Cast as Intended in voting protocols

Véronique Cortier, CNRS, Loria (Nancy, France)

Joint work with Alexandre Debant, Pierrick Gaudry, Stéphane Glondu, Anselme Goetschmann, Sophie Lemonnier

EVoteID, October 2023

sVP

What is a good voting system?

Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted, even if I am willing to tell my vote! "

- vote buying
- coercion

Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted, even if I am willing to tell my vote! "

- vote buying
- coercion

Everlasting privacy: no one should know my vote, even when the cryptographic keys will be eventually broken.

Verifiability

Individual Verifiability: a voter can check that

- cast as intended: their ballot contains their intended vote
- recorded as cast: their ballot is in the ballot box.

Universal Verifiability: everyone can check that

- tallied as recorded: the result corresponds to the ballot box.
- eligibility: ballots have been casted by legitimate voters.

You should verify the election, not the system.

Verifiability

Individual Verifiability: a voter can check that

- cast as intended: their ballot contains their intended vote
- recorded as cast: their ballot is in the ballot box.

Universal Verifiability: everyone can check that

- tallied as recorded: the result corresponds to the ballot box.
- eligibility: ballots have been casted by legitimate voters.

You should verify the election, not the system.

Even better: accountability

- the system tells whom to blame
- eases dispute resolution

And many more properties

- Availability: servers available at any time
- Accessibility: easy to use, adapted to people with various issues

And many more properties

- Availability: servers available at any time
- Accessibility: easy to use, adapted to people with various issues
- ...

In this talk, focus on verifiability.

- cast ast intended
- recorded as cast
- tallied as recorded
- eligibilty verifiability

Tallied as recorded

The result corresponds to the ballot box.
\checkmark Well studied academically, with two main techniques:

Homomorphic tally

Mixnet

Tallied as recorded

The result corresponds to the ballot box.
\checkmark Well studied academically, with two main techniques:

Homomorphic tally

In practice:

\checkmark Many deployed solutions use such techniques: Estonia, France, Switzerland, ...

- Many national evoting companies are still behind

Recorded as cast

\checkmark easy in theory: the voter simply checks that their ballot appear on the bulletin board

- Not so easy in practice
- require a public bulletin board
- voters do not check

Recorded as cast

\checkmark easy in theory: the voter simply checks that their ballot appear on the bulletin board

- Not so easy in practice
- require a public bulletin board
- voters do not check

Alternative approaches

- delegation: voters send their ballot to a third party (eg French Legislative system, Polyas, ...)
- Swiss Post: the verification is embedded in the cast-as-intended mechanism, requires distributed servers
- Estonia: the ballot is sent (by the server) to another system component

Eligibility verifiability

$\sqrt{ }$ academically: just sign but...

- require a PKI
- public voter list? everlasting privacy?

Eligibility verifiability

$\sqrt{ }$ academically: just sign but...

- require a PKI
- public voter list? everlasting privacy?

In practice
\checkmark Estonia: voters sign with their id cards
\checkmark strong and verifiable eligibility
no public board
X login/password sent by mail, SMS \rightarrow no eligibility verifiability
\square distributed trust between authorities, eg Belenios (OTP + asymmetric key credential)

Cast as intended (Cal)

Few academic protocols
??? but yet a lot of systems in practice!

Cal in Australia

iVote system in the 2015 state election in New South Wales

What is my vote?
v (in clear!)

Cal in Australia

iVote system in the 2015 state election in New South Wales

What is my vote?
v (in clear!)
\checkmark simple
\checkmark cast-as-intended
x no vote privacy !
X no cast-as-recorded

Cal in Estonia

Cal in Estonia

\checkmark cast-as-intended
\square some vote-buying threats (mitigated)

- proxy cast-as-recorded
- heavy infrastructure (two independent servers)

Cal in Switzerland

Choice Return Code:	Please check that your device displays the correct choice return codes.
Question 1:	
YES: 1225	If you cannot see the correct codes or in case of doubt, please contact the election authorities
QMP: 7092	
Question 2:	(OXX / XXX XX XX).
YES: 9817	
NO: 2111	
EMPTY: 6745	

\checkmark cast-as-intended
proxy cast-as-recorded
heavy infrastructure (four independent servers)

Benaloh's challenge: cast or spoil

Benaloh's challenge: cast or spoil

Benaloh's challenge: cast or spoil

\checkmark simple principle
\checkmark can be adapted to many systems
requires a second device

Choice of the EVoteID nicest location

To vote, follow these steps:

1. Select your preferred options.
2. Review your choices, which are then encrypted.
3. Submit your encrypted ballot and authenticate to verify your eligibility.

> Start

You can email for help.

Choice of the EVoteID nicest location

(1) Select	(2) Review	(3) Submit

What is the best location for EVotelD
\#1 of 1 - vote for 1

- Bregenz
\square Luxembourg

Choice of the EVoteID nicest location

```
(1) Select 
```


Review your Ballot

```
Question #1: What is the best location for EVoteID
    \checkmark ~ B r e g e n z
[change]
```

Your ballot tracker is +JLW+ti+ERZL0jPQNeRIAFi7RD6ZHIakX9a6n6XFWno.

Submit this Vote

Spoil \& Audit [optional]

Choice of the EVoteID nicest location

```
(1) Select 
```


Review your Ballot

Question \#1: What is the best location for EVoteID \checkmark Bregenz
[change]
Your ballot tracker is +JLW+ti+ERZL0jPQNeRIAFi7RD6ZHIakX9a6n6XFWno.

Submit this Vote

Spoil \& Audit [optional]
If you choose, you can spoil this ballot and reveal how your choices were encrypted. This is an optional auditing process.

You will then be guided to re-encrypt your choices for final casting.

```
Spoil & Audit
```


Choice of the EVoteID nicest location

```
(1) Select 
```


Review your Ballot

```
Question #1: What is the best location for EVoteID
    \ Bregenz
[change]
```

Your ballot tracker is +JLW+ti+ERZLOjPQNeRIAFi7RD6ZHIakX9a6n6XFWno.

Submit this Vote

Spoil \& Audit [optional]
If you choose, you can spoil this ballot a reveal how your choices were encrypted is an optional auditing process.

You will then be guided to re-encrypt yo choices for final casting.

```
Spoil & Audit
```


The voter is likely to use their true vote.

Benaloh: voter strategy

A voter should

1. decide at random if they will truly vote or audit
2. \rightarrow if vote, then vote
\rightarrow if audit, decide at random then audit and go to step 1
X usability
\square which probabilities to use?

- is it truly cast-as-intended? (see e.g. Jamroga's talk)

Other Cal solutions

Select, Selene, Hyperion: votes appear in clear on the ballot box
\checkmark simple for the voters

- specific systems
\square adversary caught to late
\rightarrow strong accountability needed

Other Cal solutions

Select, Selene, Hyperion: votes appear in clear on the ballot box
\checkmark simple for the voters

- specific systems
\square adversary caught to late
\rightarrow strong accountability needed

Two device solutions: Du-Vote, CAISED (this Friday!)

Our proposal: BeleniosCal

- based on Belenios
- could be adapted to other protocols
- no second device (except to read BB), no paper material
- on the fly detection
- one server

Voting protocol Belenios

- variant of Helios, designed by Ben Adida
- developed at Loria, teams Pesto and Caramba (P. Gaudry) Developer: Stéphane Glondu
- used in 2000+ elections, with a total of $100000+$ voters
http://www.belenios.org/
- confidentiality of the votes
- verifiability of the voting process
\rightarrow The ballot box is public at any time.
\rightarrow All the operations (tally, ...) can be checked by anyone.

How Belenios works (simplified)

Phase 1: vote

pkE	
Ballot Box	
Alice	
Bob	
Chris	

pkE: public key, the private keys are shared among the authorities.

How Belenios works (simplified)

Phase 1: vote

pkE: public key, the private keys are shared among the authorities.

How Belenios works (simplified)

Phase 1: vote

```
pkE
    Ballot Box
Alice 
Bob {\mp@subsup{v}{B}{}\mp@subsup{}}{pkE }{\mathrm{ p }}\mathrm{ B}=0\mathrm{ or 1}
Chris {\mp@subsup{v}{C}{}\mp@subsup{}}{\mathrm{ pkE }}{}\quad\mp@subsup{v}{C}{}=0\mathrm{ or 1}
David {\mp@subsup{v}{D}{}\mp@subsup{}}{\mathrm{ pkE }}{}\quad\mp@subsup{v}{D}{}=0\mathrm{ or 1}
```

pkE: public key, the private keys are shared among the authorities.

How Belenios works (simplified)

Phase 1: vote

$$
\mathrm{pkE}
$$

Ballot Box

Alice	$\left\{v_{A}\right\}_{\text {pkE }}$	$v_{A}=0$ or 1
Bob	$\left\{v_{B}\right\}_{\text {pkE }}$	$v_{B}=0$ or 1
Chris	$\left\{v_{C}\right\}_{\text {pkE }}$	$v_{C}=0$ or 1
David	$\left\{v_{D}\right\}_{\text {pkE }}$	$v_{D}=0$ or 1
\ldots	\cdots	

Phase 2: Tally - homomorphic encryption (El Gamal)
$\left\{v_{1}\right\}_{\text {pkE }} \times \cdots \times\left\{v_{n}\right\}_{\text {pkE }}=\left\{v_{1}+\cdots+v_{n}\right\}_{\text {pkE }} \quad$ since $g^{a} \times g^{b}=g^{a+b}$
\rightarrow Only the final result needs to be decrypted! And proved.
pkE: public key, the private keys are shared among the authorities.

Eligibility

Eligibility

The ballot box could add ballots!

Eligibility

$$
\begin{aligned}
& \mathrm{pkE} \operatorname{vk}\left(\operatorname{cred}_{3}\right), \mathrm{vk}\left(\operatorname{cred}_{1}\right), \mathrm{vk}\left(\operatorname{cred}_{2}\right), \ldots \\
& \text { Ballot box }
\end{aligned}
$$

The ballot box could add balllots!

1. During the setup phase, a Registrar generates private signing keys, one for each voter

Eligibility

The ballot box could add ballots!

1. During the setup phase, a Registrar generates private signing keys, one for each voter
2. The voters sign their ballot with a "credential" they have received (a credential $=$ a right to vote)

BeleniosCal's principle

$$
\begin{gathered}
\text { Alice' vote } \\
\text { bal }=\{v\}_{\text {pkE }}^{r_{v}}
\end{gathered}
$$

BeleniosCal's principle

BeleniosCal's principle

BeleniosCal's principle

$$
b a l=\{v\}_{\mathrm{pkE}}^{r_{n}^{r}}, \quad\{a\}_{\mathrm{pkE}}^{r_{a}}, \quad\{b\}_{\mathrm{pkE}}^{r_{b}}, \quad Z K P(v+a=b \bmod 2)
$$

BeleniosCal's principle

$$
b a l=\{v\}_{\text {pkE }}^{r}, \quad\{a\}_{\text {pkE }}^{r a},\{b\}_{\text {pkE }}^{r_{b}}, \quad \operatorname{ZKP}(v+a=b \bmod 2)
$$

BeleniosCal's principle

BeleniosCal's principle

$$
\text { bal }=\{v\}_{\mathrm{pkE}}^{r_{v}},\{a\}_{\mathrm{pkE}}^{r_{a}},\{b\}_{\mathrm{pkE},}^{r_{b}} \quad \operatorname{ZKP}(v+a=b \bmod 2)
$$

BeleniosCal's principle

checks that $b a l,\left(_, b\right)$ appears on the ballot box

BeleniosCal's principle - continued

BeleniosCal's principle - continued

check

BeleniosCal's principle - continued

Can voters compute modulo 2 ?!?

Can voters compute modulo 2 ?!?

Let see how we propose to implement it.

Authenticate

A verification code has been sent to veronique.cortier@loria.fr. Please enter the verification code received by e-mail: 123541

Submit

[^0]
Best dessert

Input credential

Security check

- Determine for each line whether the control value is identical or not to your vote.
- Select a control pattern by picking one symbol per line.
- Save your control pattern to compare it later with the one displayed in the ballot box.
(1) More info

What is your favorite dessert?

Best dessert

Input credential

OS

Security check

- Determine for each line whether the control value is identical or not to your vote.
- Select a control pattern by picking one symbol per line.
- Save your control pattern to compare it later with the one displayed in the ballot box.

(1) More info

What is your favorite dessert?

Best dessert

Input credential Answer to questions \quad Review and encrypt \quad Authenticate \quad Senfirm

Security check

- Determine for each line whether the control value is identical or not to your vote.
- Select a control pattern by picking one symbol per line.
- Save your control pattern to compare it later with the one displayed in the ballot box.

(i) More info

What is your favorite dessert?

Best dessert

Input credential

Security check

- Determine for each line whether the control value is identical or not to your vote.
- Select a control pattern by picking one symbol per line.
- Save your control pattern to compare it later with the one displayed in the ballot box.

(1) More info

What is your favorite dessert?

[^1]
Best dessert

curity check
－Determine for each line whether the control value is identical or not to your vote．
－Select a control pattern by picking one symbol per line．
－Save your control pattern to compare it later with the one displayed in the ballot box．
（1）More info

What is your favorite dessert？

Your vote		Control value	
Cheese cake	囚	囚	16
Tiramisu	区	\checkmark	\square
Chocolate cake	Q	\checkmark	16
Blank vote	囚	\checkmark	『

Best dessert

| Input credential | Answer to questions | Review and encrypt | Authenticate |
| :--- | :--- | :--- | :--- | Security check \quad Confirm

Security check

- Determine for each line whether the control value is identical or not to your vote.
- Select a control pattern by picking one symbol per line.
- Save your control pattern to compare it later with the one displayed in the ballot box.
(1) More info

What is your favorite dessert?

Your vote
Control pattern

\square

Best dessert

Input credential
Answer to questions
Review and encrypt
Authenticate
Security check
Confirm

Security check

- Determine for each line whether the control value is identical or not to your vote.
- Select a control pattern by picking one symbol per line.
- Save your control pattern to compare it later with the one displayed in the ballot box.

(1) More info

What is your favorite dessert?

Best dessert

Input credential
Answer to questions
Review and encrypt
Authenticate

Security check

- Determine for each line whether the control value is identical or not to your vote.
- Select a control pattern by picking one symbol per line.
- Save your control pattern to compare it later with the one displayed in the ballot box.

(1) More info

What is your favorite dessert?
Your vote
Control pattern

Pick one of the two symbols

Best dessert

Security check

- Determine for each line whether the control value is identical or not to your vote.
- Select a control pattern by picking one symbol per line.
- Save your control pattern to compare it later with the one displayed in the ballot box.

(1) More info

What is your favorite dessert?
Your vote

Control pattern

Pick one of the two symbols

Best dessert

Input credential Answer to questions Review and encrypt Authenticate Security check Confirm

Security check

- Determine for each line whether the control value is identical or not to your vote.
- Select a control pattern by picking one symbol per line.
- Save your control pattern to compare it later with the one displayed in the ballot box.

(1) More info

What is your favorite dessert?
Your vote

Control pattern

Best dessert

Input credential
Answer to questions
Review and encrypt
Authenticate
Security check
onfirm

Security check

- Determine for each line whether the control value is identical or not to your vote.
- Select a control pattern by picking one symbol per line.
- Save your control pattern to compare it later with the one displayed in the ballot box.

```
(i) More info
```


What is your favorite dessert?

Your vote
+
\square
\square

Control pattern

\square

Take a picture, a screenshot or copy your control pattern
Copy control pattern
S

Answer to questions
Review and encrypt

Best dessert

Thank you for voting!

Next steps

- Follow the link in your confirmation email
- Verify your control pattern
- If your ballot is missing or the control pattern does not match, contact the administrator: cortier

About your ballot

Voter	veronique.cortier@loria.fr
Tracking number	HoVF28p19LEUtK0EkoNaitT7RzhM6AM1BJQLnClic8g
Status	accepted
Revote	yes
Email sent	yes

Best dessert - Accepted ballots

Search tracking number \square

Showing 1 out of 1 ballot.
Tracking number HoVF28p19LEUtK0EkoNaitT7RzhM6AM1BJQLnClic8g
Hide
区
Control pattern

How to analyse BeleniosCal ?

Formal analysis of e-voting systems

Why a formal analysis of an e-voting system?

Formal analysis of e-voting systems

Why a formal analysis of an e-voting system?
\longrightarrow Because formal methods can find attacks before implementations
\longrightarrow Now a current practice for many protocols (TLS, 5G, ...)

Formal analysis of e-voting systems

Why a formal analysis of an e-voting system?
\longrightarrow Because formal methods can find attacks before
implementations
\longrightarrow Now a current practice for many protocols (TLS, 5G, ...)
\rightarrow Legal requirements in Switzerland to provide symbolic and cryptographic proofs of e-voting protocols.
2.14 Proofs of compliance with the cryptographic protocol requirements
2.14.1 A symbolic and a cryptographic proof of compliance must demonstrate that the cryptographic protocol meets the requirements in Numbers 2.1-2.12.
2.14.2 The proofs of compliance must directly refer to the protocol description that forms the basis for system development.
2.14.3 The proofs of compliance relating to basic cryptographic components may be provided according to generally accepted security assumptions and constructions (e.g. «random oracle model», «decisional DiffieHellman assumption», «Fiat-Shamir heuristic»).

Two main models for security

	Formal approach	Computational approach
Messages	$\begin{array}{cc} \\ \left\langle,,^{\{ \}}\right. \\ A^{\prime} & N_{A} \end{array}{ }^{\prime}$	$\begin{aligned} & 0101000101110101 \\ & 1101010110101010 \\ & 0011101011101101 \end{aligned}$ bitstrings
Encryption	terms	algorithm
Adversary	idealized	any polynomial algorithm
Guarantees	some attacks missed	stronger
Proof	often automatic	mostly by hand difficult for complex protocols

Good tools in practice for formal / symbolic models

ProVerif

Process Translation into Horn clauses

Saturation of Horn clauses

Verification of the query

- fully automatic
- axioms, lemmas, and restrictions [S\&P'22]
- framework for verifiability [CSF'23]
- many voting protocols
- Swiss Chancellery requirements: Swiss Post, CHVote
- Helios, Belenios, ...
- semi automatic
- exclusive or
- voting protocols (Belenios, Selene, ...)

Two major issues for analyzing BeleniosCal

1. Addition modulo 2

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0
\end{aligned}
$$

\rightarrow state explosion
\rightarrow non termination

Two major issues for analyzing BeleniosCal

1. Addition modulo 2

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0
\end{aligned}
$$

\rightarrow state explosion
\rightarrow non termination
2. Probabilistic model

- Alice checks either a or b at random
- Intuition: An attacker may modify k votes without been detected with proba $\left(\frac{1}{2}\right)^{k}$.

Model for addition modulo - trace properties

Follows the approach introduced in CCS'22

Trace properties (verifiability)
Introduction of two predicates isSum (x, a, b) and isNotSum (x, a, b)

$$
\begin{array}{ll}
\operatorname{isSum}(x, a, b), \quad \operatorname{isSum}\left(x, a, b^{\prime}\right) & \Rightarrow b=b^{\prime} \\
\text { isSum }(x, a, b), \quad \text { isNotSum }\left(x, a, b^{\prime}\right) & \Rightarrow b \neq b^{\prime}
\end{array}
$$

- sound over-approximation
- another arithmetic operator could be used

Model for addition modulo - equivalence properties

Vote secrecy

$$
\text { Alice }(0)|\operatorname{Bob}(1) \approx \operatorname{Alice}(1)| \operatorname{Bob}(0)
$$

- over-approximation would be unsound
\rightarrow Exactly the same tuples (x, a, b) are created on the left and on the right.
(Lemma) $\quad \operatorname{isSum}(x, a, b) \in f s t\left(\operatorname{tr}_{b}\right) \Leftrightarrow \operatorname{isSum}(x, a, b) \in \operatorname{snd}\left(\operatorname{tr}_{b}\right)$
\rightarrow allow to conclude by hand

Model for addition modulo - equivalence properties

Vote secrecy

$$
\text { Alice }(0)|\operatorname{Bob}(1) \approx \operatorname{Alice}(1)| \operatorname{Bob}(0)
$$

- over-approximation would be unsound
\rightarrow Exactly the same tuples (x, a, b) are created on the left and on the right.
(Lemma) $\quad \operatorname{isSum}(x, a, b) \in f s t\left(\operatorname{tr}_{b}\right) \Leftrightarrow \operatorname{isSum}(x, a, b) \in \operatorname{snd}\left(\operatorname{tr}_{b}\right)$
\rightarrow allow to conclude by hand
- privacy relies on the following property: for all $x_{1}, x_{2}, a_{1}, a_{2}$, there exist $b_{1}, b_{2}, b_{3}, b_{4}$ such that

$$
\begin{aligned}
& x_{1}=a_{1}+b_{1}=a_{2}+b_{2} \\
& x_{2}=a_{2}+b_{3}=a_{1}+b_{4}
\end{aligned}
$$

\rightarrow Encoded in the privacy ProVerif query

Model for probabilities

- to be done! for a real model with probabilities
- for the moment, for verifiability, the model assumes that Alice asks for opening both ciphertexts.

To conclude

Many challenges remain! (which is fun $)$

Strong demand for Cast as Intended

- many systems are currently proposed
- usability (two devices? computation in the head?)
- trust assumptions?
- vote secrecy

Better formal verification

- decision procedures for larger equational theory classes
- further improve tools
- account for probabilities

[^0]: Powered by Belenios 2.2 (2.1-288-gd00ef982). Get the source code. Privacy policy. Administer elections.

[^1]: Election UUID: JDwmiDBK8QQK6x
 Election fingerprint: djB76kleknKDuJNCVZZJJo5dhSumnYElz2TCElaFe4

