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Abstract protocol, each with a different value for a parame-
ter, and then the equivalence would express that the
In the analysis of security protocols, the knowledge of at- value of this parameter is not revealed by session tran-
tackers is often described in terms of message deducibility scripts. The choice of this value may remain secret
and indistinguishability relations. In this paper, we pues even though an attacker may be able to compute every
the study of of these two relations. We establish general de- possible value for the parameter—as would be the case
cidability theorems for both. These theorems require only if the parameter is a boolean or a password drawn from
loose, abstract conditions on the equational theory formes a small dictionary.

sages. They subsume previous results for a syntactically de
fined class of theories that allows basic equations for func-
tions such as encryption, decryption, and digital signagur
They also apply to many other useful theories, for exam-
ple with blind digital signatures, homomorphic encryption
XOR, and other associative-commutative functions.

In both cases, messages are represented by formal expres-

sions, and correspondingly the computations allowed are

“black-box” symbolic manipulations on those expressions.

These symbolic manipulations are sometimes as powerful

as probabilistic polynomial-time computations on bitsgis

(e.g., [4]). In both cases, too, the definitions concern Bbse

vations on messages at a particular point in time. Accord-

) ingly, the equivalence relation is sometimes called static

1 Introduction equivalence, and the deduction relation should perhaps be
called static deduction. Despite the static characteregeh

The design and analysis of security protocols typically relations, they are useful in analyzing the dynamics of pro-

relies on reasoning about the knowledge of honest protocoltocols and attacks. In particular, proof methods for safety

participants and attackers. In formal approaches, two mainproperties often rely on deduction, and process equivatenc

kinds of definitions have been given for this knowledge. can be reduced to static equivalences plus standard bisimu-
i ] lation conditions.

e Many formal methods define knowledge in terms of | this paper we pursue the study of deduction and static
deduction (e.g., [12,16,17,19]). equivalence. Both of these relations depend on the under-
Given some messagésand another messagéd, one lying equational theory that governs the function symbols
asks whethelM can be computed (“deduced”) from that appear in expressions, in particular function symbols
For example, whether an attacker can obtain a sessiorthat represent cryptographic operations. Our goal is to ob-
key from a set of messages and some prior knowledgetain characterizations and decidability results that Hold
can be cast as a deduction problem. a wide class of equational theories. We aim to support the

, , standard uses of function symbols for representing encryp-
e Some formal methods complement deduction with an oy - gigital signatures, and the like. We also aim to al-

indistinguishability equivalence relation (€.g., [2,3]) |ow some elaborate features of particular schemes, such as

Indistinguishability is also prominentin computational blinding for digital signatures. Finally, we aim to support
approaches to cryptography (e.g., [11, 15]). associativity and commutativity properties, in partiattar
Given two lists of messagesandi), one asks whether the XOR (exclusive or) operation.

they can be distinguished. For exampbeandy may Several of the equational theories that we treat are impor-
be transcripts of the messages for two sessions of atant in applications. Therefore, deduction and (to a lesser



extent) static equivalence under some of these theories hav2 Basic definitions
already played a role in the context of various frameworks
and tools for protocol analysis. However, usually, special  Next we review definitions from previous work, partic-
techniques are developed for each particular case. ularly from the applied pi calculus [2]. Much of the ma-
Only a few general decidability results appear in the lit- terial in this section is borrowed or adapted from previous

erature. In arecent paper [1], we have shown that deductionwork. In Section 2.1 we give the syntax of expressions. In
and static equivalence are decidable in PTIME for a syntac-Section 2.2 we explain a representation for the information
tically defined class of equational theories, the convergen available to an observer who has seen messages exchanged
subterm theories. These theories allow basic equations folin the course of a protocol execution. In Sections 2.3 and 2.4
functions such as encryption, decryption, and digitalaign we present the relatiorts and~,, which provide the two
tures. Noting that deduction and static equivalence are un-formalizations of the knowledge that the observer has on
decidable for some other equational theories, we have alsahe basis of that information.
shown that static equivalence can be undecidable even when
deduction is not. Comon-Lundh and Treinen [9] have stud- 5 1 Syntax
ied the decidability of deduction for a class of equational
wc?ﬁ(rlc?ifeg%%r;g\i\?rigfs;gg?s oounrlsy dzr&ilétgﬁrg’ngnr?o?!t;i A signature> consists of a finite se_t of function symbols,

. ’ : such asnc andpair, each with an arity. Lesr(X) be the
equivalence unless otherwise noted. Delaune and Jacque-

S i maximal arity of a function symbol ili. A function symbol
mard [10] have shown that deduction is decidable for a with arity 0 is a constant symbol.,

subclass of convergent subterm theories, also considering .. . P
. : . ; Given a signatur&, an infinite set of name4/, and an
active attacks. (Section 6 mentions other, ongoing related. ..~ : . ;
: infinite set of variables, the set ¢édrmsis defined by the
work that addresses active attackers.) None of these pre-

. S . grammar:
vious results allows associativity and commutativity prop

erties. In fact, even results on specific theories with AC L,M,N,T,U,V ::= terms
(associative-commutative) functions are rare. Three impo kyoomy....s name

tant exceptions are decidability results for deductiorhwit T,y 2 variable

XOR [6, 8], in an Abelian group [8], and under certain “AC- F(My, ..., M) function application

like” theories with homomorphisms [14].
Thus, prior work typically relies on syntactic restriction ~ Where f ranges over the function symbols &f and /
on equational theories, focusing on one particular thebry a matches the arity of. Although names, variables, and con-
a time or on syntactically defined classes of theories. & thi stant symbols have similarities, we find it clearer to keep
paper, we adopt a different perspective: we assume onlythem separate. A term is closed when it does not have
loose, abstract conditions on the underlying equatioreal th  free variables (but it may contain names and constant sym-
ories. In this respect, we are inspired by Comon-Lundh’s bols). We writefn (M) for the set of names that occur in the
current investigations [7] (discussed further in Sectipn 6  term /. We use meta-variables v, w to range over names
Under those assumptions, we establish general decid-and variables. Thsize|T'| of atermT'is defined byu| = 1
ability theorems for both deduction and static equivalence and|f (T4, ..., Ti)| = 1+ ,_, |T;|. TheDAG-size|T|pac
These theorems subsume the previous ones for convergeris the number of distinct subterms 6t We writest(7") for
subterm theories. They also apply to many other useful the-the set of subterms d&f.
ories, for example with blind digital signatures, homomor- ~ We equip the signaturg with an equational theory,
phic encryption, XOR, and other AC functions. that is, an equivalence relation on terms that is closed un-
Checking that a particular theory satisfies the hypothesesder substitutions of terms for variables or names and closed
of our theorems may involve some work. In some cases,under application of contexts. We wrifef =z N when
it may also involve some (fairly elementary and pleasant) /M and N are closed terms and the equatidh = N is
mathematics, such as facts Grmodules. When we prove in E. We use the symbok= to denote syntactic equality
that our example theories satisfy the hypotheses, we peovid of closed terms. As in these definitions, we often focus on
several general propositions that may be reused in the studylosed terms for simplicity.
of other theories.
The next section, Section 2, introduces notations and2.2 Assembling terms into frames
definitions. In Section 3, we present the hypotheses of our
theorems. We give some examples of theories that satisfy After a protocol execution, an attacker may know a se-
these hypotheses in Section 4. We prove the theorems imquence of messagéd;, ..., M;. This means that it knows
Section 5. Finally, we conclude in Section 6. each message but it also knows in which order it received



the messages. So it is not enough for us to say that the atSuppose for example that the attacker listens to two mes-
tacker knows the set of terd9\/;, ..., M;}. Furthermore,  sages:enc({n1,n2), k) andenc(ns,enc(ny,k)). The cor-
we should distinguish those names that the attacker had beresponding frame (in normal form) is
fore the execution from those that were freshly generated
and which may remain secret from the attacker; both kinds  ¢; = v(n1,na, ns, k)
of names may appear in the terms.

Such a sequence of messages can be organized into a
framevno, wheren is a finite set of names (intuitively, the  Then¢; + enc(ni, k), ¢1 F enc(no, k), and ¢; = ns.
fresh names), andl is a substitution of the form: Furthermore,enc(ni, k) =g, fst(z1)¢, enc(na, k) =g,

My Moy with dom(o) = {a, .. x) snd(z1)¢. andns =g, dec(zs, fst(z:))¢-

The variables enable us to refer to eath, for example 2.4 Static equivalence

for keeping track of their order of transmission. We always

assume that the term¥/; are closed. The size of a frame Given two framesp and that represent the informa-
¢ = va{M/, ... M/ Vis|¢| & 22:1 |M;|. The free  tion available to an attacker in two “possible worlds” (¢.g.

[(enc(n1, k), enc(na, k))/z1,enc(ns, enc(ny, k))/x2]

names ofp, denoted byfn(¢), are the free names of the; two different runs of a protocol), we may ask whether the

that are not im. attacker may distinguish and, more precisely whether
the attacker may differentiaté and« by applying them

2.3 Deduction (roughly) as substitutions and obtaining observably diffe

ent results. This scenario motivates the following defini-
Given a framep that represents the information available tions.
to an attacker, we may ask whether a given term claged We say that two term8/ and NV are equal in the frame
may be deduced from. This relation is writtenp = M © for the equational theory, and write(M =g N)p, if
(following Schneider [19]). It is axiomatized by the rules:  and only if¢ = vn.o, Mo =g No, and{n} N (fn(M) U

if 3z € dom(o) _ fn(N)) = 0 for some names and substitutions. Then

Vi M Stxo=M o ks gn we say that two framee and+ are statically equivalent

and writep =, 1, whendom/(¢) = dom (1)) and when, for

oM, -+ o¢F My . oM M= M all termsM and N, we have(M =g N)y if and only if
¢+ f(My,..., M) o+ M (M =g N)y.

Intuitively, the deducible messages are the messages of Example 2 Let ¢, < vk{k/y,enc(ni,k)/z} and ¢y =

and the names that are not protected,iclosed by equality ~ vk{k/y,enc(ns,k)/2}, wherek, ni, andn, are distinct
in £ and closed by application of functions. names. Using the equatiatec(enc(zx,y),y) = z, the at-
We have the following characterization of deduction: tacker can tell the difference between these two frames by

Proposition 1 Let M be a closed term andno be a frame. checking whether the decryption ofwith y producesn; .

Thenvno + M if and only if there exists a terqisuch that I(gegt(her)w_ords, \9’; h?;ifgférzé;) ;E(;S m)¢1 but not
f(Q)NA=0andCo =g M. % Y) =B ) P2 17 P2

Example 1 As a first example, we consider the theory of 3 The hypotheses
an encryption scheme that has an homomorphism prop-

erty: the encryption of a pair is the pair of the encryptions.  \ye establish decidability results for equational theories

This property may hold for example when an encryption 4 satisfy three properties. The purpose of this sectitm i

scheme is used in EBC mode. Itis modeled by the equationyefine and start to explain these three properties; Section 4
enc((z,y),z) = (enc(z,z),enc(y,z)). We also assume gy p1ains them further through examples.
an analogous equation for decryptiordec((z,y),z) =

(dec(z, z),dec(y, z)). As usual, we writez,y) instead
of pair(z,y). The signature:; is {pair, enc, fst, snd, dec},
and the theory; is defined by the axioms:

3.1 AC-convergence

Our first hypothesis is an adaptation of the standard no-

enc((z,y),z) = (enc(w,z2),enc(y,z)) tion of convergence for theories with AC symbols.
dec({x,y),2z) = (dec(x,z),dec(y,=2)) Let £ an equational theory, and leiy, ..., ®; be the
fst((z,y)) = =« binary functional symbols such that the equations (y @,
snd({z,y)) = vy z) = (v @; y) ®; z (associativity) andr &; y = y ®; «
dec(enc(z,y),y) = = (commutativity) are inF.



For two termslJ andV, we writeU =ac V if U andV Example 4 The theory of XOR is also AC-convergent. The
are equal in the theory induced by the equatiens; (y @; XOR operator is represented by the function symbol,

2) =(x®;y) B zande ®;y = yP;xforl <i < k. which has the following properties on messages:
If this theory is empty (because we have no AC symbols),
=pc is simply syntactic equality. t@(ydz) = (0y) o2
WhenR is a rewriting system, we writ¢/ —ac V if Ey = TRy = yYoT
there existsV such thaty =ac W andW — V. The oz = 0
relation— 3. denotes the reflexive and transitive closure of z®0 =
TAC where0 is a constant symbol and the alphabgtis {0, ©}.
Definition 1 An equational theony is AC-convergenif Ve associate td; the rewriting systeni.:
there exists a finite rewriting systeRisuch that: . { cdr — 0 }
e R is AC-terminating that is, for every closed term ? rH0 — =

U, there is no infinite sequendé —ac U; —ac
For every termlU, the set of normal form& | (closed

modulo AC) ol is the set of term¥’ such that/' — 3 3.2 Local stability
V andV has no successor forac.

Using this choice ofRs, it is easy to verify that; is AC-
convergent.

e R is AC-confluent that is, for every closed ternis, Our second hypothesis roughly says that, for every
Uy, andU, such thaty —ac Uy andU —ac Us, there frame, there is a finite set of terms deducible from the frame

existV; and Vs such thatl; —%c Vi, Us —ic Va, that satisfies (;ertain clqsure conditiong. Stati_ng_this hy-
_ potheses precisely requires a few auxiliary definitions and
andVl =ac V. .
notations.
e For all closed termd/ and V, the equalityU =g V Assume that there exists some rul&, — N, of the
holds if and only if there exists aterfne (U| N V]). rewriting systenik and some substitutichsuch that either

there exists a tern/; such thatyU =ac Uy, Uy = M0,

andV = Ny, or there exist term$/; and U, such that
U =ac U1 & U, for some AC symbolp, U; = My6, and
AC-convergence immediately implies the decidability of Vv =,c Ny8 & U,. Then we say that the reductiéh > v

equations on closed terms. occurs in head.

In what follows, F is an AC-convergent equational the- We write o -¢, M for the termM & --- & M, « times
ory andR is a rewriting system associated withthat sat- (for & € N*). We simply writea M/ when the AC symbol
isfies the conditions of Definition 1. R consists of afinite  js clear from the context. Given a set of terind a set
set of ruled J*_, {M; — N;}, the sizecy, of the theoryE of names, we write sumg (5, 71) for the set of arbitrary

is defined asp = maxi<i<x(|M;], | Vi],ar(X) + 1). sums of terms of5 and other names, closed modulo AC-
Note that” need not have AC symbols. Atheory defined rewriting:

by a convergent rewriting system without AC symbol is of

By AC-confluence, the sét| is always finite and for all
V,W € U, the equalityy” =ac W holds.

def

course an AC-convergent theory. sumg (S, n) =

Example 3 Let us consider again the theof; of an en- (@ -eT)® - @ (an-oTh) | @ficN,
cryption scheme with a homomorphism property. We con- ® ni ¢,
sider the rewriting systerR ; obtained from&; by orienting (Br-gn1) @ - @ (Br o nr) TiesS

the equations from left to right. With this choice®f, the
theory E; is AC-convergent. Indeed, the only critical pair
is joinable.

dec(enc((z1, z2

Typically, the names im will be private, and the oth-
ers public. Then we defineim(S,7) as the union of the
sumg (S, 1) for any AC symbokb of the theory.

2 Y)sY) In our previous paper [1], the main step of the proof of

~

/ S~ the decidability of- and~, for convergent subterm theories
(21, 22) dec((enc(z1,y), enc(z2, 1)), y) was the existence, for each frameof a setsat(¢) stable
i by application of “small” contexts. We generalize this con-
dition by requiring that the application of a rewriting rule
(dec(enc(z1,y),y), dec(enc(z2, 3), y) to a “small” context applied to arbitrary sums of terms in
i sat(¢) is again a “small” context applied to sums of terms
(x1,dec(enc(z2,y),y)) in sat(o).



Definition 2 (locally stable) An AC-convergent equational

theory E is locally stableif, for every frame¢ =
vn{M/z1, ..., My/xy}, where the termd/; are closed

fm(Cy) N = 0 andyo =g M. Intuitively, the term
Cur explains howM may be obtained from the terms of
Since all the terms ofat(¢) are deducible, such a set ex-

and in normal form, there exists a finite (computable) set ists by Proposition 1. For instance, for Example 5, the

sat(¢), closed modulo AC, such that

1. for everyl < i < k, M; € sat(¢), and for every
n € fn(¢), n € sat(¢),

2. 0if My,..., My € sat(¢) and f(M;,...
st(sat()), thenf (M, ..., My) € sat(¢),

7Mk) S

3. if C[Sy,..., 5] LA M, whereC' is a context such
that |C] < cg and fn(C) N7 = 0, and where
S1,...,5 € sumg(sat(¢),n) for some AC symbol
@ (or S; € sat(¢) if there is no AC symbol), then
there exist a contexd@”, atermM’, andS{, ..., S}, €
sumg (sat(¢),n) (or Sy, ..., S}, € sat(¢) if thereis no
AC symbol), such tha€’| < ¢, fn(C") N7 = 0, and
M —pe M" =pc C'[ST, ..., S},

4. if M € sat(¢) theng - M.

Example 5 For the equational theory; of Example 1,
given a frameyp in normal form, the setat(¢) is simply
obtained by adding subterms of deducible frony. For
example, the deducible subterms of the frafnef Exam-
ple 1, areenc(n1, k), enc(na, k), andng, Sosat(¢;) is the
set

{(enc(nq, k), enc(nz, k)), enc(ns, enc(ny, k)),
enc(ny, k), enc(na, k), n3}

In Section 4.2 we prove that this construction satisfies the Eq(¢)

requirements.

In general, establishing that an equational theory is lo-
cally stable may be difficult. We give other examples of

locally stable theories in Section 4.

3.3 Local finiteness and local decidability

For our third hypothesis, we consider a certain set of

terms associated wittnc(n1, k), enc(ne, k), andns are re-
spectivelyCenc(n, k) = fst(z1), Cenc(ns,k) = snd(z1), and
Cns = dec(za, fst(xq)).

With each framep, we associate a set of “small” equa-
tionsEq(¢) such that two frames are equivalent if and only
if they satisfy the equations of each other’s set (see Propo-
sition 7).

Definition 3 Let¢ = vno be a frame in normal form. The
setEq(¢) is the set of equations of the form

Cilxa, - - , X1
where (Ci[x1, ..., xx] =& C2lx1,....xi])¢, (fn(C1) U
fn(Cg)) Nn = @, |Ol| <cg, |CQ| < CQE, and thexl andxg
are in the sesumg (R(¢), ) for some AC symbab (or x;
andyx’ are inR(¢) if there is no AC symbol).

Xk = Cax1, - - -

When¢ and« are frames andM =g N)y for every
(M = N) € Eq(¢), we say that) satisfies the equations of

Eq(¢), and writey) |= Eq(¢)

Definition 4 (locally decidable) A locally stable AC-con-
vergent equational theory is locally decidable if the ques-
tion of whether) = Eq(¢), for frames¢ ands, is decid-
able.

The setEq(¢) may in general be infinite since the
may be of arbitrary size. Local finiteness means that the set
is always equivalent to a finite set of equations.

Definition 5 (locally finite) A locally stable AC-conver-
gent equational theory is locally finite if, for every frame
there exists a finite (computable) set of equati@n§¢)
such that for every frame, we havey = Eq(¢) if and

only if ) = Eq'(9).

This property suffices for local decidability:

“small” equations that a frame satisfies. One of our re- proposition 2 Every locally finite locally stable AC-con-
sults says that this set characterizes the frame. The third\/ergent equationa| theory is |oca||y decidable.

hypothesis, which this section presents, pertains to degid

whether another frame satisfies this set. In fact, thiseecti

Local finiteness is always true when there are no AC

discusses two versions of the third hypothesis, called loca symbols since then the s&i(¢) contains only finitely

finiteness and local decidability. Either is sufficient faro

many equations up to renaming:

purposes; the former has been more attractive in applica-
tions; the latter is more general. As the use of equationsProposition 3 Let £ be a locally stable AC-convergent

may suggest, we rely on the third hypothesis in the study of equational theory with no AC symbols.

static equivalence but not deduction.

Then, for any
frame ¢, there exists a finite set of equatiokg'(¢) such

For each frame = vno, we assume a fixed set of terms that for every frame), we havey = Eq(¢) if and only if

R(p) = {Cu | M € sat(¢)} such that for each,,

¥ = Eq'(¢). In other words E is locally finite.



Each equation oEq(¢) is of the formC1[x1, - . ., xx]
Calxhs - -, xgl with x;, x} in R(¢). Thus it contains a finite
number of names (bounded by + c%). The setEq’(¢) is
obtained fromEq(¢) by renaming the names on a fixed set
of names.

In Section 4 we present some non-trivial examples of lo-

cally finite theories with AC symbols. Establishing local
finiteness is our preferred way of proving local decidailit

the frame

¢2 = I/(nl, ng, n3)[3n1 + 2no + 4TL3/.T1,
na + 3ng/x2,n1 + 2ns /w3, 3ng + N3 /4]
The setEq(¢2) consist in the set of equations of the form

Q121 + oy +asxs +aurs + 1 = a1 + ahre +abes +
alxy+T" withay, o € N, T 'andT’ sums of names distinct

for such theories. Here we show that at least an (infinite) from ny, no, andns. By convention, ify; = 0 (resp.a) =

subset oEq(¢) may always be replaced by a finite number
of equations.

Definition 6 Let¢ = vno be a frame. LetV be a set of
public names (that is, such thaf N7 = 0). We write
Eqq (¢, V) for the set of equations of the formy = xo
such thaty1, x2 € sumg(R(¢),n), fa(x1) U fa(x2) C N,
and(x1 =g x2)9¢-

Note thatEq,, (¢, N) is a subset oq(¢). We show that the
setEqg (¢, N) may always be replaced by a finite number
of equations ifN is a finite set of public names.

Proposition 4 Let ¢ = vno be a frame andV a finite set
of names such thaV N7 = (. There exists a finite set
Edye (¢, V) € Eqg (¢, V), such that for every frame:

¥ Eqq(é.N) ifandonlyif ¢ = Eqy (6, V)

In addition, the cardinality oEq,, (¢) is at most the cardi-
nality of sat(¢) plus the cardinality ofV.

Proof(outline) This proposition is proved using elemen-
tary results onZ-modules. (Facts o#&-module may be
found in [18], for example.) Assume thabt(¢) =
{My,...,My}, N = {ny,...,n;}, and letl' € Z¥*!. For

1 < i < k+ 1, T, denotes theth coefficient ofl’, andT’
denotes the equation:

@ LiCn, @ @ Iin;

T >0,i<k T>0,i>k
= P Tyme P (Ton
Ii<0,i<k Ti<0,i>k

LetEql, (¢, N) = {T' | T € Z*H! (T)¢}. Itis easy to verify
that for any frame), ¢ = Eqg (¢, V) if and only if ¢ |=
Eqy (¢, N). Itis also easy to verify (simplifying the equa-
tions) thatEqy, (¢, N) is aZ-submodule ofZ**! and thus
can be generated by a finite number of vectdgys. .., V.,
with 7 < k + 1. We defineEq, (¢, N) = {V1,..., V,}. It

is easy to prove that, for any framg + = Eqg (¢, N) if
and only ify) = Eqyq (¢, V).

Example 6 Consider for example a pure AC theory with
only one AC symba} (and no other function symbol), and

0) then the termy;z; (resp. oz;) does not appear in the
sum. Since the equation is true fos, we must havd” =
T', thus it is sufficient to consider the equations of the form
Q121 + Qoo+ 33+ Qg = )21+ ahTo +abrs+ oz
with «;, o/, € N. Adopting the convention that a negative
term ax (with o < 0) in an equation actually appears on
the other side of the equation, it is sufficient to consider th
equations of the formy, 1 + asxo +aszxs +agxys = 0, with
o, o € Z. For example, the equatiddi; — 222 + 23 =0
stands for the equatiofz; + 3 = 2x5. Then, the set
of vectors(ay, as, ag, g) such that the equation; z; +
asro + asxs + agry = 0 holds forg, is exactly the set of
vectorsU of Z* such thatAU = 0 with

A:

= DN W
w = o

1
0
2

= w O

By using classical elementary operations on rows and
columns, we find thadU = 0 if and only if

1
1
-3
-1

U=\

for A\ € Z. We deduce that the set of equations satisfied by
¢ is exactly the set of equations of the foria:; + \zp =
3A\x3 + Azy4. Thus, in order to decide whether a frame
satisfiesEq(¢2), it is sufficient to check whether satisfies

the single equation; + xo = 3x3 + 24.

4 Examples

In this section, we give examples of locally stable and lo-
cally finite AC-convergent equational theories. In Secépn
we prove that local stability implies the decidability of-de
duction, and that local stability and local finiteness imply
the decidability of static equivalence.

Several equational theories related to cryptographic
primitives are locally stable and locally finite. In partiar
we prove that the convergent subterm theory we considered
in our previous work [1] are locally stable. We show that
the homomorphism property, a simple theory for addition,
and a theory for blind signatures (which are not subterm



theories) are also locally stable. These equational tesori no AC symbol). These properties will imply that both de-
do not have AC symbols, so local finiteness follows from duction and static equivalence are decidable.
Proposition 3. As examples of theories with AC symbols,  Let¢ = vn{M;/z1,..., M/} be any frame in nor-
we prove that the pure AC theory and a theory of the XOR mal form. We defingat(¢) to be the smallest set such that:
operator are locally stable and locally finite. One can also 1% < i<k M dqf
show that the theory of Abelian groups is locally stable and  ++ O €veryl < @ < k, M; € sat(¢), and for every
locally finite, but the proof of this fact is quite tedious— n € fn(¢), n € sat(¢),
probably more than direct proofs of the decidability of de- 2 it a7y, ... M, € sat(¢) and f(My,..., M) €
duction and static equivalence. st(sat(¢)), thenf (M, ..., My,) € sat(¢),
As the examples may suggest, proving local stability of-

ten requires a precise understanding of the cryptographic 3. if M;, My € sat(¢) and dec(M;y, Ms) MM oand
primitives represented by an equational theory. In pasticu the ruledec(enc(z,y),y) — « has been applied, or
Iarl, rergg;_ving some equations need not always preserve lo- fst(My) h M, orsnd(M;) h M, thenM € sat(¢).
cal stability.

/ The sekat(¢) is finite since we add only subterms of terms
4.1 Convergent subterm theories of ¢. It trivially satisfies conditions 1, 2, and 4 of Def-
inition 2. Let us show that it satisfies condition 3. Let
My, ..., My € sat(¢) and assume that[M;, ..., My] LA
M where|C| < 7. The case wher€'is a single hole is cov-
ered by the fact that the terms are in normal form. The other
cases are covered by rule 3 except in the following cases:

A convergent subterm theory simply a theory defined
by a finite set of equatiorLstzl{Mi = N;}, whereN; is
either a subterm of/; or a constant symbol, such that the
rewriting system obtained by orienting the equations from
left to right is convergent. We have proved that both de- e ' =enc(_,_),C = enc(_,T), orC = enc(T, _) where
duction and static equivalence are decidable in PTIME for fa(T)Nn = 0and|T| <5.
convergent subterm theories.

Destructor-constructor rules like those for pairing, en- — For enc(My, Ma) — M with My, M, €
cryption, and digital signatures may be expressed in con- sat(¢): In this case,M; must be of the form
vergent subterm theories: My = (Mi,M3) and M = (enc(M, M>),

enc(M}, Ms)). By rule 3, we know that both

fst((z,y)) = =« M and M}, are insat(¢) sincefst(M;) — Mj
snd({z,y)) = vy andsnd(M;) — MJ. ThusM is a context over
dec(enc(z,y),y) = = terms ofsat(¢) where the context may be chosen
check(x, sign(z,sk(y)), pk(y)) = ok asC’ = (enc(_,.),enc(-,.)) since|C’| =T.

— For enc(M;,T) — M with M; € sat(¢),
Mm(T)ynn =0, and|T| < 5: We have simi-
larly that M = (enc(M{,T),enc(M4,T)) with
M and M3 in sat(¢). ThusM is a context over
terms ofsat(¢) where the context may be cho-

Convergent subterm theories also enable us to capture the
theory of an inverse function:

{I(I(z))=xa,I(z) xx=1,2 x I[(z) =1}

More examples may be found in our previous paper [1]. It
is easy to verify that the definition eét(¢) given there fits
our requirements for local stability.

Proposition 5 Every convergent subterm theory is a locally

sen ax’ = (enc(_,T),enc(-,T)) since|C’| <

54 2|T) < 15 < 72 = 49.

For enc(T, M) — M with My € sat(9),

Mm(T)nn =0, and|T| < 5: We must have
T = <T1,T2> with |T1| + |T2] < 4. We ob-

finite locally stable AC-convergent theory. tain M = (enc(T1, M), enc(Th, My)), SOM is

a context over terms aht(¢) where the context
may be chosen a8’ = (enc(Ty,-),enc(T5,-))
since|C’| <5+ |T1| + |T2] <9 < 49.

4.2 Homomorphism

We consider again the equational thedry (defined in
Example 1), which represents an encryption scheme witha ® ¢ = dec(-,.), ¢ = dec(.,T), or C = dec(T )
homomorphism property. The size of the theory is 7. where fn(T) N = 0 and|T| < 5, and the rule
Comon-Lundh and Treinen [9] have investigated a very dec((2,y),2) — (dec(z,z),dec(y, z)) has been ap-
similar equational theory. They showed that its deduction plied.
relation is decidable in PTIME. Here we show that is These three cases are very similar to the three cases
locally stable, and it is obviously locally finite (since iah above.



4.3 Addition

We consider a simple theory for addition. 6§ be any
signature that contairts pred, andplus, with the equations:

{pltJS(x,s(y)) = plus(s(z),y) }
Es = plus(z,0) = =
pred(s(z)) = =

We defineR 3 by simply orienting the equations from left to
right. Using this choice ofks, it is easy to verify that;

is AC-convergent. (Note thafs has no AC symbol.) For
local stability, whenp = vn{M; /x4, ..., My /x} is any
frame in normal form, we defingat(¢) to be the smallest
set such that:

1. for everyl < ¢ < k, M; € sat(¢), and for every

n € fn(¢), n € sat(9),

i My,..., M, € sat(¢) and f(M;,...
st(sat(¢)), thenf (M, ..., My) € sat(¢),

7Mk) S

3. if pred(M) 25 M’ andM € sat(¢) thenM’ € sat().

The sesat(¢) is finite since we add only subterms of terms
of ¢. The setsat(¢) trivially satisfies conditions 1, 2, and
4 of Definition 2. Let us show that it satisfies condition 3.
The only non-trivial case is the one whexlas(M7, Mo) &
M’ with M, My € sat(¢) and the ruleplus(z, s(y)) —
plus(s(x),y) has been applied. We must have thé =
s(MJ). Hencepred(Ms) LA M3, so M} € sat(¢p). Now,
we haveM’ = plus(s(My), M), with My, M € sat(¢),
so condition 3 is satisfied.

Note that, if we remove the equatiqmed(s(z)) = =
from our equational theory, the proof of local stability is n
longer valid.

4.4 Blind signatures

We consider a theory recently introduced by Kremer and
Ryan [13] in order to model blind signatures and related
constructs in their analysis of a protocol for electronit-vo
ing. This theory treats signatures much like that of Sec-
tion 4.1, with four differences: the checking construct is
calledchecksign (rather tharcheck); checking does not re-
quire plaintext; there is no separate signature-key compu-
tation (no functionsk); and, most importantly, this theory
also describes signature blinding and unblinding funation
Let X4 be any signature that contaiogen, commit, getpk,
host, checksign, sign, unblind, andblind, with the equa-
tions:

open(commit(z,y),y) = =x

getpk(host(z)) = =

E, = checksign(sign(z,y),pk(y)) = =z

unblind(blind(z,y),y) = =«
unblind(sign(blind(z,y), z),y) = sign(z,z)

We defineR4 by simply orienting the equations from left
to right. The theoryFE, is clearly AC-convergent. To
prove thatF, is locally stable, we extend the definition of
subterms by requiring thatign(M;, M3) is a subterm of
sign(blind(M7, Mz), M3). More formally, we define:

stet (U) = U

Stee (sign(blind (M7, My), Ms)) =
{sign(Ml, M3)} @] {sign(blind(Ml, Mg), M3)}
Ustext((blind(Ml, Mg)) U Stext(Mg)

St (f(My, ..., My)) =
{(F(My, ..., M)} UUY, stee(M;) otherwise

When¢ = vn{M;/x1,..., M/x;} is any frame in nor-
mal form, we defingat(¢) to be the smallest set such that:

1. for everyl < ¢ < k, M; € sat(¢), and for every

n € fn(¢), n € sat(¢),

if My,...,M;, € sat(¢) and f(Mq,...
st(sat(¢)), thenf (M, ..., M) € sat(¢),

aMk) S

it C[My,... My 5 M, M; € sat(¢) and M €
stext (sat(¢)) thenM € sat(¢).

The setsat(¢) is finite since we add only extended sub-
terms of terms ofp. The sekat(¢) trivially satisfies condi-
tions 1, 2, and 4 of Definition 2. Let us show that it satis-
fies condition 3. Assume that[My, ..., My] 2w with
M; € sat(¢). If one of the four first rules ofR4 has been
applied, thenV/ is a subterm of[M;, ..., My]. Thus ei-
therM = C'[M, ..., My] for some context”’ and condi-
tion 3 is satisfied oM is a subterm of one of th&/;, thus
M € sat(¢) and condition 3 is satisfied. If the fifth rule
of R4 has been applied, then three (non-trivial) cases may
arise.

o If My % M thenM is an extended subterm 8f;, s
M € sat(¢) and condition 3 is satisfied.

e Similarly, if unblind(My, M) M thenM is an ex-
tended subterm af/;, soM € sat(¢) and condition 3
is satisfied.

e Finally, suppose thatnblind(sign(M;, Mz), M3) 2,
M. It must be the case that!; = blind(Mj, M3).
Since unblind (M7, Ms) A, M and Mj is a sub-
term of M, we haveM; € sat(¢). Now, since
M = sign(Mj, Ms), condition 3 is satisfied.

4.5 Pure AC theory

We consider the case where the signature contains only
constant symbols and AC symbolsy, ..., @, and the



equational theoryFs contains only the AC equations for
each symbol:

"
i=1

With the empty rewriting systeriR; = 0, Es5 is an AC-

convergent theory. Whep = vn{ M, /x4, ..., M/} is

any frame, we defingat(¢) to be the smallest set such that:

(x®iy) @iz
Dy

x®; (y i 2)
y®d;x

Es =

n € fn(¢), n € sat(9),

2. if My, M; € sat(¢) and My &, Ms € st(sat(¢)), then
My &; My € sat(qS),

1. foreveryl < ¢ < k, M; € sat(¢), and for every

3. if My =ac My andM; € sat(¢) thenMsy € sat(¢).

The setsat(¢) is finite since we add only terms smaller or
equal than the maximal size of the termsd¢f The set
sat(¢) trivially satisfies conditions 1, 2, and 4 of Defini-
tion 2. It also satisfies condition 3 since the rewriting sys-
temR 5 is empty. Thugts is locally stable.

Now, for any framep = vno, the set of equatiorsq(¢)
simply consists oEq., (¢, N — 7). Since names that do
not appear inp need not be considereHq,, (¢, N' — 1) is
equivalent toEq,, (¢, N) whereN is the set of free names
of ¢, in the sense that for any frameg ¢ |= Eqg (¢, N —

n) if and only if o) = Eq (¢, N). By Proposition 4, we
conclude that the equational thedty is locally finite.

4.6 XOR

We consider the theor¥g, of the XOR operator (defined
in Example 3).

We have seen thal, is AC-convergent. We wish to
verify that F5 is locally stable. Wherp = vn{M;/z1,

., My /x} is any frame in normal form, we defiret(¢)
to be the smallest set, closed under AC, such that:

1. for everyl < i < k, M; € sat(¢), and for every
)

n € fn(¢), n € sat(¢), and0 € sat(¢

(¢
2. 0f My,..., My, € sat(¢) and f(My,..., My)
st(sat(¢)), thenf(My, ..., My) € sat(qS)

3. if My, My € sat(¢), then(Ml D Mg)ic sat(¢),

. if ais a name notim and if M @® a —ac M’ with
M’ € st(sat(¢)), thenM’ € sat(¢).

Let us first show thagat(¢) is finite. Letsst(¢) the set of
simple subtermsf ¢, that is, the set of subterms ¢fwhose
head symbolis nop. LetS = {Ih @ --- & T, | T; €
sst(¢),T; # 0,T; = T; = i = j} be the set of sums of
distinct terms obst(¢). The setS is finite andsat(¢) C S.

Indeed, it is easy to show thétverifies the four conditions
above, using thatt(S) = S.

The setsat(¢) trivially satisfies conditions 1, 2, and 4
of Definition 2. Let us show that it satisfies condition 3.
Let My,..., My € sat(¢) andC be a context such that
fn(C)nn = () and assume th&t[M;, . .., M;] o we
have thaC[My, ..., My] =ac @le M;oE;._, a;, where
eacha; is a name not im or the constant 0. Let us show
that one of the normal forms af'[My, ..., My] is a con-
text of terms irsat(¢). Applying recursively rule 3, we ob-
tain that(@f:1 M;)|C sat(¢). Now, applying recursively
rule 4, we obtain thal'[Mj, . .., My]l=ac M'&@]_, a;;,
with M’ € sat(¢). By AC-convergence, we know that
M —ic=ac M' & EB _q a;; with M’ & @ _q0i; €
sumg (sat(¢),n), since none of the;, is 0 (for otherwise
the term would not be in normal form) g0 satisfies the
required conditions.

Like in the pure AC case, for any framg the set of
equationEq(¢) simply consists ofEq, (¢, V' — 1) since
the only constant is 0 and O is itself Bat(¢). Since
names that do not appeardndo not need to be considered,
Eqq (¢, N — 1) is equivalent tEq, (¢, ) whereN is the
set of free names af, in the sense that for any framg
Y = Eqg (¢, N —n) ifand only if ¢ = Eqg (¢, V). Thus,
by Proposition 4, the equational theadty is locally finite.

Note that, in this example, we can also conclude without
using Proposition 4. Indeed, we can consider th&gé(ip)
that consists of the equations

k}l k}g l1 l2
Do, o@m = D o, D my
Jj=1 Jj=1

j=ki1+1 j=ka+1
such that
@CML @@% =x @ O, @ @ i,
j=ki1+1 j=ka+1

ni; € fn((b)’ andl # j = M;, # zjanil # Lz
Clearly,Eq’(¢) is finite and it is easy to verify that, for any

framew, ¢ |= Eqg (¢, n) if and only if ¢ = Eq'(¢).
5 Decidability results

In this section, we state and prove our decidability results
for deduction and static equivalence.

5.1 Decidability of deduction

Theorem 1 For locally stable AC-convergent equational
theories, deduction is decidable.

The proof is based on the following lemma.



Lemma 1 Let £ be a locally stable AC-convergent theory.
Let ¢ = vno be a frame. For every context; such that
fn(Cy) N = 0, for everyM; € sat(¢), for every ternmil’
such thatCy[My, ..., My] —ac T, there exist a context’y
such thatfn(Cs) N = 0, and termsM/ € sat(¢), such
thatT —xc Co[M7, ..., M]].

cidable. A fortiori, for locally finite locally stable AC-
convergent equational theories, static equivalence isddec
able.

The proof is based on two main lemmas proved in the
Appendix.

This lemma is a weak version of Lemma 3 presented in Sec-Lemma 2 Let E be a locally stable AC-convergent the-

tion 5.2. Applying repeatedly this lemma leads to the fol-
lowing corollary.

Corollary 1 Let E be a locally stable AC-convergent the-
ory. Let¢ = vno be a frame. For every contegt; such
that fn(C1) N7 = (), for everyM; € sat(¢), for every term
T in normal form such tha€', [My, ..., M) —ac T, there
exist a contextCy such thatfn(Cy) Nn = (), and terms
M € sat(¢), such thatl’ =ac Co[M7, ..., M]].

Assuming Lemma 1, lep = vno be a frame,Cy be a
context such thafn(C1) Nn = 0, M; € sat(¢), andT
a term in normal form such that; [M,, ..., My] —ac T
EitherCy[M, ..., My] =ac T and we are done or we have
Ci[Mn, ..., My] —ac T —ic T. By Lemma 1, there
exist a contexCs such thatfn(C2) N n = 0, and terms
M] € sat(¢), such thafl” —3 Co[M7, ..., M]]. By AC-
confluence of the equational theory and sifids in normal
form,Co[ M7, ..., M]] —Ac T. Since the equational theory
is AC-terminating, we repeat this transformation until we
obtain thatl’ =ac C3[Mj, ..., M]] for some terms\1/’
sat(¢) and some contexts.

We show that for any message deducible from a fraine
one of its normal forms is a context over termsan (o).

Proposition 6 Let ¢ = vno be a frame,M be a closed
term, andM | its set of normal forms. Thep - M if
and only if there exist a teri’ € M |, a contextC, and

termsM;, ..., M, € sat(¢) such thatfn(C)Nn = @ and
T == C[My, ..., M.

If there existsT € M | such thatl’ == C[My,..., My]
with fn(C’) nn = (Z), thenT =E C[ijjl,...,CMk]O', by

construction ofay, , ..
T, thuse - M.

Conversely, ifp = M, then by Proposition 1, there exists
¢ suchthatfn(¢) Nn = @ andM =g (o. Thus there exists
T € (M] N (Co)]). SinceCoc —ic T", applying Corol-
lary 1, we obtain thafl” =ac C[My,..., M}] for some
M,..., My € sat(¢) andC such thatn(C) N1 = 0.
Thus we end the proof by choosifig== C[M;, ..., My].

We derive that¢p + M can be decided by check-
ing whether one of the terms id/ | is of the form
C[Ml, R Mk] with M; € sat(gb).

.. Car,,- Thus, by Proposition 1 -

5.2 Decidability of static equivalence

Theorem 2 For locally decidable locally stable AC-

convergent equational theories, static equivalence is de-Moreover, since&y,[M;, ..

10

ory. Let¢ = vno andvy = vn'a’ be two frames such
that ¢» = Eq(¢). For all contextsC;, Cy such that
(fn(Cy) U m(Cy)) Nnn = (), for all terms M;, M| €
sat(¢), if Cl[Ml, R Mk] =AC CQ[M{, ceey Mll], then
(C1lCays - -5 Can] =B C2lCarys - -+, Carf )Y

Lemma 3 Let £ be a locally stable AC-convergent theory.
Let» = vno be a frame. For every context; such that
fn(Cy) N = 0, for everyM; € sat(¢), for every termrl’
such thatCy[My, ..., My] —ac T, there exist a contexts
such thatfn(C2)Nn = (), and termsM/ € sat(¢), such that
T —pc Co[Mi, ..., M]] and for every frame) = Eq(¢),
(C1lCarys -+ -5 Q] =E Co2lCurys - -+ Cary )Y

As for Corollary 1, applying repeatedly Lemma 3 leads
to the following corollary.

Corollary 2 Let E' be a locally stable AC-convergent the-
ory. Let¢ = vno be a frame. For every context; such
that fn(Cy) N n = 0, for everyM; € sat(¢), for every
term7 in normal form such tha€’, [M, ..., M| —ac T,
there exist a context’; such thatfn(Cy) N7 = ), and
terms M, € sat(¢), such thatl’ =ac Co[Mj,..., M]]
and for every frame) = Eq(¢), (C1[Coys---5Ca.] =E

In order to check whether two frames verify the same
equations, we show (using these two lemmas) that it is suf-
ficient to check whether they verify the same “small” equa-
tions.

Proposition 7 Let £/ be alocally stable AC-convergent the-
ory. For all framesg and, we havep =~ ¢ if and only if

¢ = Eq(v) andy |= Eq(¢).

By definition of static equivalence, # ~, i then¢ =
Eq(v) andy = Eq(¢). Conversely, assume now that—=
Eq(¢) and consideM/, N such that there exisi, o such
thatg = vno, (fn(M)Ufn(N))Nn = Qand(M =g N)¢.
ThenMo =g No,so((Mo)| N(No)l) # 0. LetT =
(Mo)| N(No)]). SinceMo —ac T, applying Corol-
lary 2, we obtain that there exidty, ..., M}, € sat(¢) and

Cr such tha;fn(CM) Nn==0,T =ac CM[Ml, cee Mk],
and (M =F CM[CJV[15-"7<JV[k])¢' Since No —>ZC
T, we obtain similarly that there exist/{,..., M/ €

sat(¢) and Cy such thatfn(Cy) N7 = 0, T =ac
Cn[M{,...,M]), and (N =g Cn[Cuss- - Car])os
. M) =ac On[M1, ..., M]],



we derive from Lemma 2 thatCus[Carys---,Car] =E
CNICyys -, Cag])y thus (M =g N)ip.  Conversely,
if (M =g N)y and¢ = Eq(y), we can prove that
(M =g N)¢. We conclude thap ~; 1.

Therefore, giveny and«, we may consideEq(¢) and
Eq(v) in order to decide whethef ~, . By local decid-
ability of the theory, we can decide whethef= Eq(¢) and

¥ = Ea(9).

Acknowledgments

We are grateful to Michael Rusinowitch and Math-
ieu Baudet for very helpful discussions.

Martin Abadi's work was partly supported by the Na-
tional Science Foundation under Grants CCR-0204162 and

CCR-0208800. Veéronique Cortier's work was partly sup-
ported by the RNTL project PROUVE-03V360 and the ACI

Jeunes Chercheurs JC9005.

6 Conclusion

References

In this paper we study message deducibility and static
equivalence, two formal representations for knowledge in
the analysis of security protocols. This study yields a gen-
eral, positive result: message deducibility and statidvequ
alence are decidable under a wide class of equational theo-
ries. This class includes, in particular, standard thedioe
basic cryptographic primitives. It also includes some less
standard, more advanced examples: theories of XOR, ho-
momorphic encryption, blind signatures, addition, andepur
AC theories. We succeed in giving a unified treatment for
this disparate collection of theories, with a coherent bafdy
techniques that apply to all of them plus special techniques
for verifying that particular theories belong in the class.

We have not considered complexity issues for the cor-
responding decision procedures. Their performances obvi-

(1]

(2]

(3]

ously depend on the choice of equational theory, and we do [4]

not expect them to be very good in many cases. One of
the authors (V.C.) is currently working on implementing a
variant of our procedures for specific theories. We expect
that the resulting algorithms will be efficient enough to be
applicable in practice.

As indicated in the introduction, deduction and static
equivalence are static notions, but they play an important
role in analyses with respect to active attacks. Nevertisele
it remains challenging to obtain decidability results wih
spect to active attacks. This problem is addressed in recent
and ongoing work. That work is still largely under way,

(5]
[6] Y. Chevalier, R. Kuester, M. Rusinowitch, and M. Tu-

so detailed descriptions may be premature, but we briefly [7]

mention some interesting developments. Going beyond the
work of Delaune and Jacquemard [10] (described in the in-
troduction), Baudet [5] has proved that both deduction and
static equivalence are decidable under convergent subterm
theories. Comon-Lundh [7] is studying the decidability of
deduction under general equational theories, including as
sociativity and commutativity properties. Overall, thisldi
appears as a lively one, with increasingly sophisticatela-te
nigues and powerful theorems. We may therefore look for-
ward to much progress in algorithmic reasoning about the
knowledge of active attackers in security protocols.

11

(8]

9]

M. Abadi and V. Cortier. Deciding knowledge in se-
curity protocols under equational theories. Prnoc.
31st Int. Coll. Automata, Languages, and Program-
ming (ICALP’2004)volume 3142 otf_ecture Notes in
Computer Scien¢ggages 46-58, Turku, Finland, July
2004. Springer.

M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. Rroceedings of the 28th
ACM Symposium on Principles of Programming Lan-
guages (POPL'01)pages 104-115, January 2001.

M. Abadi and A. D. Gordon. A calculus for crypto-
graphic protocols: The spi calculutformation and
Computation148(1):1-70, Jan. 1999.

M. Abadi and P. Rogaway. Reconciling two views of
cryptography (The computational soundness of formal
encryption). Journal of Cryptology 15(2):103-127,
2002.

M. Baudet. Private communication. 2005.

rani. An NP decision procedure for protocol insecu-
rity with xor. In Proceedings of the 18th Annual IEEE
Symposium on Logic In Computer Science (LICS'03)
pages 261-270, 2003.

H. Comon-Lundh. Intruder theories (ongoing work).
In Foundations of Software Science and Computa-
tion Structures (FoSSaCS’Q4)olume 2987 ofLec-
ture Notes in Computer Sciengemges 1-4. Springer-
Verlag, 2004.

H. Comon-Lundh and V. Shmatikov. Intruder de-
ductions, constraint solving and insecurity decision in
presence of exclusive or. IRroceedings of the 18th
Annual IEEE Symposium on Logic In Computer Sci-
ence (LICS'03)pages 271-280, 2003.

H. Comon-Lundh and R. Treinen. Easy intruder de-
ductions. Technical Report LSV-03-8, Laboratoire
Spécification et Vérification, ENS de Cachan, France,
2003.



[10] S. Delaune and F. Jacquemard. A decision procedureDefinition 7 The set ofpathsof a term M, denoted by

for the verification of security protocols with explicit
destructors. InProceedings of the 11th ACM Con-

P(M) is defined recursively byP(u) = € if v is a name or
avariable,P(f(M,...,M,)) =eUlJ i -P(M;). The

ference on Computer and Communications Security subterm of\/ at positionp, denoted by\/|,, is defined by:

(CCS’04) pages 278-287, Washington, D.C., USA,

October 2004. ACM Press.
[11] S. Goldwasser and S. Micali. Probabilistic encryption
Journal of Computer and System Scienc&3:270—
299, Apr. 1984.
[12] R. Kemmerer, C. Meadows, and J. Millen. Three sys-
tems for cryptographic protocol analysiSournal of
Cryptology 7(2):79-130, Spring 1994.
[13] S. Kremer and M. Ryan. Analysis of an electronic
voting protocol in the applied pi calculus. Rroceed-
ings of the 14th European Symposium on Program-
ming (ESOP’05)Lecture Notes in Computer Science.
Springer, Apr. 2005. To Appeatr.
[14] P. Lafourcade, D. Lugiez, and R. Treinen. Intruder
deduction for ac-like equational theories with homo-
morphisms. InProceedings of the 16th International
Conference on Rewriting Techniques and Applications
(RTA'05) Lecture Notes in Computer Science, Nara,
Japan, April 2005. Springer-Verlag. To appear.
[15] P.Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A
probabilistic poly-time framework for protocol analy-
sis. InProceedings of the Fifth ACM Conference on
Computer and Communications Securjipges 112—
121, 1998.
[16] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. Ifools and Algo-
rithms for the Construction and Analysis of Systems
volume 1055 oLNCS pages 147-166. Springer Ver-
lag, 1996.
[17] L. C. Paulson. The inductive approach to verifying
cryptographic protocolsJournal of Computer Secu-
rity, 6(1-2):85-128, 1998.

[18] P. Samuel.Algebraic Theory of NumberdHermann,
1970.

[19] S. Schneider. Security properties and CSPIHRE
Symposium on Security and Privapages 174-187,
1996.

Appendix: Proof of Lemmas 2 and 3

We introduce the definition gfathsin a term.
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M|€ =M andf(Ml, . ;]V[n”lp = M1|p

Lemma 2. Let £ be a locally stable AC-convergent
theory. Let¢ = vno andvy = vn’c’ be two frames
such thaty) = Eq(¢). For all contextsC;, Cs such that
(fn(Cy) U fn(Ca)) N n = 0, for all terms M;, M| €
sat((b), if (& [Ml, ey Mk] =AC CQ[M{, ceey Ml/]’ then
(C1lCarys - -+ ] =k ColCurys - -+, Cary )Y

This lemma is proved by induction on the sum of the
sizes ofC7 and(Cs.

Base caself |C],|C:| < c¢g, then the equation

(Cl[glwp' .. 7CMk] — C?[g]VI{a' .. 7CM[])

is in Eq(¢) since|Ci| < c¢g and|Cy| < ¢g <
2, s0¢ = Eq(¢) implies (C1[Coss-- -, Con] =5

CaolCarys - -+ Carg DY

Inductive step: If neitherCy norCy is a hole, ther®; ==
f(CE,...,CT)andCy == f(Ci,... CE). There are
two cases.

e f is not an AC symbol. Then, for every <
i <1, Ci[My,..., M| =ac C5[Mq,...,M]].
By applying the induction hypothesis, we obtain

(CilSys -+ -5 Ca] =B C5[Cuzs - -+, Cary])1h, SO
(C1lCmys -+ C) =B C2[Carys - -+, Cagg )P

e fis an AC symbol. We writeC; = C] @
OB B Bry,andCy = C &

- ®Cy @y @ @y, in such a way that
the head symbol of th€} and Cj is not @,
C% and Cg are not holes, and the; andy; re-
fer to the holes of”; andC,. Either the equa-
tion may be split:C; =ac C] & CY, C2 =ac

Cy & CY such that(Ci[Cays-- -, ¢ =k
Cs[Cargs - - Cagg)@and(CY [Cuay s - -, S, ] =E
CY[Cuy- - -, Car])¢- We conclude as above, ap-

plying the induction hypothesis. Or the equa-
tion can not be split: it implies that for every
1<i<r N; £Ci[M,,..., M]isnotequal to
someCy[Mj, ..., M/] so it must be a subterm of
somel;. Since eachV/ is insat(¢) and by ap-
plying recursively rule 2 of Definition 2, we get
thatV; is insat(¢), thus there existsy, € R(¢)
such that y,c =g N;. Symmetrically, for every
1<j<r N} =O{[M,...,M{]is not equal
to someCi[Mj, ..., M, sON; € sat(¢) and
there exists;N;_ € R(¢) such thatN;a =g Nj.



— From N; == Ci[M,..., M) and ap-
plying the induction hypothesis, we get
(o' =g CilCuys---,Cu, o and simi-
Iarly, CN]/-OJ =E C% [CJV[U A aCMk]OJ-

— Renaming th&{ [M, . .., M} by N; in our
initial equation, we getVy & --- & N, &
Mi® --®M,=N{&--- &N, oM &
-+ @& M,,. Applying the base case, we get
v @ BN, ®Cuy & Dy, =F
Ny @ - DN, ®Cu; B+ D CM;/)U-
Since this equation is ikq(¢), we deduce
N @ DN, Dy DB Cu, =E
(N @@ (N, &y @@ Q)0

Combining these equations, we get

(C1lCmys -5 C] =B Co[Curys - -+, Q)Y

If C; or Cy is a hole, then let us sagy, ==
f(CL,....,CT)andCy == _. Let M, My, ..., M €
sat(¢) and assume&'; [My, ..., My] =ac M. Again
we consider two cases.

e fis notan AC symbol. Then we have

f(CL My, ..., My),...,CT[My,..., M)
=ac M

Foreveryl <i <r,letN; = Ci[M,..., My].
Thus, eachN; is a subterm ofM, so it is in
st(sat(¢)). Since eachl; is in sat(¢) and by
applying recursively rule 2 of Definition 2, we
get thatV; is in sat(¢). Thus there existgy, €
R((b) such thatNiU =g N;.

— From N; == Ci[My,..., M) and ap-
plying the induction hypothesis, we get
gNiU/ =E Ci [CM17 ceey CMk]OJ'

— From M =ac f(Ny,...,N,) and ap-
plying the base case, we g€i;0’ =g

f(Cva RN CNT)U/-

Combining these equations, we get
(¢ = C1lCay s - -+ Car )W

e fisan AC symbol. We write?; = C} & --- &
Cl@z @ - @azpandCy = z, and we have
Cll[Ml, e, Mi)®. . . @CT [ My, ..., My M| &
... ® M/ =ac M. EachN; £ Ci[My,..., My
is a subterm ofM € sat(¢) thus is insat(¢).
Again, there exists(y, € 7R(¢) such that

(N0 =g N;.
— From N; == C{[My,...,M;] and ap-
plying the induction hypothesis, we get
CN@U/ —F CHCM“ ey CMk]U/.
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— FromN;&... &N, & M{&.. .EBMZI) =ac M
and by the equatioQw, ©- - & (N, © (g @
-+ ®Cuy =g Qu isinEq(¢), we get((y,
BN, Oy B ©Cuy =k Cur)o

Combining these equations, we get
(Cl[CM1 R CM;C] =FE CM)w

Lemma 3. Let E be a locally stable AC-convergent theory.
Letp = vno be a frame. For every context; such that
f(C1) N =0, for everyM; € sat(¢), for every termil’
such thatC[My, ..., My] —ac T, there exist a context,
such thaifn(Cy)Nn = (), and termsM; € sat(¢), such that
T —pc Co[My, ..., M/] and for every frame) |= Eq(¢),
(CilCarys - -+ ] =E ColCurys - -+, Cary )Y

An easy case is when the reduction occurs inside one
of the M;: M; —ac M/. By definition ofsat(¢) (since
E is locally stable), we know that there exigissuch that
IC| < ¢, fn(C) N =0, andM] —xc C[M{,..., M/
where M/ € sat(¢). In addition, the equatiody;, =
C(Cumyrs---»Curr) s in Eq(e) (since [C| < ¢f), thus
(Cv; =6 C(Cuys - - -, Curyr) ). We obtain that

T ==Cy[My,...,M;—1, M}, M;1,..., My
—>ZC Cl[Ml,...,C[M{I,...,M;/],...,Mk]

and
(Ol[<M17 . '7<J\/[k]
=B Q/]
Cl[<M17"'7C(<M{'7'"7CML”)7"'7CM;C]

We now consider the case where the reduction does not
occur inside the term&/;. We can assume that

for every pattp of C1,
if Cy|, (M, ..., My] is insat(¢), *)
thenC1 |, is the single hole context.

def

Indeed, if there exists a path of C; such that7T; =
Cil|p[M,...,M] € sat(¢p) and Ci|, is not a hole

then Cy[My,..., M| == C4[Ty, My,..., M;] where
Ty, M; € sat(¢) andC] is a context strictly smaller than
C4. In that case, we considét; [Ty, M, ..., M}] instead
of Cy[M, ..., M;] and we apply the transformation again
until property (*) holds.

We have

Ci[My, ..., My] ==

Cs[M" & M' & €D Cj[My, ..., My, My, ..., My]

i=1

whereM’ = M{ & ...@ M/, M" = M{'&...® M, with
M| @& M/ € sat(¢), the head symbol of the! is not®, C!



is not a single hole, anfh, = M’ & @!_, C![M,, ..., Mj] equal to some subterm of thé’>, C7 [M, . .., M;,] would
is an instanceV/,f (modulo AC) of the left-hand side of be aterm ofat(¢), contradicting the property (*). Thus, we
some ruleMy, — N, of the rewriting system associated obtain that

with E. N L -
For each variable: of M, we consider the occurrences Ni@... &N, @D, ac}[My,....My)
of 6 in T;.
T def
1. Eitherz6 occurs as a subterm of one of th& or M/; =axc Nio..® Nllcl ®Dili acip,,... ) = Ly,
2. orthere exists a subterm®f, of the formN; & ... ® We consider the substitutiofi such thatr;0/ = ;0
fxp :m;h_Ni :z\é\’c Ng@N{ZI\VE' sat(¢) for someN;’ such an.d it = Ty, We defined”(a, i, agy) =
kel =ac 1@@ p Cij[MlaaMk]
3. orthere exists a subterm®f, of the formN, @ ... @ We also consider the terrifi, that is obtained from

N,&@'_, C/[My, ..., My], where the head symbols D, Ci[M, ..., My by replacing each’f [M, . .., My
of the C/ are note and theC” are not a hole, and ~ With @ciccipr, ... an)-
20 =pc N| .. -@N{)@@f;l CU[M, ..., My with We haveT, == C5[S,...,S;] for some contexEJQ
N; =ac N! @ N/’ € sat(¢) for someN/, thus theN/ such tha/t/_@ Co| < |Mo| < cp and/Si € Sum@(sat(gb),;n).
are subterms of terms st (¢). Slr)/ceM @ Ty is /an mstanceMOH_ of My we haveM’ &
M" & Ty —ac M' @ Nyb'. Applying condition 3 of Def-
Note that case 3 cannot occur simultaneously with case linition 2, there existS; € sumg(sat(¢), n), there exists a
or case 2 for the same variable Indeed, if case 3 oc-  contextC’, such that|C’| < ¢%, fn(C’) N7 = ), and
curs simultaneously with case 1 or case 2, we have thatM’' & No#' —ic C'[S], ..., S]]. Applying the substitution
someC! M, ..., My] is a subterm of somé/; or M/, 0", we deduce thad!’ & Nob =ac M’ & Nob'0" —ic
thus applying recursively rule 2 of Definition 2, we getthat C’[S],...,S;]¢”. Note thatC’[S],. .., S]]0” is a context
C!'[My, ..., My] € sat(¢), which contradicts property (*)  of terms ofsat(¢):
(sinceC! is not a hole).
Without loss of generality, we assume that the variables ~ C'[S1,..., 10" = C"[My,..., M, S1,..., S]]
of My arex,...,zk,,v1,...,Ys, Where the variables;
are in case 1 or case 2 and the varialeare in case 3. For
each variablg/;, we consider thé occurrences of; in T7.

Toeachsunb = oy M ® - @ ay, My, ® 11 &+ @
Brnk Insumg (sat(¢), 1), we associate the ter@d = oy ¢
@ Donalm, Do @D B Nk.
yi0 =ac Nl @®...®&NL &, CIHM,... M] Now;, since the equatiofh; g & Ca(Cs,, - - -, (s,] =

: C'[Csy- -+ Csy] is in Eq(¢), we deduce

=ac Ni@...&N, e@;L, Cl[M,..., M] (Carrenrr ® CalCsy, -+, Cs,] = C'[Csy - Csr Y

we have

where theN/ are subterms of terms iat(¢) and the head  If o
symbols of the; are nots.
We associate with eaclt?[M,..., M| a (fresh) CI My, ..., My) =ac C2[M, ..., My
name symbok; iy, ), Where we use the nota- ' ’
tion cl(CY [ My, ..., My)) for the class of0Y [ My, ..., Mj] thus (by Lemma 2) we have
J1 _ J2 . .
modulo AC. If C* [My, ..., My] =ac CJ2[My, ..., Mg], (C ey Cn] = CL2 sy s - -, Car )

cl(CIH [My,..., My)) acl(Cfg[JVh,...,Mk])’

we ha"e“cz(cg’; (M, M) — Pel(CI2 (M. M) In each
equation So we can reconstrudt!” @ T and obtain

Tj1 r

N .. oN! o @CMM,... M Curaner & D Gl Care]
i=1 i=1
. . T2 . :C/I[CJ\/flv"'aCMkvé-Sia"'vCS{])w
=ac N{* @ ..o N2 o B CP[M, ..., My '
' i=1 which allows us to conclude the proof of Lemma 3.

everyC/'[M,, ..., My) must be equal modulo AC to one

of theC/*[M,, ..., My]. Indeed, ifCY* [ M, . . ., My] were
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