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ABSTRACT
An assumption of nearly all algorithms in computational
geometry is that the input points are given precisely, so it is
interesting to ask what is the value of imprecise information
about points. We show how to preprocess a set of n disjoint
unit disks in the plane in O(n log n) time so that if one point
per disk is specified with precise coordinates, the Delaunay
triangulation can be computed in linear time. From the
Delaunay, one can obtain the Gabriel graph and a Euclidean
minimum spanning tree; it is interesting to note the roles
that these two structures play in our algorithm to quickly
compute the Delaunay.

Categories and Subject Descriptors
F.2.2 [ANALYSIS OF ALGORITHMS AND PROBLEM
COMPLEXITY] Nonnumerical Algorithms and Problems

General Terms
Theory, Algorithms

Keywords
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1. INTRODUCTION
A fundamental assumption of most algorithms in com-

putational geometry is that the input data given is exact.
There are actually two good justifications for this assump-
tion: First, by carefully studying the predicates to perform
exact computation on the data given, computational geome-
ters can compute a result that is guaranteed to terminate,
be self-consistent, and correct on the given input, which is at
least close to the input desired. Second, we geometers don’t
really know what else to do when someone gives us numbers
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or coordinates but to believe them. Somehow, these justi-
fications are not reassuring to the application practitioners
who know that their data is inexact before they throw it
over the wall into the geometer’s realm.

In this paper we wanted to explore the question, “What is
the value of imprecise information given to an algorithm?”
To give a particular direction to our query, we answer a
question posed by Marc van Kreveld: Suppose that we are
given a set of n disjoint unit disks, which represent imprecise
information about the coordinates of corresponding points.
Can we preprocess these disks so that if we are given m
point sets P1 . . . Pm, with each Pi consisting of exactly one
point from each disk, then we can compute their m Delaunay
triangulations in o(mn log n) total time? We show that after
O(n log n) time processing the disks using O(n) memory,
one can compute each Delaunay triangulation in O(n) time.
And once the Delaunay triangulation is obtained, one can
compute other structures from it, including the convex hull,
the Gabriel graph, or a Euclidean minimum spanning tree.

Our solution actually uses Gabriel graphs and Euclidean
minimum spanning trees for the disk centers to allow us
to compute, in linear time, a connected subset of Delau-
nay edges for the specified points, from which the Delaunay
computation can be completed by the algorithm of Chin
and Wang [10]. Unfortunately for our algorithm’s practi-
cality, this last step involves rather heavy machinery. Some
of our worst-case constants are over 100, meaning that our
result is primarily theoretical, but it does demonstrate that
an algorithm can benefit from imprecise information about
the location of points.

2. RELATED WORK
Problems of exact computation with imprecise geometric

operations or data are being attacked from several directions
in computational geometry, often with notable success. To
set our work in context, we briefly survey imprecise geomet-
ric computations, and remind the reader of several standard
graphs and computations involving points and disks. We
focus on geometric computation, even though ad-hoc and
wireless networking applications have stimulated renewed
interest in graphs defined by disks, as models of broadcast
reachability or of uncertainty [6].
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2.1 Geometric computation on imprecise
points

Two different but related issues have dominated the re-
search in robust geometric algorithms [31]: closing the gap
between between the precise mathematics of Euclidean ge-
ometry and the inexact primitives offered by the computer,
and handling degenerate cases.

Both are important to the practical application of the the-
ory of computational geometry: advances in exact geometric
computing (including interval arithmetic, floating point fil-
ters, lazy evaluation, root bounds, and real number types)
make correct practical code possible for software like Trian-
gle [25] and libraries like LEDA [23] and CGAL [7]; tech-
niques like simulation of simplicity [11] make correct han-
dling of special cases easier. Both, however, assume that
the input is exact—even when it is acknowledged that input
coordinates represented in floating point are imprecise, it is
assumed that the result of predicate on that input is de-
sired, and that degeneracies can be correctly detected and
need only be consistently handled.

One way to think about imprecise input is to say that the
predicates may return incorrect responses. An early model
of inexact predicates is epsilon geometry [17, 18]: a predicate
on a tuple of points would return true or false if every tuple
within a specified ε either was true or was false; it would
return unknown if both true and false values could be found
within ε of the given tuple. This models the uncertainty of a
computation by saying that each point lies in an imprecision
region—a disk of radius ε centered at the input coordinates.

For some computations, epsilon geometry can bound the
accuracy of the output as a function of the ε bound on the
input. To obtain such results, it is usually necessary to im-
pose a restriction that the points are separated by 2ε (i.e.
the regions are disjoint) or that at most a constant number
of imprecise regions contain any point in the plane, because
otherwise the information in the input may not constrain
the order type of points chosen in the imprecise regions.

Various regions have been used to bound the imprecision
for some questions in pattern matching [15], but in these
cases the output is a simple pairing of points, and less geo-
metric. There are many examples of using hierarchical struc-
tures (quadtrees or octrees, for example) that approximate
objects to calculate simple combinatorial or metric proper-
ties, such as intersection or distance [5]. Van Kreveld and
Löffler [22, 29] consider a variety of problems such as deter-
mining the largest and smallest convex hulls possible given
regions that contain the imprecise points—note that con-
vex hull of the regions is typically larger than the largest
hull that can be obtained by selecting one point from each
region.

For the Voronoi diagram, which is the decomposition of
the plane by finite number of sites induced by labeling each
point in the plane by its set of closest sites, and its dual De-
launay triangulation, Fortune analyzed the numerical preci-
sion of the predicates [13], and pointed out that geometric
rounding—rounding the output back down to the precision
of the input—is an important step in geometric algorithms
that is often not explicitly considered. Sugihara and Iri [28,
27] advocated designing algorithms to guarantee topological
properties even if the primitives are faulty.

Abellanas et al. [1] and Weller [30] have considered the
smallest perturbation of sites that can change the combina-
torial structure of Delaunay or Voronoi diagrams. Bandy-

opadhyay and Snoeyink [4, 3] compute the set of “almost-
Delaunay simplices,” which are the tuples of points that
could define a Delaunay simplex if the entire point set is
perturbed by at most ε > 0, is again a simple, local out-
put structure, albeit one that is fitting in a protein analysis
application that depends upon identifying potential neigh-
boring atoms as coordinates are perturbed. The algorithms
to identify almost-Delaunay simplices were relatively brute-
force.

Ely and Leclerc [12] and Khanban and Edalat [20] con-
sider the epsilon geometry versions of the In-Circle predi-
cate for Delaunay triangulation with imprecise points mod-
eled as disks or rectangles, respectively. Khanban and co-
authors [19, 21] developed a theory for returning partial De-
launay or Voronoi diagrams, consisting of the portion of the
diagram that is certain.

Van Kreveld’s question was motivated by the desire to sta-
tistically sample the possible triangulations given n regions
that model imprecision. Our aim in solving this question
is not to compute a partial Delaunay diagram, but to com-
pute enough structure that we can recover a connected set
of Delaunay edges for a given sample, then complete the De-
launay triangulation in linear time. To explain further, we
need some more definitions.

2.2 Disks, graphs, and algorithms
We remind the reader of some standard graphs defined by

finite sets of points and disks, and the geometric algorithms
to compute them. We also define some notation and ob-
serve properties that we will use in subsequent sections. We
assume general position for all point sets in this abstract;
namely, we assume that no four points are co-circular. This
assumption can be removed by symbolic perturbation if de-
sired [11].

We follow the idea of epsilon geometry, and model input
points as unit-radius disks: Let R be a set of n disjoint
open unit disks in the plane, and let P = {p1, p2, . . . , pn} be
their center points. An exact sample for R is a set of points
P̂ = {p̂1, p̂2, . . . , p̂n} drawn one from each disk: i.e., for all
1 ≤ i ≤ n, the length |pip̂i| < 1.

The Delaunay triangulation of P can be defined directly
as the graph in which an edge joins two sites p, q ∈ P if and
only if there exists a circumcircle for edge pq that has all
other sites of P outside.

In general, computing the Delaunay triangulation of n
points requires Θ(n log n) time. This lower bound implies
that we cannot completely eliminate the disjointness condi-
tion and allow all disks to have a common intersection. The
lower bound holds even if the points are sorted along x and
y coordinated directions [24]; therefore we also cannot hope
to do anything for general convex regions, since for a set of
vertical lines we would not know anything more than the
sorted order.

Aggarwal et al. [2] gave a clever linear-time algorithm to
compute the Voronoi diagram or Delaunay triangulation of
points in convex position in the plane. Chin and Wang ex-
tended this to compute the constrained Delaunay triangu-
lation of a simple polygon [10]. (See [9] for an exposition of
similar ideas applied to compute the medial axis.) Rather
than define the constrained Delaunay triangulation here, we
simply note that if all edges of the simple polygon satisfy the
Delaunay empty circle criterion, then the constrained Delau-
nay is the Delaunay. Chin and Wang’s algorithm does re-
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Figure 1: (a) Expanded Gabriel circle C+
pq contains

centers of disks that can prevent p̂q̂ from being De-
launay in an exact sample P̂ . (b) Empty lune for
EMST edge.

quire that the polygon is decomposed into trapezoids, which
can theoretically be done in linear time by Chazelle’s algo-
rithm [8].

Gabriel and Sokal [14] defined the Gabriel graph for points
sites in a similar manner. First, for two sites p and q, let Cpq

denote the circle with diameter pq. Sites p and q are joined
by edge pq if and only if the circumscribing circle Cpq has
all other sites outside. It is well known, and obvious from
this definition, that the Gabriel graph is a subgraph of the
Delaunay triangulation.

Any Euclidean minimum spanning tree (EMST) for P is
a subgraph of the Gabriel graph of P . This fact is also
well-known, and easy to observe: removing a tree edge uv
partitions the EMST into two connected components; no
vertex in the component of u can lie strictly inside the circle
of radius |uv| around v, and vice versa, so the interior of the
lune that is the intersection of both circles is empty. This
lune contains Cuv except for u and v, so all other points
must be outside Cuv. One consequence is that any EMST
has maximum vertex degree 6.

3. EXPANDED GABRIEL CIRCLES AND
EMST EDGES

Define the expanded Gabriel circle, C+
pq, as the circle with

center (p+q)/2 and radius |pq|/2+2. The expanded Gabriel
circle contains the centers of disks that could, in an exact
sample, prevent p̂q̂ from being a Delaunay edge.

Observation 1. For disk centers p, q ∈ P , if no point
r ∈ P lies in the expanded Gabriel circle C+

pq, then in any

exact sample P̂ , the edge p̂q̂ is Delaunay in P̂ .

Proof. Consider the smallest disk D enclosing the unit
disks centered at p and q; specifically, the disk D centered at
the midpoint (p+q)/2 with radius |pq|/2+1, whose boundary
is drawn dotted in Figure 1(a). There is a circle inside D that
has the samples p̂ and q̂ on its boundary: shrink D about its
center until the first point, say p̂, lies on the boundary, then
continue to shrink about p̂ until q̂ is also on the boundary.
An exact sample r̂ can lie inside D only if the corresponding
unit disk center satisfies r ∈ C+

pq.

Let T = (P, E) be the Euclidean minimum spanning tree
(EMST) of P .

We will now show that each point in the plane (and there-
fore also the sites of P ) can lie in at most a constant number

of the expanded Gabriel circles defined by the edges in E.
We use this in later sections to bound the amount of repair
work necessary to find a spanning tree of Delaunay edges for
a particular sample from the unit disks centered at P .

We do an initial partitioning of spanning tree edges into
long and short, depending on whether an edge’s length is
greater than, or at most, L = 2+2

√
3 ≈ 5.464. This thresh-

old value is chosen so that we can identify the connected
components of the EMST when a long edge is removed.

Lemma 2. Let uv be a long edge of the EMST of P .
Any point w ∈ P ∩ C+

uv for which |uw| ≤ |vw| satisfies
|uw| < |uv| ≤ |vw|, and, if uv is removed from the EMST,
w remains connected to the closer endpoint, u.

Proof. Recall that when uv is an edge of the Euclidean
minimum spanning tree, the lune that is the intersection of
the circles of radius |uv| centered at u and at v has no sites
in its interior. When |uv| > L, this lune pokes outside the
expanded Gabriel circle C+

uv. So, no portion of the perpen-
dicular bisector of uv lies outside the lune but inside C+

uv;
see Figure 1(b). Thus, we can partition P ∩ C+

uv into the
sets U and V , closer to u and v, with no ambiguity.

The distance from u to w ∈ U is maximized if w is at
the intersection of the lune with C+

uv. If we let ` = |uv|/2,
then because ` > L/2 we know that ` + 2 < `

√
3, and the

triangle uvw cannot be equilateral, but must have |uw| <
|uv|. Now, uv was chosen as a spanning tree edge, which
implies that edge uw was unavailable, so w must have been
in the component of u.

For a given point p in the plane (possibly a site from P ), let
Ep denote the set of edges of the EMST that have P in their
expanded Gabriel circle, that is, Ep = {uv ∈ E | p ∈ C+

uv}.
We partition Ep into two groups: the near edges, for which
both endpoints are at most L + 2 away from p, and the
far edges, for which at least one endpoint is L + 2 or more
away from p. Note that the far edges must necessarily all
be long, and the near edges can be either short or long. We
separately bound the sets of near edges and far edges for p.

An easy packing argument bounds the set of near edges
for p, which includes all short EMST edges.

Lemma 3. For any point p in the plane Ep contains at
most 70 near edges; i.e., p is in at most 70 expanded Gabriel
circles for edges of the EMST of P that have both endpoints
entirely within L + 2 of p.

Proof. If a center from P is within L+2 of p, the corre-
sponding disk from R is within L+3. At most b(L+3)2c =
71 unit disks from R can fit into this area, inducing at most
70 edges of the minimum spanning tree.

The constant of 70 is rather pessimistic. The best penny
packing known for a circle of radius L + 3 has only 57
disks [16, 26], and even then it seems hard to draw many
spanning tree edges between them that actually have p in
their expanded Gabriel circle.

An angle packing argument in the next lemma shows that
an input point p ∈ P has few far edges.

Lemma 4. For any point p ∈ P , Ep contains at most 8
far edges.

Proof. We consider far edges F ⊂ Ep in order of de-
creasing length, removing them from the EMST of P , and
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Figure 2: (a) EMST edge uv is longer than pu′. (b)
The region inside cirles A and B, and outside C, is
free from other far vertices of F .

keeping track of the connected component containing p. We
assume, without loss of generality, that each far edge is la-
beled so that the first endpoint is the closer to p; e.g., for
uv, we have |pu| ≤ |pv|.

Let T be the current EMST component, which partitions
into {Tu, uv, Tv} by removing uv, the longest edge of F ∩T .
By Lemma 2, we know that p remains in the component of
u, namely Tu, and that |pu| < |uv| ≤ |pv|. We claim that
all other edges of F in T are found in Tu: consider another
edge u′v′ ∈ F ∩T , as illustrated in Figure 2(a). Since u′v′ is
long, Lemma 2 gives |pu′| < |u′v′| ≤ |pv′|, and ordering by
length gives |u′v′| ≤ |uv|. But uv was chosen as the EMST
edge joining Tu and Tv, and the shorter edge pu′ was not;
therefore u′ must be in Tu with p.

Next, we show that v indicates a sector of the plane as
seen from p that contains no other second endpoints of edges
of F – no other far vertices of F . By definition, we know
that the circle A of radius L + 2 around p contains no such
vertices, and by the previous paragraph we know that the
circle B of radius |uv| around v contains no such vertices.
Now consider the farthest vertex v′ among all vertices in F ,
so all remaining vertices are inside a circle C of radius |pv′|
around p. This vertex must be part of an edge u′v′ of length
at least |pv′|−2, otherwise it would not be in Ep. Therefore,
also |uv| ≥ |u′v′| ≥ |pv′|−2. Now, all remaining far vertices
of F must be in the region C\(A ∪B), see Figure 2(b).

To define the free sector, consider now the angle that pv
makes with the intersections between A and B, and the an-
gle it makes with the intersections between B and C. The
smaller of those two angles bounds the sector.

Thus, we consider triangles of side lengths L+2, |pv|, and
|uv| and of |pv|, |pv|, and |uv|. We know that |pv| < |uv|+2
and |uv| > L. The angle at p is minimized as |pv| appoaches
L+2, which would give, in both cases, the isosceles triangle
with angle

2 arcsin
` L/2

L + 2

´
> 0.7494 > 2π/9.

Thus, inside the empty circle around v we find two sec-
tors of angle > π/4 on either side of −→pv that contain no
far points closer to p than v. At most two empty sectors can
overlap—one from the clockwise (CW) and one from the
counter-clockwise (CCW) direction around p, which implies
that there are at most 8 far edges.

We can summarize:

v

p

Fu

(a)

u

p

Fv

(b)

Figure 3: (a) The point in the plane p and the fur-
thest endpoint v ensure that all endpoints of Fu lie
within the shaded area. (b) The point u can be closer
to p, but there is a circle with radius |uv| around it
that contains no endpoints of Fv.

Theorem 5. Let T = (P, E) be the Euclidean minimum
spanning tree on the points P . The total number of these
points in the expanded circles for all edges is linear in n.
That is, X

uv∈E

|C+
uv ∩ P | = O(n).

We can extend the proof of Lemma 4 to bound the num-
ber of far edges for an arbitrary point p in the plane, albeit
with a large (and overly-pessimistic) constant factor. Since
this bound is used only to shorten the description of pre-
processing, and not for the algorithm itself, we have not
tried to minimize the constant. This lemma implies that
the arrangement of all expanded Gabriel circles has linear
complexity.

Lemma 6. For any point p in the plane |Ep| is constant.

Proof. The disk packing argument in Lemma 3 shows
that there are at most 71 disk centers within distance L + 2
of any point p. As these are vertices in a Euclidean minimum
spanning tree (EMST), for which each vertex has degree at
most 6, at most 426 edges of Ep can have a vertex within
L + 2 of p.

We therefore consider only the subset F ∈ Ep of far edges
for p that have both endpoints farther than L+2 from p. We
show that the edges of F can be organized into a binary tree
whose maximum depth is 8 by the angle packing argument
used in Lemma 4. Since such a binary tree has at most
29 − 1 = 511 nodes, F has at most 511 + 426 = 937 edges.

We build this tree from the root, at depth 0, on down.
Each node ν is associated with a subset of edges, Fν ⊂ F , as
well as an edge of Fν . The root is associated with F , and an
edge uv having one endpoint v farthest from p. Removing uv
from the EMST partitions the remaining edges of F into two
groups, Fu and Fv, where the first remain connected to u and
the second connected to v by Lemma 2. These are the edge
sets associated with the children of the root. (In determining
connectedness, we include EMST edges and vertices within
L + 2 of p, even though they are not in F \ {uv}.)

In general, at node ν, the edges Fν are edges of a con-
nected component of the EMST minus the edges associated
with the ancestors of ν, the associated edge uv ∈ Fν is
chosen so that the endpoint v is farthest from p, and remov-
ing uv partitions the edges of the EMST component into
Fu and Fv.
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(a) (b)

Figure 4: (a) A set of imprecise points. (b) The minimum spanning tree with the expanded Gabriel circles
and the disks they intersect associated to its edges.

For the edges in Fu, we know that no endpoint can lie
within a circle of radius |uv| centered at v. We also know
that all endpoints lie within a circle of radius |pv| centered at
p, and that none lie within L + 2 of p. These constraints on
Fu are depicted in Figure 3(a). As in the proof of Lemma 4,
there is a sector with angle greater than 2π/9, as seen from
p, that contains no endpoints from Fu.

Even though the point u can lie closer to p, as in Fig-
ure 3(b), the same constraints apply, showing that a sector
of the same angle is empty of endpoints from Fv. This im-
plies that the tree has depth at most 8, and completes the
proof of the lemma.

4. DELAUNAY COMPUTATION
Let R be a set of n disjoint unit-radius disks in the plane

that represent the imprecise regions for P , which are the
disk center points. Subsection 4.1 details how to preprocess
R in O(n log n) time into a linear-size data structure H(R).

Subsection 4.2 shows that given an exact sample P̂ consist-
ing of a point inside each disk of R, we can compute the
Delaunay triangulation of P̂ in linear time using H(R).

4.1 Preprocessing
Let P be the set of center points of the n disjoint unit

disks of R. For H(R), we compute a Euclidean minimum
spanning tree of P , a list of its edges sorted by length, and
for each edge uv the list of points of P that fall inside the
expanded Gabriel circle C+

uv. Figure 4 shows an example.
By Theorem 5 we know that each point of P can fall into at

most a constant number of expanded Gabriel circles. Thus,
the total size of H(R) is linear.

A minimum spanning tree is easy to compute in O(n log n)
time, since the Delaunay triangulation is a linear-size set
of edges that contains all candidates. The sorted list of
EMST edges is even easier. Finally, a simple sweep of the
arrangement of the unit circles of R and the points M can
locate all points in their circles; because Lemma 6 says that
this arrangement has linear size, the sweep can be carried
out in O(n log n) time.

Lemma 7. Preprocessing the n disjoint unit disks R pro-
duces a linear size data structure H(R) in O(n log n) time.

Denote the sorted list of EMST edges by e1, . . . en−1. We
define notation for the connected components of the graph
consisting of the first k edges of this list: Let Ik be the par-
tition of the index set {1, . . . , n} induced by the connected

components of these first k edges: that is, i, j ∈ I for some
I ∈ Ik if and only if mi and mj can be joined by edges
from {e1, . . . , ek}. We can associate these connected com-
ponents with H(R) (conceptually, not computationally, as
they are needed only for a proof), because our algorithm
creates the components (or supersets of them) for points

P̂ = {p̂1, . . . , p̂n} drawn from each disk in R.

4.2 Computing the Delaunay triangulation
Now, given an exact sample P̂ = {p̂1, . . . , p̂n} of R, and

the data structure H(R), we show how to compute in linear
time a connected subgraph of the Delaunay triangulation
of P̂ . Chin and Wang’s algorithm [10] then completes the

Delaunay triangulation of P̂ in linear time.
We form our connected subgraph by finding paths in the

Delaunay that make the connected components that are
formed as we add edges to the Euclidean minimum span-
ning tree. (Recall that EMST edges are ordered by increas-
ing length.) We begin by making an observation, illustrated
in Figure 5(a), on the portion of a Delaunay triangulation
bounded by a circle.

Lemma 8. Let P be a set of points in general position
in the plane, C be a circle whose interior contains a subset
Q = P ∩ int(C), and E be the set of Delaunay edges of P
that have empty circles contained inside int(C). The graph
(Q, E) is connected.

Proof. Let c be the point of Q closest to the center of C;
we show that any vertex p ∈ Q is connected to c. Initially, let
a = p, and, as depicted in Figure 5(b), grow a circle from a
towards the center of C, keeping a pinned on the boundary;
stop when the circle hits any point b ∈ Q. The edge ab is
discovered to be a Delaunay edge in E, and the point b is
closer to the center of C than a was. Since P is finite, by
setting a = b and repeating this procedure, we eventually
construct a path from p to c in the graph (Q, E).

Suppose now that EMST edge ek joins u, v ∈ P , and
consider the expanded Gabriel circle C+

uv. Lemma 8 says
there exists a path of Delaunay edges certified inside C+

uv

that joins the corresponding exact samples û, v̂ ∈ P̂ ; our
task is to compute one efficiently, or at least to compute a
subgraph of the Delaunay triangulation of P̂ that contains
one or more paths.

Theorem 9. Given n disjoint unit disks R, and the struc-
ture H(R) from Lemma 7, the Delaunay triangulation of an
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Figure 5: (a) The Delaunay edges certified by (dotted) empty circles within a bigger circle form a connected
graph. (b) Growing a circle from p towards the center. (c) The closest point to the center can be connected
to at least one of the points in the other group.

exact sample P̂ chosen from these disks can be computed in
O(n) time.

Proof. To reconstruct the Delaunay triangulation, we
first want to build up the components of the EMST by
adding edges in order; the essential task is to find a path
of Delaunay edges joining the exact samples û, v̂ ∈ P̂ for
two centers u, v ∈ P that form an edge ek in the EMST. We
will do this in C+

uv, although we could do it in the smaller
Cûv̂ with a slightly longer description of the procedure.

Let Q ⊂ P̂ denote the points inside circle C+
uv and K ⊂ R

denote the unit disks with centers inside. When ek is short,
penny packing says there are at most a constant number of
disks in K, so we can process ek by computing the Delaunay
triangulation of the points Q and discarding edges that are
not certified by an empty circle inside C+

uv.
When ek is long, Lemma 2 says that there are two com-

ponents that are separated by the perpendicular bisector of
uv. Let Qu and Qv be the partition of Q by this bisector;
it suffices to find a Delaunay edge of P̂ from Qu ×Qv since
the points within Qu (and Qv) have already been connected
earlier in the algorithm.

Let cu ∈ Qu and cv ∈ Qv be the closest points to the cen-
ter of C+

uv, as illustrated in Figure 5(c), and assume that the
distance to cv is greater, meaning the circle concentric with
C+

uv through cv contains at least one point of Qu. Shrink
this circle with cv on the boundary by moving its center to-
ward cv until the last point of Qu leaves its interior—this
point defines the desired Delaunay edge with cv. Both steps
can be carried out in time proportional to |Q|.

We spend constant time with each short edge and, by
Lemma 5, a total of linear time with the long edges. For
each edge we find a path of Delaunay edges of P̂ that joins
the vertices û and v̂, so the connected components induced
by the sequence of edges found will be supersets of the com-
ponents of Ik of the first k edges of the EMST of P̂ . Thus, we
obtain a connected graph after processing all EMST edges,
and can invoke Chin and Wang [10] to complete the Delau-
nay triangulation.

5. EXTENSIONS
Our algorithm works for a very specific class of imprecise

regions: disjoint disks of equal radius. In practice, this may
be a rather strong assumption. In this section, we show how
to extend the result to less restricted regions.

5.1 Overlapping disks
If we allow the regions to be arbitrarily overlapping disks,

then there is little we can hope to prove. In the worst case,
all disks could coincide, allowing the constructions that es-
tablish the Ω(n log n) lower bounds for general Delaunay
triangulation [24]. If we limit the depth of overlap, however,
our result still holds with the algorithm unchanged.

We say a set of disks is k-overlapping if no point in the
plane is contained in more than k disks. In this case, the
number of short edges that can contain a point p increases.
Clearly, there cannot be more than k(r + 2)2 disks touching
a circle of radius r. This means the constant grows linearly
in k. The arguments involving long edges do not depend on
the disjointness of the disks.

5.2 Other extensions
If we allow the disks to have different radii, then in general

the problem is open. However, when there is a constant
fraction c = R

r
between the largest radius R and the smallest

radius r, then we can just increase radii until all disks have
radius R. Since we know that the sample points lie inside
the input disks, they certainly also lie in the grown disks.
Of course the disks start overlapping, but not too much: at
most (c + 1)2 grown disks contain any given point in the
plane.

If the input regions are not disks but squares, then we
can grow them to the smallest disks containing them, which
are 3-overlapping. If the regions are fat in the sense that
they contain circles of radius r but are contained in circles
of radius R (the same radii for all regions), with c = R

r
, then

we can again replace them by disks of radius R that are at
most (c + 1)2-overlapping.

Finally, we can also handle combinations of the above
(partially overlapping fat regions of restricted different radii)
at the expense of an increased constant in the time bound.

6. CONCLUSION AND OPEN PROBLEMS
Our result proves that imprecise information about point

coordinates has value: after O(n log n) time spent prepro-
cessing the n regions of imprecision for the points, we can ob-
tain a Delaunay triangulation of exact points sampled from
the imprecise regions in linear time.

We would like to see if we can use the special properties
of our points to avoid the several levels of decomposition
employed by Chin and Wang’s constrained Delaunay trian-
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gulation algorithm, and make this result more practical. We
have considered only a couple of the many possible exten-
sions to other models of imprecise points.
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simplicity: A technique to cope with degenerate cases
in geometric algorithms. ACM Trans. Graph.,
9(1):66–104, 1990.

[12] J. S. Ely and A. P. Leclerc. Correct Delaunay
triangulation in the presence of inexact inputs and
arithmetic. Reliable Computing, 6:23–38, 2000.

[13] S. Fortune. Numerical stability of algorithms for 2-d
Delaunay triangulations. Internat. J. Comput. Geom.
Appl., 5(1–2):193–213, 1995.

[14] K. R. Gabriel and R. R. Sokal. A new statistical
approach to geographic variation analysis. Systematic
Zoology, 18:259–278, 1969.

[15] M. T. Goodrich, J. S. B. Mitchell, and M. W.
Orletsky. Practical methods for approximate
geometric pattern matching under rigid motion. In
Proc. 10th Annu. ACM Sympos. Comput. Geom.,
pages 103–112, 1994.

[16] R. Graham, B. Lubachevsky, K. Nurmela, and
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