
Cast as Intended in voting protocols

Véronique Cortier, CNRS, Loria (Nancy, France)

Joint work with Alexandre Debant, Pierrick Gaudry, Stéphane
Glondu, Anselme Goetschmann, Sophie Lemonnier

EVoteID, October 2023

1/54

What is a good voting system?

2/54

Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted,
even if I am willing to tell my vote! "

▶ vote buying
▶ coercion

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

3/54

Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted,
even if I am willing to tell my vote! "

▶ vote buying
▶ coercion

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

3/54

Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted,
even if I am willing to tell my vote! "

▶ vote buying
▶ coercion

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

3/54

Verifiability
Individual Verifiability: a voter can check that

▶ cast as intended: their ballot contains their intended vote
▶ recorded as cast: their ballot is in the ballot box.

Universal Verifiability: everyone can check that

▶ tallied as recorded: the result corresponds to the ballot box.
▶ eligibility: ballots have been casted by legitimate voters.

You should verify the election,
not the system.

Even better: accountability

▶ the system tells whom to blame
▶ eases dispute resolution

4/54

Verifiability
Individual Verifiability: a voter can check that

▶ cast as intended: their ballot contains their intended vote
▶ recorded as cast: their ballot is in the ballot box.

Universal Verifiability: everyone can check that

▶ tallied as recorded: the result corresponds to the ballot box.
▶ eligibility: ballots have been casted by legitimate voters.

You should verify the election,
not the system.

Even better: accountability

▶ the system tells whom to blame
▶ eases dispute resolution

4/54

And many more properties

▶ Availability: servers available at any time
▶ Accessibility: easy to use, adapted to people with various issues
▶ ...

In this talk, focus on verifiability.

▶ cast ast intended
▶ recorded as cast
▶ tallied as recorded
▶ eligibilty verifiability

5/54

And many more properties

▶ Availability: servers available at any time
▶ Accessibility: easy to use, adapted to people with various issues
▶ ...

In this talk, focus on verifiability.

▶ cast ast intended
▶ recorded as cast
▶ tallied as recorded
▶ eligibilty verifiability

5/54

Tallied as recorded
The result corresponds to the ballot box.

✓ Well studied academically, with two main techniques:

+

Homomorphic tally

=

Mixnet

In practice:

✓ Many deployed solutions use such techniques: Estonia, France,
Switzerland, ...

■ Many national evoting companies are still behind

6/54

Tallied as recorded
The result corresponds to the ballot box.

✓ Well studied academically, with two main techniques:

+

Homomorphic tally

=

Mixnet

In practice:

✓ Many deployed solutions use such techniques: Estonia, France,
Switzerland, ...

■ Many national evoting companies are still behind
6/54

Recorded as cast
✓ easy in theory: the voter simply checks that their ballot appear
on the bulletin board

■ Not so easy in practice

▶ require a public bulletin board
▶ voters do not check

Alternative approaches

▶ delegation: voters send their ballot to a third party (eg French
Legislative system, Polyas, ...)

▶ Swiss Post: the verification is embedded in the
cast-as-intended mechanism, requires distributed servers

▶ Estonia: the ballot is sent (by the server) to another system
component

7/54

Recorded as cast
✓ easy in theory: the voter simply checks that their ballot appear
on the bulletin board

■ Not so easy in practice

▶ require a public bulletin board
▶ voters do not check

Alternative approaches

▶ delegation: voters send their ballot to a third party (eg French
Legislative system, Polyas, ...)

▶ Swiss Post: the verification is embedded in the
cast-as-intended mechanism, requires distributed servers

▶ Estonia: the ballot is sent (by the server) to another system
component

7/54

Eligibility verifiability

✓academically: just sign but...

▶ require a PKI
▶ public voter list? everlasting privacy?

In practice

✓ Estonia: voters sign with their id cards
✓ strong and verifiable eligibility
■ no public board

✗ login/password sent by mail, SMS → no eligibility verifiability
■ distributed trust between authorities, eg Belenios (OTP +

asymmetric key credential)

8/54

Eligibility verifiability

✓academically: just sign but...

▶ require a PKI
▶ public voter list? everlasting privacy?

In practice

✓ Estonia: voters sign with their id cards
✓ strong and verifiable eligibility
■ no public board

✗ login/password sent by mail, SMS → no eligibility verifiability
■ distributed trust between authorities, eg Belenios (OTP +

asymmetric key credential)

8/54

Cast as intended (CaI)

■ Few academic protocols

??? but yet a lot of systems in practice!

9/54

CaI in Australia

iVote system in the 2015 state election in New South Wales

v

What is my vote?

v (in clear!)

✓ simple
✓ cast-as-intended

✗ no vote privacy
✗ no cast-as-recorded

10/54

CaI in Australia

iVote system in the 2015 state election in New South Wales

v

What is my vote?

v (in clear!)

✓ simple
✓ cast-as-intended

✗ no vote privacy
✗ no cast-as-recorded

10/54

CaI in Estonia
v

v b

v b

✓ cast-as-intended
■ some vote-buying threats (mitigated)
■ proxy cast-as-recorded
■ heavy infrastructure (two independent servers)

11/54

CaI in Estonia
v

v b

v b

✓ cast-as-intended
■ some vote-buying threats (mitigated)
■ proxy cast-as-recorded
■ heavy infrastructure (two independent servers)

11/54

CaI in Switzerland

✓ cast-as-intended
■ proxy cast-as-recorded
■ heavy infrastructure (four independent servers)

12/54

Benaloh’s challenge: cast or spoil
v v

h = hash(b)
cast or spoil?

b
?

spoil
r

h, r
v

13/54

Benaloh’s challenge: cast or spoil
v v

h = hash(b)
cast or spoil?

b
?

spoil
r

h, r
v

13/54

Benaloh’s challenge: cast or spoil
v v

h = hash(b)
cast or spoil?

b
?

spoil
r

h, r
v

✓ simple principle
✓ can be adapted to many systems
■ requires a second device

13/54

14/54

15/54

16/54

17/54

Vote privacy issue!

The voter is likely to use their
true vote.

18/54

Benaloh: voter strategy

A voter should

1. decide at random if they will truly vote or audit
2. → if vote, then vote

→ if audit, decide at random then audit and go to step 1

✗ usability
■ which probabilities to use?
▶ is it truly cast-as-intended? (see e.g. Jamroga’s talk)

19/54

Other CaI solutions

Select, Selene, Hyperion: votes appear in clear on the ballot box

✓ simple for the voters
▶ specific systems
■ adversary caught to late

→ strong accountability needed

Two device solutions: Du-Vote, CAISED (this Friday!)

20/54

Other CaI solutions

Select, Selene, Hyperion: votes appear in clear on the ballot box

✓ simple for the voters
▶ specific systems
■ adversary caught to late

→ strong accountability needed

Two device solutions: Du-Vote, CAISED (this Friday!)

20/54

Our proposal: BeleniosCaI

+

▶ based on Belenios
▶ could be adapted to other protocols
▶ no second device (except to read BB), no paper material
▶ on the fly detection
▶ one server

21/54

Voting protocol Belenios
▶ variant of Helios, designed by

Ben Adida
▶ developed at Loria, teams Pesto

and Caramba (P. Gaudry)
Developer: Stéphane Glondu

▶ used in 2000+ elections, with a
total of 100 000+ voters

http://www.belenios.org/

▶ confidentiality of the votes
▶ verifiability of the voting process

→ The ballot box is public at any time.
→ All the operations (tally, ...) can be checked by anyone.

22/54

http://www.belenios.org/

How Belenios works (simplified)
Phase 1: vote

pkE
Ballot Box

Alice {vA}pkE vA = 0 or 1
Bob {vB}pkE vB = 0 or 1
Chris {vC}pkE vC = 0 or 1

Phase 2: Tally - homomorphic encryption (El Gamal)

{v1}pkE × · · · × {vn}pkE = {v1 + · · · + vn}pkE

→ Only the final result needs to be decrypted!

pkE: public key, the private keys are shared among the authorities.
23/54

How Belenios works (simplified)
Phase 1: vote

id , {v}r
pkE

pkE
Ballot Box

Alice {vA}pkE vA = 0 or 1
Bob {vB}pkE vB = 0 or 1
Chris {vC}pkE vC = 0 or 1

Phase 2: Tally - homomorphic encryption (El Gamal)

{v1}pkE × · · · × {vn}pkE = {v1 + · · · + vn}pkE

→ Only the final result needs to be decrypted!

pkE: public key, the private keys are shared among the authorities.
23/54

How Belenios works (simplified)
Phase 1: vote

pkE
Ballot Box

Alice {vA}pkE vA = 0 or 1
Bob {vB}pkE vB = 0 or 1
Chris {vC}pkE vC = 0 or 1
David {vD}pkE vD = 0 or 1

Phase 2: Tally - homomorphic encryption (El Gamal)

{v1}pkE × · · · × {vn}pkE = {v1 + · · · + vn}pkE

→ Only the final result needs to be decrypted!

pkE: public key, the private keys are shared among the authorities.
23/54

How Belenios works (simplified)
Phase 1: vote

pkE
Ballot Box

Alice {vA}pkE vA = 0 or 1
Bob {vB}pkE vB = 0 or 1
Chris {vC}pkE vC = 0 or 1
David {vD}pkE vD = 0 or 1
... ...

Phase 2: Tally - homomorphic encryption (El Gamal)

{v1}pkE ×· · ·×{vn}pkE = {v1 +· · ·+vn}pkE since ga ×gb = ga+b

→ Only the final result needs to be decrypted! And proved.

pkE: public key, the private keys are shared among the authorities.
23/54

Eligibility

id , {v}r
pkE

pkE
Ballot box

Alice {vA}pkE
Bob {vB}pkE
Chris {vC}pkE
... ...
...

1. During the setup phase, a Registrar generates private signing
keys, one for each voter

2. The voters sign their ballot with a “credential” they have
received (a credential = a right to vote)

24/54

Eligibility

id , {v}r
pkE

pkE
Ballot box

Alice {vA}pkE
Bob {vB}pkE
Chris {vC}pkE
... {1}pkE
... {1}pkE

The ballot box could add ballots!

1. During the setup phase, a Registrar generates private signing
keys, one for each voter

2. The voters sign their ballot with a “credential” they have
received (a credential = a right to vote)

24/54

Eligibility

id , {v}r
pkE

pkE vk(cred3), vk(cred1), vk(cred2), ...

Ballot box
Alice {vA}pkE
Bob {vB}pkE
Chris {vC}pkE
...
...

The ballot box could add ballots!

1. During the setup phase, a Registrar generates private signing
keys, one for each voter

2. The voters sign their ballot with a “credential” they have
received (a credential = a right to vote)

24/54

Eligibility

id , {v}r
pkE

pkE vk(cred3), vk(cred1), vk(cred2), ...

Ballot box
Alice [{vA}pkE]sk(cred1)
Bob [{vB}pkE]sk(cred2)
Chris [{vC}pkE]sk(cred3)
...
...

The ballot box could add ballots!

1. During the setup phase, a Registrar generates private signing
keys, one for each voter

2. The voters sign their ballot with a “credential” they have
received (a credential = a right to vote)

24/54

BeleniosCaI’s principle

bal = {v}rv
pkE,

Alice’ vote

25/54

BeleniosCaI’s principle

bal = {v}rv
pkE, {a}ra

pkE,

first control
ciphertext

25/54

BeleniosCaI’s principle

bal = {v}rv
pkE, {a}ra

pkE, {b}rb
pkE,

second control
ciphertext

25/54

BeleniosCaI’s principle

bal = {v}rv
pkE, {a}ra

pkE, {b}rb
pkE, ZKP(v + a = b mod 2)

proof that binds
the three ciphertexts

25/54

BeleniosCaI’s principle

bal = {v}rv
pkE, {a}ra

pkE, {b}rb
pkE, ZKP(v + a = b mod 2)

testtttv + a = b?
mod 2

25/54

BeleniosCaI’s principle

bal = {v}rv
pkE, {a}ra

pkE, {b}rb
pkE, ZKP(v + a = b mod 2)

Pick one of the two control ciphertexts
at random

I

25/54

BeleniosCaI’s principle

bal = {v}rv
pkE, {a}ra

pkE, {b}rb
pkE, ZKP(v + a = b mod 2)

Pick one of the two control ciphertexts
at random

I

25/54

BeleniosCaI’s principle

bal = {v}rv
pkE, {a}ra

pkE, {b}rb
pkE, ZKP(v + a = b mod 2)

Pick one of the two control ciphertexts
at random

I

checks that bal , (_, b) appears on the ballot box

25/54

BeleniosCaI’s principle - continued
v

v

h = hash(bal)
v + a = b?

26/54

BeleniosCaI’s principle - continued
v

v

h = hash(bal)
v + a = b?

b

26/54

BeleniosCaI’s principle - continued
v

v

h = hash(bal)
v + a = b?

b

bal , rb

26/54

BeleniosCaI’s principle - continued
v

v

h = hash(bal)
v + a = b?

b

bal , rb

bal , rb, (_, b)

26/54

BeleniosCaI’s principle - continued
v

v

h = hash(bal)
v + a = b?

b

bal , rb

bal , rb, (_, b)

check

check

26/54

BeleniosCaI’s principle - continued
v

v

h = hash(bal)
v + a = b?

b

bal , rb

bal , rb, (_, b)

check

check
✓ no second device
✓ no paper material
✓ the audited ballot is cast
■ Alice needs to check the bulletin board
✗ Alice needs to compute modulo 2!

26/54

Can voters compute modulo 2 ?!?

testtttv + a = b?
mod 2

Let see how we propose to implement it.

27/54

Can voters compute modulo 2 ?!?

testtttv + a = b?
mod 2

Let see how we propose to implement it.

27/54

28/54

29/54

30/54

31/54

32/54

33/54

34/54

35/54

36/54

37/54

38/54

39/54

40/54

41/54

42/54

43/54

44/54

45/54

How to analyse BeleniosCaI ?

46/54

Formal analysis of e-voting systems
Why a formal analysis of an e-voting system?

−→ Because formal methods can find attacks before
implementations
−→ Now a current practice for many protocols (TLS, 5G, ...)

→ Legal requirements in Switzerland to provide symbolic and
cryptographic proofs of e-voting protocols.

47/54

Formal analysis of e-voting systems
Why a formal analysis of an e-voting system?

−→ Because formal methods can find attacks before
implementations
−→ Now a current practice for many protocols (TLS, 5G, ...)

→ Legal requirements in Switzerland to provide symbolic and
cryptographic proofs of e-voting protocols.

47/54

Formal analysis of e-voting systems
Why a formal analysis of an e-voting system?

−→ Because formal methods can find attacks before
implementations
−→ Now a current practice for many protocols (TLS, 5G, ...)

→ Legal requirements in Switzerland to provide symbolic and
cryptographic proofs of e-voting protocols.

47/54

Two main models for security
Formal approach Computational approach

Messages

{}

⟨ , ⟩

A NA

k 0101000101110101
1101010110101010
0011101011101101

bitstrings
Encryption terms algorithm

Adversary idealized any polynomial algorithm

Guarantees some attacks missed stronger

Proof often automatic mostly by hand
difficult for complex protocols

48/54

Good tools in practice for formal / symbolic models

ProVerif
Tamarin

▶ fully automatic
▶ axioms, lemmas, and restrictions

[S&P’22]
▶ framework for verifiability

[CSF’23]
▶ many voting protocols

- Swiss Chancellery requirements:
Swiss Post, CHVote
- Helios, Belenios, ...

▶ semi automatic
▶ exclusive or
▶ voting protocols

(Belenios, Selene, ...)

49/54

Two major issues for analyzing BeleniosCaI

1. Addition modulo 2

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

→ state explosion
→ non termination

2. Probabilistic model
▶ Alice checks either a or b at random
▶ Intuition: An attacker may modify k votes without been

detected with proba (1
2)k .

50/54

Two major issues for analyzing BeleniosCaI

1. Addition modulo 2

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

→ state explosion
→ non termination

2. Probabilistic model
▶ Alice checks either a or b at random
▶ Intuition: An attacker may modify k votes without been

detected with proba (1
2)k .

50/54

Model for addition modulo - trace properties

Follows the approach introduced in CCS’22

Trace properties (verifiability)

Introduction of two predicates isSum(x , a, b) and isNotSum(x , a, b)

isSum(x , a, b), isSum(x , a, b′) ⇒ b = b′

isSum(x , a, b), isNotSum(x , a, b′) ⇒ b ̸= b′

▶ sound over-approximation
▶ another arithmetic operator could be used

51/54

Model for addition modulo - equivalence properties
Vote secrecy

Alice(0) | Bob(1) ≈ Alice(1) | Bob(0)

▶ over-approximation would be unsound

→ Exactly the same tuples (x , a, b) are created on the left and
on the right.

(Lemma) isSum(x , a, b) ∈ fst(trb) ⇔ isSum(x , a, b) ∈ snd(trb)

→ allow to conclude by hand

▶ privacy relies on the following property:
for all x1, x2, a1, a2, there exist b1, b2, b3, b4 such that

x1 = a1 + b1 = a2 + b2
x2 = a2 + b3 = a1 + b4

→ Encoded in the privacy ProVerif query

52/54

Model for addition modulo - equivalence properties
Vote secrecy

Alice(0) | Bob(1) ≈ Alice(1) | Bob(0)

▶ over-approximation would be unsound

→ Exactly the same tuples (x , a, b) are created on the left and
on the right.

(Lemma) isSum(x , a, b) ∈ fst(trb) ⇔ isSum(x , a, b) ∈ snd(trb)

→ allow to conclude by hand

▶ privacy relies on the following property:
for all x1, x2, a1, a2, there exist b1, b2, b3, b4 such that

x1 = a1 + b1 = a2 + b2
x2 = a2 + b3 = a1 + b4

→ Encoded in the privacy ProVerif query
52/54

Model for probabilities

▶ to be done! for a real model with probabilities

▶ for the moment, for verifiability,
the model assumes that Alice asks for opening both ciphertexts.

53/54

To conclude

Many challenges remain! (which is fun)

Strong demand for Cast as Intended

▶ many systems are currently proposed
▶ usability (two devices? computation in the head?)
▶ trust assumptions?
▶ vote secrecy

Better formal verification

▶ decision procedures for larger equational theory classes
▶ further improve tools
▶ account for probabilities

54/54

	Modelling messages
	Terms

