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Abstract. We study a simple electronic boardroom voting system. Whilemost
existing systems rely on opaque electronic devices, a scientific committee of a
research institute (the CNRS Section 07) has recently proposed an alternative
system. Despite its simplicity (in particular, no use of cryptography), each voter
can check that the outcome of the election corresponds to thevotes, without hav-
ing to trust the devices.
In this paper, we present three versions of this system, exhibiting potential attacks.
We then formally model the system in the applied pi-calculus, and prove that
two versions ensure both vote correctness (even if the devices are corrupted) and
ballot secrecy (assuming the devices are honest).
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1 Introduction

Electronic voting has garnered a lot of attention in the pastyears. Most of the results
in this field have been focused on two main types of settings: distant electronic voting
and voting machines. Distant electronic voting corresponds to systems where voters
can vote from their own computers, provided they are connected to the Internet. Many
systems have been devised, including academic ones (e.g. Helios [2], Civitas [5], or
FOO [10]). Voting machines are used in polling stations and speed up the tally. Ex-
amples of voting machines are e.g. the Diebold machines [9] or the Indian voting ma-
chines [19], both of them having been subject to attacks [9,19].

Several security notions have been proposed for voting systems and can be split
into two main categories: privacy [8] and verifiability [14]. Privacy ranges from bal-
lot secrecy to coercion-resistance and ensures that no one can know how a particular
voter voted. Verifiability enables voters to audit the voting process, e.g. by checking
that their ballots appear on the bulletin board (individualverifiability), or checking that
the outcome of the election corresponds to the ballots on thebulletin board (universal
verifiability).

In this paper, we focus on a different and particular setting: boardroom meetings.
Many committee meetings require their members to vote on several motions/decisions.
Three techniques are typically used.

– Show of hands: this is a simple and cheap technique, which offers no privacy and
requires to count the raised hands.

⋆ The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 258865, project ProSecure.



– Paper ballot: this solution offers privacy but may be tedious, in particular when
there are several rounds of vote during a meeting.

– Use of electronic devices.

Electronic devices seem to offer both simplicity of use and privacy: committee mem-
bers simply need to (privately) push a button correspondingto their choice on their own
device and a central device computes and publishes the result. However, these systems
are opaque: what if someone controls the central device and therefore falsifies the result
of the election? In many committees such as boarding committees or scientific councils,
controlling the result of the election (e.g. choice of a new president, decision on the fu-
ture of a company,etc.) is even more important in terms of impact than breaking privacy.
Even if the system is not malicious, it can simply dysfunction with no notifications, as
witnessed e.g. by the "CNRS Section 07" committee members (the scientific council
in Computer Science of the CNRS, a French national research institute). In response to
these dysfunctions, a subgroup of the CNRS Section 07 committee members, namely
Bruno Durand, Chantal Enguehard, Marc-Olivier Killijian and Philippe Schnoebelen,
with the help of Stefan Merz and Blaise Genest, have proposeda new voting system
that is meant to achieve:

– simplicity: it could be easily adapted to existing devices
– privacy
– full verifiability, even if the electronic devices are corrupted

A few other systems tailored to boardroom election have beenproposed such as [11,12].
A feature of the "CNRS Section 07" system is that it does not use cryptography, which
makes the system easier to understand and trust, for non experts.

Our contributions. We provide a full review of the voting system proposed by
the CNRS Section 07, illustrating the applicability of formal models and in particular,
the applicability of the latest definitions and the proof techniques in formal methods.
The key idea of the CNRS Section 07 voting system is that each vote appears on the
screen, together with a unique identifier (randomly generated by the central device).
This unique identifier allows voters to check that their votes have been counted. Due to
our attacks on the initial version (that calledF2FV1), two variants of it have been pro-
posed: inF2FV2, the random identifier is generated by both the ballot box andthe voter
while in F2FV

3, the random identifier is generated by the voter only. It is interesting
to note that this last version is actually close to the protocol devised by Bruce Schneier
in [18].

We first describe the three versions and we review in details the possible attacks:

– The initial versionF2FV
1 is subject to a “clash-attack”, using the terminology

of [16]. The attack works roughly as follows: if the same identifier is used for
two different voters that voted the same way, then a dishonest ballot box may re-
place one of the ballots by any ballot of its choice. The last versionF2FV3 (and
thus the Schneier’s protocol as well) suffers from the same attack (with relatively
small probability) if the random numbers are small, which islikely to be the case
in practice.
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Fig. 1: Schema of the election

– The other attacks are against privacy. Obviously, a dishonest ballot box may know
how any voter voted. We discuss other ways for a dishonest ballot box to break
privacy. One of the attack works even if the ballot box does not initially know to
which a ballot belongs to.

To conduct a more thorough security analysis, we formally model these systems in
the applied pi-calculus [1], a process algebra well adaptedto security protocols. Com-
putational models where attackers are modeled by polynomial time probabilistic Turing
machines are, as a rule, more accurate. However, since the systems here involve no cryp-
tography, we chose the simplicity of the applied pi-calculus, for which several security
analyses of voting protocols have already been conducted (e.g. [6,7]).

We focus on two main security properties: vote correctness and privacy. The CNRS
Section 07 voting system is primarily designed to ensure that, even if all the electronic
devices are corrupted, any approved election outcome reflects the votes of all voters.
This property has been introduced by Benaloh and Tuinstra [3] and more precisely de-
fined by Catalanoet al in [13] and is calledcorrectness. We provide a formal definition
of this property and prove that the two versionsF2FV2 andF2FV3 ensure vote correct-
ness, even if all devices are corrupted (but assuming votersuse random numbers). In
contrast, privacy cannot be ensured when the central deviceis corrupted. However, pri-
vacy is guaranteed against external users (including voters). Formally, we show privacy
for the well established notion of privacy defined in [8], assuming that the electronic
devices are honest.

2 Setting

We consider a particular setting, typically for boardroom meetings, where all voters
are present in the same room and are given a dedicated voting equipment. In what
follows, we assume the individual devices to be linked to a central device. The central
device is responsible for collecting the ballots and publishing them. Such systems are
standard in many committees (e.g. parliamentary assembly,corporate boards,etc.). The
particularity of the voting system (and its variants) proposed by the CNRS Section 07
is that it assumes the presence of a screen that each voter cansee. This screen ensures
that all voters simultaneously see the same data and is the key element for the voting
system.

Specifically, the system involves voters and their electronic voting devices, a ballot
box (the central device), and a screen. Moreover, a voter is chosen to take on the role



of an assessor (for example the president of the committee orher secretary). This is
illustrated in Figure 1.

Ballot box.The ballot box is the central device that collects the ballots and tallies the
votes. It communicates with the electronic devices of the voters over private individual
channels. Once the voting phase is over, the ballot box publishes the outcome of the
election on the screen.

Screen.The screen displays the outcome of the election for validation by the voters and
the assessor. Since the voters are in the same room, they all see the same screen.

Voter.The voter role has two phases. In the first phase, he casts his vote through her
electronic device. In the second phase, he performs some consistency checks looking
at the screen and lets the assessor know whether his checks were successful, in which
case he approves the procedure.

Personal voting device.Each individual voting device has a pad or some buttons for the
voter to express her choice. The device communicates the value of the vote entered by
the voter directly to the ballot box.

Assessor.The assessor is a role that can be performed by any voter. He does not hold any
secret. He is chosen before the execution of the protocol. The assessor is responsible of
some additional verifications. In particular, he checks that each voter has approved the
procedure. If one voter has not, he must cancel the vote and start a new one.

3 Face-to-face voting system

We describe in details the electronic boardroom voting system designed by the CNRS
Section 07 committee. We actually present three versions ofit. The three versions have
in common the fact that the central device and/or the voters generate a random number
that is attached to the vote. Both the vote and the random number are displayed on the
screen. This way, each voter can check that his vote (uniquely identified by its random
number) is counted in the tally. We could have presented the version that offers the best
security guarantees but we think the flaws in the other versions are of interest as well.
The three versions differ in who generates the randomness:

– Initial version: The ballot box generates the random identifier for each voter.
– Second version: Both the ballot box and voters generate a random identifier.
– Third version: The voters generate their identifiers.

The three voting systems are summarized in Figure 2 and are described in details in
the rest of the section. Since the votes are transmitted in clear to the central device on
uniquely identified wires, ballot secrecy is clearly not guaranteed as soon as the central
device is corrupted. So for ballot secrecy, we assume that the central device behaves
honestly, that is, the secrecy of the ballots will be guaranteed only against external users
(including the voters themselves). The major interest of the CNRS Section 07 system is
that it ensures vote correctnesseven if the central device is corrupted, that is the voters
do not need to trust any part of the infrastructure.

Note that in practice, the “random numbers” used in the remaining of the paper
should typically be numbers of 3-4 digits, so that they are easy to copy and compare.



Initial version (F2FV
1)

B → Vi : ri

Vi → B : 〈ri, vi〉

Screen

〈r1, v1〉

〈r2, v2〉

〈r3, v3〉

Second version (F2FV
2)

B → Vi : ri

Vi → B : 〈ri, ki, vi〉

Screen

〈r1, k1, v1〉

〈r2, k2, v2〉

〈r3, k3, v3〉

Third version (F2FV
3)

Vi → B : 〈ki, vi〉

Screen

〈k1, v1〉

〈k2, v2〉

〈k3, v3〉

Fig. 2: Voting processes

3.1 Initial systemF2FV
1

Voting Phase.The ballot boxB starts the election by generating a random numberr
for each voterV , and sends this random number to the voter. The voterV receives the
random numberr, uses it to form his ballot〈r, v〉 wherev is his vote, and sends his
ballot to the ballot box. Finally, all the ballots〈r, v〉 are displayed on the screenE. This
marks the end of the voting process.

Validation Phase.The validation part can then begin. Each voter checks that his ballot
is correctly included in the list of ballots displayed on thescreen. The assessor waits for
each voter to state that his vote appears on the screen. He also checks that the number
of ballots matches the number of voters. If all checks succeed, the assessor approves
the outcome of the election.

Possible attacks The key idea of this system is that each random identifier should
be unique, ensuring a one-to-one correspondence between the votes that appear on the
screen and the votes cast by the voters. However, a corruptedballot box may still insert
ballots of its choice, mounting a so-called “clash-attack”[16]. The attack works as
follows: the (dishonest) ballot box guesses that two votersAlice and Bob are going to
vote in the same way. (This could be a pure guess or based on statistical analysis of the
previous votes.) The ballot box then sends thesamenoncer to Alice and Bob. Since
Alice and Bob cast the same votev, they both send back the same ballot〈r, v〉. The
ballot box is then free to display〈r, v〉 only once and then add any ballot of its choice.
Both Alice and Bob would recognize〈r, v〉 as their own ballot so the result would be
validated.

For example, assume there are three votersA, B, andC and the ballot box guesses
thatA andB vote identically. SupposeA andB cast 0 andC casts 1. The ballot box
can replace the two votes for 0 by one vote for 0 and one vote for1, making the “1” vote
win. This can be done by simply sending the same randomnessra to bothA andB.

B(I) → VA : ra B(I) → VB : ra B(I) → VC : rc

VA → B(I) : 〈ra, 0〉 VB → B(I) : 〈ra, 0〉 VC → B(I) : 〈rc, 1〉
B(I) → E : 〈ra, 0〉
B(I) → E : 〈rb, 1〉
B(I) → E : 〈rc, 1〉



3.2 Second systemF2FV
2

The attack on the initial systemF2FV1 is due to the fact that the ballot box may cheat
when generating random unique identifiers. So a second solution has been proposed,
where both the voters and the ballot box generate a part of therandom identifier.

Voting Phase.The ballot boxB starts the election by generating a random numberr
for each voterV , then sends this random number to the voter. The voterV receives the
random numberr, picks a new random numberk (possibly using a pre-generated list),
and uses it to form his ballot〈r, k, v〉 wherev is his vote, and then sends his ballot to
the ballot box. Finally, all the ballots〈r, k, v〉 are displayed on the screenE.

The validation phase works like for the protocolF2FV1.

Possible attacksAs we shall see in Section 5.2, this second version ensures vote cor-
rectness, even if the ballot box is corrupted. As for the two other variants, privacy is
not guaranteed as soon as the central device (the ballot box)is corrupted. Indeed, the
central device may leak how each voter has voted or may recordit on some memory.
However, such attacks against privacy assume a rather strong control of the ballot box,
where the attacker can access to the device either during or after the election. We further
discuss some more subtle flaws which require a lower level of corruption We describe
two different attacks.

Encoding information in the randoms.As already mentioned, a fully corrupted ballot
box may transmit how each voter voted since it receives the votes in the clear, from
uniquely identified wires. However,F2FV2 (andF2FV1) also suffers from offline at-
tacks, where an attacker simply logs the election outcome. Indeed, it makes sense any-
way to keep a copy of the screen after each election. The attack works as follows.
Instead of generating fully random numbers, the ballot box could be programmed to
provide a voteri (wherei is the number identifying the voting device used by the voter)
with a nonceri such thatri ≡ i mod p, wherep is larger than the number of voters. In
this way, an intruder could deduce from a ballot〈r, k, v〉 the identity of the voter, simply
by computingr modulop. Of course, the identity of the voters could be encoded in the
randomness in many other ways, making the detection of such an attack very unlikely.
This attack simply assumes the attacker had access to the central device, at least once
prior to the election (e.g. during its manufacturing). It does not require the attacker to
access the ballot box during nor after the election.

Swallowing ballots.There is a more direct (but easily detectable) way to break privacy,
as sketched in Figure 3. Indeed, assume an attacker wants to know to whom a ballot
〈r2, k2, v2〉 belongs to. In case the attacker simply controls the displayof the screen,
he can send a modified set of ballots to the screen. E.g. if he sends〈r2, k2, v

′
2〉 instead

of 〈r2, k2, v2〉), or if he simply remove this ballot, the voter who submittedthe ballot
〈r2, k2, v2〉 would then complain, revealing his identity.

Security guaranteesWe show in Section 5 that this second version ensures vote cor-
rectness, even if the ballot box is corrupted. It also ensures ballot secrecy, assuming the
ballot box is honest.



Ballot box

〈r1, k1, v1〉

〈r2, k2, v2〉

〈r3, k3, v3〉

Screen

〈r1, k1, v1〉

〈r3, k3, v3〉

The ballot〈r2, k2, v2〉 is not
sent on the screen. VoterV2

reports his ballot is missing,
leaking how he voted to the
attacker.

Fig. 3: Attack against ballot secrecy.

3.3 Third systemF2FV
3

To circumvent the privacy issue of the second system, when the ballot box is somewhat
honest (the attacker cannot access not interfere with it) but has been maliciously pro-
grammed, a third version has been proposed, where the randomidentifier is generated
by the voter only.
Voting Phase.Each voterV picks a random numberk and uses it to form his ballot
〈k, v〉 wherev is his vote, and then sends his ballot to the ballot box. All the ballots
〈k, v〉 are displayed on the screenE.

The validation phase works like for systemsF2FV1 andF2FV2.

Possible attack This third system is vulnerable to the same kind of attacks against
vote correctness as the one described for systemF2FV1. Indeed, in case two voters pick
the same random number and vote for the same candidate, for instance(kA, vA) =
(kB , vB), the ballot box could remove one of these ballots and replaceit by a ballot
of its choice without being detected. Note that, due to the birthday theorem, it is not
so unlikely that two voters use the same random number. For example, assume voters
use 4 digits numbers. Then there is a probability of more than0.2 to have a collision
in a room of 67 members and more than 0.5 in a room of 118 members. In case, only
3 digits numbers are used, there is already a probability of collision of about 0.5 for
only 37 members. These figures assume that the voters pick true random numbers. In
case they generate numbers “manually”, the entropy is usually much lower (e.g. users
are sometimes reluctant to generate numbers with repeated digits). In such cases, the
probability of collision increases accordingly.

As mentioned in the introduction, the voting protocol proposed by Bruce Schneier
in [18] being very similar, it suffers from the same attack.

Security guaranteesWe show in Section 5 that this third version ensures vote correct-
ness, even if the ballot box is corrupted (providing voters generate true randomness). It
also ensures ballot secrecy, assuming the ballot box is honest.

3.4 Common weaknesses

If a voter claims that her ballot does not appear on the screen, then the election round
is canceled and everyone has to vote again. This means that a dishonest voter may



choose to cancel an election (e.g. if she’s not happy with theresult), simply by wrongly
claiming that her vote does not appear. This is mitigated by the fact that the advantage
of the attack is small (the election just takes place again) and the voter could be blamed
as being dishonest or inattentive if this happens too often.

4 Formal model

The remaining of the paper is devoted to the formal proof of security of ballot privacy
and vote correctness for the two systemsF2FV2 andF2FV3. We use the applied pi-
calculus [1] for the formal description of the voting systems. We briefly recall here all
the definitions of the applied pi-calculus.

4.1 Syntax

Messages are represented bytermsbuilt on an infinite setN of names(used to name
communication channels or atomic data), a setX of variablesand asignatureΣ, which
is a finite set offunction symbolsrepresenting primitives. Since our voting systems do
not use any cryptography, we adopt the following simple signature:

Σpair = {ok, fail, fst, snd, pair}

whereok and fail are constants ;fst andsnd are unary functions andpair is a binary
function. The termpair(m1, m2) represents the concatenation of two messagesm1 and
m2, while fst andsnd represent the projections on the first and second component re-
spectively. The set of termsT (X ,N ) is formally defined by the following grammar:

t, t1, t2, · · · ::= x | n | pair(t1, t2) | fst(t) | snd(t) x ∈ X , n ∈ N .

We write
{

M1/x1
, . . . ,Mn /xn

}
for the substitutionthat replaces the variablesxi by

the termsMi. The application of a substitutionσ to a termN is denotedNσ. A
term isground if it does not contain variables. We also use the following notations:
〈u1, . . . , un〉 for pair(u1, pair(. . . , pair(un−1, un))) andΠn

i (u) for retrieving theith

element of a sequence ofn elements:Πn
i (u) = fst(sndi−1(u)) for i < n andΠn

n (u) =
sndn−1(u). In particular,Πn

i (〈u1, . . . , un〉) = ui. We also writex ∈n y for [x =
Πn

1 (y)] ∨ · · · ∨ [x = Πn
n (y)], that is, ifx is one of the elements of the sequencey.

The properties of the pair are modeled by an equational theory Epair that states that
it is possible to retrieve the two elements of a pair:

fst(pair(x, y)) = x snd(pair(x, y)) = y.

We consider equality modulo this equational theory, that is, equality of terms is the
smallest equivalence relation induced byEpair, closed under application of function
symbols, substitution of terms for variables and bijectiverenaming of names. We write
M == N for the syntactic equality.

Protocols themselves are modeled byprocessesandextended processes, as defined
in Figure 4. Processes contain the basic operators to model asmall programming lan-
guage:0 represents a process which does nothing, the parallel composition of the two



φ, ψ ::= formulae
M = N |M 6= N | φ ∧ ψ | φ ∨ ψ

P,Q,R ::= (plain) processes
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if φ thenP elseQ conditional
u(x).P message input
u〈M〉.P message output
event(M).P event

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Fig. 4: Syntax for processes

processesP andQ is denoted byP | Q, while !P denotes the unbounded replica-
tion of P (that is, the unbounded parallel composition ofP with itself). The process
νn.P creates a fresh namen and behaves likeP . Tests are modeled by the process
if φ thenP elseQ, which behaves likeP if φ holds and likeQ otherwise. Note that like
in [6], we extend the applied pi-calculus by letting conditional branches now depend
on formulae instead of just equality of terms. Processu(x).P inputs some message
(stored in the variablex) on channelu and then behaves likeP while u〈M〉.P outputs
M on channelu and then behaves likeP . event(M).P behaves likeP , the event is
there to record what happens during the execution of the protocol and is typically used
to express properties. We writeνũ for the (possibly empty) series of pairwise-distinct
bindersνu1. . . . .νun. The active substitution{M/x} can replace the variablex by
the termM in every process it comes into contact with and this behaviorcan be con-
trolled by restriction, in particular, the processνx

(
{M/x} | P

)
corresponds exactly to

let x = M in P .

Example 1.Let P (a, b) = c(x).c(y).(c〈〈x, a〉〉 | c〈〈y, b〉〉). This process waits for
two inputsx andy on channelc then performs two outputs,〈x, a〉, 〈y, b〉, in a non-
deterministic order, on the same channel.

Thescopeof names and variables are delimited by bindersu(x) andνu. The differ-
ent sets of bound names, bound variables, free names and freevariables are respectively
written bn(A), bv(A), fn(A) and fv(A). Occasionally, we writefn(M) (respectively
fv(M)) for the set of names (respectively variables) which appearin termM . An ex-
tended process isclosedif all its variables are either bound or defined by an active
substitution. AncontextC [_] is an extended process with a hole.

A frame is an extended process built up from the null process0 and active sub-
stitutions composed by parallel composition and restriction. Thedomainof a frame



ϕ, denoteddom(ϕ), is the set of variables for whichϕ contains an active substitution
{M/x} such thatx is not under restriction. Every extended processA can be mapped
to a frameϕ(A) by replacing every plain process inA with 0.

4.2 Semantics

The operational semantics of processes in the applied pi-calculus is defined by three
relations:structural equivalence(≡), internal reduction(→) and labelled reduction
(

α
−→), formally defined in [1]. Structural equivalence is the smallest equivalence rela-

tion on extended processes that is closed under applicationof evaluation contexts, by
α-conversion of bounded names and bounded variables. Internal reductions represent
evaluation of condition and internal communication between processes while labelled
reductions represent communication with the environment.For example, the input and
output rules are represented by the following two rules:

(IN) c(x).P
c(M)
−−−→ P{M/x}

(OUT-ATOM) c〈u〉.P
c〈u〉
−−−→ P

Example 2.Let us consider the processP (a, b) defined in Example 1 and the process
Q = νr.c〈r〉.c〈r〉 that generates a randomr and send it twice. A possible sequence of
transitions for the processP (a, b) | Q is:

P (a, b) | Q
νr1.c〈r1〉
−−−−−−→ P (a, v) | νr.c〈r〉 | {r/r1

}
νr2.c〈r2〉
−−−−−−→ P (a, b) | {r/r1

,r /r2
}

c(r1)
−−−→ c(y).(c〈〈r, a〉〉 | c〈〈y, b〉〉) | {r/r1

,r /r2
}

c(r2)
−−−→ c〈〈r, a〉〉 | c〈〈r, b〉〉 | {r/r1

,r /r2
}

νy1.c〈y1〉
−−−−−−→ c〈〈y, b〉〉 | {r/r1

,r /r2
,〈r,a〉 /y1

}
νy2.c〈y2〉
−−−−−−→ {r/r1

,r /r2
,〈r,a〉 /y1

,〈r,b〉 /y2
}.

At the end of the execution, the process is reduced to a frame that contains the terms
emitted by the initial process.

Privacy properties are often stated as equivalence relations [8]. Intuitively, if a pro-
tocol preserves ballot secrecy, an attacker should not makea distinction between a sce-
nario where a voter votes 0 from a scenario where the voter votes 1. The applied pi-
calculus comes with the notion ofobservational equivalence, which formally defines
what it means for two processes to be indistinguishable for any attacker. Since observa-
tional equivalence has been shown to coincide [1,17] with labelled bisimilarity, which
is easier to reason with, we adopt the latter in this paper. Labelled bisimilarity intu-
itively states that processes should be bisimilar and send indistinguishable messages. In
our context, given that the only primitive we consider is pairing, two sequences of mes-
sages are indistinguishable to an attacker (formally defined as static equivalence [1]) if
and only if they are equal. We therefore present here a simplified version of labelled
bisimilarity, which is labelled bisimilarity for the special case of pairing.

Definition 1 (Labelled bisimilarity). Labelled bisimilarity (≈l) is the largest symmet-
ric relationR on closed extended processes such thatARB implies:



1. ϕ(A) = ϕ(B);
2. if A −→ A′, thenB −→∗ B′ andA′RB′ for someB′;
3. if A

α
−→ A′ such thatfv(α) ⊆ dom(A) andbn(α) ∩ fn(B) = ∅, thenB −→∗ α

−→−→∗

B′ andA′RB′ for someB′.

Example 3.Let us considerA = P (a, b) | Q andB = P (b, a) | Q. Is A ≈l B ? Let us
consider the same evolution as in Example 2 except thatc(r1) andc(r2) are replaced
by c(M) andc(N) which represents an action of the intruder, replacing what is sent by
Q by something of her choice. In that case, we will have :

ϕ(A) = {r/r1
,r /r2

,〈M,a〉 /y1
,〈N,b〉 /y2

} andϕ(B) = {r/r1
,r /r2

,〈M,b〉 /y1
,〈N,a〉 /y2

}.

Sinceϕ(A) 6= ϕ(B) we have thatA 6≈l B.

4.3 Modeling protocols in applied pi-calculus

We provide a formal specification of the two last variants of the CNRS voting system,
in the applied pi-calculus. We do not describe the formal model of the initial voting
system since it does not ensure ballot secrecy nor vote correctness.

We model the communications of the ballot box with the votersand the screen by
secure channels (resp.ci andcB). These channels may be controlled by the adversary
when the ballot box is corrupted. The voters and the assessorlook at the screen. This
communication cannot be altered and is modeled by an authenticated channelceyes.
The assessor also communicates with each voter to check thatthe voter found his/her
ballot on the screen. This is again modeled by an authenticated channelcAi

since we
assume that voters cannot be physically impersonated. The channel connections are
summarized in Figure 5.

Remark 1.The applied-pi calculus provides an easy way to model both public and se-
cure channel. Public channels are simply modeled by unrestricted names: the attacker
can both read and send messages. Secure channels are modeledby restricted names:
the attacker cannot read nor send any message on these channels. In contrast, an at-
tacker may read authenticated channels but only authorizedusers may send messages
on them. Since the applied pi-calculus does not provide us with a primitive for authen-
ticated channels, we model authenticated channel by a secure channel, except that a
copy of each emission is sent first on a public channel. In particular, we use the notation
c〈M〉 for cp〈M〉.c〈M〉 with cp a public channel.

Remark 2.The role of the individual voting device is limited: it simply receives the
vote from the voter and transmit it to the Ballot Box. W.l.o.gand for simplicity, we
identify the voter and her individual device in the model of the voting systems.

Model of F2FV
2 The process for the voter is parametrized by the numbern of voters,

its secure channel with the ballot boxc, its authenticated channel with the screen (ce)
and the auditor (ca), the public channelcp and its votev.
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Fig. 5: Players of the Protocol

Vn(c, ce, ca, cp, v) =
νk . c(x) . % Creates fresh nonce and waits for input onc.
c〈〈x, k, v〉〉 . % Sends ballot onc to the ballot box.
ce(y) . % Waits for input once (results on the screen).
if 〈x, k, v〉∈n y % Checks his vote.
thenca〈ok〉 elseca〈fail〉 % Sends result onca to the assessor.

The process for the ballot box is parametrized by the numbern of voters, the secure
channelsc1

v, . . . , cn
v with each voter and its secure channel with the screencbe.

Bn(c1
v, . . . , cn

v , cb) =
νr1, . . . , rn . % Creates fresh randomness.
c1
v〈r1〉 . . . . . cn

v 〈rn〉 . % Sends randomness to voters.
c1
v(y1) . . . . . cn

v (yn) . % Waits for inputs of ballots.
(cb〈y1〉 | · · · | cb〈yn〉) % Sends ballots in random order toE.

The screen is modeled by a processEn that simply broadcasts the result given by
Bn. It is parametrized by the numbern of voters, the authenticated channelsce with
each voter, the secure channel with the bulletin boxcb, and the public channelcp.

En(cb, ce, cp) =
cb(t1) . . . . . cb(tn) . % Waits for votes from ballot box.
let r = 〈t1, . . . , tn〉 in
cp〈r〉 . (! ce〈r〉) % Displays info for all the boardroom.

The last role is the role of the assessor. It is modeled by a processAn that waits
for the result displayed by the screen and the confirmation ofthe voters. Then it ver-
ifies the outcome and validates the election if everything iscorrect. The processAn

is parametrized by the numbern of voters, the authenticated channelsc1
a, . . . , cn

a with
each voter, the secure channel with the screence, and the public channelcp.

An(ce, c
1
a, . . . , cn

a , cp) =
ce(z

′) . % Waits to see result on the screen.
c1
a(z1) . . . . . cn

a(zn) . % Waits for decision of voters.
if Ψn(z′, z1, . . . , zn) % Checks if everything is fine.
thencp〈ok〉 elsecp〈fail〉 % Sends confirmation or rejection.

whereΨn(p′, p1, . . . , pn) = (
n∧

i=1

pi = ok) ∧ (p′ = 〈Πn
1 (p′), Πn

2 (p′), . . . , Πn
n (p′)〉).

The testΨn ensures that each voter approved the vote (pi = ok) and that the result



contains as many ballots than the number of voters.
Finally the systemF2FV2 is represented by the voter’s roleVn and the voting context:

P 2
n [ _ ] = ν ω̃. [ _ |Bn(c1, . . . , cn, cB)|En(cB, ceyes, cout)|An(ceyes, cA1

, . . . , cAn
, cout)]

whereω̃ = (c1, . . . , cn, cA1
, . . . , cAn

, cB, ceyes) are restricted channels (cout is public).

Model of the ProtocolF2FV
3 The third protocol only differs from the second one by

the fact that the ballot box does not generate any randomness. Therefore, the models
of the screen and of the assessor are unchanged. The voter andballot box models are
modified as follows.

V ′
n(c, ce, ca, cp, v) =

νk . c〈〈k, v〉〉 . ce(x) .
if 〈k, v〉 ∈n x thenca〈ok〉 elseca〈fail〉

B′
n(c1

v, . . . , cn
v , cb) =

c1
v(y1) . . . . . cn

v (yn) .
(cb〈y1〉 | · · · | cb〈yn〉)

The systemF2FV3 without the voters is represented by the voter’s roleV ′
n and the

voting context:

P 3
n [ _ ] = ν ω̃. [ _ |B′

n(c1, . . . , cn, cB)|En(cB, ceyes, cout)|An(ceyes, cA1
, . . . , cAn

, cout)]

whereω̃ = (c1, . . . , cn, cA1
, . . . , cAn

, cB, ceyes) are restricted channels.

5 Security properties

We study two crucial properties for voting systems: ballot secrecy and vote correctness.
We consider two cases depending on whether the ballot box is corrupted or not. We
always assume the screen to be honest. This is however not a limitation. Indeed, requir-
ing the screen to be honest reflects the fact that everyone sees the same screen, which is
always the case for people in the same room.

5.1 Ballot Secrecy

Formalizing ballot secrecy may be tricky. For example, evena good voting system
reveals how anyone voted in case of unanimity. Early definitions of privacy appear for
example in [3]. In what follows, we use a well established definition of ballot secrecy
that has been formalized in terms of equivalence by Delaune,Kremer and Ryan in [8].
Several other definitions of privacy have been proposed (seee.g. [15,4]), which measure
the fact that the attacker may learn some information, even if he does not know how a
certain voter voted.

A protocol with voting processV (v, id) and authority processA preservesballot
secrecyif an attacker cannot distinguish when votes are swapped, i.e. it cannot distin-
guish when a votera1 votesv1 anda2 votesv2 from the case wherea1 votesv2 anda2

votesv1. This is formally specified by :

νñ. (A | V {v2/x,a1 /y} | V {v1/x,a2 /y}) ≈l νñ. (A | V {v1/x,a1 /y} | V {v2/x,a2 /y})

whereñ represents the data (keys, nonces, channels, . . . ) initially shared between the
authority and the voters.



Ballot secrecy for voting protocolF2FV
2 The voting protocolF2FV2 preserves ballot

secrecy, even when all but two voters are dishonest, provided that the ballot box, the
screen and the assessor are honest. For the sake of clarity, we use the following notation
for theith voter:V i(v) = Vn(ci, ceyes, cAi

, cout, v).

Theorem 1. Let n ∈ N, let (P 2
n , Vn) be the process specification forn voters of the

voting protocolF2FV2 as defined in Section 3.2, and leta, b be two names. Then

P 2
n

[
V 1(a) | V 2(b)

]
≈l P 2

n

[
V 1(b) | V 2(a)

]

Proof sketch:The proof of Theorem 1 consists in two main steps. First we build a
relationR such that

P 2
n

[
V 1(a) | V 2(b)

]
R P 2

n

[
V 1(b) | V 2(a)

]

and such that for any two processesP RQ, any move ofP can be matched by a move of
Q such that the resulting processes remain in relation. This amounts to characterizing all
possible successors ofP 2

n

[
V 1(a) | V 2(b)

]
andP 2

n

[
V 1(b) | V 2(a)

]
. The second step

of the proof consists in showing that the sequences of messages observed by the attacker
are equal (due to the shuffle performed by the ballot box).

Ballot Secrecy for voting protocolF2FV
3 Similarly, the voting protocolF2FV3 pre-

serves ballot secrecy, even when all but two voters are dishonest, provided that the ballot
box, the screen and the assessor are honest.

Theorem 2. Let n ∈ N, let (P 3
n , V ′

n) be the process specification forn voters of the
voting protocolF2FV3 as defined in Section 3.3, and leta, b be two names. Then

P 3
n

[
V ′1(a) | V ′2(b)

]
≈l P 3

n

[
V ′1(b) | V ′2(a)

]

The proof of Theorem 2 is adapted from the proof of Theorem 1.

5.2 Vote correctness

We define vote correctness as the fact that the election result should contain the votes of
the honest voters. Formally, we assume that the voting protocol records the published
outcome of the electiont in an eventevent(t).

Definition 2 (Correctness property).Let n be the number of registered voters, and
m be the number of honest voters. Letv1, . . . , vm ∈ N be the votes of the honest
voters. LetV 1, . . . , V m be the processes representing the honest voters. EachV i is
parametrized by its votevi. LetPn be a context representing the voting system, besides
the honest voters. We say that a voting specification(Pn, Ṽ ) satisfiesvote correctness
if for everyv1, . . . , vm, for every execution of the protocol leading to the validation of
a resulttr, i.e. of the form

Pn[V 1(v1)| . . . |V m(vm)] →∗ νñ · (event(tr) · Q | Q′)



for some names̃n and processesQ, Q′, then there exist votesvm+1, . . . , vn and a per-
mutationτ of J1, nK such thattr = 〈vτ(1), . . . , vτ(n)〉, that is, the outcome of the elec-
tion contains all the honest votes plus some dishonest ones.

To express vote correctness in the context of the CNRS Section 07 voting system,
we simply add an event that records the tally, at the end of theprocess specification of
the assessor (see Appendix for the corresponding modified processA′

n). We show vote
correctness for a strong corruption scenario, where even the ballot box is corrupted.
Formally, we consider the following context that represents the three voting systems,
the only difference between the systems now lying in the definition of voters.

Pn
′ [ _ ] = ν ω̃. [ _ | En(cB, ceyes, cout) | A′

n(ceyes, cA1
, . . . , cAn

, cout)]

whereω̃ = (cA1
, . . . , cAn

, ceyes), which means that the intruder has access in this sce-
nario to channelsc1, . . . , cn andcB in addition tocout.

To illustrate the correctness property, let first show thatF2FV1 does not satisfy vote
correctness when the ballot box is corrupted. First, we introduceV̂ the process of an
honest voter inF2FV

1:

V̂ (c, ce, ca, cp, v) = c(x) . c〈〈x, v〉〉 . ce(y) . if 〈x, v〉 ∈n y thenca〈ok〉 elseca〈fail〉

Let V̂ i = V̂ {ci/c,
ceyes /ce

,cAi /ca
,cout /cp

}. It represents thei-th honest voter. Suppose
now, that the firstm honest voters cast the some vote:∀i ∈ J1, mK, vi = v. We show
how the attack described in Section 3.1 is reflected. Each honest voter receives the same
random numberr:

P ′
n[V̂ 1(v1) | · · · | V̂ m(vm)]

∀i∈J1,mK, ci〈r〉
−−−−−−−−−−→ P ′

n[V̂ 1
r (v1) | · · · | V̂ m

r (vm)]

whereV̂ i
r (vi) = ci〈〈r, vi〉〉 . ceyes(y) . if 〈r, vi〉 ∈n yi thencAi

〈ok〉 elsecAi
〈fail〉. Then,

the honest voters output their vote on channelsc1, . . . ,cm which will always be〈r, v〉.

P ′
n[V̂ 1

r (v1) | · · · | V̂ m
r (vm)]

∀i∈J1,mK, ci〈〈r,vi〉〉
−−−−−−−−−−−−−→ P ′

n[V̂ 1
e (v1) | · · · | V̂ m

e (vm)]

whereV̂ i
e (vi) = ceyes(y) . if 〈r, vi〉 ∈n yi thencAi

〈ok〉 elsecAi
〈fail〉. Corrupted voters

also submit their votes (which is transparent in transitions) and we move to the next
phase: the corrupted ballot box just has to output one of the honest votes to the screen
andn−1 other votes. Thus, the final tallytr showed by the screen will contain only one
〈r, v〉 but each honest voters will sendok to the assessor since their test will succeed
anyway. In that case, we would haveP ′

n[V̂ 1(v1)| . . . |V̂ m(vm)] →∗ νñ · event(tr) for
someñ, but, clearly,tr is not satisfying the property of the Definition 2 since it only
contains one votev instead ofm votesv.

In contrast, the two voting systemsF2FV2 andF2FV3 satisfy vote correctness, even
when the ballot box is corrupted, assuming that the voters check that their ballots appear
on the screen.

Theorem 3. The voting specifications(P ′
n, V ) and(P ′

n, V ′) satisfy vote correctness.



RESULTS Privacy Correctness
❳

❳
❳

❳
❳

❳
❳

❳
❳

System
Corr. Players

None
Ballot

Assessor None
Ballot

Assessor
Box Box

F2FV
1

X × X X × ×

F2FV
2

X × X X X ×

F2FV
3

X × X X X ×

Table 1: Results for theF2FV
1,F2FV

2, andF2FV
3 protocols. AX indicates provable security

while × indicates an attack. We assume an arbitrary number ofdishonest voters.

Proof sketchThe assessor records the result of the election in an event only if
Ψn(p′, p1, . . . , pn) holds. This formula intuitively represents the fact that every voter
has told to the assessor that his ballot was included in the tally, and that the number
of ballots in the tally matches the number of voters, i.e.n. Using this information and
the fact that each honest voter has generated a random nonce uniquely identifying his
ballot, we can show that the voting specifications satisfy vote correctness.
Correctness requires that at least one person in the room checks that no one has com-
plained and that the number of displayed ballots correspondto the number of voters.
If no one performs these checks then there is no honest assessor and correctness is no
longer guaranteed.

A summary of our findings is displayed on Table 1. The proofs ofcorrectness of
F2FV2 andF2FV3 in the honest case follow from the proofs in the dishonest case.
Privacy is not affected by a corrupted assessor as it actually only performs public veri-
fication. So its corruption does not provide any extra power to the attacker. Privacy and
correctness forF2FV1 (in the honest case) follow from the proofs forF2FV2.

6 Discussion

We believe that the voting system proposed by the CNRS Section 07 committee for
boardroom meetings is an interesting protocol that improves over existing electronic
devices. We have analyzed the security of three possible versions, discovering some in-
teresting flaws. We think that the two last versions are adequate since they both preserve
ballot secrecy and vote correctness. The choice between thetwo versions depends on
the desired compromise between ballot secrecy and vote correctness: the second ver-
sion ensures better correctness but less privacy since the randomness generated by the
ballot box may leak the identity of the voters. Conversely, the third system offers better
privacy but slightly less assurance about vote correctness, in case the voters do not use
proper random identifiers.

In both cases, vote correctness is guaranteed as soon as:

– Voters really use (unpredictable) random numbers. In practice, voters could print
(privately and before the meeting) a list of random numbers that they would use at



their will (erasing a number once used). This list of random numbers could typically
be generated using a computer. Alternatively, voters may also bring dice to the
meeting.

– Each voter casts a vote (possibly blank or null) and checks that his vote (and asso-
ciated randomness) appears on the screen.

Correctness does not require any trust on the devices while privacy does. This is un-
avoidable unless the communication between the voters on the ballot box would be
anonymized, which would require a much heavier infrastructure. Note that the system
is not fair if the ballot box is compromised since dishonest voters may then wait for
honest voters to cast their votes, before making their own decision.

In this paper, we have focused on ballot secrecy and vote correctness. As future
work, we plan to study stronger notions of privacy. Clearly,the voting system is not
coercion resistant. Indeed, an attacker may provide a voterwith a list of random num-
bers, that he should use in a precise order, allowing the attacker to control the votes.
However, we believe these systems ensure some form of receipt-freeness, assuming the
attacker is given access to the screen only after the election is over but cannot interact
with voters before nor during the election.

A weakness of the system relies in the fact that a voter may force to re-run an
election by (wrongly) claiming that her vote does not appearon the screen. As already
mentioned in Section 3.4, this is mitigated by the fact that the voter could then be
blamed if this happens to often. This also means that an honest voter could be blamed
if a dishonest Ballot Box intentionally removes her ballot at each turn. It would be
interesting to devise a mechanism to mitigate this issue.
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