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Abstract

The competitive ratio is the most common metric in on-line algorithm analysis.
The growth and strength of the field is due in no small part to the effectiveness of
this measure in the course of practical analysis. On the other hand, there are known
applications in which the competitive ratio produces somewhat unsatisfactory results.
In some cases it results in unrealistically pessimistic measures, in others it fails to dis-
tinguish between algorithms that have vastly differing performance under any practical
characterization. In addition, there are situations in which we might simply desire a
different measure than that provided by the competitive ratio. Because of this various
alternatives to the competitive ratio have been proposed in the literature. In this pa-
per we survey several of those alternatives, highlight their distinctive properties and
discuss their benefits and drawbacks.

1 Introduction

The competitive ratio is the most common metric in on-line algorithm analysis. Formally
introduced by Sleator and Tarjan, it has served as a practical framework for the study of
algorithms that must make irrevocable decisions in the presence of only partial information
[ST85]. The competitive ratio has been a great success, enabling the measurement of the
performance of various well known heuristics and fostering the development of the field. On-
line algorithms are more often than not amenable to analysis under this framework; that is,
computing the competitive ratio has proven to be effective—even in cases where the exact
shape of the OPT solution is unknown. As well, it has been successfully applied outside the
original on-line paging setting to other applications such as on-line geometric searching and
on-line approximation to NP-complete problems.

The competitive ratio metric can be derived from the observation that an on-line algo-
rithm, in essence, computes a partial solution to a problem using incomplete information.
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Then, it is only natural to quantify the performance drop due to this absence of information.
That is, we compare the quality of the solution obtained by the on-line algorithm with the
one computed in the presence of full information, namely that of the off-line optimal OPT.

On the other hand, there are known applications in which the competitive ratio pro-
duces somewhat unsatisfactory results. In some cases it results in unrealistically pessimistic
measures, in others it fails to distinguish between algorithms that have vastly differing per-
formance under any practical characterization. The pessimistic nature of the competitive
ratio derives from two aspects, one is the use of the worst case max operator, the second is
the use of a highly idealized off-line OPT algorithm in the denominator. In addition, there
are situations in which we might simply desire a different measure than that provided by the
competitive ratio.

Because of this various alternatives to the competitive ratio have been proposed in the
literature. In this survey we list eleven well known alternatives to the competitive ratio,
highlight their distinctive properties and discuss their benefits and drawbacks.

2 Competitive Ratio

Paging is a classic example of a problem studied in the context of on-line algorithm analysis.
A paging algorithm must decide which & memory pages to keep in the cache without the
benefit of knowing the sequence of upcoming page requests. The goal of a paging algorithm
i1s to minimize the number of cache misses over the entire input sequence. The paging
algorithm must produce a partial solution after receiving the ¢th page request and determine
which page to evict, shall the page request be a cache miss. The performance of the paging
algorithm is quantified by the number of cache misses, which is the cost of a particular
solution. For a given paging algorithm, we consider the sequences with the worst (highest)
possible cost and compare them to the off-line optimal OPT which knows the entire sequence
in advance. Alternatively, since we are maximizing the cost over all input sequences, we can
think of an adversary which selects the next element in the input sequence in a way that is
least desirable for the paging algorithm.

We can generalize the key concepts of this example to other problems as follows. Let o =

(81, 82,...) be an input sequence. We denote by o1.; = (51, S2, ..., s;) the prefix subsequence
of the first j requests in 0. An on-line algorithm A for an minimization problem takes as
input a sequence o = (s1,8g,...,8,). The algorithm A processes the request sequence in

order, from s; onwards and produces a partial solution with cost A(oy.;) after the arrival of
the jth request (for convenience of notation we will denote as A(o) = costa(o)).

In general it is assumed that the length of the sequence is unknown beforehand and hence
an on-line algorithm performs the same steps on the common prefix of two otherwise distinct
input sequences. More formally, if ¢’ is a prefix of ¢ then A(0’) = A(0y.,1). In contrast,
the off-line optimal algorithm, denoted as OPT has access to the entire sequence at once and
hence does not necessarily meet the prefix condition.

Definition 1 An on-line algorithm A is said to have competitive ratio ¢ if

A(o) < c-0oPT(0)
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for all input sequences o.

Some of the early literature considers only algorithms with constant competitive ratio, and
all others are termed as algorithms with unbounded competitive ratio. Alternatively, we can
define a C'(n)-competitive algorithm as follows

Definition 2 An on-line algorithm A is said to have competitive ratio C(n) if, for all input
sequences o we have:

A(o) < C(|o|) - orPT(0).
This definition can be relaxed to describe the asymptotic competitive ratio

Definition 3 An on-line algorithm A is said to have asymptotic competitive ratio C(n) if
A(o) < C(n)-opPT(c)+b for all o.

Equivalently, using the more conventional ratio notation, we have that an algorithm is C'(n)-

competitive iff
B A(o)
Cln) = lrlon { OPT(U)} '

We note that this definition has three key components: the max operator, the on-line cost
in the numerator and the optimal off-line cost in the denominator. To better understand

their role, in the next subsection we briefly review three well known performance measures
used in classical algorithm analysis. Highlighting the differences between these well known
measures will help us understand the motivations behind some of the alternative measures
we will describe in Section 3.

2.1 A note on classical performance measures

Let the timing function T4(I) denote the time taken by an off-line algorithm A over an input
I

Definition 4 The worst-case time of algorithm A is defined as

A(n) = max{T(I)}.

[I|=n

Definition 5 The average-case time of A under an uniform distribution is defined as

_ o Ta(l
A(n) = avg o, {Tall)} = %7

where # denotes the cardinality function.

In the case of a general distribution, the average-case time of A is

Aln) = E(Ta(I) | |I| = n) = Y Ta(I)Pr(1),

[I|=n
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where E denotes the expectation function of classical probability. Observe that max, avg,
and E(-) are aggregate functions over all inputs of size n.

A third measure, albeit somewhat less common, comes from adaptive analysis. This
measure is used on problems in which much simpler instances appear frequently. The idea
is to require good performance on all inputs, as compared to only on the worst case or the
average case.

Definition 6 An algorithm A is said to be adaptive with respect to a measure V(I) if
TA(I)=O(V(I)) for all input I or equivalently

w T =

for some constant c.

This can be generalized to the notion of f(n,V(I))-adaptive algorithms which are those such
that T4(I) = f(n,V(I)), for all inputs I of length n. Again this can be expressed as a ratio

Tal)\ _
ﬁﬁf{ ) } = f(n, V(I)).

This expression combines both the max aggregate operator of worst case analysis and a
comparison ratio which is reminiscent of competitive analysis.

Observe that the these performance measures have, as in the case of the on-line compet-
itive ratio, three key choices: (i) an aggregate function over inputs, (ii) a numerator with
possibly its own aggregation function and in the case of the average and adaptive measures
(iii) a denominator with its own aggregation function and involving an external measure.

2.2 On-line performance measures

Consider again the competitive ratio measure C(n):

) =\ vty |

This measure suffers in practice from two aspects. One the denominator is an off-line algo-
rithm that has full knowledge of the future request sequence and unbounded computational
power. In certain instances the comparison with such a powerful adversary leads to algo-
rithms of varying degrees of sophistication having the same equally bad competitive ratio.

For example an algorithm that has good performance in all but one rather complicated in-
stance has the same competitive ratio as an algorithm that always makes a bad decision
(even on “trivial” instances) so long as the bad decisions are never worse than that of the
rare worst case of the preferred algorithm.
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3 Alternatives to the Competitive Analysis

The competitive ratio is the standard measure for analyzing and studying on-line algorithms.
Although it is useful in many cases, it has some shortcomings. Most of these are due to
the fact that the competitive ratio is a pessimistic measure. For some on-line algorithms
their competitive ratio is much worse than their performance ratios in practice. As well, in
some cases, the competitive ratio cannot distinguish between on-line algorithms that behave
very differently in practice. For example Least-Recently-Used (LRU) and First-In-First-Out
(FIFO) are two on-line paging algorithms that have the same competitive ratios, while in
practice LRU is much better than FIFO [Ira98]. Another problem with competitive analysis
is that it cannot be used to directly compare two on-line algorithms; we must compare
each algorithm to some optimal off-line algorithm. The competitive ratio also has some
counter-intuitive features. For example, making the on-line algorithm more powerful by
finite look-ahead does not change the competitive ratio or adding resources might worsen
the competitive performance of an on-line algorithm [BNS69] (the so called Belady anomaly).

Therefore several alternative measures for the quality of on-line algorithms have been pro-
posed [BDB94, BLNO01, BF03, KP00, Ken96, FW98, Ira98, BIRS95, IKP96, CN99, You94].
We study some of these alternatives in this section. The basic problem in competitive anal-
ysis is that the adversary is too powerful compared to the on-line algorithm. Many papers
try to overcome this problem by restricting the power of the adversary. For example this
is usually done by placing some constraints on the set of legal input sequences. Another
problem is that a single unusual sequence can result in a very bad competitive ratio that is
far from the quality of typical sequences.

3.1 Accommodation Ratio and Accommodating Function

These two measures are the same as the competitive ratio except that they restrict the legal
input sequences. They apply to on-line problems with limited resources and only consider
those input sequences in which the optimal solution does not benefit from having more than
a certain amount of resources. We use an example to explain this. The fair bin packing
problem consists of n bins of size k and an input sequence I of items where the size of
each item is an integer between 1 and k. This sequence is given to the algorithm in an
on-line manner and we want to maximize the total number of items in the bins. Also the
packing should be fair; we can reject an item only if it cannot fit in any bins when it is given.
Although the optimal off-line algorithm knows the whole sequence I in advance, it should
fairly process the requests in the same order as I.

Now for the accommodating ratio [BL99] we consider those input sequences that can
be packed in n bins by a fair optimal off-line algorithm. In general we only consider those
input sequences in which the optimal off-line algorithm does not benefit from having more
resources than those already available. For the accommodating function [BLN01, BFLNO3]
we only consider those input sequences that can be packed in an bins by a fair optimal
off-line algorithm, where o > 0 is the function’s variable.

Next we define these measures more precisely. Consider an on-line problem II with limited
resources. Let A(I) be the cost of an on-line algorithm 4 on an input sequence I and let
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OPT(I) be the cost of an optimal off-line algorithm on I. Let OPT,, be the cost of OPT when
an amount m of the limited resource is available.

Definition 7 [BFLN03] Let P be an on-line problem with a fized amount n of resources.
For any o > 0, an input sequence I is said to be an a-sequence, if OPTq,(I) = OPT(I), for
all n' > an (1-sequences are also called accommodating sequences).

Definition 8 Let A be an on-line algorithm for a minimization problem. Then A is c-
competitive on a-sequences, if there exists a constant b, such that A(I) < c¢-0PT(I)+b, for
any a-sequence I. The accommodating function s defined as

Au(a) = inf{c| A is c-competitive on a-sequences}

Note that accommodation ratio is A(1). In other words, the accommodation ratio is
the same as the competitive ratio when we restrict the input to accommodating sequences
(1-sequences). Therefore the accommodation ratio is usually called the competitive ratio
on accommodating sequences. Also the competitive ratio is limy—oo A(a). Thus the accom-
modating function is an extension of both the competitive ratio and the accommodation
ratio.

Several papers [BL99, BLN99, BBJ*00, BBE*03, EF03, BN99, ABE*(02] use the accom-
modating ratio as the measure of quality for on-line algorithms. Boyar et al. [BL99] give
lower bounds and upper bounds for the competitive ratio and accommodating ratio of two
versions (unit price and proportional price) of the seat reservation problem. They proved
these results for BEST-FIT, FIRST-FIT, and general deterministic fair algorithms. The two
measures (the competitive ratio and the accommodating ratio), agree on the proportional
price problem but differ on the unit price problem. The bounds are tight for the proportional
price problem, but not in the unit price problem. Bach et al. [BBJ*00, BBE*03] give better
and tight bounds for the deterministic fair algorithms for the unit price problem. They also
consider randomized algorithms and prove some bounds for them.

Several algorithms for the on-line fair bin packing problem are analyzed in [BLN98]. Up-
per bounds and lower bounds are given for the accommodating ratio for FIRST-FI1T, WORST-
F1T, and general algorithms. The lower bound for FIRST-FIT is improved in [BN99]. Ac-
cording to these bounds, FIRST-FIT has strictly better accommodating ratio than WORST-
F11. However if we consider the standard competitive ratio, it can be shown [BLN99] that
WORST-FIT behaves strictly better than FIRST-FIT. Therefore the competitive ratio and
the accommodating ratio can give contradictory results. Epstein and Favrholdt [EF03] con-
sider a variation of on-line fair bin packing in which bins can have different sizes and give
upper bounds and lower bounds for the accommodating ratio of several on-line algorithms.

The unrestricted bin-packing problem is the same as the fair bin packing problem except
that we do not require the algorithms to be fair. Azar et al. [ABE102] study this variation
of the problem and compare it with fair bin packing using the accommodating ratio. They
prove an asymptotically tight bound for the accommodating ratio of FIRST-FIT for the fair
bin packing problem. They design an on-line algorithm called UNFAIR-FIRST-FIT which has
asymptotically better accommodating ratio than FIRST-FIT in the unrestricted bin packing
problem. Finally upper bounds on the accommodating ratio of deterministic and randomized
algorithms are proven for the unrestricted bin packing problem.
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The accommodation function was studied by Boyer et al. for the fair bin packing problem
[BLNO1]. They prove lower bounds and upper bounds on the accommodation functions of
FirST-F1T, WORST-FIT, and all deterministic fair algorithms for all & > 1. A variant of
the seat reservation problem in which seat changes are allowed is studied in [BKN04]. Lower
bounds and upper bounds for the competitive ratio, accommodating ratio, and accommo-
dation function are proven for several algorithms. Finally, Boyer et al. [BFLN03] extend
the accommodation function to values of @ < 1. They study the accommodation function
of several algorithms for the seat reservation and unrestricted bin packing problems. For
the seat reservation problem, they show that we can separate the performance of three al-
gorithms using the accommodation function at o« = 1/3, while we cannot do the same using
the competitive ratio or the accommodating ratio. They also studied the connection between
the accommodation function and the resource augmentation technique [KP95].

3.2 Max/Max Ratio

The Max/Max ratio [BDB94] tries to be more optimistic by comparing the amortized worst
case behaviour of the on-line algorithm with the amortized worst case behaviour of the op-
timal off-line algorithm. Recall that in competitive analysis we compare the two algorithms
on the same sequence. However, this approach is sometimes problematic because the exis-
tence of only one bad sequence can drastically change the result. Thus this measure tries to
avoid the situation in which a single unusual sequence gives a very bad result. This becomes
more clear with the following example used in [BDB94] as a motivation for defining the
Max/Max ratio. Consider the problem of buying an insurance policy in an on-line manner.
It is reasonable to pay $5 a month to insure your car against theft. However, this is not a
competitive strategy because the off-line adversary can select the scenario in which one will
never present a claim to the insurance agent. In the Max/Max ratio, we compare the two
algorithms on their respective worst case sequences of the same length.

We define this measure more precisely for an on-line minimization problem II. The
definition for maximization problems is similar. Let A be an algorithm for II and let A([)
be the cost of A on an input sequence I.

Definition 9 The amortized cost of A is defined as M(A) = limsup,_,. Mi(A) where
M;(A) = max|r= A(I)/l. The Max/Max ratio of A denoted wy(A) is

ey M) M(A)
P A (opr) — M(opT)

where OPT is an optimal off-line algorithm.

Note that we can directly compare two on-line algorithms A and B using this measure because

we have ]\]é((“g)) = Zﬁ((“g)) Also it is shown [BDB94] that, when considering the Max/Max ratio,

look-ahead can improve the on-line performance even in cases where the competitive ratio

does not improve.
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3.3 Random Order Ratio

The random order ratio [Ken96] is another measure that tries to decrease the dependence
on some unusual bad sequences. Let A be an on-line algorithm for an on-line minimization
problem and let A(I) be the cost of A on an input sequence I = (iy,42,...,1%,).

Definition 10 The random order ratio of A is defined as

. E, A(I,)
RC(A)= 1 - 7
(A= s o)

where o is a permutation of {1,2,...,n}, I, is the permuted sequence (is,,...,15,), and the
expectation is taken over all permutations of {1,2,...,n}.

Therefore this measure assumes that all orderings of an input sequence are equally likely.
This is a reasonable assumption for some on-line problems. [Ken96] contains a lower bound
and an upper bound on the random order ratio of BEST-FIT algorithm for on-line bin-packing
problem which are better bounds than their corresponding bounds for the competitive ratio.
However, it seems that this measure is difficult generalize to other on-line problems.

3.4 Relative Worst Order Ratio

The relative worst order ratio [BF03, BM04, BFL05] combines some desirable properties of
the Max/Max ratio and the random order ratio. Using this measure we can directly compare
two on-line algorithms. Informally, for a given sequence it considers the worst case ordering
of that sequence for each algorithm and compares their behaviour on these orderings. Then
it finds among all sequences (not just reorderings) the one that maximizes the worst case
performance. Thus this measure can be considered as a modification of the Max/Max ratio
in that we consider the worst sequence among those which are permutations of each other
instead of considering the worst sequence among all those having the same length as the
Max/Max ratio does. It is also related to random order ratio as it considers permutations
of a sequence. However instead of taking the expectation of the algorithm’s behaviour on all
permutations, it considers the permutation with the worst behaviour.

Let A and B be on-line algorithms for an on-line minimization problem and let A(I) be
the cost of A on an input sequence I = (iq,19,...,1,). Denote by I, the sequence obtained
by applying a permutation o to I, i.e. I, = (ig),...,%s,). Define Ay (I) = min, A(L,).

Definition 11 [BFL05] Let Si(c) and Sz(c) be the statements about algorithms A and B
defined in the following way.

Si(¢) : There exists a constant b such that Aw(I) < c-Bw(I)+b for oll I.
Sy(¢) : There exists a constant b such that Aw (I) > ¢- Bw(I)—0b for all I.

The relative worst order ratio WR 45 of an on-line algorithm A to algorithm B is defined if
S1(1) or S2(1) holds. In this case A and B are said to be comparable. If Si(1) holds, then
WRap = sup{r|Sa(r)}, and if So(r) holds then WR 4 g = inf{r|S1(r)}.

ACM SIGACT News 8 September 2005 Vol. 36, No. 3



WR 4 can be used to compare the qualities of A and B. If WR4 5 = 1 then these two
algorithms have the same quality with respect to this measure. The magnitude of difference
between WR 4 5 and 1 reflects the difference between the behaviour of the two algorithms.
For a minimization problem, A is better than B with respect to this measure if WR4 5 < 1
and vice versa.

The idea behind this measure is that some on-line algorithms perform well on some types
of sequence orderings and other algorithms perform well on some other types of orderings.
Therefore certain algorithms that cannot be compared using competitive analysis may be
comparable in this measure. Boyar and Favrholdt showed that the relative worst order ratio
is transitive [BF03].

Note that we can also compare the on-line algorithm A to an optimal off-line algorithm
OPT. The worst order ratio of Ais defined as WR4 = WR 4 opT. For some problems, OPT is
the same for all order of requests on a given input sequence and hence the worst order ratio
is the same as the competitive ratio. However for other problems such as fair bin packing
the order does matter for OPT.

In [BMO04], three on-line algorithms (FIRST-FIT, BEST-FIT, and WORST-FIT) for two
variants of the seat reservation problem [BL99] are compared using the relative worst order
ratio. All of these three algorithms can be compared in this framework while this is not
possible within the classical competitive analysis framework. The relative worst order ratio
is applied to paging algorithms in [BFL05]. It is shown that LRU is strictly better than FWF
with respect to the worst order ratio, while these two algorithms have the same competitive
ratio. Also a new paging algorithm, Retrospective-LRU (RLRU), is proposed and it is shown
that RLRU is better than LRU with respect to the relative worst order ratio. This contrasts
with results on the competitive ratio of these algorithms. It is also shown that look-ahead
is helpful when we consider the relative worst order ratio.

3.5 Loose Competitiveness

Loose competitiveness was first proposed in [You94] and later modified in [You02]. We
describe it for an on-line minimization problem. It attempts to obtain a more realistic
measure by considering the following two aspects in the analysis of the on-line algorithms.
First, in many real on-line problems, we can ignore those input sequences on which the on-line
algorithm incurs a cost less than a certain threshold. Second, many on-line problems, have
a second resource parameter (e.g. size of cache, number of servers) and the input sequences
are independent of these parameters. In contrast, in competitive analysis the adversary can
select sequences tailored against those parameters. We clarify this situation by considering
the paging problem. In this case the problem parameter is the size in pages k of the cache.
Consider the following lower bound on the competitive ratio of any deterministic paging
algorithm.

Theorem 1 [ST85] The competitive ratio of any deterministic on-line paging algorithm is
at least k.

This result can be easily proven by considering an adversary that selects only k& + 1 pages
and at each time requests a page that is not in the cache. For this to work the adversary
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needs to know the problem parameter k, . However, in practice the competitive ratios of
many on-line paging algorithms have been observed to be constant [You02], i.e. independent
of k. This can be obtained by applying loose competitiveness.

In loose competitiveness we consider an adversary that is oblivious to the parameter by
requiring it to give a sequence that is bad for most values of the parameter rather than just
a specific bad value of the parameter. Let Ag(I) denote the cost of an algorithm A4 on an
input sequence I, when the parameter of the problem is k.

Definition 12 [You02] An algorithm A is (e,d)-loosely c-competitive if, for any input se-
quence I and for any n, at least (1 — &) n of the values k € {1,2,...,n} satisfy

Ap(I) < max{c-oPTy(I),€|I|}.

Therefore we ignore the input sequences I which costs less than e|I|. Also we require the
algorithm to be good for at least (1 — ) fraction of the possible parameters. For each on-line
problem, we can select the appropriate constants € and §. The following result shows that by
this modification of the competitive analysis, we can obtain paging algorithms with constant
performance ratios.

Theorem 2 [You02] Every k-competitive paging algorithm is (€, §)-loosely c-competitive for
any 0 < €,8 <1, and ¢ = (e/d)In(e/e), where e is the base of the natural logarithm.

3.6 Access Graph Model

The access graph model was introduced by Borodin et al. to solve two main problems in
the competitive analysis of on-line paging algorithms [BIRS95]. One of these problems
is that the practical performance ratio of LRU is much better than its competitive ratio.
We have mentioned the second problem before: Although LRU and FIFO have the same
competitive ratio, LRU behaves much better than FIFO in practice. One reason that LRU
has good experimental behaviour is that in practice page requests show locality of reference.
Temporal locality means that when a page is requested it is more likely to be requested in
the near future. Spatial locality means that when a page is requested it is more likely it that
a nearby page will be requested in the near future.

In the access graph model we weaken the adversary by restricting the set of legal input
sequences. This is done by restricting the set of pages that can be requested after each page.
More specifically, we have an access graph G = (V) E) so that each vertex v represents a page
py and there is an edge from a vertex u to a vertex v if and only if p, can be requested after
pu- This graph can be directed on undirected depending on the actual practical problem.
Locality of reference can be imposed in this model because when we request a page p we
should request p or one of its neighbours in the next step. The competitive ratio is the same
as in standard competitive analysis except that we restrict ourselves to the input sequences
that conform to the given access graph.

Using this model, several interesting results can be obtained [BIRS95, IKP96, CN99,
FR97]. For every graph G and every number k of pages in the fast memory, let ¢x(G) denote
the best competitive ratio that can be achieved by an on-line paging algorithm. Borodin
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et al. proved that computing ¢x(G) is computable for every finite access graph G [BIRS95].
They also show how to compute the competitive ratio of LRU for every access graph and
every k within a factor of two (plus additive constant), and . propose a simple algorithm
that nearly achieves the best competitive ratio for every access graph. This algorithm, called
FAR, evicts, on each fault, the unmarked page in cache whose distance from a marked page
is maximum in the access graph. They proved that the competitive ratio of FAR for every
undirected access graph and every k is within O(log k) of the best possible competitive ratio.
This was later improved by Irani et al. showed that the competitive ratio of FAR is O(cx(G))
for any undirected graph G [IKP96]. Experimental results show that some variations of FAR
algorithm behave better than LRU in practice [BIRS95]. It is also known that the competitive
ratio of LRU is at least as good as FIFO on every access graph [CN99].

3.7 Diffuse Adversary Model

The diffuse adversary model [KP0O] tries to refine the competitive ratio by decreasing the
power of the adversary. It does this by restricting the set of legal input sequences. Recall
that in standard competitive analysis we do not put any restriction on the input sequences
and so they can have any distribution. In other words, the on-line algorithm knows nothing
about the distribution of the input sequences. At the other end of the extreme, in classic
probabilistic analysis of on-line algorithms, the exact distribution of input sequences is known
to the on-line algorithm. In the diffuse adversary model, the on-line algorithm does not know
the exact distribution, but it knows that it is a member of a class A of distributions.

Definition 13 Let A be an on-line algorithm for a minimization problem and let A be a
class of distributions for the input sequences. Then A is c-competitive against A, if there
exists a constant b, such that

ErepA(l) < ¢ ErepOPT(I) + b,

for every distribution D € A, where A(I) denotes the cost of A on the input sequence I and
the expectations are taken over sequences that are picked according to D.

In other words the adversary selects the distribution D in A that is the worst distribution
for A. If A is more restricted then A knows more about the distribution of input sequences
and the power of adversary is more constrained. When A contains all possible distributions
then the competitive analysis against A is the same as the standard competitive ratio.
Therefore the diffuse adversary model is an extension of standard competitive analysis. Note
that we can also model locality of reference using the diffuse adversary model by considering
only those distributions that are consistent with the given access graph. This means that if
there is no edge between the vertices corresponding to two pages, the probability that one
page is accessed after the other should be zero in our distributions.

This model is applied to the paging algorithms [KP00] by considering a class A, of
distributions and proving that LRU has the best competitive ratio against A, among all de-
terministic on-line algorithms. For any sequence p of pages and any page p, let P(p|p) denote
the probability that p is the next page requested provided that the request sequence seen so
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far is p. For any 0 < e <1, A, contains distributions in which P(p|p) < e for every page p
and every page sequence p. Computing the actual competitive ratio of both deterministic
and randomized algorithms against A, is studied in [You98, You00]. An estimation of the
optimal competitive ratio for several algorithms (such as LRU and FIFO) within a factor
of 2 is given. Also it is observed that around the threshold e ~ 1/k, the best competitive
ratios against A, are #(In k). The competitive ratios rapidly become constant for values of €
less than the threshold. For € = w(1/k), i.e. values greater than the threshold, the competi-
tive ratio rapidly tends to #(k) for deterministic algorithms while it remains unchanged for
randomized algorithms.

3.8 Smoothed Competitiveness

Some algorithms that have very bad worst case performance behave very well in practice.
One of the most famous examples is the simplex method. This algorithms has a very good
performance in practice but it has exponential worst case running time. Average case analysis
of algorithms can somehow explain this behaviour but sometimes there is no basis to the
assumption that the inputs to an algorithm are random.

Smoothed analysis of algorithms [ST04] tries to explain this intriguing behavior without
assuming anything about the distribution of the input instances. In this model, we randomly
perturb (smoothen) the input instances according to a probability distribution f and then
analyze the behavior of the algorithm on these perturbed (smoothed) instances. For each
input instance I we compute the neighborhood N(j) of I which contains the set of all
perturbed instances that can be obtained from I. Then we compute the expected running
time of the algorithm over all perturbed instances in this neighborhood. The smoothed
complexity of the algorithm is the maximum of this expected running time over all the input
instances. Intuitively, an algorithm with a bad worst case performance can have a good
smoothed performance if its worst case instances are isolated. Spielman and Teng show
[ST04] that the simplex algorithm has polynomial smoothed complexity. Several other results
are known about the smoothed complexity of the algorithms [BMB03, MR05, BD02, ST03].

As we said before, the competitive analysis is a very pessimistic measure and an algo-
rithm can have a very bad competitive ratio only because of a few bad input sequences.
Therefore the competitive ratio is a reasonable choice for applying smoothed analysis. This
was first done by Becchetti et al. [BLMS103] who introduced smoothed competitive analysis.
Informally, smoothed competitive analysis is the same as the competitive analysis except
that we consider the cost of the algorithm on randomly perturbed adversarial sequences.
As in the analysis of the randomized on-line algorithms, we can have either an oblivious
adversary or an adaptive adversary. The smoothed competitive ratio of an on-line algorithm
A for a minimization problem can be formally defined as follows.

Definition 14 [BLMS* (03] The smoothed competitive ratio of an algorithm A is defined as

c=sup& n=————=1,

where the supremum is taken over all input instances I, and the expectation is taken over
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all instances I that are obtainable by smoothening the input instance I according to f in the

neighborhood N(I).

Note that it is also possible to define the smoothed competitive ratio as

¢ = sup gI(—N(f) [A(I)]
I gIeN(IV)[OPT(I)]‘

In [BLMS*03], the first definition is used but it is remarked that a similar result can be
obtained using the second definition. They used the smoothed competitive ratio to analyze
the MULTI-LEVEL FEEDBACK(MLF) algorithm for processor scheduling in a time sharing
multitasking operating system. This algorithm has very good practical performance but its

competitive ratio is very bad. They obtain strictly better ratios using the smooth competitive
analysis than with the competitive ratio.

3.9 Search Ratio

The search ratio belongs to the family of measures in which the off-line OPT is weakened. It
is defined only for the specific case of geometric searches in an unknown terrain for a target
of unknown position. Recall that the competitive ratio compares against an all knowing
OPT, Indeed, for geometric searches in the competitive ratio framework, the OPT is simply
a shortest path algorithm, while the on-line search algorithm has intricate methods for
searching. The search ratio instead considers the case where OPT knows the terrain but not
the position of the target. That is, the search ratio compares two search algorithms, albeit
one more powerful than the other. By comparing two instances of like objects the search
ratio can be argued to be a more meaningful measure of the quality of an on-line search
algorithm. Koutsopias et al. show that searching in trees results the same large competitive
ratio regardless of the algorithm, yet under the search ratio framework certain algorithms
are far superior to others [KPY96].

3.10 Travel Cost

As we observed in Section 2, classical complexity time analysis generally uses an unnormal-
ized time measure even though a normalized measure has been defined and proven fruitful
in certain settings. This raises up the possibility of using an unnormalized cost measure
for on-line algorithms as well. This measure has been used in on-line geometric searches, in
which the main objective is to minimize the length of the longest search sequence, known as
the travel cost of the solution. Formally

Definition 15 The travel cost of an on-line algorithm A on input I is given by
C(n) =max{A(I)}

HI<n

For example in the case of an actual search and rescue operation in the high seas minimizing
the maximum search time is more relevant than the competitive ratio on any particular point

in the search path [FSBY™04].
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3.11 Average Ratio

The average competitive ratio was introduced in the context of competitive searches on the
real line for a target of unknown location. The classic problem in this field is the cow path
problem. As traditionally described, a cow reaches a fork on the road and recalls that in one
and only one of the two paths there is a pasture field. This problem was first analyzed under
the competitive ratio and its solution predates the introduction of the competitive ratio in
on-line algorithms. The optimal solution under the standard competitive ratio metric is
9-competitive. However, on the average, the pasture is discovered at an average competitive
ratio of approximately 4.59, assuming a uniform distribution of the position of the field.
Interestingly enough, the strategy resulting in the optimal average cost is different from the
optimal one under the competitive ratio framework [Gal79, LO96]. Formally we have,

Definition 16 The average competitive ratio, or average ratio for short is defined as

Bvin (oﬁ?n) |

4 Conclusions

In this survey we presented eleven alternative measures to the competitive ratio for the
analysis of on-line algorithms. This list, while not exhaustive, is illustrative of the various
different approaches to improve on the competitive ratio.
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