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aAbstra
tThe 
ompetitive ratio is the most 
ommon metri
 in on-line algorithm analysis.The growth and strength of the �eld is due in no small part to the e�e
tiveness ofthis measure in the 
ourse of pra
ti
al analysis. On the other hand, there are knownappli
ations in whi
h the 
ompetitive ratio produ
es somewhat unsatisfa
tory results.In some 
ases it results in unrealisti
ally pessimisti
 measures, in others it fails to dis-tinguish between algorithms that have vastly di�ering performan
e under any pra
ti
al
hara
terization. In addition, there are situations in whi
h we might simply desire adi�erent measure than that provided by the 
ompetitive ratio. Be
ause of this variousalternatives to the 
ompetitive ratio have been proposed in the literature. In this pa-per we survey several of those alternatives, highlight their distin
tive properties anddis
uss their bene�ts and drawba
ks.1 Introdu
tionThe 
ompetitive ratio is the most 
ommon metri
 in on-line algorithm analysis. Formallyintrodu
ed by Sleator and Tarjan, it has served as a pra
ti
al framework for the study ofalgorithms that must make irrevo
able de
isions in the presen
e of only partial information[ST85℄. The 
ompetitive ratio has been a great su

ess, enabling the measurement of theperforman
e of various well known heuristi
s and fostering the development of the �eld. On-line algorithms are more often than not amenable to analysis under this framework; that is,
omputing the 
ompetitive ratio has proven to be e�e
tive|even in 
ases where the exa
tshape of the opt solution is unknown. As well, it has been su

essfully applied outside theoriginal on-line paging setting to other appli
ations su
h as on-line geometri
 sear
hing andon-line approximation to NP-
omplete problems.The 
ompetitive ratio metri
 
an be derived from the observation that an on-line algo-rithm, in essen
e, 
omputes a partial solution to a problem using in
omplete information.� 
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Then, it is only natural to quantify the performan
e drop due to this absen
e of information.That is, we 
ompare the quality of the solution obtained by the on-line algorithm with theone 
omputed in the presen
e of full information, namely that of the o�-line optimal opt.On the other hand, there are known appli
ations in whi
h the 
ompetitive ratio pro-du
es somewhat unsatisfa
tory results. In some 
ases it results in unrealisti
ally pessimisti
measures, in others it fails to distinguish between algorithms that have vastly di�ering per-forman
e under any pra
ti
al 
hara
terization. The pessimisti
 nature of the 
ompetitiveratio derives from two aspe
ts, one is the use of the worst 
ase max operator, the se
ond isthe use of a highly idealized o�-line opt algorithm in the denominator. In addition, thereare situations in whi
h we might simply desire a di�erent measure than that provided by the
ompetitive ratio.Be
ause of this various alternatives to the 
ompetitive ratio have been proposed in theliterature. In this survey we list eleven well known alternatives to the 
ompetitive ratio,highlight their distin
tive properties and dis
uss their bene�ts and drawba
ks.2 Competitive RatioPaging is a 
lassi
 example of a problem studied in the 
ontext of on-line algorithm analysis.A paging algorithm must de
ide whi
h k memory pages to keep in the 
a
he without thebene�t of knowing the sequen
e of up
oming page requests. The goal of a paging algorithmis to minimize the number of 
a
he misses over the entire input sequen
e. The pagingalgorithm must produ
e a partial solution after re
eiving the ith page request and determinewhi
h page to evi
t, shall the page request be a 
a
he miss. The performan
e of the pagingalgorithm is quanti�ed by the number of 
a
he misses, whi
h is the 
ost of a parti
ularsolution. For a given paging algorithm, we 
onsider the sequen
es with the worst (highest)possible 
ost and 
ompare them to the o�-line optimal opt whi
h knows the entire sequen
ein advan
e. Alternatively, sin
e we are maximizing the 
ost over all input sequen
es, we 
anthink of an adversary whi
h sele
ts the next element in the input sequen
e in a way that isleast desirable for the paging algorithm.We 
an generalize the key 
on
epts of this example to other problems as follows. Let � =(s1; s2; : : :) be an input sequen
e. We denote by �1:j = (s1; s2; : : : ; sj) the pre�x subsequen
eof the �rst j requests in �. An on-line algorithm A for an minimization problem takes asinput a sequen
e � = (s1; s2; : : : ; sn). The algorithm A pro
esses the request sequen
e inorder, from s1 onwards and produ
es a partial solution with 
ost A(�1:j) after the arrival ofthe jth request (for 
onvenien
e of notation we will denote as A(�) = 
ostA(�)).In general it is assumed that the length of the sequen
e is unknown beforehand and hen
ean on-line algorithm performs the same steps on the 
ommon pre�x of two otherwise distin
tinput sequen
es. More formally, if �0 is a pre�x of � then A(�0) = A(�1:j�0j). In 
ontrast,the o�-line optimal algorithm, denoted as opt has a

ess to the entire sequen
e at on
e andhen
e does not ne
essarily meet the pre�x 
ondition.De�nition 1 An on-line algorithm A is said to have 
ompetitive ratio 
 ifA(�) � 
 � opt(�)ACM SIGACT News 2 September 2005 Vol. 36, No. 3



for all input sequen
es �.Some of the early literature 
onsiders only algorithms with 
onstant 
ompetitive ratio, andall others are termed as algorithms with unbounded 
ompetitive ratio. Alternatively, we 
ande�ne a C(n)-
ompetitive algorithm as followsDe�nition 2 An on-line algorithm A is said to have 
ompetitive ratio C(n) if, for all inputsequen
es � we have: A(�) � C(j�j) � opt(�):This de�nition 
an be relaxed to des
ribe the asymptoti
 
ompetitive ratioDe�nition 3 An on-line algorithm A is said to have asymptoti
 
ompetitive ratio C(n) ifA(�) � C(n) � opt(�) + b for all �.Equivalently, using the more 
onventional ratio notation, we have that an algorithm is C(n){
ompetitive i� C(n) = maxj�j=n� A(�)opt(�)� :We note that this de�nition has three key 
omponents: the max operator, the on-line 
ostin the numerator and the optimal o�-line 
ost in the denominator. To better understandtheir role, in the next subse
tion we brie
y review three well known performan
e measuresused in 
lassi
al algorithm analysis. Highlighting the di�eren
es between these well knownmeasures will help us understand the motivations behind some of the alternative measureswe will des
ribe in Se
tion 3.2.1 A note on 
lassi
al performan
e measuresLet the timing fun
tion TA(I) denote the time taken by an o�-line algorithm A over an inputI.De�nition 4 The worst-
ase time of algorithm A is de�ned asA(n) = maxjIj=nfTA(I)g:De�nition 5 The average-
ase time of A under an uniform distribution is de�ned asA(n) = avgjIj=nfTA(I)g = PjIj=n TA(I)#fjIj = ng ;where # denotes the 
ardinality fun
tion.In the 
ase of a general distribution, the average-
ase time of A isA(n) = E(TA(I) j jIj = n) = XjIj=nTA(I)Pr(I);ACM SIGACT News 3 September 2005 Vol. 36, No. 3



where E denotes the expe
tation fun
tion of 
lassi
al probability. Observe that max, avg,and E(�) are aggregate fun
tions over all inputs of size n.A third measure, albeit somewhat less 
ommon, 
omes from adaptive analysis. Thismeasure is used on problems in whi
h mu
h simpler instan
es appear frequently. The ideais to require good performan
e on all inputs, as 
ompared to only on the worst 
ase or theaverage 
ase.De�nition 6 An algorithm A is said to be adaptive with respe
t to a measure V (I) ifTA(I) = O(V (I)) for all input I or equivalentlymax8I �TA(I)V (I) � � 
for some 
onstant 
.This 
an be generalized to the notion of f(n; V (I))-adaptive algorithms whi
h are those su
hthat TA(I) = f(n; V (I)), for all inputs I of length n. Again this 
an be expressed as a ratiomaxjIj=n�TA(I)V (I) � = f(n; V (I)):This expression 
ombines both the max aggregate operator of worst 
ase analysis and a
omparison ratio whi
h is reminis
ent of 
ompetitive analysis.Observe that the these performan
e measures have, as in the 
ase of the on-line 
ompet-itive ratio, three key 
hoi
es: (i) an aggregate fun
tion over inputs, (ii) a numerator withpossibly its own aggregation fun
tion and in the 
ase of the average and adaptive measures(iii) a denominator with its own aggregation fun
tion and involving an external measure.2.2 On-line performan
e measuresConsider again the 
ompetitive ratio measure C(n):C(n) = maxj�j=n� A(�)opt(�)� :This measure su�ers in pra
ti
e from two aspe
ts. One the denominator is an o�-line algo-rithm that has full knowledge of the future request sequen
e and unbounded 
omputationalpower. In 
ertain instan
es the 
omparison with su
h a powerful adversary leads to algo-rithms of varying degrees of sophisti
ation having the same equally bad 
ompetitive ratio.For example an algorithm that has good performan
e in all but one rather 
ompli
ated in-stan
e has the same 
ompetitive ratio as an algorithm that always makes a bad de
ision(even on \trivial" instan
es) so long as the bad de
isions are never worse than that of therare worst 
ase of the preferred algorithm.ACM SIGACT News 4 September 2005 Vol. 36, No. 3



3 Alternatives to the Competitive AnalysisThe 
ompetitive ratio is the standard measure for analyzing and studying on-line algorithms.Although it is useful in many 
ases, it has some short
omings. Most of these are due tothe fa
t that the 
ompetitive ratio is a pessimisti
 measure. For some on-line algorithmstheir 
ompetitive ratio is mu
h worse than their performan
e ratios in pra
ti
e. As well, insome 
ases, the 
ompetitive ratio 
annot distinguish between on-line algorithms that behavevery di�erently in pra
ti
e. For example Least-Re
ently-Used (LRU) and First-In-First-Out(FIFO) are two on-line paging algorithms that have the same 
ompetitive ratios, while inpra
ti
e LRU is mu
h better than FIFO [Ira98℄. Another problem with 
ompetitive analysisis that it 
annot be used to dire
tly 
ompare two on-line algorithms; we must 
ompareea
h algorithm to some optimal o�-line algorithm. The 
ompetitive ratio also has some
ounter-intuitive features. For example, making the on-line algorithm more powerful by�nite look-ahead does not 
hange the 
ompetitive ratio or adding resour
es might worsenthe 
ompetitive performan
e of an on-line algorithm [BNS69℄ (the so 
alled Belady anomaly).Therefore several alternative measures for the quality of on-line algorithms have been pro-posed [BDB94, BLN01, BF03, KP00, Ken96, FW98, Ira98, BIRS95, IKP96, CN99, You94℄.We study some of these alternatives in this se
tion. The basi
 problem in 
ompetitive anal-ysis is that the adversary is too powerful 
ompared to the on-line algorithm. Many paperstry to over
ome this problem by restri
ting the power of the adversary. For example thisis usually done by pla
ing some 
onstraints on the set of legal input sequen
es. Anotherproblem is that a single unusual sequen
e 
an result in a very bad 
ompetitive ratio that isfar from the quality of typi
al sequen
es.3.1 A

ommodation Ratio and A

ommodating Fun
tionThese two measures are the same as the 
ompetitive ratio ex
ept that they restri
t the legalinput sequen
es. They apply to on-line problems with limited resour
es and only 
onsiderthose input sequen
es in whi
h the optimal solution does not bene�t from having more thana 
ertain amount of resour
es. We use an example to explain this. The fair bin pa
kingproblem 
onsists of n bins of size k and an input sequen
e I of items where the size ofea
h item is an integer between 1 and k. This sequen
e is given to the algorithm in anon-line manner and we want to maximize the total number of items in the bins. Also thepa
king should be fair; we 
an reje
t an item only if it 
annot �t in any bins when it is given.Although the optimal o�-line algorithm knows the whole sequen
e I in advan
e, it shouldfairly pro
ess the requests in the same order as I.Now for the a

ommodating ratio [BL99℄ we 
onsider those input sequen
es that 
anbe pa
ked in n bins by a fair optimal o�-line algorithm. In general we only 
onsider thoseinput sequen
es in whi
h the optimal o�-line algorithm does not bene�t from having moreresour
es than those already available. For the a

ommodating fun
tion [BLN01, BFLN03℄we only 
onsider those input sequen
es that 
an be pa
ked in �n bins by a fair optimalo�-line algorithm, where � > 0 is the fun
tion's variable.Next we de�ne these measures more pre
isely. Consider an on-line problem� with limitedresour
es. Let A(I) be the 
ost of an on-line algorithm A on an input sequen
e I and letACM SIGACT News 5 September 2005 Vol. 36, No. 3



opt(I) be the 
ost of an optimal o�-line algorithm on I. Let optm be the 
ost of opt whenan amount m of the limited resour
e is available.De�nition 7 [BFLN03℄ Let P be an on-line problem with a �xed amount n of resour
es.For any � > 0, an input sequen
e I is said to be an �-sequen
e, if opt�n(I) = optn0(I), forall n0 � �n (1-sequen
es are also 
alled a

ommodating sequen
es).De�nition 8 Let A be an on-line algorithm for a minimization problem. Then A is 
-
ompetitive on �-sequen
es, if there exists a 
onstant b, su
h that A(I) � 
 � opt(I) + b; forany �-sequen
e I. The a

ommodating fun
tion is de�ned asAA(�) = inff
 jA is 
-
ompetitive on �-sequen
esgNote that a

ommodation ratio is A(1). In other words, the a

ommodation ratio isthe same as the 
ompetitive ratio when we restri
t the input to a

ommodating sequen
es(1-sequen
es). Therefore the a

ommodation ratio is usually 
alled the 
ompetitive ratioon a

ommodating sequen
es. Also the 
ompetitive ratio is lim�!1 A(�). Thus the a

om-modating fun
tion is an extension of both the 
ompetitive ratio and the a

ommodationratio.Several papers [BL99, BLN99, BBJ+00, BBE+03, EF03, BN99, ABE+02℄ use the a

om-modating ratio as the measure of quality for on-line algorithms. Boyar et al. [BL99℄ givelower bounds and upper bounds for the 
ompetitive ratio and a

ommodating ratio of twoversions (unit pri
e and proportional pri
e) of the seat reservation problem. They provedthese results for Best-Fit, First-Fit, and general deterministi
 fair algorithms. The twomeasures (the 
ompetitive ratio and the a

ommodating ratio), agree on the proportionalpri
e problem but di�er on the unit pri
e problem. The bounds are tight for the proportionalpri
e problem, but not in the unit pri
e problem. Ba
h et al. [BBJ+00, BBE+03℄ give betterand tight bounds for the deterministi
 fair algorithms for the unit pri
e problem. They also
onsider randomized algorithms and prove some bounds for them.Several algorithms for the on-line fair bin pa
king problem are analyzed in [BLN98℄. Up-per bounds and lower bounds are given for the a

ommodating ratio for First-Fit,Worst-Fit, and general algorithms. The lower bound for First-fit is improved in [BN99℄. A
-
ording to these bounds, First-Fit has stri
tly better a

ommodating ratio than Worst-Fit. However if we 
onsider the standard 
ompetitive ratio, it 
an be shown [BLN99℄ thatWorst-Fit behaves stri
tly better than First-Fit. Therefore the 
ompetitive ratio andthe a

ommodating ratio 
an give 
ontradi
tory results. Epstein and Favrholdt [EF03℄ 
on-sider a variation of on-line fair bin pa
king in whi
h bins 
an have di�erent sizes and giveupper bounds and lower bounds for the a

ommodating ratio of several on-line algorithms.The unrestri
ted bin-pa
king problem is the same as the fair bin pa
king problem ex
eptthat we do not require the algorithms to be fair. Azar et al. [ABE+02℄ study this variationof the problem and 
ompare it with fair bin pa
king using the a

ommodating ratio. Theyprove an asymptoti
ally tight bound for the a

ommodating ratio of First-Fit for the fairbin pa
king problem. They design an on-line algorithm 
alledUnfair-First-Fit whi
h hasasymptoti
ally better a

ommodating ratio than First-Fit in the unrestri
ted bin pa
kingproblem. Finally upper bounds on the a

ommodating ratio of deterministi
 and randomizedalgorithms are proven for the unrestri
ted bin pa
king problem.ACM SIGACT News 6 September 2005 Vol. 36, No. 3



The a

ommodation fun
tion was studied by Boyer et al. for the fair bin pa
king problem[BLN01℄. They prove lower bounds and upper bounds on the a

ommodation fun
tions ofFirst-Fit, Worst-Fit, and all deterministi
 fair algorithms for all � � 1. A variant ofthe seat reservation problem in whi
h seat 
hanges are allowed is studied in [BKN04℄. Lowerbounds and upper bounds for the 
ompetitive ratio, a

ommodating ratio, and a

ommo-dation fun
tion are proven for several algorithms. Finally, Boyer et al. [BFLN03℄ extendthe a

ommodation fun
tion to values of � < 1. They study the a

ommodation fun
tionof several algorithms for the seat reservation and unrestri
ted bin pa
king problems. Forthe seat reservation problem, they show that we 
an separate the performan
e of three al-gorithms using the a

ommodation fun
tion at � = 1=3, while we 
annot do the same usingthe 
ompetitive ratio or the a

ommodating ratio. They also studied the 
onne
tion betweenthe a

ommodation fun
tion and the resour
e augmentation te
hnique [KP95℄.3.2 Max/Max RatioThe Max/Max ratio [BDB94℄ tries to be more optimisti
 by 
omparing the amortized worst
ase behaviour of the on-line algorithm with the amortized worst 
ase behaviour of the op-timal o�-line algorithm. Re
all that in 
ompetitive analysis we 
ompare the two algorithmson the same sequen
e. However, this approa
h is sometimes problemati
 be
ause the exis-ten
e of only one bad sequen
e 
an drasti
ally 
hange the result. Thus this measure tries toavoid the situation in whi
h a single unusual sequen
e gives a very bad result. This be
omesmore 
lear with the following example used in [BDB94℄ as a motivation for de�ning theMax/Max ratio. Consider the problem of buying an insuran
e poli
y in an on-line manner.It is reasonable to pay $5 a month to insure your 
ar against theft. However, this is not a
ompetitive strategy be
ause the o�-line adversary 
an sele
t the s
enario in whi
h one willnever present a 
laim to the insuran
e agent. In the Max/Max ratio, we 
ompare the twoalgorithms on their respe
tive worst 
ase sequen
es of the same length.We de�ne this measure more pre
isely for an on-line minimization problem �. Thede�nition for maximization problems is similar. Let A be an algorithm for � and let A(I)be the 
ost of A on an input sequen
e I.De�nition 9 The amortized 
ost of A is de�ned as M(A) = lim supl!1Ml(A) whereMl(A) = maxjIj=lA(I)=l. The Max/Max ratio of A denoted wM(A) islim supl!1 Ml(A)Ml(opt) = M(A)M(opt)where opt is an optimal o�-line algorithm.Note that we 
an dire
tly 
ompare two on-line algorithmsA and B using this measure be
ausewe have M(A)M(B) = wM (A)wM (B) . Also it is shown [BDB94℄ that, when 
onsidering the Max/Max ratio,look-ahead 
an improve the on-line performan
e even in 
ases where the 
ompetitive ratiodoes not improve.ACM SIGACT News 7 September 2005 Vol. 36, No. 3



3.3 Random Order RatioThe random order ratio [Ken96℄ is another measure that tries to de
rease the dependen
eon some unusual bad sequen
es. Let A be an on-line algorithm for an on-line minimizationproblem and let A(I) be the 
ost of A on an input sequen
e I = (i1; i2; : : : ; in).De�nition 10 The random order ratio of A is de�ned asRC(A) = lim supopt(I)!1 E�A(I�)opt(I)where � is a permutation of f1; 2; : : : ; ng, I� is the permuted sequen
e (i�1; : : : ; i�n), and theexpe
tation is taken over all permutations of f1; 2; : : : ; ng.Therefore this measure assumes that all orderings of an input sequen
e are equally likely.This is a reasonable assumption for some on-line problems. [Ken96℄ 
ontains a lower boundand an upper bound on the random order ratio of Best-Fit algorithm for on-line bin-pa
kingproblem whi
h are better bounds than their 
orresponding bounds for the 
ompetitive ratio.However, it seems that this measure is diÆ
ult generalize to other on-line problems.3.4 Relative Worst Order RatioThe relative worst order ratio [BF03, BM04, BFL05℄ 
ombines some desirable properties ofthe Max/Max ratio and the random order ratio. Using this measure we 
an dire
tly 
omparetwo on-line algorithms. Informally, for a given sequen
e it 
onsiders the worst 
ase orderingof that sequen
e for ea
h algorithm and 
ompares their behaviour on these orderings. Thenit �nds among all sequen
es (not just reorderings) the one that maximizes the worst 
aseperforman
e. Thus this measure 
an be 
onsidered as a modi�
ation of the Max/Max ratioin that we 
onsider the worst sequen
e among those whi
h are permutations of ea
h otherinstead of 
onsidering the worst sequen
e among all those having the same length as theMax/Max ratio does. It is also related to random order ratio as it 
onsiders permutationsof a sequen
e. However instead of taking the expe
tation of the algorithm's behaviour on allpermutations, it 
onsiders the permutation with the worst behaviour.Let A and B be on-line algorithms for an on-line minimization problem and let A(I) bethe 
ost of A on an input sequen
e I = (i1; i2; : : : ; in). Denote by I� the sequen
e obtainedby applying a permutation � to I, i.e. I� = (i�1; : : : ; i�n). De�ne AW (I) = min� A(I�).De�nition 11 [BFL05℄ Let S1(
) and S2(
) be the statements about algorithms A and Bde�ned in the following way.S1(
) : There exists a 
onstant b su
h that AW (I) � 
 � BW (I) + b for all I.S2(
) : There exists a 
onstant b su
h that AW (I) � 
 � BW (I)� b for all I.The relative worst order ratio WRA;B of an on-line algorithm A to algorithm B is de�ned ifS1(1) or S2(1) holds. In this 
ase A and B are said to be 
omparable. If S1(1) holds, thenWRA;B = supfrjS2(r)g, and if S2(r) holds then WRA;B = inffrjS1(r)g:ACM SIGACT News 8 September 2005 Vol. 36, No. 3



WRA;B 
an be used to 
ompare the qualities of A and B. If WRA;B = 1 then these twoalgorithms have the same quality with respe
t to this measure. The magnitude of di�eren
ebetween WRA;B and 1 re
e
ts the di�eren
e between the behaviour of the two algorithms.For a minimization problem, A is better than B with respe
t to this measure if WRA;B < 1and vi
e versa.The idea behind this measure is that some on-line algorithms perform well on some typesof sequen
e orderings and other algorithms perform well on some other types of orderings.Therefore 
ertain algorithms that 
annot be 
ompared using 
ompetitive analysis may be
omparable in this measure. Boyar and Favrholdt showed that the relative worst order ratiois transitive [BF03℄.Note that we 
an also 
ompare the on-line algorithm A to an optimal o�-line algorithmopt. The worst order ratio of A is de�ned as WRA = WRA;opt. For some problems, opt isthe same for all order of requests on a given input sequen
e and hen
e the worst order ratiois the same as the 
ompetitive ratio. However for other problems su
h as fair bin pa
kingthe order does matter for opt.In [BM04℄, three on-line algorithms (First-Fit, Best-Fit, and Worst-Fit) for twovariants of the seat reservation problem [BL99℄ are 
ompared using the relative worst orderratio. All of these three algorithms 
an be 
ompared in this framework while this is notpossible within the 
lassi
al 
ompetitive analysis framework. The relative worst order ratiois applied to paging algorithms in [BFL05℄. It is shown that LRU is stri
tly better than FWFwith respe
t to the worst order ratio, while these two algorithms have the same 
ompetitiveratio. Also a new paging algorithm, Retrospe
tive-LRU (RLRU), is proposed and it is shownthat RLRU is better than LRU with respe
t to the relative worst order ratio. This 
ontrastswith results on the 
ompetitive ratio of these algorithms. It is also shown that look-aheadis helpful when we 
onsider the relative worst order ratio.3.5 Loose CompetitivenessLoose 
ompetitiveness was �rst proposed in [You94℄ and later modi�ed in [You02℄. Wedes
ribe it for an on-line minimization problem. It attempts to obtain a more realisti
measure by 
onsidering the following two aspe
ts in the analysis of the on-line algorithms.First, in many real on-line problems, we 
an ignore those input sequen
es on whi
h the on-linealgorithm in
urs a 
ost less than a 
ertain threshold. Se
ond, many on-line problems, havea se
ond resour
e parameter (e.g. size of 
a
he, number of servers) and the input sequen
esare independent of these parameters. In 
ontrast, in 
ompetitive analysis the adversary 
ansele
t sequen
es tailored against those parameters. We 
larify this situation by 
onsideringthe paging problem. In this 
ase the problem parameter is the size in pages k of the 
a
he.Consider the following lower bound on the 
ompetitive ratio of any deterministi
 pagingalgorithm.Theorem 1 [ST85℄ The 
ompetitive ratio of any deterministi
 on-line paging algorithm isat least k.This result 
an be easily proven by 
onsidering an adversary that sele
ts only k + 1 pagesand at ea
h time requests a page that is not in the 
a
he. For this to work the adversaryACM SIGACT News 9 September 2005 Vol. 36, No. 3



needs to know the problem parameter k, . However, in pra
ti
e the 
ompetitive ratios ofmany on-line paging algorithms have been observed to be 
onstant [You02℄, i.e. independentof k. This 
an be obtained by applying loose 
ompetitiveness.In loose 
ompetitiveness we 
onsider an adversary that is oblivious to the parameter byrequiring it to give a sequen
e that is bad for most values of the parameter rather than justa spe
i�
 bad value of the parameter. Let Ak(I) denote the 
ost of an algorithm A on aninput sequen
e I, when the parameter of the problem is k.De�nition 12 [You02℄ An algorithm A is (�; Æ)-loosely 
-
ompetitive if, for any input se-quen
e I and for any n, at least (1� Æ)n of the values k 2 f1; 2; : : : ; ng satisfyAk(I) � maxf
 � optk(I); � jIjg:Therefore we ignore the input sequen
es I whi
h 
osts less than � jIj. Also we require thealgorithm to be good for at least (1�Æ) fra
tion of the possible parameters. For ea
h on-lineproblem, we 
an sele
t the appropriate 
onstants � and Æ. The following result shows that bythis modi�
ation of the 
ompetitive analysis, we 
an obtain paging algorithms with 
onstantperforman
e ratios.Theorem 2 [You02℄ Every k-
ompetitive paging algorithm is (�; Æ)-loosely 
-
ompetitive forany 0 < �; Æ < 1, and 
 = (e=Æ) ln(e=�), where e is the base of the natural logarithm.3.6 A

ess Graph ModelThe a

ess graph model was introdu
ed by Borodin et al. to solve two main problems inthe 
ompetitive analysis of on-line paging algorithms [BIRS95℄. One of these problemsis that the pra
ti
al performan
e ratio of LRU is mu
h better than its 
ompetitive ratio.We have mentioned the se
ond problem before: Although LRU and FIFO have the same
ompetitive ratio, LRU behaves mu
h better than FIFO in pra
ti
e. One reason that LRUhas good experimental behaviour is that in pra
ti
e page requests show lo
ality of referen
e.Temporal lo
ality means that when a page is requested it is more likely to be requested inthe near future. Spatial lo
ality means that when a page is requested it is more likely it thata nearby page will be requested in the near future.In the a

ess graph model we weaken the adversary by restri
ting the set of legal inputsequen
es. This is done by restri
ting the set of pages that 
an be requested after ea
h page.More spe
i�
ally, we have an a

ess graph G = (V;E) so that ea
h vertex v represents a pagepv and there is an edge from a vertex u to a vertex v if and only if pv 
an be requested afterpu. This graph 
an be dire
ted on undire
ted depending on the a
tual pra
ti
al problem.Lo
ality of referen
e 
an be imposed in this model be
ause when we request a page p weshould request p or one of its neighbours in the next step. The 
ompetitive ratio is the sameas in standard 
ompetitive analysis ex
ept that we restri
t ourselves to the input sequen
esthat 
onform to the given a

ess graph.Using this model, several interesting results 
an be obtained [BIRS95, IKP96, CN99,FR97℄. For every graph G and every number k of pages in the fast memory, let 
k(G) denotethe best 
ompetitive ratio that 
an be a
hieved by an on-line paging algorithm. BorodinACM SIGACT News 10 September 2005 Vol. 36, No. 3



et al. proved that 
omputing 
k(G) is 
omputable for every �nite a

ess graph G [BIRS95℄.They also show how to 
ompute the 
ompetitive ratio of LRU for every a

ess graph andevery k within a fa
tor of two (plus additive 
onstant), and . propose a simple algorithmthat nearly a
hieves the best 
ompetitive ratio for every a

ess graph. This algorithm, 
alledFAR, evi
ts, on ea
h fault, the unmarked page in 
a
he whose distan
e from a marked pageis maximum in the a

ess graph. They proved that the 
ompetitive ratio of FAR for everyundire
ted a

ess graph and every k is within O(log k) of the best possible 
ompetitive ratio.This was later improved by Irani et al. showed that the 
ompetitive ratio of FAR is O(
k(G))for any undire
ted graph G [IKP96℄. Experimental results show that some variations of FARalgorithm behave better than LRU in pra
ti
e [BIRS95℄. It is also known that the 
ompetitiveratio of LRU is at least as good as FIFO on every a

ess graph [CN99℄.3.7 Di�use Adversary ModelThe di�use adversary model [KP00℄ tries to re�ne the 
ompetitive ratio by de
reasing thepower of the adversary. It does this by restri
ting the set of legal input sequen
es. Re
allthat in standard 
ompetitive analysis we do not put any restri
tion on the input sequen
esand so they 
an have any distribution. In other words, the on-line algorithm knows nothingabout the distribution of the input sequen
es. At the other end of the extreme, in 
lassi
probabilisti
 analysis of on-line algorithms, the exa
t distribution of input sequen
es is knownto the on-line algorithm. In the di�use adversary model, the on-line algorithm does not knowthe exa
t distribution, but it knows that it is a member of a 
lass � of distributions.De�nition 13 Let A be an on-line algorithm for a minimization problem and let � be a
lass of distributions for the input sequen
es. Then A is 
-
ompetitive against �, if thereexists a 
onstant b, su
h that EI2DA(I) � 
 � EI2Dopt(I) + b;for every distribution D 2 �, where A(I) denotes the 
ost of A on the input sequen
e I andthe expe
tations are taken over sequen
es that are pi
ked a

ording to D.In other words the adversary sele
ts the distribution D in � that is the worst distributionfor A. If � is more restri
ted then A knows more about the distribution of input sequen
esand the power of adversary is more 
onstrained. When � 
ontains all possible distributionsthen the 
ompetitive analysis against � is the same as the standard 
ompetitive ratio.Therefore the di�use adversary model is an extension of standard 
ompetitive analysis. Notethat we 
an also model lo
ality of referen
e using the di�use adversary model by 
onsideringonly those distributions that are 
onsistent with the given a

ess graph. This means that ifthere is no edge between the verti
es 
orresponding to two pages, the probability that onepage is a

essed after the other should be zero in our distributions.This model is applied to the paging algorithms [KP00℄ by 
onsidering a 
lass �� ofdistributions and proving that LRU has the best 
ompetitive ratio against �� among all de-terministi
 on-line algorithms. For any sequen
e � of pages and any page p, let P(pj�) denotethe probability that p is the next page requested provided that the request sequen
e seen soACM SIGACT News 11 September 2005 Vol. 36, No. 3



far is �. For any 0 � � � 1, �� 
ontains distributions in whi
h P(pj�) � � for every page pand every page sequen
e �. Computing the a
tual 
ompetitive ratio of both deterministi
and randomized algorithms against �� is studied in [You98, You00℄. An estimation of theoptimal 
ompetitive ratio for several algorithms (su
h as LRU and FIFO) within a fa
torof 2 is given. Also it is observed that around the threshold � � 1=k, the best 
ompetitiveratios against �� are �(ln k). The 
ompetitive ratios rapidly be
ome 
onstant for values of �less than the threshold. For � = !(1=k), i.e. values greater than the threshold, the 
ompeti-tive ratio rapidly tends to �(k) for deterministi
 algorithms while it remains un
hanged forrandomized algorithms.3.8 Smoothed CompetitivenessSome algorithms that have very bad worst 
ase performan
e behave very well in pra
ti
e.One of the most famous examples is the simplex method. This algorithms has a very goodperforman
e in pra
ti
e but it has exponential worst 
ase running time. Average 
ase analysisof algorithms 
an somehow explain this behaviour but sometimes there is no basis to theassumption that the inputs to an algorithm are random.Smoothed analysis of algorithms [ST04℄ tries to explain this intriguing behavior withoutassuming anything about the distribution of the input instan
es. In this model, we randomlyperturb (smoothen) the input instan
es a

ording to a probability distribution f and thenanalyze the behavior of the algorithm on these perturbed (smoothed) instan
es. For ea
hinput instan
e �I we 
ompute the neighborhood N(�I) of �I whi
h 
ontains the set of allperturbed instan
es that 
an be obtained from �I. Then we 
ompute the expe
ted runningtime of the algorithm over all perturbed instan
es in this neighborhood. The smoothed
omplexity of the algorithm is the maximum of this expe
ted running time over all the inputinstan
es. Intuitively, an algorithm with a bad worst 
ase performan
e 
an have a goodsmoothed performan
e if its worst 
ase instan
es are isolated. Spielman and Teng show[ST04℄ that the simplex algorithm has polynomial smoothed 
omplexity. Several other resultsare known about the smoothed 
omplexity of the algorithms [BMB03, MR05, BD02, ST03℄.As we said before, the 
ompetitive analysis is a very pessimisti
 measure and an algo-rithm 
an have a very bad 
ompetitive ratio only be
ause of a few bad input sequen
es.Therefore the 
ompetitive ratio is a reasonable 
hoi
e for applying smoothed analysis. Thiswas �rst done by Be

hetti et al. [BLMS+03℄ who introdu
ed smoothed 
ompetitive analysis.Informally, smoothed 
ompetitive analysis is the same as the 
ompetitive analysis ex
eptthat we 
onsider the 
ost of the algorithm on randomly perturbed adversarial sequen
es.As in the analysis of the randomized on-line algorithms, we 
an have either an obliviousadversary or an adaptive adversary. The smoothed 
ompetitive ratio of an on-line algorithmA for a minimization problem 
an be formally de�ned as follows.De�nition 14 [BLMS+03℄ The smoothed 
ompetitive ratio of an algorithm A is de�ned as
 = sup�I EI N(�I)[ A(I)OPT (I)℄;where the supremum is taken over all input instan
es �I, and the expe
tation is taken overACM SIGACT News 12 September 2005 Vol. 36, No. 3



all instan
es I that are obtainable by smoothening the input instan
e �I a

ording to f in theneighborhood N(�I).Note that it is also possible to de�ne the smoothed 
ompetitive ratio as
 = sup�I EI N(�I)[A(I)℄EI N(�I)[OPT (I)℄:In [BLMS+03℄, the �rst de�nition is used but it is remarked that a similar result 
an beobtained using the se
ond de�nition. They used the smoothed 
ompetitive ratio to analyzethe Multi-Level Feedba
k(MLF) algorithm for pro
essor s
heduling in a time sharingmultitasking operating system. This algorithm has very good pra
ti
al performan
e but its
ompetitive ratio is very bad. They obtain stri
tly better ratios using the smooth 
ompetitiveanalysis than with the 
ompetitive ratio.3.9 Sear
h RatioThe sear
h ratio belongs to the family of measures in whi
h the o�-line opt is weakened. Itis de�ned only for the spe
i�
 
ase of geometri
 sear
hes in an unknown terrain for a targetof unknown position. Re
all that the 
ompetitive ratio 
ompares against an all knowingopt, Indeed, for geometri
 sear
hes in the 
ompetitive ratio framework, the opt is simplya shortest path algorithm, while the on-line sear
h algorithm has intri
ate methods forsear
hing. The sear
h ratio instead 
onsiders the 
ase where opt knows the terrain but notthe position of the target. That is, the sear
h ratio 
ompares two sear
h algorithms, albeitone more powerful than the other. By 
omparing two instan
es of like obje
ts the sear
hratio 
an be argued to be a more meaningful measure of the quality of an on-line sear
halgorithm. Koutsopias et al. show that sear
hing in trees results the same large 
ompetitiveratio regardless of the algorithm, yet under the sear
h ratio framework 
ertain algorithmsare far superior to others [KPY96℄.3.10 Travel CostAs we observed in Se
tion 2, 
lassi
al 
omplexity time analysis generally uses an unnormal-ized time measure even though a normalized measure has been de�ned and proven fruitfulin 
ertain settings. This raises up the possibility of using an unnormalized 
ost measurefor on-line algorithms as well. This measure has been used in on-line geometri
 sear
hes, inwhi
h the main obje
tive is to minimize the length of the longest sear
h sequen
e, known asthe travel 
ost of the solution. FormallyDe�nition 15 The travel 
ost of an on-line algorithm A on input I is given byC(n) = maxjIj�nfA(I)gFor example in the 
ase of an a
tual sear
h and res
ue operation in the high seas minimizingthe maximumsear
h time is more relevant than the 
ompetitive ratio on any parti
ular pointin the sear
h path [FSBY+04℄.ACM SIGACT News 13 September 2005 Vol. 36, No. 3



3.11 Average RatioThe average 
ompetitive ratio was introdu
ed in the 
ontext of 
ompetitive sear
hes on thereal line for a target of unknown lo
ation. The 
lassi
 problem in this �eld is the 
ow pathproblem. As traditionally des
ribed, a 
ow rea
hes a fork on the road and re
alls that in oneand only one of the two paths there is a pasture �eld. This problem was �rst analyzed underthe 
ompetitive ratio and its solution predates the introdu
tion of the 
ompetitive ratio inon-line algorithms. The optimal solution under the standard 
ompetitive ratio metri
 is9-
ompetitive. However, on the average, the pasture is dis
overed at an average 
ompetitiveratio of approximately 4.59, assuming a uniform distribution of the position of the �eld.Interestingly enough, the strategy resulting in the optimal average 
ost is di�erent from theoptimal one under the 
ompetitive ratio framework [Gal79, LO96℄. Formally we have,De�nition 16 The average 
ompetitive ratio, or average ratio for short is de�ned asE8 jIj� A(I)opt(I)� :4 Con
lusionsIn this survey we presented eleven alternative measures to the 
ompetitive ratio for theanalysis of on-line algorithms. This list, while not exhaustive, is illustrative of the variousdi�erent approa
hes to improve on the 
ompetitive ratio.5 A
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