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Then, it is only natural to quantify the performane drop due to this absene of information.That is, we ompare the quality of the solution obtained by the on-line algorithm with theone omputed in the presene of full information, namely that of the o�-line optimal opt.On the other hand, there are known appliations in whih the ompetitive ratio pro-dues somewhat unsatisfatory results. In some ases it results in unrealistially pessimistimeasures, in others it fails to distinguish between algorithms that have vastly di�ering per-formane under any pratial haraterization. The pessimisti nature of the ompetitiveratio derives from two aspets, one is the use of the worst ase max operator, the seond isthe use of a highly idealized o�-line opt algorithm in the denominator. In addition, thereare situations in whih we might simply desire a di�erent measure than that provided by theompetitive ratio.Beause of this various alternatives to the ompetitive ratio have been proposed in theliterature. In this survey we list eleven well known alternatives to the ompetitive ratio,highlight their distintive properties and disuss their bene�ts and drawbaks.2 Competitive RatioPaging is a lassi example of a problem studied in the ontext of on-line algorithm analysis.A paging algorithm must deide whih k memory pages to keep in the ahe without thebene�t of knowing the sequene of upoming page requests. The goal of a paging algorithmis to minimize the number of ahe misses over the entire input sequene. The pagingalgorithm must produe a partial solution after reeiving the ith page request and determinewhih page to evit, shall the page request be a ahe miss. The performane of the pagingalgorithm is quanti�ed by the number of ahe misses, whih is the ost of a partiularsolution. For a given paging algorithm, we onsider the sequenes with the worst (highest)possible ost and ompare them to the o�-line optimal opt whih knows the entire sequenein advane. Alternatively, sine we are maximizing the ost over all input sequenes, we anthink of an adversary whih selets the next element in the input sequene in a way that isleast desirable for the paging algorithm.We an generalize the key onepts of this example to other problems as follows. Let � =(s1; s2; : : :) be an input sequene. We denote by �1:j = (s1; s2; : : : ; sj) the pre�x subsequeneof the �rst j requests in �. An on-line algorithm A for an minimization problem takes asinput a sequene � = (s1; s2; : : : ; sn). The algorithm A proesses the request sequene inorder, from s1 onwards and produes a partial solution with ost A(�1:j) after the arrival ofthe jth request (for onveniene of notation we will denote as A(�) = ostA(�)).In general it is assumed that the length of the sequene is unknown beforehand and henean on-line algorithm performs the same steps on the ommon pre�x of two otherwise distintinput sequenes. More formally, if �0 is a pre�x of � then A(�0) = A(�1:j�0j). In ontrast,the o�-line optimal algorithm, denoted as opt has aess to the entire sequene at one andhene does not neessarily meet the pre�x ondition.De�nition 1 An on-line algorithm A is said to have ompetitive ratio  ifA(�) �  � opt(�)ACM SIGACT News 2 September 2005 Vol. 36, No. 3



for all input sequenes �.Some of the early literature onsiders only algorithms with onstant ompetitive ratio, andall others are termed as algorithms with unbounded ompetitive ratio. Alternatively, we ande�ne a C(n)-ompetitive algorithm as followsDe�nition 2 An on-line algorithm A is said to have ompetitive ratio C(n) if, for all inputsequenes � we have: A(�) � C(j�j) � opt(�):This de�nition an be relaxed to desribe the asymptoti ompetitive ratioDe�nition 3 An on-line algorithm A is said to have asymptoti ompetitive ratio C(n) ifA(�) � C(n) � opt(�) + b for all �.Equivalently, using the more onventional ratio notation, we have that an algorithm is C(n){ompetitive i� C(n) = maxj�j=n� A(�)opt(�)� :We note that this de�nition has three key omponents: the max operator, the on-line ostin the numerator and the optimal o�-line ost in the denominator. To better understandtheir role, in the next subsetion we briey review three well known performane measuresused in lassial algorithm analysis. Highlighting the di�erenes between these well knownmeasures will help us understand the motivations behind some of the alternative measureswe will desribe in Setion 3.2.1 A note on lassial performane measuresLet the timing funtion TA(I) denote the time taken by an o�-line algorithm A over an inputI.De�nition 4 The worst-ase time of algorithm A is de�ned asA(n) = maxjIj=nfTA(I)g:De�nition 5 The average-ase time of A under an uniform distribution is de�ned asA(n) = avgjIj=nfTA(I)g = PjIj=n TA(I)#fjIj = ng ;where # denotes the ardinality funtion.In the ase of a general distribution, the average-ase time of A isA(n) = E(TA(I) j jIj = n) = XjIj=nTA(I)Pr(I);ACM SIGACT News 3 September 2005 Vol. 36, No. 3



where E denotes the expetation funtion of lassial probability. Observe that max, avg,and E(�) are aggregate funtions over all inputs of size n.A third measure, albeit somewhat less ommon, omes from adaptive analysis. Thismeasure is used on problems in whih muh simpler instanes appear frequently. The ideais to require good performane on all inputs, as ompared to only on the worst ase or theaverage ase.De�nition 6 An algorithm A is said to be adaptive with respet to a measure V (I) ifTA(I) = O(V (I)) for all input I or equivalentlymax8I �TA(I)V (I) � � for some onstant .This an be generalized to the notion of f(n; V (I))-adaptive algorithms whih are those suhthat TA(I) = f(n; V (I)), for all inputs I of length n. Again this an be expressed as a ratiomaxjIj=n�TA(I)V (I) � = f(n; V (I)):This expression ombines both the max aggregate operator of worst ase analysis and aomparison ratio whih is reminisent of ompetitive analysis.Observe that the these performane measures have, as in the ase of the on-line ompet-itive ratio, three key hoies: (i) an aggregate funtion over inputs, (ii) a numerator withpossibly its own aggregation funtion and in the ase of the average and adaptive measures(iii) a denominator with its own aggregation funtion and involving an external measure.2.2 On-line performane measuresConsider again the ompetitive ratio measure C(n):C(n) = maxj�j=n� A(�)opt(�)� :This measure su�ers in pratie from two aspets. One the denominator is an o�-line algo-rithm that has full knowledge of the future request sequene and unbounded omputationalpower. In ertain instanes the omparison with suh a powerful adversary leads to algo-rithms of varying degrees of sophistiation having the same equally bad ompetitive ratio.For example an algorithm that has good performane in all but one rather ompliated in-stane has the same ompetitive ratio as an algorithm that always makes a bad deision(even on \trivial" instanes) so long as the bad deisions are never worse than that of therare worst ase of the preferred algorithm.ACM SIGACT News 4 September 2005 Vol. 36, No. 3



3 Alternatives to the Competitive AnalysisThe ompetitive ratio is the standard measure for analyzing and studying on-line algorithms.Although it is useful in many ases, it has some shortomings. Most of these are due tothe fat that the ompetitive ratio is a pessimisti measure. For some on-line algorithmstheir ompetitive ratio is muh worse than their performane ratios in pratie. As well, insome ases, the ompetitive ratio annot distinguish between on-line algorithms that behavevery di�erently in pratie. For example Least-Reently-Used (LRU) and First-In-First-Out(FIFO) are two on-line paging algorithms that have the same ompetitive ratios, while inpratie LRU is muh better than FIFO [Ira98℄. Another problem with ompetitive analysisis that it annot be used to diretly ompare two on-line algorithms; we must ompareeah algorithm to some optimal o�-line algorithm. The ompetitive ratio also has someounter-intuitive features. For example, making the on-line algorithm more powerful by�nite look-ahead does not hange the ompetitive ratio or adding resoures might worsenthe ompetitive performane of an on-line algorithm [BNS69℄ (the so alled Belady anomaly).Therefore several alternative measures for the quality of on-line algorithms have been pro-posed [BDB94, BLN01, BF03, KP00, Ken96, FW98, Ira98, BIRS95, IKP96, CN99, You94℄.We study some of these alternatives in this setion. The basi problem in ompetitive anal-ysis is that the adversary is too powerful ompared to the on-line algorithm. Many paperstry to overome this problem by restriting the power of the adversary. For example thisis usually done by plaing some onstraints on the set of legal input sequenes. Anotherproblem is that a single unusual sequene an result in a very bad ompetitive ratio that isfar from the quality of typial sequenes.3.1 Aommodation Ratio and Aommodating FuntionThese two measures are the same as the ompetitive ratio exept that they restrit the legalinput sequenes. They apply to on-line problems with limited resoures and only onsiderthose input sequenes in whih the optimal solution does not bene�t from having more thana ertain amount of resoures. We use an example to explain this. The fair bin pakingproblem onsists of n bins of size k and an input sequene I of items where the size ofeah item is an integer between 1 and k. This sequene is given to the algorithm in anon-line manner and we want to maximize the total number of items in the bins. Also thepaking should be fair; we an rejet an item only if it annot �t in any bins when it is given.Although the optimal o�-line algorithm knows the whole sequene I in advane, it shouldfairly proess the requests in the same order as I.Now for the aommodating ratio [BL99℄ we onsider those input sequenes that anbe paked in n bins by a fair optimal o�-line algorithm. In general we only onsider thoseinput sequenes in whih the optimal o�-line algorithm does not bene�t from having moreresoures than those already available. For the aommodating funtion [BLN01, BFLN03℄we only onsider those input sequenes that an be paked in �n bins by a fair optimalo�-line algorithm, where � > 0 is the funtion's variable.Next we de�ne these measures more preisely. Consider an on-line problem� with limitedresoures. Let A(I) be the ost of an on-line algorithm A on an input sequene I and letACM SIGACT News 5 September 2005 Vol. 36, No. 3



opt(I) be the ost of an optimal o�-line algorithm on I. Let optm be the ost of opt whenan amount m of the limited resoure is available.De�nition 7 [BFLN03℄ Let P be an on-line problem with a �xed amount n of resoures.For any � > 0, an input sequene I is said to be an �-sequene, if opt�n(I) = optn0(I), forall n0 � �n (1-sequenes are also alled aommodating sequenes).De�nition 8 Let A be an on-line algorithm for a minimization problem. Then A is -ompetitive on �-sequenes, if there exists a onstant b, suh that A(I) �  � opt(I) + b; forany �-sequene I. The aommodating funtion is de�ned asAA(�) = inff jA is -ompetitive on �-sequenesgNote that aommodation ratio is A(1). In other words, the aommodation ratio isthe same as the ompetitive ratio when we restrit the input to aommodating sequenes(1-sequenes). Therefore the aommodation ratio is usually alled the ompetitive ratioon aommodating sequenes. Also the ompetitive ratio is lim�!1 A(�). Thus the aom-modating funtion is an extension of both the ompetitive ratio and the aommodationratio.Several papers [BL99, BLN99, BBJ+00, BBE+03, EF03, BN99, ABE+02℄ use the aom-modating ratio as the measure of quality for on-line algorithms. Boyar et al. [BL99℄ givelower bounds and upper bounds for the ompetitive ratio and aommodating ratio of twoversions (unit prie and proportional prie) of the seat reservation problem. They provedthese results for Best-Fit, First-Fit, and general deterministi fair algorithms. The twomeasures (the ompetitive ratio and the aommodating ratio), agree on the proportionalprie problem but di�er on the unit prie problem. The bounds are tight for the proportionalprie problem, but not in the unit prie problem. Bah et al. [BBJ+00, BBE+03℄ give betterand tight bounds for the deterministi fair algorithms for the unit prie problem. They alsoonsider randomized algorithms and prove some bounds for them.Several algorithms for the on-line fair bin paking problem are analyzed in [BLN98℄. Up-per bounds and lower bounds are given for the aommodating ratio for First-Fit,Worst-Fit, and general algorithms. The lower bound for First-fit is improved in [BN99℄. A-ording to these bounds, First-Fit has stritly better aommodating ratio than Worst-Fit. However if we onsider the standard ompetitive ratio, it an be shown [BLN99℄ thatWorst-Fit behaves stritly better than First-Fit. Therefore the ompetitive ratio andthe aommodating ratio an give ontraditory results. Epstein and Favrholdt [EF03℄ on-sider a variation of on-line fair bin paking in whih bins an have di�erent sizes and giveupper bounds and lower bounds for the aommodating ratio of several on-line algorithms.The unrestrited bin-paking problem is the same as the fair bin paking problem exeptthat we do not require the algorithms to be fair. Azar et al. [ABE+02℄ study this variationof the problem and ompare it with fair bin paking using the aommodating ratio. Theyprove an asymptotially tight bound for the aommodating ratio of First-Fit for the fairbin paking problem. They design an on-line algorithm alledUnfair-First-Fit whih hasasymptotially better aommodating ratio than First-Fit in the unrestrited bin pakingproblem. Finally upper bounds on the aommodating ratio of deterministi and randomizedalgorithms are proven for the unrestrited bin paking problem.ACM SIGACT News 6 September 2005 Vol. 36, No. 3



The aommodation funtion was studied by Boyer et al. for the fair bin paking problem[BLN01℄. They prove lower bounds and upper bounds on the aommodation funtions ofFirst-Fit, Worst-Fit, and all deterministi fair algorithms for all � � 1. A variant ofthe seat reservation problem in whih seat hanges are allowed is studied in [BKN04℄. Lowerbounds and upper bounds for the ompetitive ratio, aommodating ratio, and aommo-dation funtion are proven for several algorithms. Finally, Boyer et al. [BFLN03℄ extendthe aommodation funtion to values of � < 1. They study the aommodation funtionof several algorithms for the seat reservation and unrestrited bin paking problems. Forthe seat reservation problem, they show that we an separate the performane of three al-gorithms using the aommodation funtion at � = 1=3, while we annot do the same usingthe ompetitive ratio or the aommodating ratio. They also studied the onnetion betweenthe aommodation funtion and the resoure augmentation tehnique [KP95℄.3.2 Max/Max RatioThe Max/Max ratio [BDB94℄ tries to be more optimisti by omparing the amortized worstase behaviour of the on-line algorithm with the amortized worst ase behaviour of the op-timal o�-line algorithm. Reall that in ompetitive analysis we ompare the two algorithmson the same sequene. However, this approah is sometimes problemati beause the exis-tene of only one bad sequene an drastially hange the result. Thus this measure tries toavoid the situation in whih a single unusual sequene gives a very bad result. This beomesmore lear with the following example used in [BDB94℄ as a motivation for de�ning theMax/Max ratio. Consider the problem of buying an insurane poliy in an on-line manner.It is reasonable to pay $5 a month to insure your ar against theft. However, this is not aompetitive strategy beause the o�-line adversary an selet the senario in whih one willnever present a laim to the insurane agent. In the Max/Max ratio, we ompare the twoalgorithms on their respetive worst ase sequenes of the same length.We de�ne this measure more preisely for an on-line minimization problem �. Thede�nition for maximization problems is similar. Let A be an algorithm for � and let A(I)be the ost of A on an input sequene I.De�nition 9 The amortized ost of A is de�ned as M(A) = lim supl!1Ml(A) whereMl(A) = maxjIj=lA(I)=l. The Max/Max ratio of A denoted wM(A) islim supl!1 Ml(A)Ml(opt) = M(A)M(opt)where opt is an optimal o�-line algorithm.Note that we an diretly ompare two on-line algorithmsA and B using this measure beausewe have M(A)M(B) = wM (A)wM (B) . Also it is shown [BDB94℄ that, when onsidering the Max/Max ratio,look-ahead an improve the on-line performane even in ases where the ompetitive ratiodoes not improve.ACM SIGACT News 7 September 2005 Vol. 36, No. 3



3.3 Random Order RatioThe random order ratio [Ken96℄ is another measure that tries to derease the dependeneon some unusual bad sequenes. Let A be an on-line algorithm for an on-line minimizationproblem and let A(I) be the ost of A on an input sequene I = (i1; i2; : : : ; in).De�nition 10 The random order ratio of A is de�ned asRC(A) = lim supopt(I)!1 E�A(I�)opt(I)where � is a permutation of f1; 2; : : : ; ng, I� is the permuted sequene (i�1; : : : ; i�n), and theexpetation is taken over all permutations of f1; 2; : : : ; ng.Therefore this measure assumes that all orderings of an input sequene are equally likely.This is a reasonable assumption for some on-line problems. [Ken96℄ ontains a lower boundand an upper bound on the random order ratio of Best-Fit algorithm for on-line bin-pakingproblem whih are better bounds than their orresponding bounds for the ompetitive ratio.However, it seems that this measure is diÆult generalize to other on-line problems.3.4 Relative Worst Order RatioThe relative worst order ratio [BF03, BM04, BFL05℄ ombines some desirable properties ofthe Max/Max ratio and the random order ratio. Using this measure we an diretly omparetwo on-line algorithms. Informally, for a given sequene it onsiders the worst ase orderingof that sequene for eah algorithm and ompares their behaviour on these orderings. Thenit �nds among all sequenes (not just reorderings) the one that maximizes the worst aseperformane. Thus this measure an be onsidered as a modi�ation of the Max/Max ratioin that we onsider the worst sequene among those whih are permutations of eah otherinstead of onsidering the worst sequene among all those having the same length as theMax/Max ratio does. It is also related to random order ratio as it onsiders permutationsof a sequene. However instead of taking the expetation of the algorithm's behaviour on allpermutations, it onsiders the permutation with the worst behaviour.Let A and B be on-line algorithms for an on-line minimization problem and let A(I) bethe ost of A on an input sequene I = (i1; i2; : : : ; in). Denote by I� the sequene obtainedby applying a permutation � to I, i.e. I� = (i�1; : : : ; i�n). De�ne AW (I) = min� A(I�).De�nition 11 [BFL05℄ Let S1() and S2() be the statements about algorithms A and Bde�ned in the following way.S1() : There exists a onstant b suh that AW (I) �  � BW (I) + b for all I.S2() : There exists a onstant b suh that AW (I) �  � BW (I)� b for all I.The relative worst order ratio WRA;B of an on-line algorithm A to algorithm B is de�ned ifS1(1) or S2(1) holds. In this ase A and B are said to be omparable. If S1(1) holds, thenWRA;B = supfrjS2(r)g, and if S2(r) holds then WRA;B = inffrjS1(r)g:ACM SIGACT News 8 September 2005 Vol. 36, No. 3



WRA;B an be used to ompare the qualities of A and B. If WRA;B = 1 then these twoalgorithms have the same quality with respet to this measure. The magnitude of di�erenebetween WRA;B and 1 reets the di�erene between the behaviour of the two algorithms.For a minimization problem, A is better than B with respet to this measure if WRA;B < 1and vie versa.The idea behind this measure is that some on-line algorithms perform well on some typesof sequene orderings and other algorithms perform well on some other types of orderings.Therefore ertain algorithms that annot be ompared using ompetitive analysis may beomparable in this measure. Boyar and Favrholdt showed that the relative worst order ratiois transitive [BF03℄.Note that we an also ompare the on-line algorithm A to an optimal o�-line algorithmopt. The worst order ratio of A is de�ned as WRA = WRA;opt. For some problems, opt isthe same for all order of requests on a given input sequene and hene the worst order ratiois the same as the ompetitive ratio. However for other problems suh as fair bin pakingthe order does matter for opt.In [BM04℄, three on-line algorithms (First-Fit, Best-Fit, and Worst-Fit) for twovariants of the seat reservation problem [BL99℄ are ompared using the relative worst orderratio. All of these three algorithms an be ompared in this framework while this is notpossible within the lassial ompetitive analysis framework. The relative worst order ratiois applied to paging algorithms in [BFL05℄. It is shown that LRU is stritly better than FWFwith respet to the worst order ratio, while these two algorithms have the same ompetitiveratio. Also a new paging algorithm, Retrospetive-LRU (RLRU), is proposed and it is shownthat RLRU is better than LRU with respet to the relative worst order ratio. This ontrastswith results on the ompetitive ratio of these algorithms. It is also shown that look-aheadis helpful when we onsider the relative worst order ratio.3.5 Loose CompetitivenessLoose ompetitiveness was �rst proposed in [You94℄ and later modi�ed in [You02℄. Wedesribe it for an on-line minimization problem. It attempts to obtain a more realistimeasure by onsidering the following two aspets in the analysis of the on-line algorithms.First, in many real on-line problems, we an ignore those input sequenes on whih the on-linealgorithm inurs a ost less than a ertain threshold. Seond, many on-line problems, havea seond resoure parameter (e.g. size of ahe, number of servers) and the input sequenesare independent of these parameters. In ontrast, in ompetitive analysis the adversary anselet sequenes tailored against those parameters. We larify this situation by onsideringthe paging problem. In this ase the problem parameter is the size in pages k of the ahe.Consider the following lower bound on the ompetitive ratio of any deterministi pagingalgorithm.Theorem 1 [ST85℄ The ompetitive ratio of any deterministi on-line paging algorithm isat least k.This result an be easily proven by onsidering an adversary that selets only k + 1 pagesand at eah time requests a page that is not in the ahe. For this to work the adversaryACM SIGACT News 9 September 2005 Vol. 36, No. 3



needs to know the problem parameter k, . However, in pratie the ompetitive ratios ofmany on-line paging algorithms have been observed to be onstant [You02℄, i.e. independentof k. This an be obtained by applying loose ompetitiveness.In loose ompetitiveness we onsider an adversary that is oblivious to the parameter byrequiring it to give a sequene that is bad for most values of the parameter rather than justa spei� bad value of the parameter. Let Ak(I) denote the ost of an algorithm A on aninput sequene I, when the parameter of the problem is k.De�nition 12 [You02℄ An algorithm A is (�; Æ)-loosely -ompetitive if, for any input se-quene I and for any n, at least (1� Æ)n of the values k 2 f1; 2; : : : ; ng satisfyAk(I) � maxf � optk(I); � jIjg:Therefore we ignore the input sequenes I whih osts less than � jIj. Also we require thealgorithm to be good for at least (1�Æ) fration of the possible parameters. For eah on-lineproblem, we an selet the appropriate onstants � and Æ. The following result shows that bythis modi�ation of the ompetitive analysis, we an obtain paging algorithms with onstantperformane ratios.Theorem 2 [You02℄ Every k-ompetitive paging algorithm is (�; Æ)-loosely -ompetitive forany 0 < �; Æ < 1, and  = (e=Æ) ln(e=�), where e is the base of the natural logarithm.3.6 Aess Graph ModelThe aess graph model was introdued by Borodin et al. to solve two main problems inthe ompetitive analysis of on-line paging algorithms [BIRS95℄. One of these problemsis that the pratial performane ratio of LRU is muh better than its ompetitive ratio.We have mentioned the seond problem before: Although LRU and FIFO have the sameompetitive ratio, LRU behaves muh better than FIFO in pratie. One reason that LRUhas good experimental behaviour is that in pratie page requests show loality of referene.Temporal loality means that when a page is requested it is more likely to be requested inthe near future. Spatial loality means that when a page is requested it is more likely it thata nearby page will be requested in the near future.In the aess graph model we weaken the adversary by restriting the set of legal inputsequenes. This is done by restriting the set of pages that an be requested after eah page.More spei�ally, we have an aess graph G = (V;E) so that eah vertex v represents a pagepv and there is an edge from a vertex u to a vertex v if and only if pv an be requested afterpu. This graph an be direted on undireted depending on the atual pratial problem.Loality of referene an be imposed in this model beause when we request a page p weshould request p or one of its neighbours in the next step. The ompetitive ratio is the sameas in standard ompetitive analysis exept that we restrit ourselves to the input sequenesthat onform to the given aess graph.Using this model, several interesting results an be obtained [BIRS95, IKP96, CN99,FR97℄. For every graph G and every number k of pages in the fast memory, let k(G) denotethe best ompetitive ratio that an be ahieved by an on-line paging algorithm. BorodinACM SIGACT News 10 September 2005 Vol. 36, No. 3



et al. proved that omputing k(G) is omputable for every �nite aess graph G [BIRS95℄.They also show how to ompute the ompetitive ratio of LRU for every aess graph andevery k within a fator of two (plus additive onstant), and . propose a simple algorithmthat nearly ahieves the best ompetitive ratio for every aess graph. This algorithm, alledFAR, evits, on eah fault, the unmarked page in ahe whose distane from a marked pageis maximum in the aess graph. They proved that the ompetitive ratio of FAR for everyundireted aess graph and every k is within O(log k) of the best possible ompetitive ratio.This was later improved by Irani et al. showed that the ompetitive ratio of FAR is O(k(G))for any undireted graph G [IKP96℄. Experimental results show that some variations of FARalgorithm behave better than LRU in pratie [BIRS95℄. It is also known that the ompetitiveratio of LRU is at least as good as FIFO on every aess graph [CN99℄.3.7 Di�use Adversary ModelThe di�use adversary model [KP00℄ tries to re�ne the ompetitive ratio by dereasing thepower of the adversary. It does this by restriting the set of legal input sequenes. Reallthat in standard ompetitive analysis we do not put any restrition on the input sequenesand so they an have any distribution. In other words, the on-line algorithm knows nothingabout the distribution of the input sequenes. At the other end of the extreme, in lassiprobabilisti analysis of on-line algorithms, the exat distribution of input sequenes is knownto the on-line algorithm. In the di�use adversary model, the on-line algorithm does not knowthe exat distribution, but it knows that it is a member of a lass � of distributions.De�nition 13 Let A be an on-line algorithm for a minimization problem and let � be alass of distributions for the input sequenes. Then A is -ompetitive against �, if thereexists a onstant b, suh that EI2DA(I) �  � EI2Dopt(I) + b;for every distribution D 2 �, where A(I) denotes the ost of A on the input sequene I andthe expetations are taken over sequenes that are piked aording to D.In other words the adversary selets the distribution D in � that is the worst distributionfor A. If � is more restrited then A knows more about the distribution of input sequenesand the power of adversary is more onstrained. When � ontains all possible distributionsthen the ompetitive analysis against � is the same as the standard ompetitive ratio.Therefore the di�use adversary model is an extension of standard ompetitive analysis. Notethat we an also model loality of referene using the di�use adversary model by onsideringonly those distributions that are onsistent with the given aess graph. This means that ifthere is no edge between the verties orresponding to two pages, the probability that onepage is aessed after the other should be zero in our distributions.This model is applied to the paging algorithms [KP00℄ by onsidering a lass �� ofdistributions and proving that LRU has the best ompetitive ratio against �� among all de-terministi on-line algorithms. For any sequene � of pages and any page p, let P(pj�) denotethe probability that p is the next page requested provided that the request sequene seen soACM SIGACT News 11 September 2005 Vol. 36, No. 3



far is �. For any 0 � � � 1, �� ontains distributions in whih P(pj�) � � for every page pand every page sequene �. Computing the atual ompetitive ratio of both deterministiand randomized algorithms against �� is studied in [You98, You00℄. An estimation of theoptimal ompetitive ratio for several algorithms (suh as LRU and FIFO) within a fatorof 2 is given. Also it is observed that around the threshold � � 1=k, the best ompetitiveratios against �� are �(ln k). The ompetitive ratios rapidly beome onstant for values of �less than the threshold. For � = !(1=k), i.e. values greater than the threshold, the ompeti-tive ratio rapidly tends to �(k) for deterministi algorithms while it remains unhanged forrandomized algorithms.3.8 Smoothed CompetitivenessSome algorithms that have very bad worst ase performane behave very well in pratie.One of the most famous examples is the simplex method. This algorithms has a very goodperformane in pratie but it has exponential worst ase running time. Average ase analysisof algorithms an somehow explain this behaviour but sometimes there is no basis to theassumption that the inputs to an algorithm are random.Smoothed analysis of algorithms [ST04℄ tries to explain this intriguing behavior withoutassuming anything about the distribution of the input instanes. In this model, we randomlyperturb (smoothen) the input instanes aording to a probability distribution f and thenanalyze the behavior of the algorithm on these perturbed (smoothed) instanes. For eahinput instane �I we ompute the neighborhood N(�I) of �I whih ontains the set of allperturbed instanes that an be obtained from �I. Then we ompute the expeted runningtime of the algorithm over all perturbed instanes in this neighborhood. The smoothedomplexity of the algorithm is the maximum of this expeted running time over all the inputinstanes. Intuitively, an algorithm with a bad worst ase performane an have a goodsmoothed performane if its worst ase instanes are isolated. Spielman and Teng show[ST04℄ that the simplex algorithm has polynomial smoothed omplexity. Several other resultsare known about the smoothed omplexity of the algorithms [BMB03, MR05, BD02, ST03℄.As we said before, the ompetitive analysis is a very pessimisti measure and an algo-rithm an have a very bad ompetitive ratio only beause of a few bad input sequenes.Therefore the ompetitive ratio is a reasonable hoie for applying smoothed analysis. Thiswas �rst done by Behetti et al. [BLMS+03℄ who introdued smoothed ompetitive analysis.Informally, smoothed ompetitive analysis is the same as the ompetitive analysis exeptthat we onsider the ost of the algorithm on randomly perturbed adversarial sequenes.As in the analysis of the randomized on-line algorithms, we an have either an obliviousadversary or an adaptive adversary. The smoothed ompetitive ratio of an on-line algorithmA for a minimization problem an be formally de�ned as follows.De�nition 14 [BLMS+03℄ The smoothed ompetitive ratio of an algorithm A is de�ned as = sup�I EI N(�I)[ A(I)OPT (I)℄;where the supremum is taken over all input instanes �I, and the expetation is taken overACM SIGACT News 12 September 2005 Vol. 36, No. 3



all instanes I that are obtainable by smoothening the input instane �I aording to f in theneighborhood N(�I).Note that it is also possible to de�ne the smoothed ompetitive ratio as = sup�I EI N(�I)[A(I)℄EI N(�I)[OPT (I)℄:In [BLMS+03℄, the �rst de�nition is used but it is remarked that a similar result an beobtained using the seond de�nition. They used the smoothed ompetitive ratio to analyzethe Multi-Level Feedbak(MLF) algorithm for proessor sheduling in a time sharingmultitasking operating system. This algorithm has very good pratial performane but itsompetitive ratio is very bad. They obtain stritly better ratios using the smooth ompetitiveanalysis than with the ompetitive ratio.3.9 Searh RatioThe searh ratio belongs to the family of measures in whih the o�-line opt is weakened. Itis de�ned only for the spei� ase of geometri searhes in an unknown terrain for a targetof unknown position. Reall that the ompetitive ratio ompares against an all knowingopt, Indeed, for geometri searhes in the ompetitive ratio framework, the opt is simplya shortest path algorithm, while the on-line searh algorithm has intriate methods forsearhing. The searh ratio instead onsiders the ase where opt knows the terrain but notthe position of the target. That is, the searh ratio ompares two searh algorithms, albeitone more powerful than the other. By omparing two instanes of like objets the searhratio an be argued to be a more meaningful measure of the quality of an on-line searhalgorithm. Koutsopias et al. show that searhing in trees results the same large ompetitiveratio regardless of the algorithm, yet under the searh ratio framework ertain algorithmsare far superior to others [KPY96℄.3.10 Travel CostAs we observed in Setion 2, lassial omplexity time analysis generally uses an unnormal-ized time measure even though a normalized measure has been de�ned and proven fruitfulin ertain settings. This raises up the possibility of using an unnormalized ost measurefor on-line algorithms as well. This measure has been used in on-line geometri searhes, inwhih the main objetive is to minimize the length of the longest searh sequene, known asthe travel ost of the solution. FormallyDe�nition 15 The travel ost of an on-line algorithm A on input I is given byC(n) = maxjIj�nfA(I)gFor example in the ase of an atual searh and resue operation in the high seas minimizingthe maximumsearh time is more relevant than the ompetitive ratio on any partiular pointin the searh path [FSBY+04℄.ACM SIGACT News 13 September 2005 Vol. 36, No. 3



3.11 Average RatioThe average ompetitive ratio was introdued in the ontext of ompetitive searhes on thereal line for a target of unknown loation. The lassi problem in this �eld is the ow pathproblem. As traditionally desribed, a ow reahes a fork on the road and realls that in oneand only one of the two paths there is a pasture �eld. This problem was �rst analyzed underthe ompetitive ratio and its solution predates the introdution of the ompetitive ratio inon-line algorithms. The optimal solution under the standard ompetitive ratio metri is9-ompetitive. However, on the average, the pasture is disovered at an average ompetitiveratio of approximately 4.59, assuming a uniform distribution of the position of the �eld.Interestingly enough, the strategy resulting in the optimal average ost is di�erent from theoptimal one under the ompetitive ratio framework [Gal79, LO96℄. Formally we have,De�nition 16 The average ompetitive ratio, or average ratio for short is de�ned asE8 jIj� A(I)opt(I)� :4 ConlusionsIn this survey we presented eleven alternative measures to the ompetitive ratio for theanalysis of on-line algorithms. This list, while not exhaustive, is illustrative of the variousdi�erent approahes to improve on the ompetitive ratio.5 AknowledgmentsWe thank Spyros Angelopoulos for many helpful disussions on alternative performanemeasures for on-line algorithms.Referenes[ABE+02℄ Yossi Azar, Joan Boyar, Leah Epstein, Lene M. Favrholdt, Kim S. Larsen,and Morten N. Nielsen. Fair versus Unrestrited Bin Paking. Algorithmia,34(2):181{196, 2002.[BBE+03℄ Eri Bah, Joan Boyar, Leah Epstein, Lene M. Favrholdt, Tao Jiang, Kim S.Larsen, Guo hui Lin, and Rob Van Stee. Tight bounds on the ompetitiveratio on aommodating sequened for the seat reservation problem. Journal ofSheduling, 6(2):131{147, 2003.[BBJ+00℄ Eri Bah, Joan Boyar, Tao Jiang, Kim S. Larsen, and Guo-Hui Lin. BetterBounds on the Aommodating Ratio for the Seat Reservation Problem. InSixth Annual International Computing and Combinatoris Conferene, volume1858 of Leture Notes in Computer Siene, pages 221{231. Springer-Verlag,2000.ACM SIGACT News 14 September 2005 Vol. 36, No. 3
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