. Computer Aided
Verification (CAV 2000), volume 1633 ofLecture Notes in Computer Science,
pages 257–263, Chicago, IL, 2000. Springer-Verlag.

[19] R. E. Tarjan. Depth first search and linear graph algorithms.SIAM Journal of
Computing, 1:146–160, 1972.

[20] Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Sa-
lomaa, editors,Handbook of Formal Language Theory, volume III, pages 389–
455. Springer-Verlag, New York, 1997.

[21] Wolfgang Thomas. Complementation of Büchi automata revisited. In
J. Karhum̈aki, editor,Jewels are Forever, Contributions on Theoretical Computer
Science in Honor of Arto Salomaa, pages 109–122. Springer-Verlag, 2000.

[22] Moshe Vardi. Verification of concurrent programs: The automata-theoretic
framework. InProceedings of the Second Symposium on Logic in Computer Sci-
ence, pages 167–176. IEEE, June 1987.

[23] Moshe Y. Vardi. Alternating automata and program verification. InComputer
Science Today, volume 1000 ofLecture Notes in Computer Science, pages 471–
485. Springer-Verlag, 1995.

[24] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.Information
and Computation, 115(1):1–37, 1994.

14

