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Abstract

In the analysis of security protocols, the knowledge of at-
tackers is often described in terms of message deducibility
and indistinguishability relations. In this paper, we pursue
the study of of these two relations. We establish general de-
cidability theorems for both. These theorems require only
loose, abstract conditions on the equational theory for mes-
sages. They subsume previous results for a syntactically de-
fined class of theories that allows basic equations for func-
tions such as encryption, decryption, and digital signatures.
They also apply to many other useful theories, for exam-
ple with blind digital signatures, homomorphic encryption,
XOR, and other associative-commutative functions.

1 Introduction

The design and analysis of security protocols typically
relies on reasoning about the knowledge of honest protocol
participants and attackers. In formal approaches, two main
kinds of definitions have been given for this knowledge.

• Many formal methods define knowledge in terms of
deduction (e.g., [12, 16, 17, 19]).

Given some messagesφ and another messageM , one
asks whetherM can be computed (“deduced”) fromφ.
For example, whether an attacker can obtain a session
key from a set of messages and some prior knowledge
can be cast as a deduction problem.

• Some formal methods complement deduction with an
indistinguishability equivalence relation (e.g., [2, 3]).
Indistinguishability is also prominent in computational
approaches to cryptography (e.g., [11, 15]).

Given two lists of messagesφ andψ, one asks whether
they can be distinguished. For example,φ andψ may
be transcripts of the messages for two sessions of a

protocol, each with a different value for a parame-
ter, and then the equivalence would express that the
value of this parameter is not revealed by session tran-
scripts. The choice of this value may remain secret
even though an attacker may be able to compute every
possible value for the parameter—as would be the case
if the parameter is a boolean or a password drawn from
a small dictionary.

In both cases, messages are represented by formal expres-
sions, and correspondingly the computations allowed are
“black-box” symbolic manipulations on those expressions.
These symbolic manipulations are sometimes as powerful
as probabilistic polynomial-time computations on bitstrings
(e.g., [4]). In both cases, too, the definitions concern obser-
vations on messages at a particular point in time. Accord-
ingly, the equivalence relation is sometimes called static
equivalence, and the deduction relation should perhaps be
called static deduction. Despite the static character of these
relations, they are useful in analyzing the dynamics of pro-
tocols and attacks. In particular, proof methods for safety
properties often rely on deduction, and process equivalences
can be reduced to static equivalences plus standard bisimu-
lation conditions.

In this paper we pursue the study of deduction and static
equivalence. Both of these relations depend on the under-
lying equational theory that governs the function symbols
that appear in expressions, in particular function symbols
that represent cryptographic operations. Our goal is to ob-
tain characterizations and decidability results that holdfor
a wide class of equational theories. We aim to support the
standard uses of function symbols for representing encryp-
tion, digital signatures, and the like. We also aim to al-
low some elaborate features of particular schemes, such as
blinding for digital signatures. Finally, we aim to support
associativity and commutativity properties, in particular for
the XOR (exclusive or) operation.

Several of the equational theories that we treat are impor-
tant in applications. Therefore, deduction and (to a lesser
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extent) static equivalence under some of these theories have
already played a role in the context of various frameworks
and tools for protocol analysis. However, usually, special
techniques are developed for each particular case.

Only a few general decidability results appear in the lit-
erature. In a recent paper [1], we have shown that deduction
and static equivalence are decidable in PTIME for a syntac-
tically defined class of equational theories, the convergent
subterm theories. These theories allow basic equations for
functions such as encryption, decryption, and digital signa-
tures. Noting that deduction and static equivalence are un-
decidable for some other equational theories, we have also
shown that static equivalence can be undecidable even when
deduction is not. Comon-Lundh and Treinen [9] have stud-
ied the decidability of deduction for a class of equational
theories incomparable with ours. Their work, and all the
work cited below, considers only deduction and not static
equivalence unless otherwise noted. Delaune and Jacque-
mard [10] have shown that deduction is decidable for a
subclass of convergent subterm theories, also considering
active attacks. (Section 6 mentions other, ongoing related
work that addresses active attackers.) None of these pre-
vious results allows associativity and commutativity prop-
erties. In fact, even results on specific theories with AC
(associative-commutative) functions are rare. Three impor-
tant exceptions are decidability results for deduction with
XOR [6, 8], in an Abelian group [8], and under certain “AC-
like” theories with homomorphisms [14].

Thus, prior work typically relies on syntactic restrictions
on equational theories, focusing on one particular theory at
a time or on syntactically defined classes of theories. In this
paper, we adopt a different perspective: we assume only
loose, abstract conditions on the underlying equational the-
ories. In this respect, we are inspired by Comon-Lundh’s
current investigations [7] (discussed further in Section 6).

Under those assumptions, we establish general decid-
ability theorems for both deduction and static equivalence.
These theorems subsume the previous ones for convergent
subterm theories. They also apply to many other useful the-
ories, for example with blind digital signatures, homomor-
phic encryption, XOR, and other AC functions.

Checking that a particular theory satisfies the hypotheses
of our theorems may involve some work. In some cases,
it may also involve some (fairly elementary and pleasant)
mathematics, such as facts onZ-modules. When we prove
that our example theories satisfy the hypotheses, we provide
several general propositions that may be reused in the study
of other theories.

The next section, Section 2, introduces notations and
definitions. In Section 3, we present the hypotheses of our
theorems. We give some examples of theories that satisfy
these hypotheses in Section 4. We prove the theorems in
Section 5. Finally, we conclude in Section 6.

2 Basic definitions

Next we review definitions from previous work, partic-
ularly from the applied pi calculus [2]. Much of the ma-
terial in this section is borrowed or adapted from previous
work. In Section 2.1 we give the syntax of expressions. In
Section 2.2 we explain a representation for the information
available to an observer who has seen messages exchanged
in the course of a protocol execution. In Sections 2.3 and 2.4
we present the relations⊢ and≈s, which provide the two
formalizations of the knowledge that the observer has on
the basis of that information.

2.1 Syntax

A signatureΣ consists of a finite set of function symbols,
such asenc andpair, each with an arity. Letar(Σ) be the
maximal arity of a function symbol inΣ. A function symbol
with arity 0 is a constant symbol.

Given a signatureΣ, an infinite set of namesN , and an
infinite set of variables, the set ofterms is defined by the
grammar:

L,M,N, T, U, V ::= terms
k, . . . , n, . . . , s name
x, y, z variable
f(M1, . . . ,Ml) function application

where f ranges over the function symbols ofΣ and l
matches the arity off . Although names, variables, and con-
stant symbols have similarities, we find it clearer to keep
them separate. A term is closed when it does not have
free variables (but it may contain names and constant sym-
bols). We writefn(M) for the set of names that occur in the
termM . We use meta-variablesu, v, w to range over names
and variables. Thesize|T | of a termT is defined by|u| = 1

and|f(T1, . . . , Tl)| = 1+
∑l

i=1 |Ti|. TheDAG-size|T |DAG

is the number of distinct subterms ofT . We writest(T ) for
the set of subterms ofT .

We equip the signatureΣ with an equational theoryE,
that is, an equivalence relation on terms that is closed un-
der substitutions of terms for variables or names and closed
under application of contexts. We writeM =E N when
M andN are closed terms and the equationM = N is
in E. We use the symbol== to denote syntactic equality
of closed terms. As in these definitions, we often focus on
closed terms for simplicity.

2.2 Assembling terms into frames

After a protocol execution, an attacker may know a se-
quence of messagesM1, . . . ,Ml. This means that it knows
each message but it also knows in which order it received
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the messages. So it is not enough for us to say that the at-
tacker knows the set of terms{M1, . . . ,Ml}. Furthermore,
we should distinguish those names that the attacker had be-
fore the execution from those that were freshly generated
and which may remain secret from the attacker; both kinds
of names may appear in the terms.

Such a sequence of messages can be organized into a
frameνñσ, whereñ is a finite set of names (intuitively, the
fresh names), andσ is a substitution of the form:

{M1/x1
, . . . ,Ml/xl

} with dom(σ)
def
= {x1, . . . , xl}

The variables enable us to refer to eachMi, for example
for keeping track of their order of transmission. We always
assume that the termsMi are closed. The size of a frame
φ = νñ{M1/x1

, . . . ,Ml/xl
} is |φ|

def
=

∑l

i=1 |Mi|. The free
names ofφ, denoted byfn(φ), are the free names of theMi

that are not iñn.

2.3 Deduction

Given a frameφ that represents the information available
to an attacker, we may ask whether a given term closedM
may be deduced fromφ. This relation is writtenφ ⊢ M
(following Schneider [19]). It is axiomatized by the rules:

if ∃x ∈ dom(σ)
s.t.xσ = Mνñσ ⊢M

s 6∈ ñ
νñσ ⊢ s

φ ⊢M1 · · · φ ⊢Mk
f ∈ Σ

φ ⊢ f(M1, . . . ,Mk)

φ ⊢M M =E M ′

φ ⊢M ′

Intuitively, the deducible messages are the messages ofφ
and the names that are not protected inφ, closed by equality
in E and closed by application of functions.

We have the following characterization of deduction:

Proposition 1 LetM be a closed term andνñσ be a frame.
Thenνñσ ⊢M if and only if there exists a termζ such that
fn(ζ) ∩ ñ = ∅ andζσ =E M .

Example 1 As a first example, we consider the theory of
an encryption scheme that has an homomorphism prop-
erty: the encryption of a pair is the pair of the encryptions.
This property may hold for example when an encryption
scheme is used in EBC mode. It is modeled by the equation:
enc(〈x, y〉, z) = 〈enc(x, z), enc(y, z)〉. We also assume
an analogous equation for decryption:dec(〈x, y〉, z) =
〈dec(x, z), dec(y, z)〉. As usual, we write〈x, y〉 instead
of pair(x, y). The signatureΣ1 is {pair, enc, fst, snd, dec},
and the theoryE1 is defined by the axioms:

enc(〈x, y〉, z) = 〈enc(x, z), enc(y, z)〉
dec(〈x, y〉, z) = 〈dec(x, z), dec(y, z)〉

fst(〈x, y〉) = x
snd(〈x, y〉) = y

dec(enc(x, y), y) = x

Suppose for example that the attacker listens to two mes-
sages:enc(〈n1, n2〉, k) and enc(n3, enc(n1, k)). The cor-
responding frame (in normal form) is

φ1 = ν(n1, n2, n3, k)

[〈enc(n1, k), enc(n2, k)〉/x1, enc(n3, enc(n1, k))/x2]

Thenφ1 ⊢ enc(n1, k), φ1 ⊢ enc(n2, k), and φ1 ⊢ n3.
Furthermore,enc(n1, k) =E1

fst(x1)φ, enc(n2, k) =E1

snd(x1)φ, andn3 =E1
dec(x2, fst(x1))φ.

2.4 Static equivalence

Given two framesφ andψ that represent the informa-
tion available to an attacker in two “possible worlds” (e.g.,
two different runs of a protocol), we may ask whether the
attacker may distinguishφ andψ, more precisely whether
the attacker may differentiateφ andψ by applying them
(roughly) as substitutions and obtaining observably differ-
ent results. This scenario motivates the following defini-
tions.

We say that two termsM andN are equal in the frame
ϕ for the equational theoryE, and write(M =E N)ϕ, if
and only ifϕ = νñ.σ, Mσ =E Nσ, and{ñ} ∩ (fn(M) ∪
fn(N)) = ∅ for some names̃n and substitutionσ. Then
we say that two framesϕ andψ arestatically equivalent,
and writeϕ ≈s ψ, whendom(ϕ) = dom(ψ) and when, for
all termsM andN , we have(M =E N)ϕ if and only if
(M =E N)ψ.

Example 2 Let φ1
def
= νk{k/y, enc(n1, k)/z} and φ2

def
=

νk{k/y, enc(n2, k)/z}, wherek, n1, and n2 are distinct
names. Using the equationdec(enc(x, y), y) = x, the at-
tacker can tell the difference between these two frames by
checking whether the decryption ofz with y producesn1.
In other words, we have(dec(z, y) =E1

n1)φ1 but not
(dec(z, y) =E1

n1)φ2. Therefore,φ1 6≈s φ2.

3 The hypotheses

We establish decidability results for equational theories
that satisfy three properties. The purpose of this section is to
define and start to explain these three properties; Section 4
explains them further through examples.

3.1 AC-convergence

Our first hypothesis is an adaptation of the standard no-
tion of convergence for theories with AC symbols.

Let E an equational theory, and let⊕1, . . . ,⊕k be the
binary functional symbols such that the equationsx⊕i (y⊕i

z) = (x ⊕i y) ⊕i z (associativity) andx ⊕i y = y ⊕i x
(commutativity) are inE.
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For two termsU andV , we writeU =AC V if U andV
are equal in the theory induced by the equationsx⊕i (y ⊕i

z) = (x ⊕i y) ⊕i z andx ⊕i y = y ⊕i x for 1 ≤ i ≤ k.
If this theory is empty (because we have no AC symbols),
=AC is simply syntactic equality.

WhenR is a rewriting system, we writeU →AC V if
there existsW such thatU =AC W andW → V . The
relation→∗

AC
denotes the reflexive and transitive closure of

→AC.

Definition 1 An equational theoryE is AC-convergentif
there exists a finite rewriting systemR such that:

• R is AC-terminating, that is, for every closed term
U , there is no infinite sequenceU →AC U1 →AC

· · ·Uk →AC · · · .

For every termU , the set of normal formsU↓ (closed
modulo AC) ofU is the set of termsV such thatU →∗

AC

V andV has no successor for→AC.

• R is AC-confluent, that is, for every closed termsU ,
U1, andU2 such thatU →AC U1 andU →AC U2, there
existV1 andV2 such thatU1 →∗

AC
V1, U2 →∗

AC
V2,

andV1 =AC V2.

• For all closed termsU andV , the equalityU =E V
holds if and only if there exists a termT ∈ (U↓ ∩ V ↓).

By AC-confluence, the setU ↓ is always finite and for all
V,W ∈ U↓, the equalityV =AC W holds.

AC-convergence immediately implies the decidability of
equations on closed terms.

In what follows,E is an AC-convergent equational the-
ory andR is a rewriting system associated withE that sat-
isfies the conditions of Definition 1. IfR consists of a finite
set of rules

⋃k

i=1 {Mi → Ni}, the sizecE of the theoryE
is defined ascE = max1≤i≤k(|Mi|, |Ni|, ar(Σ) + 1).

Note thatE need not have AC symbols. A theory defined
by a convergent rewriting system without AC symbol is of
course an AC-convergent theory.

Example 3 Let us consider again the theoryE1 of an en-
cryption scheme with a homomorphism property. We con-
sider the rewriting systemR1 obtained fromE1 by orienting
the equations from left to right. With this choice ofR1, the
theoryE1 is AC-convergent. Indeed, the only critical pair
is joinable.

〈x1, dec(enc(x2, y), y)〉

〈dec(enc(x1, y), y), dec(enc(x2, y), y)〉

〈x1, x2〉 dec(〈enc(x1, y), enc(x2, y)〉, y)

dec(enc(〈x1, x2〉, y), y)

Example 4 The theory of XOR is also AC-convergent. The
XOR operator is represented by the⊕ function symbol,
which has the following properties on messages:

E2 =





x⊕ (y ⊕ z) = (x⊕ y) ⊕ z
x⊕ y = y ⊕ x
x⊕ x = 0
x⊕ 0 = x





where0 is a constant symbol and the alphabetΣ2 is {0,⊕}.
We associate toE2 the rewriting systemR2:

R2 =

{
x⊕ x → 0
x⊕ 0 → x

}

Using this choice ofR2, it is easy to verify thatE2 is AC-
convergent.

3.2 Local stability

Our second hypothesis roughly says that, for every
frame, there is a finite set of terms deducible from the frame
that satisfies certain closure conditions. Stating this hy-
potheses precisely requires a few auxiliary definitions and
notations.

Assume that there exists some ruleM0 → N0 of the
rewriting systemR and some substitutionθ such that either
there exists a termU1 such thatU =AC U1, U1 = M0θ,
andV = N0θ, or there exist termsU1 andU2 such that
U =AC U1 ⊕ U2 for some AC symbol⊕, U1 = M0θ, and

V =AC N0θ ⊕ U2. Then we say that the reductionU
h
→ V

occurs in head.
We writeα ·⊕ M for the termM ⊕ · · · ⊕M , α times

(for α ∈ N
∗). We simply writeαM when the AC symbol

is clear from the context. Given a set of termsS and a set
of names̃n, we write sum⊕(S, ñ) for the set of arbitrary
sums of terms ofS and other names, closed modulo AC-
rewriting:

sum⊕(S, ñ)
def
=




(α1 ·⊕ T1) ⊕ · · · ⊕ (αn ·⊕ Tn)
⊕

(β1 ·⊕ n1) ⊕ · · · ⊕ (βk ·⊕ nk)

∣∣∣∣∣∣

αi, βi ∈ N
∗,

ni /∈ ñ,
Ti ∈ S





Typically, the names iñn will be private, and the oth-
ers public. Then we definesum(S, ñ) as the union of the
sum⊕(S, ñ) for any AC symbol⊕ of the theory.

In our previous paper [1], the main step of the proof of
the decidability of⊢ and≈s for convergent subterm theories
was the existence, for each frameφ, of a setsat(φ) stable
by application of “small” contexts. We generalize this con-
dition by requiring that the application of a rewriting rule
to a “small” context applied to arbitrary sums of terms in
sat(φ) is again a “small” context applied to sums of terms
in sat(φ).
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Definition 2 (locally stable) An AC-convergent equational
theory E is locally stable if, for every frameφ =
νñ{M1/x1, . . . ,Mk/xk}, where the termsMi are closed
and in normal form, there exists a finite (computable) set
sat(φ), closed modulo AC, such that

1. for every1 ≤ i ≤ k, Mi ∈ sat(φ), and for every
n ∈ fn(φ), n ∈ sat(φ),

2. if M1, . . . ,Mk ∈ sat(φ) and f(M1, . . . ,Mk) ∈
st(sat(φ)), thenf(M1, . . . ,Mk) ∈ sat(φ),

3. if C[S1, . . . , Sl]
h
→ M , whereC is a context such

that |C| ≤ cE and fn(C) ∩ ñ = ∅, and where
S1, . . . , Sl ∈ sum⊕(sat(φ), ñ) for some AC symbol
⊕ (or Si ∈ sat(φ) if there is no AC symbol), then
there exist a contextC′, a termM ′, andS′

1, . . . , S
′
k ∈

sum⊕(sat(φ), ñ) (or S′
1, . . . , S

′
k ∈ sat(φ) if there is no

AC symbol), such that|C′| ≤ c2E , fn(C′)∩ ñ = ∅, and
M →∗

AC
M ′ =AC C

′[S′
1, . . . , S

′
k],

4. ifM ∈ sat(φ) thenφ ⊢M .

Example 5 For the equational theoryE1 of Example 1,
given a frameφ in normal form, the setsat(φ) is simply
obtained by adding subterms ofφ, deducible fromφ. For
example, the deducible subterms of the frameφ1 of Exam-
ple 1, areenc(n1, k), enc(n2, k), andn3, sosat(φ1) is the
set

{〈enc(n1, k), enc(n2, k)〉, enc(n3, enc(n1, k)),

enc(n1, k), enc(n2, k), n3}

In Section 4.2 we prove that this construction satisfies the
requirements.

In general, establishing that an equational theory is lo-
cally stable may be difficult. We give other examples of
locally stable theories in Section 4.

3.3 Local finiteness and local decidability

For our third hypothesis, we consider a certain set of
“small” equations that a frame satisfies. One of our re-
sults says that this set characterizes the frame. The third
hypothesis, which this section presents, pertains to deciding
whether another frame satisfies this set. In fact, this section
discusses two versions of the third hypothesis, called local
finiteness and local decidability. Either is sufficient for our
purposes; the former has been more attractive in applica-
tions; the latter is more general. As the use of equations
may suggest, we rely on the third hypothesis in the study of
static equivalence but not deduction.

For each frameφ = νñσ, we assume a fixed set of terms
R(φ) = {ζM | M ∈ sat(φ)} such that for eachζM ,

fn(ζM ) ∩ ñ = ∅ andζMσ =E M . Intuitively, the term
ζM explains howM may be obtained from the terms ofφ.
Since all the terms ofsat(φ) are deducible, such a set ex-
ists by Proposition 1. For instance, for Example 5, the
terms associated withenc(n1, k), enc(n2, k), andn3 are re-
spectivelyζenc(n1,k) = fst(x1), ζenc(n2,k) = snd(x1), and
ζn3

= dec(x2, fst(x1)).
With each frameφ, we associate a set of “small” equa-

tionsEq(φ) such that two frames are equivalent if and only
if they satisfy the equations of each other’s set (see Propo-
sition 7).

Definition 3 Letφ = νñσ be a frame in normal form. The
setEq(φ) is the set of equations of the form

C1[χ1, . . . , χk] = C2[χ
′
1, . . . , χ

′
l]

where(C1[χ1, . . . , χk] =E C2[χ
′
1, . . . , χ

′
l])φ, (fn(C1) ∪

fn(C2)) ∩ ñ = ∅, |C1| ≤ cE , |C2| ≤ c2E , and theχi andχ′
i

are in the setsum⊕(R(φ), ñ) for some AC symbol⊕ (or χi

andχ′
i are inR(φ) if there is no AC symbol).

Whenφ andψ are frames and(M =E N)ψ for every
(M = N) ∈ Eq(φ), we say thatψ satisfies the equations of
Eq(φ), and writeψ |= Eq(φ)

Definition 4 (locally decidable) A locally stable AC-con-
vergent equational theory is locally decidable if the ques-
tion of whetherψ |= Eq(φ), for framesφ andψ, is decid-
able.

The setEq(φ) may in general be infinite since theχi

may be of arbitrary size. Local finiteness means that the set
Eq(φ) is always equivalent to a finite set of equations.

Definition 5 (locally finite) A locally stable AC-conver-
gent equational theory is locally finite if, for every frameφ,
there exists a finite (computable) set of equationsEq′(φ)
such that for every frameψ, we haveψ |= Eq(φ) if and
only ifψ |= Eq′(φ).

This property suffices for local decidability:

Proposition 2 Every locally finite locally stable AC-con-
vergent equational theory is locally decidable.

Local finiteness is always true when there are no AC
symbols since then the setEq(φ) contains only finitely
many equations up to renaming:

Proposition 3 Let E be a locally stable AC-convergent
equational theory with no AC symbols. Then, for any
frameφ, there exists a finite set of equationsEq′(φ) such
that for every frameψ, we haveψ |= Eq(φ) if and only if
ψ |= Eq′(φ). In other words,E is locally finite.
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Each equation ofEq(φ) is of the formC1[χ1, . . . , χk] =
C2[χ

′
1, . . . , χ

′
l] with χi, χ′

i in R(φ). Thus it contains a finite
number of names (bounded bycE + c2E). The setEq′(φ) is
obtained fromEq(φ) by renaming the names on a fixed set
of names.

In Section 4 we present some non-trivial examples of lo-
cally finite theories with AC symbols. Establishing local
finiteness is our preferred way of proving local decidability
for such theories. Here we show that at least an (infinite)
subset ofEq(φ) may always be replaced by a finite number
of equations.

Definition 6 Let φ = νñσ be a frame. LetN be a set of
public names (that is, such thatN ∩ ñ = ∅). We write
Eq⊕(φ,N) for the set of equations of the formχ1 = χ2

such thatχ1, χ2 ∈ sum⊕(R(φ), ñ), fn(χ1)∪ fn(χ2) ⊆ N ,
and(χ1 =E χ2)φ.

Note thatEq⊕(φ,N) is a subset ofEq(φ). We show that the
setEq⊕(φ,N) may always be replaced by a finite number
of equations ifN is a finite set of public names.

Proposition 4 Let φ = νñσ be a frame andN a finite set
of names such thatN ∩ ñ = ∅. There exists a finite set
Eqb⊕(φ,N) ⊆ Eq⊕(φ,N), such that for every frameψ:

ψ |= Eq⊕(φ,N) if and only if ψ |= Eqb⊕(φ,N)

In addition, the cardinality ofEqb⊕(φ) is at most the cardi-
nality of sat(φ) plus the cardinality ofN .

Proof(outline) This proposition is proved using elemen-
tary results onZ-modules. (Facts onZ-module may be
found in [18], for example.) Assume thatsat(φ) =
{M1, . . . ,Mk}, N = {n1, . . . , nl}, and letΓ ∈ Z

k+l. For
1 ≤ i ≤ k + l, Γi denotes theith coefficient ofΓ, andΓ̂
denotes the equation:

⊕

Γi>0,i≤k

ΓiζMi
⊕

⊕

Γi>0,i>k

Γini

=
⊕

Γi<0,i≤k

(−Γi)ζMi
⊕

⊕

Γi<0,i>k

(−Γi)ni

LetEq′⊕(φ,N) = {Γ̂ | Γ ∈ Z
k+l, (Γ̂)φ}. It is easy to verify

that for any frameψ, ψ |= Eq⊕(φ,N) if and only if ψ |=
Eq′⊕(φ,N). It is also easy to verify (simplifying the equa-
tions) thatEq′⊕(φ,N) is a Z-submodule ofZk+l and thus
can be generated by a finite number of vectorsV1, . . . , Vr

with r ≤ k + l. We defineEqb⊕(φ,N) = {V̂1, . . . , V̂r}. It
is easy to prove that, for any frameψ, ψ |= Eq⊕(φ,N) if
and only ifψ |= Eqb⊕(φ,N).

Example 6 Consider for example a pure AC theory with
only one AC symbol+ (and no other function symbol), and

the frame

φ2 = ν(n1, n2, n3)[3n1 + 2n2 + 4n3/x1,

n2 + 3n3/x2, n1 + 2n3/x3, 3n2 + n3/x4]

The setEq(φ2) consist in the set of equations of the form
α1x1 +α2x2 +α3x3 +α4x4 +T = α′

1x1 +α′
2x2 +α′

3x3 +
α′

4x4+T ′ withαi, α
′
i ∈ N, T andT ′ sums of names distinct

fromn1, n2, andn3. By convention, ifαi = 0 (resp.α′
i =

0) then the termαixi (resp. α′
ixi) does not appear in the

sum. Since the equation is true forφ2, we must haveT =
T ′, thus it is sufficient to consider the equations of the form
α1x1+α2x2+α3x3+α4x4 = α′

1x1+α′
2x2+α′

3x3+α′
4x4

with αi, α
′
i ∈ N. Adopting the convention that a negative

termαx (with α < 0) in an equation actually appears on
the other side of the equation, it is sufficient to consider the
equations of the formα1x1+α2x2+α3x3+α4x4 = 0, with
αi, α

′
i ∈ Z. For example, the equation3x1 − 2x2 + x3 = 0

stands for the equation3x1 + x3 = 2x2. Then, the set
of vectors(α1, α2, α3, α4) such that the equationα1x1 +
α2x2 + α3x3 + α4x4 = 0 holds forφ2 is exactly the set of
vectorsU of Z

4 such thatAU = 0 with

A =




3 0 1 0
2 1 0 3
4 3 2 1





By using classical elementary operations on rows and
columns, we find thatAU = 0 if and only if

U = λ




1
1
−3
−1




for λ ∈ Z. We deduce that the set of equations satisfied by
φ2 is exactly the set of equations of the form:λx1 + λx2 =
3λx3 + λx4. Thus, in order to decide whether a frameψ
satisfiesEq(φ2), it is sufficient to check whetherψ satisfies
the single equationx1 + x2 = 3x3 + x4.

4 Examples

In this section, we give examples of locally stable and lo-
cally finite AC-convergent equational theories. In Section5,
we prove that local stability implies the decidability of de-
duction, and that local stability and local finiteness imply
the decidability of static equivalence.

Several equational theories related to cryptographic
primitives are locally stable and locally finite. In particular,
we prove that the convergent subterm theory we considered
in our previous work [1] are locally stable. We show that
the homomorphism property, a simple theory for addition,
and a theory for blind signatures (which are not subterm
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theories) are also locally stable. These equational theories
do not have AC symbols, so local finiteness follows from
Proposition 3. As examples of theories with AC symbols,
we prove that the pure AC theory and a theory of the XOR
operator are locally stable and locally finite. One can also
show that the theory of Abelian groups is locally stable and
locally finite, but the proof of this fact is quite tedious—
probably more than direct proofs of the decidability of de-
duction and static equivalence.

As the examples may suggest, proving local stability of-
ten requires a precise understanding of the cryptographic
primitives represented by an equational theory. In particu-
lar, removing some equations need not always preserve lo-
cal stability.

4.1 Convergent subterm theories

A convergent subterm theoryis simply a theory defined
by a finite set of equations

⋃k

i=1{Mi = Ni}, whereNi is
either a subterm ofMi or a constant symbol, such that the
rewriting system obtained by orienting the equations from
left to right is convergent. We have proved that both de-
duction and static equivalence are decidable in PTIME for
convergent subterm theories.

Destructor-constructor rules like those for pairing, en-
cryption, and digital signatures may be expressed in con-
vergent subterm theories:

fst(〈x, y〉) = x
snd(〈x, y〉) = y

dec(enc(x, y), y) = x
check(x, sign(x, sk(y)), pk(y)) = ok

Convergent subterm theories also enable us to capture the
theory of an inverse function:

{I(I(x)) = x, I(x) × x = 1, x× I(x) = 1}

More examples may be found in our previous paper [1]. It
is easy to verify that the definition ofsat(φ) given there fits
our requirements for local stability.

Proposition 5 Every convergent subterm theory is a locally
finite locally stable AC-convergent theory.

4.2 Homomorphism

We consider again the equational theoryE1 (defined in
Example 1), which represents an encryption scheme with a
homomorphism property. The size of the theory is 7.

Comon-Lundh and Treinen [9] have investigated a very
similar equational theory. They showed that its deduction
relation is decidable in PTIME. Here we show thatE1 is
locally stable, and it is obviously locally finite (since it has

no AC symbol). These properties will imply that both de-
duction and static equivalence are decidable.

Let φ = νñ{M1/x1, . . . ,Mk/xk} be any frame in nor-
mal form. We definesat(φ) to be the smallest set such that:

1. for every1 ≤ i ≤ k, Mi ∈ sat(φ), and for every
n ∈ fn(φ), n ∈ sat(φ),

2. if M1, . . . ,Mk ∈ sat(φ) and f(M1, . . . ,Mk) ∈
st(sat(φ)), thenf(M1, . . . ,Mk) ∈ sat(φ),

3. if M1,M2 ∈ sat(φ) and dec(M1,M2)
h
→ M and

the ruledec(enc(x, y), y) → x has been applied, or

fst(M1)
h
→ M , or snd(M1)

h
→M , thenM ∈ sat(φ).

The setsat(φ) is finite since we add only subterms of terms
of φ. It trivially satisfies conditions 1, 2, and 4 of Def-
inition 2. Let us show that it satisfies condition 3. Let
M1, . . . ,Mk ∈ sat(φ) and assume thatC[M1, . . . ,Mk]

h
→

M where|C| ≤ 7. The case whereC is a single hole is cov-
ered by the fact that the terms are in normal form. The other
cases are covered by rule 3 except in the following cases:

• C = enc( , ),C = enc( , T ), orC = enc(T, ) where
fn(T ) ∩ ñ = ∅ and|T | ≤ 5.

– For enc(M1,M2) → M with M1,M2 ∈
sat(φ): In this case,M1 must be of the form
M1 = 〈M ′

1,M
′
2〉 and M = 〈enc(M ′

1,M2),
enc(M ′

2,M2)〉. By rule 3, we know that both
M ′

1 andM ′
2 are insat(φ) sincefst(M1) → M ′

1

andsnd(M1) → M ′
2. ThusM is a context over

terms ofsat(φ) where the context may be chosen
asC′ = 〈enc( , ), enc( , )〉 since|C′| = 7.

– For enc(M1, T ) → M with M1 ∈ sat(φ),
fn(T ) ∩ ñ = ∅, and |T | ≤ 5: We have simi-
larly thatM = 〈enc(M ′

1, T ), enc(M ′
2, T )〉 with

M ′
1 andM ′

2 in sat(φ). ThusM is a context over
terms ofsat(φ) where the context may be cho-
sen asC′ = 〈enc( , T ), enc( , T )〉 since|C′| ≤
5 + 2|T | ≤ 15 ≤ 72 = 49.

– For enc(T,M2) → M with M2 ∈ sat(φ),
fn(T ) ∩ ñ = ∅, and |T | ≤ 5: We must have
T = 〈T1, T2〉 with |T1| + |T2| ≤ 4. We ob-
tainM = 〈enc(T1,M2), enc(T2,M2)〉, soM is
a context over terms ofsat(φ) where the context
may be chosen asC′ = 〈enc(T1, ), enc(T2, )〉
since|C′| ≤ 5 + |T1| + |T2| ≤ 9 ≤ 49.

• C = dec( , ), C = dec( , T ), or C = dec(T, )
where fn(T ) ∩ ñ = ∅ and |T | ≤ 5, and the rule
dec(〈x, y〉, z) → 〈dec(x, z), dec(y, z)〉 has been ap-
plied.

These three cases are very similar to the three cases
above.
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4.3 Addition

We consider a simple theory for addition. LetΣ3 be any
signature that contains0, pred, andplus, with the equations:

E3 =






plus(x, s(y)) = plus(s(x), y)
plus(x, 0) = x

pred(s(x)) = x






We defineR3 by simply orienting the equations from left to
right. Using this choice ofR3, it is easy to verify thatE3

is AC-convergent. (Note thatE3 has no AC symbol.) For
local stability, whenφ = νñ{M1/x1, . . . ,Mk/xk} is any
frame in normal form, we definesat(φ) to be the smallest
set such that:

1. for every1 ≤ i ≤ k, Mi ∈ sat(φ), and for every
n ∈ fn(φ), n ∈ sat(φ),

2. if M1, . . . ,Mk ∈ sat(φ) and f(M1, . . . ,Mk) ∈
st(sat(φ)), thenf(M1, . . . ,Mk) ∈ sat(φ),

3. if pred(M)
h
→M ′ andM ∈ sat(φ) thenM ′ ∈ sat(φ).

The setsat(φ) is finite since we add only subterms of terms
of φ. The setsat(φ) trivially satisfies conditions 1, 2, and
4 of Definition 2. Let us show that it satisfies condition 3.
The only non-trivial case is the one whereplus(M1,M2)

h
→

M ′ with M1,M2 ∈ sat(φ) and the ruleplus(x, s(y)) →
plus(s(x), y) has been applied. We must have thatM2 =

s(M ′
2). Hencepred(M2)

h
→ M ′

2, soM ′
2 ∈ sat(φ). Now,

we haveM ′ = plus(s(M1),M
′
2), with M1,M

′
2 ∈ sat(φ),

so condition 3 is satisfied.
Note that, if we remove the equationpred(s(x)) = x

from our equational theory, the proof of local stability is no
longer valid.

4.4 Blind signatures

We consider a theory recently introduced by Kremer and
Ryan [13] in order to model blind signatures and related
constructs in their analysis of a protocol for electronic vot-
ing. This theory treats signatures much like that of Sec-
tion 4.1, with four differences: the checking construct is
calledchecksign (rather thancheck); checking does not re-
quire plaintext; there is no separate signature-key compu-
tation (no functionsk); and, most importantly, this theory
also describes signature blinding and unblinding functions.
Let Σ4 be any signature that containsopen, commit, getpk,
host, checksign, sign, unblind, andblind, with the equa-
tions:

E4 =





open(commit(x, y), y) = x
getpk(host(x)) = x

checksign(sign(x, y), pk(y)) = x
unblind(blind(x, y), y) = x

unblind(sign(blind(x, y), z), y) = sign(x, z)





We defineR4 by simply orienting the equations from left
to right. The theoryE4 is clearly AC-convergent. To
prove thatE4 is locally stable, we extend the definition of
subterms by requiring thatsign(M1,M3) is a subterm of
sign(blind(M1,M2),M3). More formally, we define:

stext(U) = U
stext(sign(blind(M1,M2),M3)) =
{sign(M1,M3)} ∪ {sign(blind(M1,M2),M3)}
∪stext((blind(M1,M2)) ∪ stext(M3)

stext(f(M1, . . . ,Mk)) =

{f(M1, . . . ,Mk)} ∪
⋃k

i=1 stext(Mi) otherwise.

Whenφ = νñ{M1/x1, . . . ,Mk/xk} is any frame in nor-
mal form, we definesat(φ) to be the smallest set such that:

1. for every1 ≤ i ≤ k, Mi ∈ sat(φ), and for every
n ∈ fn(φ), n ∈ sat(φ),

2. if M1, . . . ,Mk ∈ sat(φ) and f(M1, . . . ,Mk) ∈
st(sat(φ)), thenf(M1, . . . ,Mk) ∈ sat(φ),

3. if C[M1, . . . ,Mk]
h
→ M , Mi ∈ sat(φ) andM ∈

stext(sat(φ)) thenM ∈ sat(φ).

The setsat(φ) is finite since we add only extended sub-
terms of terms ofφ. The setsat(φ) trivially satisfies condi-
tions 1, 2, and 4 of Definition 2. Let us show that it satis-

fies condition 3. Assume thatC[M1, . . . ,Mk]
h
→ M with

Mi ∈ sat(φ). If one of the four first rules ofR4 has been
applied, thenM is a subterm ofC[M1, . . . ,Mk]. Thus ei-
therM = C′[M1, . . . ,Mk] for some contextC′ and condi-
tion 3 is satisfied orM is a subterm of one of theMi, thus
M ∈ sat(φ) and condition 3 is satisfied. If the fifth rule
of R4 has been applied, then three (non-trivial) cases may
arise.

• If M2
h
→M thenM is an extended subterm ofM1, so

M ∈ sat(φ) and condition 3 is satisfied.

• Similarly, if unblind(M1,M2)
h
→ M thenM is an ex-

tended subterm ofM1, soM ∈ sat(φ) and condition 3
is satisfied.

• Finally, suppose thatunblind(sign(M1,M2),M3)
h
→

M . It must be the case thatM1 = blind(M ′
1,M3).

Since unblind(M1,M3)
h
→ M ′

1 and M ′
1 is a sub-

term of M1, we haveM ′
1 ∈ sat(φ). Now, since

M = sign(M ′
1,M2), condition 3 is satisfied.

4.5 Pure AC theory

We consider the case where the signature contains only
constant symbols and AC symbols⊕1, . . . ,⊕k and the
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equational theoryE5 contains only the AC equations for
each symbol:

E5 =
k⋃

i=1

{
(x⊕i y) ⊕i z = x⊕i (y ⊕i z)

x⊕i y = y ⊕i x

}

With the empty rewriting systemR5 = ∅, E5 is an AC-
convergent theory. Whenφ = νñ{M1/x1, . . . ,Mk/xk} is
any frame, we definesat(φ) to be the smallest set such that:

1. for every1 ≤ i ≤ k, Mi ∈ sat(φ), and for every
n ∈ fn(φ), n ∈ sat(φ),

2. if M1,M2 ∈ sat(φ) andM1 ⊕iM2 ∈ st(sat(φ)), then
M1 ⊕i M2 ∈ sat(φ),

3. if M1 =AC M2 andM1 ∈ sat(φ) thenM2 ∈ sat(φ).

The setsat(φ) is finite since we add only terms smaller or
equal than the maximal size of the terms ofφ. The set
sat(φ) trivially satisfies conditions 1, 2, and 4 of Defini-
tion 2. It also satisfies condition 3 since the rewriting sys-
temR5 is empty. ThusE5 is locally stable.

Now, for any frameφ = νñσ, the set of equationsEq(φ)
simply consists ofEq⊕(φ,N − ñ). Since names that do
not appear inφ need not be considered,Eq⊕(φ,N − ñ) is
equivalent toEq⊕(φ,N) whereN is the set of free names
of φ, in the sense that for any frameψ, ψ |= Eq⊕(φ,N −
ñ) if and only if ψ |= Eq⊕(φ,N). By Proposition 4, we
conclude that the equational theoryE5 is locally finite.

4.6 XOR

We consider the theoryE2 of the XOR operator (defined
in Example 3).

We have seen thatE2 is AC-convergent. We wish to
verify that E2 is locally stable. Whenφ = νñ{M1/x1,
. . . ,Mk/xk} is any frame in normal form, we definesat(φ)
to be the smallest set, closed under AC, such that:

1. for every1 ≤ i ≤ k, Mi ∈ sat(φ), and for every
n ∈ fn(φ), n ∈ sat(φ), and0 ∈ sat(φ),

2. if M1, . . . ,Mk ∈ sat(φ) and f(M1, . . . ,Mk) ∈
st(sat(φ)), thenf(M1, . . . ,Mk) ∈ sat(φ),

3. if M1,M2 ∈ sat(φ), then(M1 ⊕M2)↓⊂ sat(φ),

4. if a is a name not iñn and ifM ⊕ a →AC M ′ with
M ′ ∈ st(sat(φ)), thenM ′ ∈ sat(φ).

Let us first show thatsat(φ) is finite. Letsst(φ) the set of
simple subtermsof φ, that is, the set of subterms ofφwhose
head symbol is not⊕. Let S = {T1 ⊕ · · · ⊕ Tn | Ti ∈
sst(φ), Ti 6= 0, Ti = Tj ⇒ i = j} be the set of sums of
distinct terms ofsst(φ). The setS is finite andsat(φ) ⊆ S.

Indeed, it is easy to show thatS verifies the four conditions
above, using thatst(S) = S.

The setsat(φ) trivially satisfies conditions 1, 2, and 4
of Definition 2. Let us show that it satisfies condition 3.
Let M1, . . . ,Mk ∈ sat(φ) andC be a context such that

fn(C)∩ ñ = ∅ and assume thatC[M1, . . . ,Mk]
h
→M . We

have thatC[M1, . . . ,Mk] =AC

⊕k

i=1Mi⊕
⊕n

i=1 ai, where
eachai is a name not iñn or the constant 0. Let us show
that one of the normal forms ofC[M1, . . . ,Mk] is a con-
text of terms insat(φ). Applying recursively rule 3, we ob-
tain that(

⊕k

i=1Mi)↓⊂ sat(φ). Now, applying recursively
rule 4, we obtain thatC[M1, . . . ,Mk]↓=AC M

′⊕
⊕r

j=1 aij
,

with M ′ ∈ sat(φ). By AC-convergence, we know that
M →∗

AC
=AC M ′ ⊕

⊕r

j=1 aij
with M ′ ⊕

⊕r

j=1 aij
∈

sum⊕(sat(φ), ñ), since none of theaij
is 0 (for otherwise

the term would not be in normal form), soC′ satisfies the
required conditions.

Like in the pure AC case, for any frameφ, the set of
equationEq(φ) simply consists ofEq⊕(φ,N − ñ) since
the only constant is 0 and 0 is itself insat(φ). Since
names that do not appear inφ do not need to be considered,
Eq⊕(φ,N − ñ) is equivalent toEq⊕(φ,N) whereN is the
set of free names ofφ, in the sense that for any frameψ,
ψ |= Eq⊕(φ,N − ñ) if and only ifψ |= Eq⊕(φ,N). Thus,
by Proposition 4, the equational theoryE2 is locally finite.

Note that, in this example, we can also conclude without
using Proposition 4. Indeed, we can consider the setEq

′(φ)
that consists of the equations

k1⊕

j=1

ζMij
⊕

k2⊕

j=1

nij
=

l1⊕

j=k1+1

ζMij
⊕

l2⊕

j=k2+1

nij

such that



k1⊕

j=1

ζMij
⊕

k2⊕

j=1

nij
=E

l1⊕

j=k1+1

ζMij
⊕

l2⊕

j=k2+1

nij


φ

nij
∈ fn(φ), and l 6= j =⇒ Mil

6= Mij
, nil

6= nij
.

Clearly,Eq′(φ) is finite and it is easy to verify that, for any
frameψ, ψ |= Eq⊕(φ, ñ) if and only if ψ |= Eq′(φ).

5 Decidability results

In this section, we state and prove our decidability results
for deduction and static equivalence.

5.1 Decidability of deduction

Theorem 1 For locally stable AC-convergent equational
theories, deduction is decidable.

The proof is based on the following lemma.
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Lemma 1 LetE be a locally stable AC-convergent theory.
Let φ = νñσ be a frame. For every contextC1 such that
fn(C1) ∩ ñ = ∅, for everyMi ∈ sat(φ), for every termT
such thatC1[M1, . . . ,Mk] →AC T , there exist a contextC2

such thatfn(C2) ∩ ñ = ∅, and termsM ′
i ∈ sat(φ), such

thatT →∗
AC
C2[M

′
1, . . . ,M

′
l ].

This lemma is a weak version of Lemma 3 presented in Sec-
tion 5.2. Applying repeatedly this lemma leads to the fol-
lowing corollary.

Corollary 1 LetE be a locally stable AC-convergent the-
ory. Letφ = νñσ be a frame. For every contextC1 such
that fn(C1)∩ ñ = ∅, for everyMi ∈ sat(φ), for every term
T in normal form such thatC1[M1, . . . ,Mk] →∗

AC
T , there

exist a contextC2 such thatfn(C2) ∩ ñ = ∅, and terms
M ′

i ∈ sat(φ), such thatT =AC C2[M
′
1, . . . ,M

′
l ].

Assuming Lemma 1, letφ = νñσ be a frame,C1 be a
context such thatfn(C1) ∩ ñ = ∅, Mi ∈ sat(φ), andT
a term in normal form such thatC1[M1, . . . ,Mk] →∗

AC
T .

EitherC1[M1, . . . ,Mk] =AC T and we are done or we have
C1[M1, . . . ,Mk] →AC T ′ →∗

AC
T . By Lemma 1, there

exist a contextC2 such thatfn(C2) ∩ ñ = ∅, and terms
M ′

i ∈ sat(φ), such thatT ′ →∗
AC

C2[M
′
1, . . . ,M

′
l ]. By AC-

confluence of the equational theory and sinceT is in normal
form,C2[M

′
1, . . . ,M

′
l ] →

∗
AC
T . Since the equational theory

is AC-terminating, we repeat this transformation until we
obtain thatT =AC C3[M

′
1, . . . ,M

′
l ] for some termsM ′′

i ∈
sat(φ) and some contextC3.

We show that for any message deducible from a frameφ,
one of its normal forms is a context over terms insat(φ).

Proposition 6 Let φ = νñσ be a frame,M be a closed
term, andM ↓ its set of normal forms. Thenφ ⊢ M if
and only if there exist a termT ∈ M ↓, a contextC, and
termsM1, . . . ,Mk ∈ sat(φ) such thatfn(C) ∩ ñ = ∅ and
T == C[M1, . . . ,Mk].

If there existsT ∈ M ↓ such thatT == C[M1, . . . ,Mk]
with fn(C) ∩ ñ = ∅, thenT =E C[ζM1

, . . . , ζMk
]σ, by

construction ofζM1
, . . . , ζMk

. Thus, by Proposition 1,φ ⊢
T , thusφ ⊢M .

Conversely, ifφ ⊢M , then by Proposition 1, there exists
ζ such thatfn(ζ) ∩ ñ = ∅ andM =E ζσ. Thus there exists
T ′ ∈ (M ↓ ∩ (ζσ)↓). Sinceζσ →∗

AC
T ′, applying Corol-

lary 1, we obtain thatT ′ =AC C[M1, . . . ,Mk] for some
M1, . . . ,Mk ∈ sat(φ) andC such thatfn(C) ∩ ñ = ∅.
Thus we end the proof by choosingT == C[M1, . . . ,Mk].

We derive thatφ ⊢ M can be decided by check-
ing whether one of the terms inM ↓ is of the form
C[M1, . . . ,Mk] with Mi ∈ sat(φ).

5.2 Decidability of static equivalence

Theorem 2 For locally decidable locally stable AC-
convergent equational theories, static equivalence is de-

cidable. A fortiori, for locally finite locally stable AC-
convergent equational theories, static equivalence is decid-
able.

The proof is based on two main lemmas proved in the
Appendix.

Lemma 2 Let E be a locally stable AC-convergent the-
ory. Let φ = νñσ and ψ = νñ′σ′ be two frames such
that ψ |= Eq(φ). For all contextsC1, C2 such that
(fn(C1) ∪ fn(C2)) ∩ ñ = ∅, for all termsMi,M

′
i ∈

sat(φ), if C1[M1, . . . ,Mk] =AC C2[M
′
1, . . . ,M

′
l ], then

(C1[ζM1
, . . . , ζMk

] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

Lemma 3 LetE be a locally stable AC-convergent theory.
Let φ = νñσ be a frame. For every contextC1 such that
fn(C1) ∩ ñ = ∅, for everyMi ∈ sat(φ), for every termT
such thatC1[M1, . . . ,Mk] →AC T , there exist a contextC2

such thatfn(C2)∩ñ = ∅, and termsM ′
i ∈ sat(φ), such that

T →∗
AC

C2[M
′
1, . . . ,M

′
l ] and for every frameψ |= Eq(φ),

(C1[ζM1
, . . . , ζMk

] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

As for Corollary 1, applying repeatedly Lemma 3 leads
to the following corollary.

Corollary 2 LetE be a locally stable AC-convergent the-
ory. Letφ = νñσ be a frame. For every contextC1 such
that fn(C1) ∩ ñ = ∅, for everyMi ∈ sat(φ), for every
termT in normal form such thatC1[M1, . . . ,Mk] →∗

AC
T ,

there exist a contextC2 such thatfn(C2) ∩ ñ = ∅, and
termsM ′

i ∈ sat(φ), such thatT =AC C2[M
′
1, . . . ,M

′
l ]

and for every frameψ |= Eq(φ), (C1[ζM1
, . . . , ζMk

] =E

C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

In order to check whether two frames verify the same
equations, we show (using these two lemmas) that it is suf-
ficient to check whether they verify the same “small” equa-
tions.

Proposition 7 LetE be a locally stable AC-convergent the-
ory. For all framesφ andψ, we haveφ ≈s ψ if and only if
φ |= Eq(ψ) andψ |= Eq(φ).

By definition of static equivalence, ifφ ≈s ψ thenφ |=
Eq(ψ) andψ |= Eq(φ). Conversely, assume now thatψ |=
Eq(φ) and considerM,N such that there exist̃n, σ such
thatφ = νñσ, (fn(M)∪fn(N))∩ñ = ∅ and(M =E N)φ.
ThenMσ =E Nσ, so ((Mσ)↓ ∩(Nσ)↓) 6= ∅. Let T =
((Mσ)↓ ∩(Nσ)↓). SinceMσ →∗

AC
T , applying Corol-

lary 2, we obtain that there existM1, . . . ,Mk ∈ sat(φ) and
CM such thatfn(CM ) ∩ ñ = ∅, T =AC CM [M1, . . . ,Mk],
and (M =E CM [ζM1

, . . . , ζMk
])ψ. SinceNσ →∗

AC

T , we obtain similarly that there existM ′
1, . . . ,M

′
l ∈

sat(φ) and CN such thatfn(CN ) ∩ ñ = ∅, T =AC

CN [M ′
1, . . . ,M

′
l ], and (N =E CN [ζM ′

1
, . . . , ζM ′

l
])ψ.

Moreover, sinceCM [M1, . . . ,Mk] =AC CN [M ′
1, . . . ,M

′
l ],

10



we derive from Lemma 2 that(CM [ζM1
, . . . , ζMk

] =E

CN [ζM ′

1
, . . . , ζM ′

l
])ψ, thus (M =E N)ψ. Conversely,

if (M =E N)ψ and φ |= Eq(ψ), we can prove that
(M =E N)φ. We conclude thatφ ≈s ψ.

Therefore, givenφ andψ, we may considerEq(φ) and
Eq(ψ) in order to decide whetherφ ≈s ψ. By local decid-
ability of the theory, we can decide whetherφ |= Eq(ψ) and
ψ |= Eq(φ).

6 Conclusion

In this paper we study message deducibility and static
equivalence, two formal representations for knowledge in
the analysis of security protocols. This study yields a gen-
eral, positive result: message deducibility and static equiv-
alence are decidable under a wide class of equational theo-
ries. This class includes, in particular, standard theories for
basic cryptographic primitives. It also includes some less
standard, more advanced examples: theories of XOR, ho-
momorphic encryption, blind signatures, addition, and pure
AC theories. We succeed in giving a unified treatment for
this disparate collection of theories, with a coherent bodyof
techniques that apply to all of them plus special techniques
for verifying that particular theories belong in the class.

We have not considered complexity issues for the cor-
responding decision procedures. Their performances obvi-
ously depend on the choice of equational theory, and we do
not expect them to be very good in many cases. One of
the authors (V.C.) is currently working on implementing a
variant of our procedures for specific theories. We expect
that the resulting algorithms will be efficient enough to be
applicable in practice.

As indicated in the introduction, deduction and static
equivalence are static notions, but they play an important
role in analyses with respect to active attacks. Nevertheless,
it remains challenging to obtain decidability results withre-
spect to active attacks. This problem is addressed in recent
and ongoing work. That work is still largely under way,
so detailed descriptions may be premature, but we briefly
mention some interesting developments. Going beyond the
work of Delaune and Jacquemard [10] (described in the in-
troduction), Baudet [5] has proved that both deduction and
static equivalence are decidable under convergent subterm
theories. Comon-Lundh [7] is studying the decidability of
deduction under general equational theories, including as-
sociativity and commutativity properties. Overall, this field
appears as a lively one, with increasingly sophisticated tech-
niques and powerful theorems. We may therefore look for-
ward to much progress in algorithmic reasoning about the
knowledge of active attackers in security protocols.
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Appendix: Proof of Lemmas 2 and 3

We introduce the definition ofpathsin a term.

Definition 7 The set ofpathsof a termM , denoted by
P(M) is defined recursively by:P(u) = ǫ if u is a name or
a variable,P(f(M1, . . . ,Mn)) = ǫ∪

⋃n

i=1 i · P(Mi). The
subterm ofM at positionp, denoted byM |p, is defined by:
M |ǫ = M andf(M1, . . . ,Mn)|i·p = Mi|p.

Lemma 2. Let E be a locally stable AC-convergent
theory. Letφ = νñσ and ψ = νñ′σ′ be two frames
such thatψ |= Eq(φ). For all contextsC1, C2 such that
(fn(C1) ∪ fn(C2)) ∩ ñ = ∅, for all termsMi,M

′
i ∈

sat(φ), if C1[M1, . . . ,Mk] =AC C2[M
′
1, . . . ,M

′
l ], then

(C1[ζM1
, . . . , ζMk

] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

This lemma is proved by induction on the sum of the
sizes ofC1 andC2.

Base case:If |C1|, |C2| ≤ cE , then the equation

(C1[ζM1
, . . . , ζMk

] = C2[ζM ′

1
, . . . , ζM ′

l
])

is in Eq(φ) since |C1| ≤ cE and |C2| ≤ cE ≤
c2E , so ψ |= Eq(φ) implies (C1[ζM1

, . . . , ζMk
] =E

C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

Inductive step: If neitherC1 norC2 is a hole, thenC1 ==
f(C1

1 , . . . , C
r
1 ) andC2 == f(C1

2 , . . . , C
r
2 ). There are

two cases.

• f is not an AC symbol. Then, for every1 ≤
i ≤ r, Ci

1[M1, . . . ,Mk] =AC Ci
2[M

′
1, . . . ,M

′
l ].

By applying the induction hypothesis, we obtain
(Ci

1[ζM1
, . . . , ζMk

] =E Ci
2[ζM ′

1
, . . . , ζM ′

l
])ψ, so

(C1[ζM1
, . . . , ζMk

] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

• f is an AC symbol. We writeC1 = C1
1 ⊕

· · · ⊕ Cr
1 ⊕ x1 ⊕ · · · ⊕ xp andC2 = C1

2 ⊕

· · · ⊕ Cr′

2 ⊕ y1 ⊕ · · · ⊕ yp′ in such a way that
the head symbol of theCi

1 and Cj
2 is not ⊕,

Ci
1 andCj

2 are not holes, and thexi andyj re-
fer to the holes ofC1 andC2. Either the equa-
tion may be split:C1 =AC C′

1 ⊕ C′′
1 , C2 =AC

C′
2 ⊕ C′′

2 such that (C′
1[ζM1

, . . . , ζMk
] =E

C′
2[ζM ′

1
, . . . , ζM ′

l
])φ and(C′′

1 [ζM1
, . . . , ζMk

] =E

C′′
2 [ζM ′

1
, . . . , ζM ′

l
])φ. We conclude as above, ap-

plying the induction hypothesis. Or the equa-
tion can not be split: it implies that for every
1 ≤ i ≤ r,Ni

def
= Ci

1[M1, . . . ,Mk] is not equal to
someCj

2 [M ′
1, . . . ,M

′
l ] so it must be a subterm of

someM ′
j . Since eachM ′

j is in sat(φ) and by ap-
plying recursively rule 2 of Definition 2, we get
thatNi is in sat(φ), thus there existsζNi

∈ R(φ)
such thatζNi

σ =E Ni. Symmetrically, for every
1 ≤ j ≤ r, N ′

j

def
= Cj

1 [M ′
1, . . . ,M

′
k] is not equal

to someCi
1[M1, . . . ,Ml], soN ′

j ∈ sat(φ) and
there existsζN ′

j
∈ R(φ) such thatζN ′

j
σ =E N ′

j .
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– From Ni == Ci
1[M1, . . . ,Mk] and ap-

plying the induction hypothesis, we get
ζNi

σ′ =E Ci
1[ζM1

, . . . , ζMk
]σ′ and simi-

larly, ζN ′

j
σ′ =E Cj

2 [ζM1
, . . . , ζMk

]σ′.

– Renaming theCi
1[M1, . . . ,Mk] byNi in our

initial equation, we getN1 ⊕ · · · ⊕ Nr ⊕
M1 ⊕ · · · ⊕Mp = N ′

1 ⊕ · · · ⊕N ′
r′ ⊕M ′

1 ⊕
· · · ⊕M ′

p′ . Applying the base case, we get
(ζN1

⊕ · · · ⊕ ζNr
⊕ ζM1

⊕ · · · ⊕ ζMp
=E

ζN ′

1
⊕ · · · ⊕ ζN ′

r′
⊕ ζM ′

1
⊕ · · · ⊕ ζM ′

p′
)σ.

Since this equation is inEq(φ), we deduce
(ζN1

⊕ · · · ⊕ ζNr
⊕ ζM1

⊕ · · · ⊕ ζMp
=E

ζN ′

1
⊕ · · · ⊕ ζN ′

r′
⊕ ζM ′

1
⊕ · · · ⊕ ζM ′

p′
)σ′.

Combining these equations, we get

(C1[ζM1
, . . . , ζMk

] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ

If C1 or C2 is a hole, then let us sayC1 ==
f(C1

1 , . . . , C
r
1 ) andC2 == . LetM,M1, . . . ,Mk ∈

sat(φ) and assumeC1[M1, . . . ,Mk] =AC M . Again
we consider two cases.

• f is not an AC symbol. Then we have

f(C1
1 [M1, . . . ,Mk], . . . , Cr

1 [M1, . . . ,Mk])
=AC M

For every1 ≤ i ≤ r, letNi
def
= Ci

1[M1, . . . ,Mk].
Thus, eachNi is a subterm ofM , so it is in
st(sat(φ)). Since eachMj is in sat(φ) and by
applying recursively rule 2 of Definition 2, we
get thatNi is in sat(φ). Thus there existsζNi

∈
R(φ) such thatζNi

σ =E Ni.

– From Ni == Ci
1[M1, . . . ,Mk] and ap-

plying the induction hypothesis, we get
ζNi

σ′ =E Ci
1[ζM1

, . . . , ζMk
]σ′.

– From M =AC f(N1, . . . , Nr) and ap-
plying the base case, we getζMσ′ =E

f(ζN1
, . . . , ζNr

)σ′.

Combining these equations, we get

(ζM =E C1[ζM1
, . . . , ζMk

])ψ

• f is an AC symbol. We writeC1 = C1
1 ⊕ · · · ⊕

Cr
1 ⊕ x1 ⊕ · · · ⊕ xp andC2 = x, and we have

C1
1 [M1, . . . ,Mk]⊕. . .⊕Cr

1 [M1, . . . ,Mk]⊕M ′
1⊕

. . .⊕M ′
p =AC M . EachNi

def
= Ci

1[M1, . . . ,Mk]
is a subterm ofM ∈ sat(φ) thus is insat(φ).
Again, there existsζNi

∈ R(φ) such that
ζNi

σ =E Ni.

– From Ni == Ci
1[M1, . . . ,Mk] and ap-

plying the induction hypothesis, we get
ζNi

σ′ =E Ci
1[ζM1

, . . . , ζMk
]σ′.

– FromN1⊕. . .⊕Nr⊕M ′
1⊕. . .⊕M

′
p =AC M

and by the equationζN1
⊕· · ·⊕ζNr

⊕ζM ′

1
⊕

· · ·⊕ζM ′

p
=E ζM is in Eq(φ), we get(ζN1

⊕
· · · ⊕ ζNr

⊕ ζM ′

1
⊕ · · · ⊕ ζM ′

p
=E ζM )σ′.

Combining these equations, we get

(C1[ζM1
, . . . , ζMk

] =E ζM )ψ

Lemma 3. LetE be a locally stable AC-convergent theory.
Let φ = νñσ be a frame. For every contextC1 such that
fn(C1) ∩ ñ = ∅, for everyMi ∈ sat(φ), for every termT
such thatC1[M1, . . . ,Mk] →AC T , there exist a contextC2

such thatfn(C2)∩ñ = ∅, and termsM ′
i ∈ sat(φ), such that

T →∗
AC

C2[M
′
1, . . . ,M

′
l ] and for every frameψ |= Eq(φ),

(C1[ζM1
, . . . , ζMk

] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

An easy case is when the reduction occurs inside one
of theMi: Mi →AC M ′

i . By definition of sat(φ) (since
E is locally stable), we know that there existsC such that
|C| ≤ c2E , fn(C) ∩ ñ = ∅, andM ′

i →∗
AC

C[M ′′
1 , . . . ,M

′′
l ]

whereM ′′
i ∈ sat(φ). In addition, the equationζMi

=
C(ζM ′′

1
, . . . , ζM ′′

l
) is in Eq(φ) (since |C| ≤ c2E), thus

(ζMi
=E C(ζM ′′

1
, . . . , ζM ′′

l
))ψ. We obtain that

T == C1[M1, . . . ,Mi−1,M
′
i ,Mi+1, . . . ,Mk]

→∗
AC C1[M1, . . . , C[M ′′

1 , . . . ,M
′′
l ], . . . ,Mk]

and



(C1[ζM1
, . . . , ζMk

]
=E

C1[ζM1
, . . . , C(ζM ′′

1
, . . . , ζM ′′

l
), . . . , ζMk

]


ψ

We now consider the case where the reduction does not
occur inside the termsMi. We can assume that

for every pathp ofC1,
if C1|p[M1, . . . ,Mk] is in sat(φ), (*)
thenC1|p is the single hole context.

Indeed, if there exists a pathp of C1 such thatT1
def
=

C1|p[M1, . . . ,Mk] ∈ sat(φ) and C1|p is not a hole
then C1[M1, . . . ,Mk] == C′

1[T1,M1, . . . ,Mk] where
T1,Mi ∈ sat(φ) andC′

1 is a context strictly smaller than
C1. In that case, we considerC′

1[T1,M1, . . . ,Mk] instead
of C1[M1, . . . ,Mk] and we apply the transformation again
until property (*) holds.

We have

C1[M1, . . . ,Mk] ==

C3[M
′′ ⊕M ′ ⊕

r⊕

i=1

C′
i[M1, . . . ,Mk],M1, . . . ,Mk]

whereM ′ = M ′
1 ⊕ . . .⊕M ′

l ,M
′′ = M ′′

1 ⊕ . . .⊕M ′′
l with

M ′
i ⊕M ′′

i ∈ sat(φ), the head symbol of theC′
i is not⊕,C′

i
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is not a single hole, andT1
def
= M ′⊕

⊕r

i=1 C
′
i[M1, . . . ,Mk]

is an instanceM0θ (modulo AC) of the left-hand side of
some ruleM0 → N0 of the rewriting system associated
with E.

For each variablex of M0, we consider the occurrences
of xθ in T1.

1. Eitherxθ occurs as a subterm of one of theMi orM ′
i ;

2. or there exists a subterm ofT1, of the formN1 ⊕ . . .⊕
Np withNi =AC N

′
i ⊕N

′′
i ∈ sat(φ) for someN ′′

i such
thatxθ =AC N

′
1 ⊕ . . .⊕N ′

p;

3. or there exists a subterm ofT1, of the formN1 ⊕ . . .⊕

Np⊕
⊕r′

i=1 C
′′
i [M1, . . . ,Mk], where the head symbols

of theC′′
i are not⊕ and theC′′

i are not a hole, and

xθ =AC N
′
1⊕ . . .⊕N

′
p⊕

⊕r′

i=1 C
′′
i [M1, . . . ,Mk] with

Ni =AC N
′
i ⊕N ′′

i ∈ sat(φ) for someN ′′
i , thus theN ′

i

are subterms of terms ofsat(φ).

Note that case 3 cannot occur simultaneously with case 1
or case 2 for the same variablex. Indeed, if case 3 oc-
curs simultaneously with case 1 or case 2, we have that
someC′′

i [M1, . . . ,Mk] is a subterm of someMi or M ′
i ,

thus applying recursively rule 2 of Definition 2, we get that
C′′

i [M1, . . . ,Mk] ∈ sat(φ), which contradicts property (*)
(sinceC′′

i is not a hole).
Without loss of generality, we assume that the variables

of M0 arex1, . . . , xk1
, y1, . . . , yk2

where the variablesxi

are in case 1 or case 2 and the variablesyj are in case 3. For
each variableyj, we consider thel occurrences ofyj in T1.

yjθ =AC N1
1 ⊕ . . .⊕N1

k1
⊕

⊕r1

i=1 C
1
i [M1, . . . ,Mk]

...
=AC N l

1 ⊕ . . .⊕N l
kl
⊕

⊕rl

i=1 C
l
i [M1, . . . ,Mk]

where theN j
i are subterms of terms insat(φ) and the head

symbols of theCj
i are not⊕.

We associate with eachCj
i [M1, . . . ,Mk] a (fresh)

name symbola
cl(Cj

i
[M1,...,Mk]), where we use the nota-

tion cl(Cj
i [M1, . . . ,Mk]) for the class ofCj

i [M1, . . . ,Mk]

modulo AC. IfCj1
i1

[M1, . . . ,Mk] =AC Cj2
i2

[M1, . . . ,Mk],
we havea

cl(C
j1
i1

[M1,...,Mk])
= a

cl(C
j2
i2

[M1,...,Mk])
. In each

equation

N j1
1 ⊕ . . .⊕N j1

kj1
⊕

rj1⊕

i=1

Cj1
i [M1, . . . ,Mk]

=AC N
j2
1 ⊕ . . .⊕N j2

kj2
⊕

rj2⊕

i=1

Cj2
i [M1, . . . ,Mk]

everyCj1
i [M1, . . . ,Mk] must be equal modulo AC to one

of theCj2
i [M1, . . . ,Mk]. Indeed, ifCj1

i [M1, . . . ,Mk] were

equal to some subterm of theN j2
i ,Cj1

i [M1, . . . ,Mk] would
be a term ofsat(φ), contradicting the property (*). Thus, we
obtain that

N1
1 ⊕ . . .⊕N1

k1
⊕

⊕r1

i=1 aC1

i
[M1,...,Mk]

...
=AC N l

1 ⊕ . . .⊕N l
kl
⊕

⊕rl

i=1 aCl
i
[M1,...,Mk]

def
= Tyj

We consider the substitutionθ′ such thatxiθ
′ = xiθ

and yjθ
′ = Tyj

. We defineθ′′(a
cl(Cj

i
[M1,...,Mk])) =

Cj
i [M1, . . . ,Mk].
We also consider the termT2 that is obtained from⊕r

i=1 C
′
i[M1, . . . ,Mk] by replacing eachCj

i [M1, . . . ,Mk]
with a

cl(Cj

i
[M1,...,Mk]).

We haveT2 == C2[S1, . . . , Sk] for some contextC2

such that| ⊕C2| ≤ |M0| ≤ cE andSi ∈ sum⊕(sat(φ), ñ).
SinceM ′′ ⊕ T2 is an instanceM0θ

′ of M0 we haveM ′ ⊕
M ′′ ⊕ T2 →AC M

′ ⊕ N0θ
′. Applying condition 3 of Def-

inition 2, there existS′
i ∈ sum⊕(sat(φ), ñ), there exists a

contextC′, such that|C′| ≤ c2E , fn(C′) ∩ ñ = ∅, and
M ′ ⊕N0θ

′ →∗
AC
C′[S′

1, . . . , S
′
l ]. Applying the substitution

θ′′, we deduce thatM ′ ⊕ N0θ =AC M ′ ⊕ N0θ
′θ′′ →∗

AC

C′[S′
1, . . . , S

′
l ]θ

′′. Note thatC′[S′
1, . . . , S

′
l ]θ

′′ is a context
of terms ofsat(φ):

C′[S′
1, . . . , S

′
l ]θ

′′ = C′′[M1, . . . ,Mk, S
′
1, . . . , S

′
l ]

To each sumS = α1M1 ⊕ · · · ⊕ αnMn ⊕ β1n1 ⊕ · · · ⊕
βknk in sum⊕(sat(φ), ñ), we associate the termζS = α1 ·⊕
ζM1

⊕ · · · ⊕ αn ·⊕ ζMn
⊕ β1 ·⊕ n1 ⊕ · · · ⊕ βk ·⊕ nk.

Now, since the equationζM ′⊕M ′′ ⊕ C2[ζS1
, . . . , ζSk

] =
C′[ζS′

1
, . . . , ζS′

l
] is in Eq(φ), we deduce

(ζM ′⊕M ′′ ⊕ C2[ζS1
, . . . , ζSk

] = C′[ζS′

1
, . . . , ζS′

l
])ψ

If a
cl(C

j1
i1

[M1,...,Mk])
= a

cl(C
j2
i2

[M1,...,Mk])
, we have

Cj1
i1

[M1, . . . ,Mk] =AC C
j2
i2

[M1, . . . ,Mk]

thus (by Lemma 2) we have

(Cj1
i1

[ζM1
, . . . , ζMk

] = Cj2
i2

[ζM1
, . . . , ζMk

])ψ

So we can reconstructM ′′ ⊕ T1 and obtain

ζM ′⊕M ′′ ⊕
r⊕

i=1

C′
i[ζM1

, . . . , ζMk
]

= C′′[ζM1
, . . . , ζMk

, ζS′

1
, . . . , ζS′

l
])ψ

which allows us to conclude the proof of Lemma 3.
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