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Abstract

In this paper, we design the first linear-time algorithm for com-
puting the prime decomposition of a digraph G with regard to the
cartesian product. A remarkable feature of our solution is that it com-
putes the decomposition of G from the decomposition of its underlying
undirected graph, for which there exists a linear-time algorithm. First,
this allows our algorithm to remain conceptually very simple and in
addition, it provides new insight into the connexions between the di-
rected and undirected versions of cartesian product of graphs.

The general idea of graph decompositions is to describe a graph as the
composition, through some operations, of a set of simpler (and usually
smaller) graphs. This framework has turned out to be very useful both for
proving theorems (see e.g. [2]) and for solving efficiently difficult algorithmic
problems using the ”divide and conquer” approach (see [10]). This is the
reason why, in the last decades, a lot of effort have been made for computing
efficiently the decomposition of a graph with respect to a given operation.
The cartesian product of undirected graphs (graphs for short) and directed
graphs (digraphs for short), usually denoted by �, is a classical and useful
decomposition operation that allows to factorise some specifically structured
redundancy in a graph. Such redundancy naturally appears in various con-
texts, both theoretic and practical, such as accountability, databases or pro-
gramming. In those contexts, revealing and factorising these redundancy
has a great impact on the efficiency of the solutions proposed to manage
these systems.

Cartesian product has been used from the early times of graph theory,
but the first intensive studies were provided by Sabidussi [9] and Vizing [11].
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Both of them proved independently that any connected graph admits a de-
composition into prime factors (graphs that can not be expressed as product
of non trivial graphs) which is unique up to the order of factors (� is commu-
tative) and up to isomorphisms. The unicity of the decomposition into prime
factors was later extended to weakly connected digraphs by Feigenbaum [4]
and Walker [12] (when graphs or digraphs are not connected, this prime
decomposition is not necessarily unique). From the 80s, a series of papers
have investigated the complexity of computing this prime decomposition.
For connected graphs, after the first polynomial algorithm by Feigenbaum
et al [5] in O(n4.5) time, where n is the number of vertices, the complexity
was improved by Winkler [13], Feder [3] and Aurenhammer et al [1], until
Imrich and Peterin [7] finally designed a linear-time algorithm (this is so far
the only linear algorithm).

Related works. For weakly connected digraphs, the best complexity is
achieved by Feigenbaum’s algorithm [4] which has two steps: first it calls
any algorithm that computes the prime decomposition of the underlying
undirected graph (i.e. the graph obtained by replacing directed arcs by
undirected edges), then by merging some factors it provides the decompo-
sition for the digraph. The first step can be achieved with Imrich and Pe-
terin’s algorithm in time O(n+m), where m is the number of edges. Then
the time complexity of the second step is O(n2 log2 n). The problem has
also been considered for restricted classes of digraphs. For connected par-
tially ordered sets (posets), Walker describes a polynomial algorithm in [12]
which also starts by factorising the graph once arcs are made undirected.
Its complexity is not analysed precisely in [12], but it is not linear: it has
two nested loops leading to, at least, a Θ(m log2 n) complexity. For sake
of completeness, let us mention that, for posets, Krebs and Schmid consid-
ered a restricted version of the prime decomposition problem that only asks
whether the input poset P admits a factorisation P = P0�2, where P0 is an
arbitrary poset and 2 is the chain with two vertices. In [8], they obtain an
O(n7) algorithm for solving this problem.

Our results. We present the first linear algorithm to compute the prime
decomposition of digraphs with regard to the cartesian product, therefore
improving the complexities of [4, 12, 8]. Unlike [12, 8], we solve the problem
not only for posets but for arbitrary digraphs G. An interesting feature of
our solution is that we use the algorithm of [7] as a black-box, once, at the
beginning of our algorithm. In other words, we first compute the decompo-
sition of the underlying undirected graph G̃ of G and afterwards only, we
deal with the orientation of arcs, in linear time. This allows our algorithm
to remain conceptually very simple. Compared to [4, 12], which proceed
in the same way, the improvement of the complexity relies on 1) the incre-
mental structure of our algorithm that fully takes advantage of the product
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structure computed for G̃ by parsing it layer by layer, and 2) a careful im-
plementation and choice of the data-structure.

Outline of the paper. Section 1 presents the main definitions and the-
orems that we need about the cartesian product. Section 2 describes the
general scheme of our algorithm and the lemmas that will ensure its cor-
rectness. Section 3 describes the algorithm and goes into the details of
data-structures and routines that are used to run it in linear time.

1 Preliminaries

After the formal definition of the cartesian product, we state the factorisa-
tion theorem ensuring the unicity of the prime decomposition. This theorem
applies to both graphs and digraphs, but it was first proved for graphs [9, 11]
and then extended to digraphs [4, 12]. For any digraph G, we define its un-
derlying undirected graph G̃ as the graph over the same vertices, where two
vertices are adjacent if and only if there exists at least one arc between them
in G. A digraph G will be called weakly connected if G̃ is connected.

Definition 1 (Cartesian product of digraphs) The cartesian product G =∏
1≤i≤pGi of p directed graphs (Gi)1≤i≤p is the directed graph G = (V (G), A(G))

whose vertex set is V (G) =
∏

1≤i≤p V (Gi) and such that for all x, y ∈ V (G),
with x = (x1, . . . , xp) and y = (y1, . . . , yp), we have xy ∈ A(G) if and only
if there exists i ∈ J1, pK such that ∀j ∈ J1, pK \ {i}, xj = yj and xiyi ∈ A(Gi).
The p-uple (x1, . . . , xp) associated with each vertex x is called the cartesian
labelling associated with this decomposition.

Definition 2 (Prime graph) A digraph G is prime with regard to the
cartesian product iff for all digraphs G1, G2 such that G = G1�G2 then
G1 or G2 has only one vertex.

The two preceding definitions are stated for digraphs but they also apply
for graphs with edges instead of arcs. We now give the fundamental theorem
of cartesian product of graphs.

Theorem 1 (Unicity of the prime decomposition of digraphs [4, 12]
and graphs [9, 11]) For any weakly connected directed graph (resp. con-
nected graph) G, there exists a unique p ≥ 1 and a unique tuple (G1, . . . , Gp)
of digraphs (resp. graphs), up to reordering and isomorphism of the Gi’s,
such that each Gi has at least two vertices, each Gi is prime for the cartesian
product and G =

∏
i∈J1,pKGi. (G1, . . . , Gp) is called the prime decomposition

of G.

A key property of the prime decomposition, stated by Theorem 2 below,
is that it properly refines all other decompositions.
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Definition 3 (Refinement of a decomposition) Let G be a graph or a
digraph and let (G1, . . . , Gp), with p ≥ 1, and (H1, . . . ,Hk), with k ≥ 1, be
two decompositions of G. We say that decomposition (G1, . . . , Gp) refines
decomposition (H1, . . . ,Hk) iff k ≤ p and there exists a partition {I1, . . . , Ik}
of J1, pK such that ∀j ∈ J1, kK, Hj =

∏
i∈Ij Gi.

Theorem 2 (Finest decomposition [6]) Let G be a weakly connected di-
graph (resp. connected graph) and let (G1, . . . , Gp), with p ≥ 1, be its prime
decomposition. If (H1, . . . ,Hk), with k ≥ 1, is a decomposition of G such
that all digraphs Hi’s have at least two vertices, then (G1, . . . , Gp) refines
(H1, . . . ,Hk).

Cartesian product decomposition of graphs can equivalently been defined
as colourings of their arcs or edges. Such colourings constitute the core of
the approach of [7], and of our approach as well.

Definition 4 (Product colouring of arcs (resp. edges) [7]) Let G be
a digraph (resp. a graph) and L the cartesian labelling of a decomposition
of G, then the colouring of arcs of G associated with L is defined as follows:
arc (resp. edge) xy is coloured with colour i iff x and y differ only on
coordinate number i.
A colouring of the arcs of a digraph G (resp. edges of graph) is called a
product colouring if it is the colouring associated to some cartesian labelling
of some decomposition of G.

Note that the colouring associated with L is properly defined since each
arc (resp. edge) is assigned a colour and only one. The next theorem restates
Theorem 2 in terms of product colourings. It appears as Lemma 2.3 in [7]
for graphs and in [4] for digraphs (stated in terms of partitions of the arcs).

Theorem 3 (Finest product colouring [7]) Let G be a weakly connected
digraph (resp. connected graph) and let C be the arc colouring associated
with the prime decomposition of G, and let C ′ be a product colouring of G.
Then, the partition of the arcs of G induced by C refines the one induced by
C ′. C is called the finest product colouring of G.

Product colourings have strong structural properties which are charac-
terised in the next two theorems. These are the key properties on which is
based the correctness and the complexity of our algorithm. The first theo-
rem deals with undirected graphs. It rephrases several lemmas and reasoning
used by Imrich and Peterin to design and analyse their linear algorithm [7].

Theorem 4 (Square property of product colourings (undirected
version) [7]) Let C be a colouring of the edges of some connected graph
G. C is a product colouring iff the three following properties hold:
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1. all triplets of vertices inducing a triangle in G are monocoloured, and

2. for any bicoloured pair {{u, v}, {v, w}} of edges of G, there exists a
unique vertex v′ such that uvwv′ is a cycle of G, and this vertex v′ is
such that the colour of {u, v′} (resp. {v′, w}) is the same as the one
of {v, w} (resp. {u, v}).

3. for any colour i ∈ J1, |C|K, if there exists a path of G from x to y,
where x 6= y, made only of edges coloured i, then there does not exist
any path from x to y having no edge coloured i.

Remark 1 Due to Condition 1, the cycle uvwv′ in Condition 2 necessarily
has no chord: it is called a square.

This characterisation can be extended to digraphs, up to adding a fourth
(minor) condition and carefully checking the arc orientations in Condition 2
of Theorem 4. For digraphs, a pair of vertices x, y is called monocoloured if
all arcs between x and y (possibly two) have the same colour. We also define
some types to enumerate the different cases of arc orientation between two
vertices.

Definition 5 Let G be a digraph, the type of a couple (x, y) of adjacent
vertices, denoted type(x, y), is: dir iff xy is an arc in G but not yx; ind iff
yx is an arc in G but not xy; and sym iff both xy and yx are arcs in G.

Theorem 5 (Square property of product colourings (directed ver-
sion) [7, 4]) Let C be a colouring of the arcs of some weakly connected
digraph G. C is a product colouring iff the four following properties hold:

1. all pairs of vertices are monocoloured, and

2. all triplets of vertices inducing a triangle in G̃ are monocoloured, and

3. for any bicoloured pair {{u, v}, {v, w}} of edges of G̃, there exists a
unique vertex v′ such that uvwv′ is a cycle of G̃, and this vertex v′ is
such that the type and the colour of (u, v′) (resp. (v′, w)) are the same
as those of (v, w) (resp. (u, v)).

4. for any colour i ∈ J1, |C|K, if there exists a path of G̃ from x to y,
where x 6= y, made only of edges coloured i, then there does not exist
any path from x to y having no edge coloured i.

Though not stated in a single theorem in literature, this theorem com-
bines Theorem 4 and the forbidden oriented patterns identified by Feigen-
baum in products of digraphs [4]. We take them into account by forcing
the types of adjacency around the squares of the digraph in Condition 3 of
Theorem 5. The preservation of types on opposite edges of squares is due to
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the fact that both edges originate from the same pair of vertices in a factor
of G, thus their types exactly reflect the type of this pair. Like for Theo-
rem 4, we have rephrased the characterisation for our needs. We will make
an intensive use of Theorem 5 to prove the correctness of our approach.

2 Our approach

Like [7], our approach consists in computing the finest product colouring
CG of the arcs of G, which is precisely the one corresponding to the prime
decomposition of G. We proceed in two steps: i) first, we compute the
finest product colouring CG̃ of the undirected underlying graph G̃ of G and
we colour the arcs of G accordingly ii) then, we merge some classes of colours
into one single colour in order to obtain CG. Our main result is to show that
the classes of colours to be merged can be computed in linear time with
regard to the size of G, and that the labels of the vertices can be updated
in linear time as well during these merges. The fact that one can always
proceed by merging some colours of the undirected colouring of G̃ is stated
by Lemma 1 below.

Lemma 1 Let G be a digraph, let CG be the finest product colouring of G,
and let CG̃ be the finest product colouring of G̃. We denote Cdir the colouring
of the arcs of G induced by CG̃. Then, Cdir is finer than CG.

Sketch of proof. In a directed product colouring, two symmetric arcs are
always assigned the same colour. Then, each directed product colouring of
G induces a colouring of the edges of G̃. It turns out that this colouring
of G̃ is also a product colouring, since the conditions to be an undirected
product colouring are weaker than the conditions to be a directed product
colouring. Now consider the undirected product colouring induced by CG,
since it is a product colouring, from Theorem 3, it is coarser than CG̃. It
follows that CG is coarser than Cdir.

In order to design an algorithm, we must be able to determine which
classes of colours have to be merged in Cdir in order to obtain the finest
product colouring CG we aim at computing. We will show that CG can be
obtained by merging all the pairs of colours that are conflicting in Cdir.

Definition 6 Let G be a digraph and let C be a colouring of its arcs such
that all pairs of vertices of G are mono-coloured. Two colours c1, c2 of C
are conflicting iff there exists some bicoloured pair {{u, v}, {v, w}} of edges
of G̃ such that {u, v} is coloured by c1 and {v, w} is coloured by c2 and
{{u, v}, {v, w}} does not satisfy Condition 3 of Theorem 5.

The list of conflicting pairs of colours in Cdir defines a graph Gconf ,
which we call the colour-conflict graph, whose vertex set is the colours of
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Cdir. Lemma 2 below claims that the classes of colours of Cdir that have to
be merged into a single colour in order to obtain the finest product colouring
CG of G are precisely the connected components of Gconf .

Lemma 2 Let G be a digraph and let Cdir be the colouring of G induced by
the finest product colouring of G̃. Consider the colour-conflict graph Gconf

whose vertices are the colours of Cdir. Then, the colouring Cconf of the arcs
of G obtained by merging in Cdir each connected component of Gconf into
one single colour is the finest product colouring CG of G.

Sketch of proof. From Lemma 1, we know that CG can be obtained from
Cdir by only merging some colours. If there is a conflict between colours
c1 and c2 in Cdir on some pair {{u, v}, {v, w}}, then, clearly, the only pos-
sibility so that the conflict disappear in CG is to merge colours c1 and c2.
Thus, all pairs of conflicting colours have to be merged, which results in the
merge of all the colours in a connected component of Gconf . Thus, Cconf
is a colouring of the arcs of G finer than CG. On the other hand, when all
these merges have been performed, there is no remaining conflicts between
colours, that is Condition 3 of Theorem 5 is satisfied. Consequently, since
the other conditions of Theorem 5 are satisfied in Cdir and since these con-
ditions are preserved by merging colours, it follows that Cconf satisfies all
the conditions of Theorem 5 and is therefore a product colouring of G. As
Cconf is finer than CG, we have Cconf = CG.

A key property which we will use in the description of our algorithm, and
which allows it to remain conceptually simple and to run in linear time, is
that the bicoloured pairs of vertices {{u, v}, {v, w}} giving rise to a conflict
on their colours are strongly structured: they necessarily belong to the set
of properly coloured squares of Cdir. In other words, the only reason why a
conflict may appear between two colours of Cdir is because of the orientation
of arcs. This is what is stated by Lemma 3 below.

Lemma 3 Let G be a digraph, let CG̃ be the finest product colouring of G̃,
and let Cdir be the colouring of the arcs of G induced by CG̃. If two colours
are conflicting in Cdir on some bicoloured pair {{u, v}, {v, w}}, then

1. there exists a unique vertex v′ such that uvwv′ is a cycle of G̃, and
this vertex v′ is such that in Cdir, colour(u, v′) = colour(v, w) and
colour(v′, w) = colour(u, v), but

2. type(u, v′) 6= type(v, w) or type(v′, w) 6= type(u, v).

Proof. Since pair {{u, v}, {v, w}} is bicoloured in Cdir and since Cdir is in-
duced from CG̃, then pair {{u, v}, {v, w}} is bicoloured in CG̃. And since CG̃
is a product colouring, then, from Condition 2 of Theorem 4, Condition 1
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of Lemma 3 is satisfied. But since bicoloured pair {{u, v}, {v, w}} is con-
flicting, it does not satisfy Condition 3 of Theorem 5. Thus, necessarily, we
have type(u, v′) 6= type(v, w) or type(v′, w) 6= type(u, v).

3 Algorithm

Our algorithm takes as input the adjacency lists of the digraph G and out-
puts the finest product colouring of the arcs of G together with the corre-
sponding cartesian labelling of the vertices of G. It operates in three steps:

1. Undirected prime decomposition: apply Imrich and Peterin’s algo-
rithm [7] on G̃ and obtain the induced colouring Cdir of the arcs of
G.

2. Conflicting pairs of colours: list all pairs of colours that are conflicting
in Cdir and build the colour-conflict graph Gconf .

3. Merge: merge each connected component of Gconf into one single
colour and update the labels of the vertices of G accordingly.

In this section, we deals with implementation details and show how to per-
form all of the three steps above in linear time with regard to the size of
G.

Cartesian representation

Given a product colouring C of a digraph G (or a product colouring of its
underlying undirected graph G̃) and the corresponding cartesian labelling
V =

∏
i∈J1,pK Vi of its vertices, we encode the digraph G, its colouring C

and the cartesian labels of its vertices into a data-structure that we call the
cartesian representation of G. It is very similar to the classical adjacency
lists, except that the lists of neighbours of the vertices are stored in a matrix
Mcart instead of a one-dimensional array.

For all i ∈ J1, pK, we denote ni = |Vi|. The vertices in Vi are numbered
from 1 to ni so that the label (x1, . . . , xp) of a vertex x belongs to J1, n1K×
. . . × J1, npK. Mcart is an n1 × . . . × np matrix indexed by the labels of the
vertices of G and such that the cell Mcart(x1, . . . , xp) contains two fields
storing the information of the vertex x whose label is (x1, . . . , xp): the first
field is simply the label (x1, . . . , xp) of x, and the second field is a one
dimensional array denoted N(x) and indexed by the p colours of colouring
C, from 1 to p. For any i ∈ J1, pK, the cell indexed i of N(x) contains the list
Ni(x) of neighbours y of x such that the arcs between x and y are coloured
i. Each cell of list Ni(x) corresponding to a neighbour y of x again contains
two fields: the first one is type(x, y) and the second one is a pointer to the
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cell Mcart(y1, . . . , yp) of Mcart, where (y1, . . . , yp) is the label of y. Moreover,
in the cartesian representation, each list Ni(x) is sorted by increasing value
of the i-th component yi of the neighbours y = (y1, . . . , yi, . . . , yp) of x it
contains. Note that since only the component yi changes in the list Ni(x),
the order defined on Ni(x) by the i-th component of the label is exactly the
cartesian order on the label of vertices of Ni(x). Finally, let us mention that
the reason why we use a pointer to Mcart(y1, . . . , yp) instead of simply the
label (y1, . . . , yp) of y is that reading one pointer takes constant time while
reading a sequence of integer takes a time proportional to the length of the
sequence. This feature is necessary in order to achieve linear time.

Undirected prime decomposition

In this step, from the adjacency lists of G, we compute the cartesian repre-
sentation of G with regard to the product colouring CG̃ of G̃ given by the
algorithm from [7]. First of all, in order to apply the algorithm from [7], we
need to compute the undirected adjacency lists of G̃, from the directed lists
of G. This can be done in linear time, and we can determine in the same
time the types of all adjacent couples of vertices, which we write into the
cells of the adjacency lists.

The adjacency lists of G̃ are then given as input to [7]’s algorithm, which
computes the prime decomposition G̃ =

∏
i∈J1,pK G̃i (as usual we denote

ni = |V (G̃i)|). The algorithm gives the corresponding cartesian labelling of
the vertices of G and the colouring of the edges of G̃. More explicitly, it
produces a data-structure that, given a vertex, provides its label in constant
time and, given an edge, provides its colour in constant time. Using this
data-structure, one can build very easily the cartesian representation of G
described above. The only difficulty is to sort all the coloured adjacency
lists according to the cartesian labels of the vertices they contain. To that
purpose, we use the classical technique to sort adjacency lists of a graph G
w.r.t. a given order σ on the vertices of G in linear time: 1) initialise a new
copy of the adjacency lists with all lists empty and 2) for each vertex x of
G considered in increasing order w.r.t. σ, parse its list of neighbours (the
order of parsing does not matter here) and for each vertex y encountered,
append x at the end of the list of y in the new copy of the adjacency lists.
Here, we have to take care in addition of the colours of the arcs and of the
type of the couples of vertices, which can be done without penalising the
complexity. Then, the first step of our algorithm takes linear time.

Conflicting pairs of colours

This step of the algorithm outputs the list (eventually with repetitions) of
all pairs of conflicting colours. This is the most challenging part of the
algorithm as the conflicts may occur on any properly coloured square of
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Figure 1: The incremental scheme of our algorithm. The arcs of colours
less than i are depicted in grey, and the arcs of colour i in black (except
aa′ and bb′ that are red and bold). Square abcd is a layer-type conflicting
square, because of the orientations of bc and ad. It will be detected during
the recursive call of our algorithm on G[Yi,j ]. Square abb′a′ is a cross-type
conflicting square, because of the orientations of aa′ and bb′. This conflict
will be detected by our algorithm since a and b are linked by an arc and
will not be in the same part of partition P. On the opposite, the conflict
between colour i− 1 and i on the square abb′′a′′ will not be detected in the
first pass of the algorithm, as it occurs because of the orientation of arcs of
the lower colour i − 1; though, it will be detected in he second pass after
reversing the order on colours.

Cdir. And it turns out that the number of such squares may be quadratic,
while we aim at achieving a linear complexity. The key point is that we
can actually detect all the conflicts between colours without parsing all the
squares of Cdir, but only a certain subset of them, whose size is linear. To
that purpose, we take advantage of the product structure computed for G̃,
which we parse incrementally layer by layer, each layer being processed in
linear time.

Our algorithm has two passes: the first one computes all the pairs (c1, c2)
of colours, with c2 > c1, conflicting on some square because of the orienta-
tions of arcs of colour c2 (remind that from Lemma 3, the only possibility
for conflicts to appear in Cdir is because of the orientation of arcs); then we
reverse the order on colours (which can be done easily in linear time on our
data-structure) and run the same algorithm. Here, we only describe the first
pass.

As previously, we denote V =
∏

i∈J1,pK Vi the cartesian labelling of the
vertices of G, with ni = |Vi|. For each i ∈ J1, pK, we number the vertices
of Vi from 1 to ni. For i ∈ J1, pK and j ∈ J1, niK, we denote xi,j the vertex
of Vi numbered j and we denote N<(xi,j) = {xi,k | k < j and xi,j and xi,k
are adjacent in Gi}, and d<(xi,j) = |N<(xi,j)|. We also denote Yi,j = {x =
(x1, . . . , xp) | xi = j and ∀k > i, xk = 1}, and Xi,j =

⋃
k≤j Yi,k. While n<i
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and m<i respectively stand for the number of vertices and the number of
adjacent pair of vertices in G[Yi,j ] (these numbers do not depend on j).

Our algorithm is incremental in the sense that it starts with the set of
vertices {x1,j , j ∈ J1, n1K}∪{xi,1, i ∈ J1, pK}, and considers the vertices (xi,j)
of the Gi’s one by one in increasing (i, j) for the cartesian order. Before
adding xi,j , it has already computed all the pairs of colours conflicting on
some square of G[Xi,j−1], and when adding xi,j , our algorithm extends this
list with all the pairs (c1, c2) of colours, with c2 > c1, conflicting on some
square of G[Xi,j ] (because of the orientation of c2-coloured arcs) that involve
some vertex of Yi,j . There are two types of such squares (see Figure 1):

1. layer type: those involving only vertices of Yi,j .

2. cross type: those involving two vertices a, b ∈ Yi,j and two vertices
a′, b′ ∈ Xi,j−1, which are necessarily, since a, b, b′, a′ is a square, such
that (∀k 6= i, a′k = ak and b′k = bk) and (a′i = b′i = j′), with j′ < j.

In order to detect the layer-type conflicts, we simply recursively apply
the algorithm on G[Yi,j ]. Since the cartesian representation of G[Yi,j ] can
be extracted from the one of G in linear time with regard to the size of
G[Yi,j ], then, in order to show that our algorithm performs in linear time,
it is sufficient to show that the cross-type conflicts can be computed in
time proportional to the number of arcs incident to vertices of Yi,j , that is
O(n<id<(xi,j) +m<i) time. Note that for the cross-type conflicts, since we
are interested only in the conflicts occurring because of the orientation of
arcs of the higher colour, we need only to check the orientations of i-coloured
arcs incident to vertices of Yi,j . Indeed, in a cross-type square a, b, b′, a′, the
arcs between a and a′ and those between b and b′ are coloured i, while the
arcs linking a and b and linking a′ and b′ have colour at most i − 1. Note
that, from the undirected product structure of Cdir, for any vertex of Yi,j ,
the number of its neighbours in Xi,j−1 is d<(xi,j).

In order to list cross-type conflicts, we build an n1 × . . . × ni−1 matrix
T indexed by the vertices y of Yi,j and where each cell contains a one-
dimensional array T (y) indexed from 1 to d<(xi,j). Then, for each vertex
y ∈ Yi,j we parse the vertices z ∈ N(y) ∩Xi,j−1 in increasing order and we
set the corresponding cell of T (y) to type(y, z). This takes O(n<id<(xi,j))
time. Next, we partition Yi,j into the classes of vertices y having the same
vector T (y), and we label each vertex of Yi,j with the identifier of the class
to which it belongs, that is an integer between 1 and n<i. We compute this
partition P by bucket-sorting the vertices of y ∈ Yi,j according to the value
of T (y), with T (y)(1) as primary key, T (y)(2) as secondary key, and so on.
One pass, for one key, takes O(n<i) time since there are only 3 different
values for the key: dir, ind and sym. Thus, the total cost of the bucket-sort
is O(n<id<(xi,j)).
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The key property on which lean our algorithm is that the colours con-
flicting with colour i on some cross-type squares are exactly the colours of
the arcs of G[Yi,j ] crossing partition P, that is having their extremities in
two distinct classes of the partition (see Figure 1 and its caption). Indeed,
if a j-coloured arc between a and b crosses the partition, the neighbours a′

and b′ of respectively a and b that distinguished the type vectors T (a) and
T (b) form a conflicting square with a and b. And conversely, if there exist a
cross-type square a, b, b′, a′ involving colour j < i, then necessarily a and b
are not in the same part of P and the arc between a and b is coloured j.

As a consequence, in order to compute the list of colours conflicting
with colour i on some cross-type square, we simply parse the arcs of G[Yi,j ]
and check whether their two extremities have been assigned the same class
identifier of P. This takes O(m<i) time and the total time needed to
compute the colours conflicting with colour i on cross-type squares is then
O(n<id<(xi,j) + m<i). Thus, the running time of our algorithm for listing
pairs of colours conflicting in G is O(n+m). Note that the output we get is
a list of length O(n+m) with repetitions and containing at most p2 distinct
pairs of colours. We can thus obtain the list without repetitions by bucket
sorting the list according to colours, in O(n + m + p2) = O(n + m) time.
We can then build the colour-conflict graph Gconf on the set of colours and
parse it in order to obtain its connected components, which are the classes
of colours we need to merge in Cdir in order to obtain CG (see Lemma 2).
This takes O(p2) = O(m) time.

Merge

In the previous step, we computed the classes of colours Cl, l ∈ J1, qK that
have to be merged in order to obtain the finest product colouring of G. For
any l ∈ J1, qK we denote Cl = {l1, . . . , l|Cl|}, with l1 < l2 < . . . < l|Cl|. We
also denote G =

∏
i∈J1,qKG

′
l the prime decomposition of G, and we denote

n′l = nl1nl2 . . . nl|Cl|
the number of vertices of G′l. In order to obtain the

cartesian representation of G according to the finest colouring CG of its arcs,
we need to achieve three tasks: i) update the labelling of vertices of G and
rearrange the matrix storing the adjacency lists accordingly, ii) for each
vertex x merge its lists of neighbours that now belong to the same class
of colours Cl and iii) sort the obtained lists of neighbours according to the
cartesian order on the labels of their vertices. Task ii) is very easy to achieve
by simply parsing the arrays N(x) of the cartesian representation and merge
the appropriate lists. For Task iii) we can again use the classical technique
that allows to sort adjacency lists in linear time. Therefore, Tasks ii) and
iii) need only linear computation time. Let us now focus on Task i).

In order to rearrange the matrix of the cartesian representation according
to the new label, we first need to compute some matrices and arrays making
the correspondences between ancient and new labels of the vertices and
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between ancient and new names of colours. First, we number the vertices
of the new G′l’s as follows. For each l ∈ J1, qK, we build a nl1 × . . . × nl|Cl|

matrix NewNamel where cell NewNamel(a1, . . . , a|Cl|) contains the rank of
(a1, . . . , a|Cl|) in the cartesian order on J1, l1K× . . .× J1, l|Cl|K. From matrix
NewNamel, we also compute the converse association array AncNamel
of size n′l where cell AncNamel(k) contains the |Cl|-tuple (a1, . . . , a|Cl|) ∈
J1, l1K × . . . × J1, l|Cl|K such that NewNamel(a1, . . . , a|Cl|) = k. The t-
th component at of AncNamel(k) is denoted AncNamel(k)(t). Finally, for
each i ∈ J1, pK we compute the values Newcolour(i) = l, which is the number
l of the class of colours to which colour i belongs, and Newrank(i) which
is the rank of i in the ordered list Cl of this class of colours. All matrices
NewNamel and arrays AncNamel, for all l, as well as arrays Newcolour
and Newrank can be computed in O(np) = O(m) time.

Then, we achieve Task i) by building a n′1× . . .×n′q matrix Mnew to store
the adjacency lists of G organised according to its prime decomposition, that
is the colouring CG of its arcs. Then, for each x′ = (x′1, . . . , x

′
q) ∈ J1, n′1K ×

. . .×J1, n′qK we store in cellMnew(x′1, . . . , x
′
q) the new label (x′1, . . . , x

′
q) of ver-

tex x′ and the array Mdir(x1, . . . , xp) containing the neighbours of vertex x′,
where (x1, . . . , xp) is the former label of vertex x′ in the cartesian represen-
tation Mdir (see the Undirected prime decomposition step of the algorithm).
To that purpose, we only need to compute the xi’s, for i ∈ J1, pK, from the x′j ,
j ∈ J1, qK. This can be done thanks to arrays Newcolour,NewRank and ar-
rays AncNamel as follows: xi = AncNames(x

′
s)(t) with s = Newcolour(i)

and t = NewRank(i). For each vertex x′, writing its new label takes O(q)
time, and computing its former label takes O(p) time. Then, the total time
needed to achieve Task i), including the construction of matrix Mnew, is
O(n + (p + q)n) = O(n + m), which is also the total complexity of the
merging step of our algorithm.

As a conclusion, each of the three steps of our algorithm runs in O(n+m)
time, which is then the total complexity of our algorithm for computing the
prime decomposition of G. Within this complexity, our algorithm outputs
the corresponding cartesian labelling of vertices of G, the finest product
colouring of the arcs of G, as well as the cartesian representation of G,
which is a natural data-structure for all algorithms willing to exploit the
product structure of G.
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