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Abstract

The analysis of security protocols requires precise formulations of the knowl-
edge of protocol participants and attackers. In formal approaches, this knowledge
is often treated in terms of message deducibility and indistinguishability relations.
In this paper we study the decidability of these two relations. The messages in
question may employ functions (encryption, decryption, etc.) axiomatized in an
equational theory. One of our main positive results says that deducibility and indis-
tinguishability are both decidable in polynomial time for a large class of equational
theories. This class of equational theories is defined syntactically and includes, for
example, theories for encryption, decryption, and digital signatures. We also es-
tablish general decidability theorems for an even larger class of theories. These
theorems require only loose, abstract conditions, and apply to many other use-
ful theories, for example with blind digital signatures, homomorphic encryption,
XOR, and other associative-commutative functions.

1 Introduction

Understanding security protocols often requires reasoning about the knowledge of le-
gitimate protocol participants and attackers. As a simple example, let us consider a
protocol in which A sends to B a message that consists of a secret s encrypted under
a pre-arranged shared key k. One may argue that, after processing this message, B
knows s. More interestingly, one may also argue than an attacker with bounded com-
puting power that does not know k but eavesdrops on the communications between A
and B and sees the message does not learn s.
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Accordingly, formal methods for the analysis of security protocols rely on defini-
tions of the knowledge of protocol participants and attackers. In those methods, the
knowledge of an attacker is used to determine what messages the attacker can send at
each point in time—it can send only messages it knows. Moreover, security guarantees
can be phrased in terms of the knowledge of the attacker. For example, a guarantee
might be that, at the end of a protocol run, the attacker does not know a particular key,
or that the attacker does not know whether a certain ciphertext contains the plaintext
“true” or “false”. For such applications, although the attacker is typically an active
entity that can learn by conducting experiments, the definition of knowledge focuses
on a particular point in a protocol execution.

Many formal definitions explain the knowledge of an attacker in terms of message
deduction (e.g., [25, 29, 33, 30]). Given a set of messages S and another message M ,
one asks whether M can be computed from S. The messages are represented by ex-
pressions, and correspondingly the computations allowed are symbolic manipulations
of those expressions. Intuitively these computations can rely on any step that an eaves-
dropper who has obtained the messages in S can perform on its own in order to de-
rive M . For example, the eavesdropper can encrypt and decrypt using known keys,
and it can extract parts of messages.

Despite its usefulness in proofs about protocol behaviors, the concept of message
deduction does not always provide a sufficient account of knowledge, and it is worth-
while to consider alternatives. For instance, suppose that we are interested in a protocol
that transmits an encrypted boolean value, possibly a different one in each run. We
might like to express that this boolean value remains secret by saying that no attacker
can learn it by eavesdropping on the protocol. On the other hand, it is unreasonable to
say that an attacker cannot deduce the well-known boolean values “true” and “false”.
Instead, we may say that the attacker cannot distinguish an instance of the protocol
with the value “true” from one with the value “false”. More generally, we may say that
two systems are equivalent when an attacker cannot distinguish them, and we may then
express security guarantees as equivalences. The use of equivalences is common in
computational approaches to cryptography (e.g., [24]), and it also figures prominently
in several formal methods (e.g., [5, 28, 3]).

Two systems that output messages that an attacker can tell apart are obviously
distinguishable. Conversely, in order to establish equivalences between systems, an
important subtask is to establish equivalences between the messages that the systems
generate (for example, between the encrypted boolean values). These equivalences
may be called static equivalences, because they consider only the messages, not the
dynamic processes that generate them. Analogously, the deduction relation should per-
haps be called static deduction. Despite the static character of these relations, they are
useful in analyzing the dynamics of protocols and attacks. In particular, proof methods
for properties of protocol behaviors often rely on deduction (e.g., [30]), and process
equivalences can be reduced to static equivalences plus fairly standard bisimulation
conditions [3] (see also [4, 14]).

In this paper we study the decidability of deduction and static equivalence. We
define a relation φ � M that means that M can be deduced from φ, and a relation
ϕ ≈s ψ that means that ϕ and ψ are statically equivalent; here φ, ϕ, and ψ are all
essentially lists of messages, each with a name, represented by formal expressions. For
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generating these messages, we allow the application of a wide array of functions—
pairing, projections, various flavors of encryption and decryption, digital signatures,
one-way hash functions, etc.. Indeed, our results do not make any assumption on any
particular cryptographic system beyond fairly general hypotheses on the equational
theory that is used for defining the properties of the cryptographic operations.

Our results start with basic observations about the decidability of deduction and
static equivalence. Specifically, we demonstrate that, even for decidable equational
theories, φ � M and ϕ ≈s ψ can be undecidable. Moreover, we establish that deduc-
tion can be reduced to static equivalence (not too surprisingly), but that the converse
does not hold. Therefore, we investigate hypotheses that would guarantee decidabil-
ity, allowing for the possibility that the decidability of ϕ ≈s ψ requires more than the
decidability of φ � M .

We identify a simple, syntactically defined class of theories for which φ � M and
ϕ ≈s ψ are both decidable in polynomial time. These theories, which we call conver-
gent subterm theories, are given by convergent rewriting systems with a finite number
of rules of the form M → N where N is a proper subterm of M or a constant symbol.
Convergent subterm theories appear frequently in applications; in particular, standard
axiomatizations of encryption, decryption, and digital signatures yield convergent sub-
term theories.

Going further, we develop decision methods for φ � M and ϕ ≈s ψ under an even
larger class of equational theories. For this purpose, we assume only loose, abstract
conditions, rather than syntactic criteria on the theories. In this respect, we are inspired
by Comon-Lundh’s current investigations [18] (see Section 6). The general decidabil-
ity theorems that we obtain subsume the previous ones for convergent subterm theories
(with more difficulties and without the same complexity bounds, hence the separate
treatment of convergent subterm theories). They also apply to many other useful the-
ories, for example with blind digital signatures, homomorphic encryption, XOR, and
other AC functions. Several of the decidability results that we obtain are new.

Checking that a particular theory satisfies our abstract conditions may involve some
work, though often less than direct proofs of decidability. In some cases, it may also in-
volve some (fairly elementary and pleasant) mathematics, such as facts on Z-modules.
We expect that some of the techniques that we employ in our examples may be reused
in the study of other theories.

The problem of deciding knowledge is particularly important in the context of
algorithms and tools for automated protocol analysis. Often, special techniques are
introduced for particular sets of cryptographic operations of interest, on a case-by-
case basis. For example, the classic Dolev-Yao result deals with a fixed, limited
suite of public-key operations [23]; more recent decidability results deal with XOR
and modular exponentiation (e.g., [16, 17, 19]); many variants and combinations that
arise in practice have not yet been explored. On the other hand, other algorithms and
tools (e.g., [10, 11, 12]) allow much freedom in the choice of cryptographic oper-
ations but their analysis of the knowledge of the attacker is not always guaranteed
to terminate. Decidability results under general equational theories have been rare.
Comon-Lundh and Treinen have studied the decidability of deduction for a class of
equational theories in which, for example, they allow the homomorphism property
enc(〈u, v〉, k) = 〈enc(u, k), enc(v, k)〉 but not the inverse property I(I(x)) = x [20].
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These examples illustrate that their class is incomparable with the class of convergent
subterm theories; we do not know how their class relates to our results for other the-
ories. Delaune and Jacquemard have shown that deduction is decidable for a subclass
of convergent subterm theories, also considering active attacks [21]. These results do
not address static equivalence, nor allow associativity and commutativity properties.
In fact, even results on specific theories with AC (associative-commutative) functions
have been rare. Three important exceptions are decidability results for deduction with
XOR [17, 19], in an Abelian group [19], and under certain “AC-like” theories with
homomorphisms [27]. We discuss other recent and ongoing related work below.

The next section, Section 2, introduces notations and definitions. Section 3 com-
pares � and ≈s. Section 4 focuses on convergent subterm theories and gives our main
decidability results for these theories. In Section 5, we consider the larger class of
equational theories. Section 6 concludes. Some proofs appear in the Appendix.

Parts of this paper have been presented, in preliminary form, at ICALP 2004 and
CSFW 2005 [1, 2]. This paper represents a synthesis and an extension of the work
presented there.

2 Basic definitions

Next we review definitions from previous work. We mostly adopt the definitions of the
applied pi calculus [3]. In Section 2.1 we give the syntax of expressions. In Section 2.2
we explain a representation for the information available to an observer who has seen
messages exchanged in the course of a protocol execution. In Section 2.3 and 2.4 we
present the relations � and ≈s, which (as explained in the introduction) provide two
formalizations of the knowledge that the observer has on the basis of that information.

2.1 Syntax

A signature Σ consists of a finite set of function symbols, such as enc and pair, each
with an arity. We write arity(f) for the arity of a function symbol f , and let ar(Σ)
be the maximal arity of a function symbol in Σ. A function symbol with arity 0 is a
constant symbol.

Given a signature Σ, an infinite set of names N , and an infinite set of variables, the
set of terms is defined by the grammar:

L,M,N, T, U, V ::= terms
k, . . . , n, . . . , s name
x, y, z variable
f(M1, . . . , Ml) function application

where f ranges over the function symbols of Σ and l matches the arity of f . Although
names, variables, and constant symbols have similarities, we find it clearer to keep
them separate. A term is closed when it does not have free variables (but it may contain
names and constant symbols). We write fn(M) for the set of names that occur in the
term M . We use meta-variables u, v, w to range over names and variables. The size |T |
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of a term T is defined by |u| = 1 and |f(T1, . . . , Tl)| = 1 +
∑l

i=1 |Ti|. The DAG-size
|T |DAG is the number of distinct subterms of T .

We equip the signature Σ with an equational theory E, that is, an equivalence re-
lation on terms that is closed under application of contexts and under substitutions of
terms for both names and variables. (While non-standard, the requirement that E be
closed under substitutions of terms for names simplifies some technical details and has
been harmless in applications.) We write M =E N when M and N are closed terms
and the equation M = N is in E. We use the symbol == to denote syntactic equality
of closed terms. As in these definitions, we often focus on closed terms for simplicity.

2.2 Assembling terms into frames

After a protocol execution, an attacker may know a sequence of messages M1, . . . , Ml.
This means that it knows each message but it also knows in which order it received
the messages. So it is not enough for us to say that the attacker knows the set of terms
{M1, . . . , Ml}. Furthermore, we should distinguish those names that the attacker had
before the execution from those that were freshly generated and which may remain
secret from the attacker; both kinds of names may appear in the terms.

In the applied pi calculus, such a sequence of messages is organized into a frame
νñσ, where ñ is a finite set of names (intuitively, the fresh names), and σ is a substitu-
tion of the form:

{M1/x1 , . . . ,
Ml/xl

} with dom(σ) def= {x1, . . . , xl}

The variables enable us to refer to each Mi, for example for keeping track of their order
of transmission. We always assume that the terms Mi are closed. The size of a frame
φ = νñ{M1/x1 , . . . ,

Ml/xl
} is |φ| def=

∑l
i=1 |Mi|.

2.3 Deduction

Given a frame φ that represents the information available to an attacker, we may ask
whether a given term closed M may be deduced from φ. This relation is written φ � M
(following Schneider [33]). It is axiomatized by the rules:

if ∃x ∈ dom(σ) s.t. xσ = M
νñσ � M

s �∈ ñ
νñσ � s

φ � M1 · · · φ � Mk
f ∈ Σ

φ � f(M1, . . . , Mk)

φ � M M =E M ′

φ � M ′

Since the deducible messages depend on the underlying equational theory, we write
�E when E is not clear from the context. Intuitively, the deducible messages are
the messages of φ and the names which are not protected in φ, closed by equality
in E and closed by application of functions. We have the following characterization of
deduction:

Proposition 1 Let M be a closed term and νñσ be a frame. Then νñσ � M if and
only if there exists a term ζ such that fn(ζ) ∩ ñ = ∅ and ζσ =E M .

5



As an example, we consider the equational theory of pairing and symmetric en-
cryption. The signature is Σenc = {pair, enc, fst, snd, dec}. As usual, we write 〈x, y〉
instead of pair(x, y). The theory Eenc is defined by the axioms:

fst(〈x, y〉) = x snd(〈x, y〉) = y dec(enc(x, y), y) = x

Let φ
def= νk, s{enc(s, k)/x, k/y}. Then φ � k and φ � s. Furthermore, we have

k =Eenc yφ and s =Eenc dec(x, y)φ.

2.4 Static equivalence

Deduction does not always suffice for expressing the knowledge of an attacker, as
discussed in the introduction. For example, consider φ1

def= νk{enc(0, k)/x, k/y} and
φ2

def= νk{enc(1, k)/x, k/y}, where 0, 1 ∈ Σ are constant symbols. The attacker can
deduce the same set of terms from these two frames since it knows 0 and 1. But it could
tell the difference between these two frames by checking whether the decryption of x
with y produces 0 or 1.

We say that two terms M and N are equal in the frame ϕ for the equational
theory E, and write (M =E N)ϕ, if and only if ϕ = νñ.σ, Mσ =E Nσ, and
{ñ}∩(fn(M)∪fn(N)) = ∅ for some names ñ and substitution σ. Then we say that two
frames ϕ and ψ are statically equivalent, and write ϕ ≈s ψ, when dom(ϕ) = dom(ψ)
and when, for all terms M and N , we have (M =E N)ϕ if and only if (M =E N)ψ.
We write ≈sE when E is not clear from the context.

In our example, we have (dec(x, y) =Eenc 0)φ1 but not (dec(x, y) =Eenc 0)φ2.
Therefore, φ1 �≈s φ2 although νk{enc(0, k)/x} ≈s νk{enc(1, k)/x}.

3 Comparison of deduction and static equivalence

We compare equality, deduction, and static equivalence from the point of view of de-
cidability. There is little hope that deduction or static equivalence would be decidable
when equality itself is not. (We note however that, for some artificial, especially de-
signed equational theories, deduction may be decidable while equality is undecidable.)
Therefore, we focus on equational theories for which equality is at least decidable.

3.1 � may be undecidable

Unfortunately, the decidability of equality is not sufficient for the decidability of deduc-
tion and static equivalence. As evidence, let us consider the signature Σ = {f, ·, [ , ] }
where f is a unary functional symbol, · is a binary functional symbol, and [ ] is a ternary
functional symbol, and the equational theory Epc defined by:

x · (y · z) = (x · y) · z
[x1, y1]z · [x2, y2]z = [x1 · x2, y1 · y2]z

f([x, x]y) = y

6



According to these equations, the symbol · is associative and distributes over the sym-
bol [ ], and any term of the form f([M,M ]k) can be collapsed to k. Note that Epc is
decidable since orienting the two last equations from left to right leads to a confluent
rewriting system. On the other hand, this equational theory enables us to encode the
Post Correspondence Problem (PCP) into the deduction problem. The PCP is: given a
finite number of pairs of words (ui, vi)1≤i≤n on the alphabet A ⊂ N , does there exist
a sequence s1, . . . , sk ∈ {1..n}∗ such that us1 · · ·usk

= vs1 · · · vsk
? We have:

Proposition 2 Given the PCP instance (ui, vi)1≤i≤n on the alphabet A ⊂ N , we
define the substitution σ = {[ui, vi]k/xi}. Then there exists a solution to the PCP
instance if and only if (νk)σ �Epc k.

It follows:

Proposition 3 The deduction problem for Epc (�Epc) is undecidable.

In order to prove Proposition 2, we characterize the terms deducible from (νk)σ.
Let Pub be the set of terms built from the names N \ k and the function symbols f , ·,
and [ ] (the public terms). Let L be the set of all terms of the form:

[us1 · · · · · usp
, vs1 · · · · · vsp

]k

where s1, . . . , sp ∈ {1..n}. We define the set WF of well-formed terms by the gram-
mar:

WF := L | Pub | f(WF) | WF · WF | [WF,WF]WF

Note that if T ∈ WF then T �= k (by induction on the construction of WF).

Lemma 1 The terms deducible from (νk)σ are, modulo Epc, in the set WF of well-
formed terms.

This lemma is proved by induction on the construction of deducible terms.

• For every variable xi, xiσ is well-formed.

• For any name n ∈ N , if n �= k, then n is well-formed, since n ∈ Pub.

• If T1, T2, and T3 are well-formed modulo Epc, then f(T1), T1 ·T2, and [T1, T2]T3

are also well-formed modulo Epc.

• If T1 is well-formed modulo Epc and T1 =Epc T2, then T2 is also well-formed
modulo Epc.

We also characterize terms equal to k modulo Epc.

Lemma 2 Let T be a term. If k =Epc T and T �= k then T is of the form:

f([T1, T
′
1]

Ui · · · [Tm, T ′
m]Um)

with Ui =Epc k and T1 · · ·Tm =Epc T ′
1 · · ·T ′

m.
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This lemma is proved by induction on the number of applications of equalities that
establish k =Epc T . The only equation that can yield k is f([x, x]y) = y, which leads
to a term of the specified form in the base case. In the inductive step, if T =Epc T ′

with T ′ = f([T1, T
′
1]

Ui · · · [Tm, T ′
m]Um), Ui =Epc k, and T1 · · ·Tm =Epc T ′

1 · · ·T ′
m,

and only one equation has been applied to establish T =Epc T ′, then

• either the equation has been applied inside one of the terms Ti, T ′
i or Ui, and in

that case, the property holds immediately,

• or the equation has been applied above the terms Ti, T ′
i , and Ui; and then either

T = k or only the two first equations can have been applied, and in either case
the property holds.

Lemma 3 Let T be a term. If T =Epc k then T contains k as a subterm.

This lemma is proved by induction on the size of T . In the base case, T = k, and
the property holds immediately. In the inductive step, T is of the form f([T1, T

′
1]

Ui · · ·
[Tm, T ′

m]Um) with Ui =Epc k, by Lemma 2, and by induction hypothesis we obtain that
the terms Ui contain k as a subterm, so T contains k as a subterm. An easy consequence
of this lemma is that if T =Epc k then T /∈ Pub.

Returning to Proposition 2, let us assume that there exists a solution to a given PCP
instance. This assumption means that there exists a sequence s1, . . . , sp ∈ {1..n}∗
such that us1 · · ·usp

= vs1 · · · vsp
. Then

f(xs1 · · ·xsk
)σ = f([us1 , vs1 ]

k · · · [usp
, vsp

]k)

=Epc f([us1 · · ·usp
, vs1 · · · vsp

]k)
=Epc k

so k is deducible.
Conversely, assume that k is deducible. By Lemma 1, k must be equal modulo

Epc to some term T ∈ WF. We show by induction on the size of T that there exists
a solution to the PCP instance. By Lemma 2 and since T �= k (since T ∈ WF), T
must be of the form f([T1, T

′
1]

Ui · · · [Tm, T ′
m]Um) with Ui =Epc k and T1 · · ·Tm =Epc

T ′
1 · · ·T ′

m. Since T cannot be public, T ∈ WF implies that the term T ′ def= [T1, T
′
1]

Ui · · ·
[Tm, T ′

m]Um must be well-formed. If one of the terms Ui is well-formed, we conclude
by induction hypothesis, since Ui =Epc k. On the other hand, if none of the terms Ui is
well-formed, we proceed as follows. Since Ui =Epc k and by Lemma 3, all the terms
[Ti, T

′
i ]

Ui contain k as a subterm, so they are not public. By inspection of the cases in
the definition of WF, we deduce that each [Ti, T

′
i ]

Ui must be in WF. Since none of the
terms Ui is well-formed, we must have that each [Ti, T

′
i ]

Ui is in L, so T ′ is actually
equal (syntactically) to

[us1
1
· · · · · us1

p1
, vs1

1
· · · · · vs1

p1
]k · · · [usm

1
· · · · · usm

pm
, vsm

1
· · · · · vsm

pm
]k

with
us1

1
· · ·us1

p1
· · ·usm

1
· · ·usm

pm
= vs1

1
· · · vs1

p1
· · · vsm

1
· · · vsm

pm

for some sj
i ∈ {1..n}. Therefore, there exists a solution to the PCP instance.
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3.2 � reduces to ≈s

Next we show that deduction may be reduced to static equivalence by adding only one
free unary function symbol (a unary function symbol with no added equations). Thus,
the equational theory is basically unchanged in the reduction—it can be given by a
fixed set of equational axioms. We leave as an open problem whether the reduction is
always possible without even any change to the signature.

Proposition 4 Let E be an equational theory over some signature Σ. We define Σ′ def=
Σ 
 {h}, where h is unary, and let E′ be the least equational theory that extends E to
terms over Σ′. Let φ = νñ{M1/x1 , . . . ,

Ml/xl
} be a frame over Σ, M be a closed term

over Σ, and k be a fresh name. Then φ �E M if and only if

νñ{M1/x1 , . . . ,
Ml/xl

,h(M)/xl+1} �≈sE′ ν(ñ ∪ {k}){M1/x1 , . . . ,
Ml/xl

,k/xl+1}

We derive that if ≈sE′ is decidable, then �E is also decidable (with at most the same
complexity).

In order to prove the proposition, we first introduce some notation. We let σ =
{M1/x1 , . . . ,

Ml/xl
}, so φ = νñσ, and let φ1 = νñσ1 with σ1 = {M1/x1 , . . . ,

Ml/xl
,

h(M)/xl+1} and φ2 = ν(ñ ∪ {k})σ2 with σ2 = {M1/x1 , . . . ,
Ml/xl

,k/xl+1}.
One direction of Proposition 4 follows easily from Proposition 1. If φ �E M then

Proposition 1 implies that there exists a term ζ such that fn(ζ)∩ ñ = ∅ and ζσ =E M ;
then φ1 �≈sE′ φ2 because (h(ζ) =E′ xl+1)φ1 while (h(ζ)�=E′xl+1)φ2.

For the other direction, we use a weak version of a lemma due to Baudet et al. [8].
Given a term U == h(U1) and given a name a, the cutting function cutU,a is defined
recursively as follows:

cutU,a(u) = u if u is a name or a constant

cutU,a(g(T1, . . . , Tk)) =
{

a if g = h, k = 1, and U1 =E′ T1

g(cutU,a(T1), . . . , cutU,a(Tk)) otherwise

Intuitively, cutU,a(T ) is obtained from T by replacing with a the subterms equal to
U modulo E′ and whose head symbol is h. The following lemma (adapted from [8])
states that, if an equality holds between terms that mention h, then the equality still
holds after cutting subterms whose head symbol is h.

Lemma 4 Let U == h(U1). If M =E′ N then cutU,a(M) =E′ cutU,a(N).

This lemma relies on the following characterization of E′: it is the least transitive
relation that contains the equations L′ =E′ R′ for which there exists an equation L =E

R, a substitution θ, and a position p such that L′|p == Lθ and R′ == L′[Rθ]p. (As
usual, a position is formalized as a sequence of integers that indicates a path in a term;
M |p represents the subterm of M at position p, and M [Rθ]p is obtained by replacing
that subterm with Rθ; see Definition 11 in Appendix B.) The lemma is proved by
induction on the number of applications of equalities L =E R required for obtaining
M =E′ N . For the base case, we assume assume that M =E′ N and that there exists
an equation L =E R, a substitution θ, and a position p such that M |p == Lθ and
N == M [Rθ]p. We consider two cases, distinguished by whether the cutting function
cutU,a cuts a subterm of M above p or not:
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1. In the first case, there exists a strict prefix p′ of p such that M |p′ == h(T1)
with U1 =E′ T1. We consider the smallest p′ that satisfies this property, and let
p = p′.1.p′′, so N == M [h(T1[Rθ]p′′)]p′ . Since T1[Rθ]p′′ =E′ T1[Lθ]p′′ ==
T1 =E′ U1, both h(T1) and h(T1[Rθ]p′′) are replaced with a by the cutting
function, so cutU,a(M) == cutU,a(N).

2. In the second case, any p′ such that M |p′ = h(T1) with U1 =E′ T1 is at least
as long as p or incomparable. Therefore, cutU,a(M [x]p) == cutU,a(N [x]p)
and cutU,a(M) == cutU,a(M [x]p)[cutU,a(Lθ)]p, where x is a fresh variable.
Moreover, cutU,a(Lθ) == LcutU,a(θ) and cutU,a(Rθ) == RcutU,a(θ) since h
does not occur in L nor R. We deduce

cutU,a(M) == cutU,a(M [x]p)[cutU,a(Lθ)]p
== cutU,a(N [x]p)[LcutU,a(θ)]p
=E′ cutU,a(N [x]p)[RcutU,a(θ)]p
== cutU,a(N)

The inductive step of the proof of Lemma 4 is straightforward.
Lemma 4 yields the following conservativity property, whose converse is evident:

Lemma 5 If φ1 �E′ M then φ �E M .

By Proposition 1, we establish this conservativity property by assuming that there exists
a term ζ ′ over Σ′ such that fn(ζ ′) ∩ ñ = ∅ and ζ ′σ1 =E′ M and proving that there
then exists a term ζ over Σ such that fn(ζ) ∩ ñ = ∅ and ζσ =E M . The symbol h
does not appear in M since M is over Σ, but it may appear in ζ′. Intuitively, we obtain
ζ from ζ ′ by cutting subterms where h appears, as follows. Suppose that h appears in
ζ ′σ1, so there exists a subterm U == h(V ) of ζ ′σ1. Let a be a fresh name. We apply
the cutting function cutU,a to the equality ζ ′σ1 =E′ M , and derive cutU,a(ζ ′σ1) =E′

cutU,a(M) == M by Lemma 4. Moreover, we can write cutU,a(ζ ′σ1) in the form
ζ ′′σ1 where ζ ′′ is a term over Σ′ such that fn(ζ ′′) ∩ ñ = ∅. (We construct ζ ′′ from ζ ′

in the following way: for each path p such that ζ′σ1|p == h(M ′) with M ′ =E′ V ,
p must be a path of ζ ′ since neither M nor the terms Mi contain h, so we define ζ′′

by replacing ζ ′|p with a at each such position p.) Applying this transformation to all
occurrences of h, we eventually obtain ζ′′ over Σ and also eliminate any occurrences
of xl+1. We thus reduce to the case in which h does not appear in ζ′σ1. In this case,
we obtain ζ ′σ1 == ζ ′σ (because xl+1 cannot occur in ζ ′ in this case) and ζ ′σ1 =E M
(because E′ does not equate any more terms over Σ than E), so ζ′σ =E M .

In order to establish Proposition 4, it remains to prove that if φ1 �≈sE′ φ2 then
φ �E M . For this purpose, we assume that φ��EM and show that φ1 ≈sE′ φ2, using
Lemma 4 as follows. Let V1 and V2 be two terms that do not contain the names ñ∪{k}.

• Assume that V1σ2 =E′ V2σ2. By substituting k with h(M) in the equality, we
get V1σ1 =E′ V2σ1 since k occurs only in σ2, and any equation that holds for a
fresh name such as k holds for any term.

• Conversely, assume that V1σ1 =E′ V2σ1. Let U == h(M). We apply the cut-
ting function cutU,k to the equality, and derive cutU,k(V1σ1) =E′ cutU,k(V2σ1)
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by Lemma 4. Let us show that cutU,k(V1σ1) == V1cutU,k(σ1). We argue by
contradiction, and assume that cutU,k(V1σ1) == V1cutU,k(σ1) does not hold.
This assumption means that there exists a subterm V ′

1 of V1 such that V ′
1 is not

a variable and V ′
1σ1 == h(T ′) with T ′ =E′ M . Since V ′

1 is not a variable, V ′
1

must be of the form h(V ′′
1 ) with V ′′

1 σ1 == T ′ =E′ M . Since V1 does not con-
tain the names ñ, neither do V ′

1 and V ′′
1 , so V ′′

1 σ1 =E′ M . Therefore, we have
φ1�E′M by Proposition 1, and hence φ�EM by Lemma 5, contradicting our as-
sumption that φ��EM . We obtain cutU,k(V1σ1) == V1cutU,k(σ1), and similarly
we obtain cutU,k(V2σ1) == V2cutU,k(σ1), so V1cutU,k(σ1) =E′ V2cutU,k(σ1).
Finally, since cutU,k(σ1) == σ2, we deduce that V1σ2 =E′ V2σ2.

We conclude that φ1 ≈sE′ φ2.

3.3 ≈s does not reduce to � in general

The converse is not true: � may be decidable while ≈s is not. Indeed, we can encode
an undecidable problem into the static equivalence problem in such a way that the
deduction problem remains decidable.

Proposition 5 There exists an equational theory such that ≈s is undecidable while �
is decidable.

A preliminary presentation of our work [1] includes a first construction of a suitable
equational theory, with only a brief proof sketch. Following our work, Borgström has
recently provided an alternative construction, based on context-free grammars, with a
complete proof [15]. In what follows we describe our original construction, as it may
remain instructive, but refer the reader to Borgström’s paper for a rigorous argument.

We consider the following construction: Given two deterministic Turing machines
M1 = (Q,A, q0, Qf , δ1) and M2 = (Q,A, q0, Qf , δ2) with the same control states,
where δ1, δ2 : Q × A → Q × A × {L,R}, we construct the machine M(M1,M2) =
(Q,A, q0, Qf , δ) where δ : {1, 2} ×Q×A → Q×A× {L,R} such that δ(1, q, a) =
δ1(q, a) and δ(2, q, a) = δ2(q, a). At each step, the machine M(M1,M2) plays a tran-
sition of either M1 or M2. Since the machines M1 and M2 are deterministic, a run of
the machine M(M1,M2) on a word w may be described by a word s of {1, 2}∗, which
gives the list of choices made by M(M1,M2) at each step. M(M1,M2), w

s→ denotes
the machine (with its current tape) after the sequence of choices s on the word w. We
assume that the local control state is written on the tape.

Proposition 6 The following problem is undecidable.
Input: Two machines M(M1,M2) and M(M ′

1,M
′
2) and a word w of A∗.

Output: Does the following property hold for M(M1,M2) and M(M ′
1,M

′
2): for any

sequences s1, s2 ∈ {1, 2}∗, M(M1,M2), w
s1→ and M(M1,M2), w

s2→ have the same
tape if and only if M(M ′

1,M
′
2), w

s1→ and M(M ′
1,M

′
2), w

s2→ have the same tape?

We reduce this undecidable problem to the ≈s problem under an equational the-
ory Etm such that � remains decidable. The intuitive idea of our encoding is that a
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frame φ represents a machine of the form M(M1,M2), a term M represents a se-
quence of choices such that Mφ represents the tape of the machine (and the num-
ber of choices) after this sequence of choices. Then, for two “machines” φ and φ′,
it is undecidable whether there exists two sequences of choices M1,M2 such that
(M1 =Etm M2)φ and (M1 �=Etm M2)φ′, that is, whether φ �≈s φ′.

On the other hand, it is possible to decide whether there exists a sequence of choices
M such that Mφ =Etm N , that is, whether φ � N ) for a given term N . The term N
contains the number of choices, so it is sufficient to test any sequence of choices of
length equal to this number of choices.

Appendix A contains a proof of Proposition 6, as well as details on how we use the
problem in question.

4 Deciding knowledge under convergent subterm theo-
ries

In this section, in order to obtain decidability results for both � and ≈s, we restrict
attention to subterm theories, defined by a finite set of equations of the form M = N
where N is a proper subterm of M or a constant symbol. In Section 4.1, we motivate
and introduce a convergence condition on subterm theories. Convergent subterm the-
ories are quite common in applications, as we illustrate with examples in Section 4.2.
We present our main decidability results for these theories in Section 4.3.

4.1 Convergence

The definition of subterm theories is almost vacuous on its own. Even equality may
be undecidable for subterm theories. Any equational theory defined by a finite set of
equations M = M ′ with variables can be encoded as a subterm theory, with the two
equations:

Whichever(M,M ′) = M Whichever(M,M ′) = M ′

for each original equation M = M ′. In light of this encoding, we should add the
assumption that, by orienting the equations that define a subterm theory from left to
right, we obtain a convergent rewriting system:

Definition 1 A equational theory E, defined by a finite set of equations
⋃n

i=1{Mi =
Ni} where fn(Mi) = fn(Ni) = ∅, is a convergent subterm theory if the set of rewriting
rules R def=

⋃n
i=1{Mi → Ni} is convergent and if each Ni is a proper subterm of Mi

or a constant. We write U → V if U and V are closed terms and U may be rewritten
to V (in one step) using a rule of R.

As usual, if R is convergent then for all terms U and V we have U =E V if and only
if U↓= V ↓, where U↓ and V ↓ are the normal forms of U and V .

We write →E instead of → when the equational theory is not clear from the context.

12



4.2 Examples

Important destructor-constructor rules like those for pairing, encryption, and signature
may be expressed in subterm theories (typically convergent ones):

fst(< x, y >) = x dec(enc(x, y), y) = x
snd(< x, y >) = y check(x, sign(x, sk(y)), pk(y)) = ok

Additional examples can be found in previous work (e.g., [3, 12]). Convergent subterm
theories also enable us to capture sophisticated but sensible properties, as in:

Einv : {I(I(x)) = x, I(x) × x = 1, x × I(x) = 1}
Eidem : {h(h(x)) = h(x)}
Esym : {enc(enc(x, y), y) = x}

The theory Einv models an inverse function. The theory Eidem models a hash function
that is idempotent on small inputs (since the hash of a hash gives the same hash). The
theory Esym represents an encryption function that also decrypts: the encryption of a
plaintext, twice with the same key, returns the plaintext.

A rewriting system is convergent if and only if it is terminating and locally con-
fluent (by Newmann’s Lemma [22]). For theories with the subterm property, termi-
nation holds immediately, so it suffices to examine critical pairs in order to estab-
lish convergence. For example, the theory Eenc has no critical pairs, so it is con-
vergent; the theory Esym allows rewriting enc(enc(enc(x, y), y), y) in two different
ways, but they both yield enc(x, y), so Esym is convergent as well; on the other hand,
the theory Eenc ∪ Esym is not convergent because of the critical pair that consists of
dec(enc(enc(x, y), y), y) → enc(x, y) and dec(enc(enc(x, y), y), y) → dec(x, y).

4.3 Decidability results

For convergent subterm theories, both � and ≈s become decidable. Let E be a conver-
gent subterm theory given by

⋃n
i=1{Mi = Ni}, and cE = max1≤i≤n(|Mi|, ar(Σ)+1).

By convention, if the equational theory E is empty, we set cE = 1.

Theorem 1 For any frames φ and φ′, for any closed term M , we can decide φ � M
and φ ≈s φ′ in polynomial time in |φ|, |φ′|, and |M |.

In order to obtain a polynomial bound, we have to consider DAG representations
of terms. We define and study them in the next section.

4.3.1 DAG representation for terms

Let us define what is a DAG representation of a term.

Definition 2 (DAG representation) A DAG representation of a term is a direct acyclic
graph (V, l, E, v0), where V is the set of vertices, l : V → Σ a labelling function,
E ⊆ V ×V ×{1..ar(Σ)} the set of edges, and v0 ∈ V the root of the graph. In addition,
we assume that for every v ∈ V , for every integer i such that 0 ≤ i ≤ arity(l(v)), there
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The DAG R is the minimal representation of T but R1 and R2 are also DAG repre-
sentations of T .

Figure 1: Examples of DAG representations.

exists a unique v′ (denoted by E(v, i)) such that (v, v′, i) is in E and that there is no
edge of the form (v, v′, i) for i > arity(l(v)).

The size of R, written |R|, is the number of vertices of R.
The term t(V, l, E, v0) represented by a DAG (V, l, E, v0) is defined recursively by

t(V, l, E, v0) = l(v0)(t(V, l, E, e(v0, 1)), . . . , t(V, l, E, e(v0, arity(l(v0))))).
A DAG representation (V, l, E, v0) is minimal if there are no distinct vertices v1

and v2 such that t(V, l, E, v1) = t(V, l, E, v2).

Although the memory size needed for representing a DAG R is larger than |R|, it
is polynomial (actually quadratic) in |R|. Thus the measure |R| is sufficient for our
purposes. Furthermore, with each term T , we can associate a unique minimal DAG
representation of T such that its number of vertices is equal to the number |T |DAG of
subterms of T . See figure 1 for examples.

Proposition 7 Given a DAG representation R, we can compute the minimal DAG rep-
resentation of t(R) in polynomial time in |R|. Therefore, checking whether t(R1) ==
t(R2) where R1 and R2 are two DAG-representations can be done in polynomial time
in |R1| and |R2|.

Given a DAG representation R, we repeatedly check (at most |R| times) whether there
exist two distinct vertices v1 and v2 (at most |R|2 possibilities) such that l(v1) = l(v2)
and for every i such that 0 ≤ i ≤ arity(l(v1)), E(v1, i) = E(v2, i). When such v1 and
v2 exist, we suppress v1 in the set of vertices and replace each occurrence of v1 in E by
v2. We end with the minimal representation of t(R). The total cost of this procedure is
at most O(|R|3).
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Proposition 8 Given a convergent subterm equational theory and a minimal DAG
representation R of a term T , we can compute a (minimal) DAG representation of
the normal form T ↓ of T in polynomial time in |R|. Therefore, checking whether
t(R1) =E t(R2) where R1 and R2 are two minimal DAG-representations can be done
in polynomial time in |R1| and |R2|.

Let R = (V, l, E, v0) be a minimal DAG representation of a term T . For every rewrit-
ing rule of the form C[x1, . . . , xn] → C ′[x1, . . . , xn] or C[x1, . . . , xn] → c of the
theory, we check (from the root) if the pattern C appears in R (with at most |C||R|
tests). If it is the case, that is, there exists some v ∈ V such that t(V, l, E, v) ==
C[x1, . . . , xn]θ for some θ, then we replace the vertex v by one of the vertices that
represents C ′[x1, . . . , xn]θ or we add the a vertex that represents c. We minimize the
resulting DAG, via Proposition 7, in time O(|R|3). At each step (except for a constant
number of cases), one of the vertices is suppressed, so this procedure stops after at most
|R| steps. We end with a DAG-representation of T↓, in time O(|R|4).

4.3.2 Proof of Theorem 1

The end of this section is devoted to the proof of the theorem.

Step 1 of the proof: saturating a frame φ. We first associate with each frame φ the
set of subterms of messages in φ that may be deduced from φ by applying only small
contexts. We prove that this set can be computed in polynomial time. In addition, we
show that each term in this set has a “recipe” whose DAG-size is polynomial.

Definition 3 Let φ = νñ{M1/x1, . . . , Ml/xl} be a frame. Let st(φ) be the set of
subterms of the terms Mi. The saturation sat(φ) of φ is the minimal set such that:

1. for every 1 ≤ i ≤ l, Mi ∈ sat(φ),

2. if M1, . . . , Mk ∈ sat(φ) and f(M1, . . . , Mk) ∈ st(φ), then f(M1, . . . , Mk) ∈
sat(φ),

3. if M1, . . . , Mk ∈ sat(φ) and C[M1, . . . , Mk] → M , where C is a context,
|C| ≤ cE , fn(C) ∩ ñ = ∅, and M ∈ st(φ), then M ∈ sat(φ).

Proposition 9 Let φ be a frame, φ = νñσ.

1. The set sat(φ) can be computed in time O(|φ|max(ar(Σ),cE)+2).

2. For every M ∈ sat(φ), there exists a term ζM such that fn(ζM ) ∩ ñ = ∅,
|ζM |DAG ≤ cE |φ|, and ζMσ =E M . The term ζM is called a recipe of M and is
chosen arbitrarily from among the terms that verify these properties.

The set sat(φ) is obtained by saturating the set {M1, . . . , Mk} by applying the rules 2
and 3 of Definition 3. Since sat(φ) ⊆ st(φ), this set is saturated in at most |φ| steps.
At each step, we have to compute:
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• Every closed term of the form C[M1, . . . , Mk] (up to renamings in C), where
|C| ≤ cE and the terms Mi are already in the set, and check if it is an instance of
some left-hand side of a rule. Thus we need at most O(|φ|cE+1) computations.

• Every term f(M1, . . . , Mk) that is also in st(φ). Thus we have to construct at
most |Σ||φ|ar(Σ) terms.

Since each step requires at most O(|φ|max(ar(Σ),cE+1)) computations and since there
are at most |φ| steps, sat(φ) may be computed in time O(|φ|max(ar(Σ),cE)+2). For the
second part of Proposition 9, we know by Proposition 1 that for each term M of sat(φ)
there exists ζM such that fn(ζM )∩ ñ = ∅ and ζMσ =E M . By construction of sat(φ),
the term ζM may be chosen so that:

1. ζM = xi if σ(xi) = M ,

2. ζM = f(ζM1 , . . . , ζMk
) with Mi ∈ sat(φ) if M is obtained by the rule 2,

3. ζM = C[ζM1 , . . . , ζMk
] with Mi ∈ sat(φ) if M is obtained by the rule 3.

Assume that we build a graph that contains every DAG that corresponds to the chosen
terms ζM for M ∈ sat(φ).

1. For every 1 ≤ i ≤ l, there is a vertex vi, labelled by xi.

2. If ζM = f(ζM1 , . . . , ζMk
) with Mi ∈ sat(φ), we add a vertex labelled by f and

connect this vertex to the vertices that correspond to ζM1 , . . . , ζMk
.

3. If ζM = C[ζM1 , . . . , ζMk
] with Mi ∈ sat(φ), we add a graph that corresponds

to C[ 1, . . . , k] (at most |C| ≤ cE vertices) connected to the vertices that corre-
spond to ζM1 , . . . , ζMk

.

Each step costs one vertex or cE vertices. Since there are at most |sat(φ)| ≤ |φ| steps
(one for each term M ), the maximal DAG-size of a term ζM embedded in this graph is
cE |φ|. Therefore, choosing the recipes from among those terms yields the desired size
bound. In what follows, for each φ, we assume fixed the set of recipes that corresponds
to the terms of sat(φ).

Example 1 We consider again the equational theory Eenc defined in Section 2.3. We
have CEenc = 5, Let φ

def= νk, s{enc(s, k)/x, k/y}. By application of rule 1 of Defini-
tion 3, we have {M1,M2} ⊆ sat(φ), where M1 = enc(s, k) and M2 = k. By applica-
tion of the rule 3 with the context C = dec( , ) (|C| ≤ 5), we have dec(M1,M2) ==
dec(enc(s, k), k) → s and s ∈ st(φ). Thus s ∈ sat(φ). Let M3

def= s. Since
{M1,M2,M3} ⊆ sat(φ) ⊆ st(φ) ⊆ {M1,M2,M3}, we deduce that sat(φ) =
{M1,M2,M3}.

The recipes for each term of sat(φ) may be chosen in the following way: ζM1 = x,
ζM2 = y, and ζM3 = dec(x, y).
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Step 2 of the proof: Introducing a finite set of equalities to characterize a frame.
With each frame φ, we associate a set of equalities Eq(φ) (finite modulo renaming)
such that two frames are equivalent if and only if they satisfy the equalities from each
other’s set: φ′ satisfies the equalities Eq(φ) and φ satisfies the equalities Eq(φ′).

Definition 4 Let φ = νñσ be a frame. The set Eq(φ) is the set of equalities

C1[ζM1 , . . . , ζMk
] = C2[ζM ′

1
, . . . , ζM ′

l
]

such that (C1[ζM1 , . . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])φ, |C1|, |C2| ≤ cE , and the terms

Mi and M ′
i are in sat(φ). If φ′ is a frame such that (M =E N)φ′ for every (M =

N) ∈ Eq(φ), we write φ′ |= Eq(φ).

Example 2 We continue Example 1. Recall that M1 = enc(s, k), M2 = k, and
M3 = s. We are looking for equalities between small contexts over these terms, mod-
ulo the equational theory Eenc. By removing trivial or redundant equalities, we obtain
that Eq(φ) = {enc(ζM3 , ζM2) = ζM1}, that is, Eq(φ) = {enc(dec(x, y), y) = x}. In-
tuitively, this equality corresponds to the ability of an intruder that can check whether
the first message enc(s, k) is an encrypted message whose encryption key is the second
message k, by decrypting and re-encrypting the first message with the second.

Although Eq(φ) may be infinite since the contexts C1 and C2 may contain arbitrary
names, Eq(φ) is finite modulo some renamings that we explain at the end of the section.

Two crucial lemmas show that it is sufficient to consider these equalities:

Lemma 6 Let φ = νñσ and φ′ = νñ′σ′ be two frames such that φ′ |= Eq(φ). For
all contexts C1 and C2 such that (fn(C1) ∪ fn(C2)) ∩ ñ = ∅, for all terms Mi,
M ′

i ∈ sat(φ), if C1[M1, . . . , Mk] == C2[M ′
1, . . . , M

′
l ], then (C1[ζM1 , . . . , ζMk

] =E

C2[ζM ′
1
, . . . , ζM ′

l
])φ′.

Lemma 7 Let φ = νñσ be a frame. For every context C1 such that fn(C1) ∩ ñ = ∅,
for every Mi ∈ sat(φ), for every term T such that C1[M1, . . . , Mk] →∗

E T , there
exist a context C2 such that fn(C2) ∩ ñ = ∅, and terms M ′

i ∈ sat(φ), such that
T == C2[M ′

1, . . . , M
′
l ] and for every frame φ′ |= Eq(φ), (C1[ζM1 , . . . , ζMk

] =E

C2[ζM ′
1
, . . . , ζM ′

l
])φ′.

These two lemmas are proved in a more general setting in Appendix B. How these
lemmas are used for proving the decidability of deduction and static equivalence is
explained in steps 3 and 4 of the proof, respectively.

Step 3 of the proof: decidability of �. Here we show that any message deducible
from a frame φ is actually a context over terms in sat(φ).

Proposition 10 Let φ = νñσ be a frame, M be a closed term and M ↓ its normal
form. Then φ � M if and only if there exist C and M1, . . . , Mk ∈ sat(φ) such that
fn(C) ∩ ñ = ∅ and M↓== C[M1, . . . , Mk].
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If M↓== C[M1, . . . , Mk] with fn(C) ∩ ñ = ∅, then M =E C[ζM1 , . . . , ζMk
]σ, by

construction of the terms ζMi
. Thus, by Proposition 1, φ � M . Conversely, if φ � M ,

then by Proposition 1, there exists ζ such that fn(ζ) ∩ ñ = ∅ and M =E ζσ. Thus
M ↓== (ζσ)↓. Applying Lemma 7, we obtain that (ζσ)↓== C[M1, . . . , Mk] for
some M1, . . . , Mk ∈ sat(φ) and C such that fn(C) ∩ ñ = ∅.

We derive that φ � M can be decided by checking whether M ↓ is of the form
C[M1, . . . , Mk] with Mi ∈ sat(φ). Given a term M , M ↓ can be computed in poly-
nomial time. Once sat(φ) is computed (in polynomial time by Proposition 9), check-
ing whether there exist C and M1, . . . , Mk ∈ sat(φ) such that fn(C) ∩ ñ = ∅ and
M↓== C[M1, . . . , Mk] may be done in time O(|M ||φ|2). The procedure is basically
as follows:

• Sort sat(φ) by the size of the terms (with cost |sat(φ)|2).

• For each term T of sat(φ) (from terms of maximal size to terms of minimal
size), check whether T is equal to a subterm of M . When it is the case, delete
this subterm from M . There are |M | subterms in M , the equality test costs
|T | ≤ |φ| computations, so this loop can be done in |M ||φ|2.

• Check whether the remaining part of M still contains private names in ñ. If it
is not the case, we have found a context C and M1, . . . , Mk ∈ sat(φ) such that
fn(C) ∩ ñ = ∅ and M↓== C[M1, . . . , Mk]; otherwise such a context does not
exist.

This procedure is correct because, when cutting subterms of M equal to terms in
sat(φ), we start with terms in sat(φ) of maximal size. We conclude that φ � M is
decidable in polynomial time.

Step 4 of the proof: decidability of ≈s.

Proposition 11 For all frames φ and φ′, we have φ ≈s φ′ if and only if φ |= Eq(φ′)
and φ′ |= Eq(φ).

By definition of static equivalence, if φ ≈s φ′ then φ |= Eq(φ′) and φ′ |= Eq(φ).
Conversely, assume that φ′ |= Eq(φ) and consider M and N such that there exist ñ
and σ such that φ = νñσ, (fn(M) ∪ fn(N)) ∩ ñ = ∅, and (M =E N)φ. Then
Mσ =E Nσ, so (Mσ)↓== (Nσ)↓. Let T = (Mσ)↓. Applying Lemma 7, we obtain
that there exist M1, . . . , Mk ∈ sat(φ) and CM such that fn(CM ) ∩ ñ = ∅ and

T == CM [M1, . . . , Mk] and Mσ′ =E CM [ζM1 , . . . , ζMk
]σ′

Since T == (Nσ)↓, we obtain similarly that there exist M ′
1, . . . , M

′
l ∈ sat(φ) and

CN such that fn(CN ) ∩ ñ = ∅ and

T == CN [M ′
1, . . . , M

′
l ] and Nσ′ =E CN [ζM ′

1
, . . . , ζM ′

l
]σ′

Moreover, since CM [M1, . . . , Mk] == CN [M ′
1, . . . , M

′
l ], we derive from Lemma 6

that CM [ζM1 , . . . , ζMk
]σ′ =E CN [ζM ′

1
, . . . , ζM ′

l
]σ′, thus (M =E N)φ′. Conversely,
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when (M =E N)φ′ and φ |= Eq(φ′), we also have that (M =E N)φ. We conclude
that φ ≈s φ′.

Therefore, given φ and φ′, in order to decide whether φ ≈s φ′ we construct sat(φ)
and sat(φ′). This construction can be done in polynomial time by Proposition 9. For
each term M of sat(φ) or sat(φ′), the term ζM has a polynomial DAG-size.

As noted previously, Eq(φ′) may be infinite since the equalities may contain arbi-
trary names. However, each equation of Eq(φ) is of the form (C1[ζM1 , . . . , ζMk

] =E

C2[ζM ′
1
, . . . , ζM ′

l
]) with |C1|, |C2| ≤ cE , so each equality of Eq(φ) contains at most

2cE distinct names besides the names of the recipes. The following lemma, whose
proof is easy, says that those 2cE names can be fixed:

Lemma 8 Let K = 2cE and {n1, . . . , nK} be any set of K distinct names, distinct
from the names of the recipes for the terms of sat(φ). Let Eq′(φ) be the set consisting
on the all the equalities

C1[ζM1 , . . . , ζMk
] = C2[ζM ′

1
, . . . , ζM ′

l
]

such that (C1[ζM1 , . . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])φ, |C1|, |C2| ≤ cE , the terms Mi

and M ′
i are in sat(φ), and fn(C1) ∪ fn(C2) ⊆ {n1, . . . , nK}. Then, for any frame φ′,

φ |= Eq(φ) if and only if φ |= Eq′(φ).

Thus, instead of checking whether φ |= Eq(φ), we can check whether φ |= Eq′(φ).
More precisely, for all contexts C1 and C2 such that |C1|, |C2| ≤ cE and fn(C1) ∪
fn(C2) ⊆ {n1, . . . , nK}, for all Mi,M

′
i ∈ sat(φ), we would check whether (C1[ζM1 ,

. . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])φ and (C1[ζM1 , . . . , ζMk

] =E C2[ζM ′
1
, . . . , ζM ′

l
])φ′.

There are at most O((|φ|cE )2) equalities in Eq′(φ). Each term of the form C1[ζM1 ,
. . . , ζMk

]φ has a polynomial DAG-size. The equality of two terms represented by
DAGs can be checked in polynomial time: we do not need to expand the DAGs in
order to test for equality. We conclude that φ ≈s φ′ can be decided in polynomial time
in |φ| and |φ′|.

Although this proof is effective, the complexity bounds that we obtain from it ap-
pear rather high. For example, for the equational theory Eenc of Section 2.3, we can
obtain that φ � M is decidable in time O(|M |3|φ|7). It should be possible to do much
better.

5 Deciding knowledge under more general equational
theories

Next, we relax our hypotheses on equational theories. Instead of requiring conver-
gence, we consider equational theories with some associative and commutative sym-
bols that come with a rewriting system R such that a R is convergent modulo AC
rewriting. Moreover, instead of imposing a syntactic condition (such as a subterm
property), we introduce a condition on the set sat(φ) associated with each frame φ.
We present the resulting hypotheses in Section 5.1. We give examples of theories that
satisfy the hypotheses in Section 5.2. Finally, we prove general decidability results in
Section 5.3.

19



5.1 The hypotheses

We establish decidability results for equational theories that satisfy three properties.
The purpose of this section is to define and start to explain these three properties;
Section 5.2 explains them further through examples.

5.1.1 AC-convergence

Our first hypothesis is an adaptation of the standard notion of convergence for theories
with AC symbols.

Let E an equational theory, and let ⊕1, . . . ,⊕k be the binary functional symbols
such that the equations x⊕i (y⊕i z) = (x⊕i y)⊕i z (associativity) and x⊕i y = y⊕i x
(commutativity) are in E.

For two terms U and V , we write U =AC V if U and V are equal in the theory
induced by the equations x ⊕i (y ⊕i z) = (x ⊕i y) ⊕i z and x ⊕i y = y ⊕i x for
1 ≤ i ≤ k. When this theory is empty (because we have no AC symbols), =AC is
simply syntactic equality.

When R is a rewriting system, we write U →AC V if there exists W such that
U =AC W and W → V . The relation →∗

AC denotes the reflexive and transitive closure
of →AC.

Definition 5 (AC-convergent) An equational theory E is AC-convergent if there ex-
ists a finite rewriting system R such that:

• R is AC-terminating, that is, for every closed term U , there is no infinite se-
quence U →AC U1 →AC · · ·Uk →AC · · · .
For every term U , the set of normal forms U↓ (closed modulo AC) of U is the set
of terms V such that U →∗

AC V and V has no successor for →AC.

• R is AC-confluent, that is, for every closed terms U , U1, and U2 such that
U →AC U1 and U →AC U2, there exist V1 and V2 such that U1 →∗

AC V1,
U2 →∗

AC V2, and V1 =AC V2.

• For all closed terms U and V , the equality U =E V holds if and only if there
exists a term T ∈ (U↓ ∩ V ↓).

By AC-convergence, the set U↓ is always finite and for all V,W ∈ U↓, the equality
V =AC W holds. AC-convergence immediately implies the decidability of equations
on closed terms.

In what follows, E is an AC-convergent equational theory and R is a rewriting
system associated with E that satisfies the conditions of Definition 5. If R consists
of a finite set of rules

⋃k
i=1 {Mi → Ni}, the size cE of the theory E is defined as

cE = max1≤i≤k(|Mi|, |Ni|, ar(Σ) + 1). As a special case, cE = ar(Σ) + 1 when R is
empty. As another special case, we obtain the definition of cE given in Section 4.3 for
subterm theories.

Note that E need not have AC symbols. A theory defined by a convergent rewriting
system without AC symbol is of course an AC-convergent theory. In that case, we may
simply say that the theory is convergent.
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Example 3 As a first example, we consider the theory of an encryption scheme that
has an homomorphism property. This property is simply that the encryption of a pair
is the pair of the encryptions; the literature (e.g., [31]) suggests other homomorphism
properties. This property is modeled by the equation:

enc(〈x, y〉, z) = 〈enc(x, z), enc(y, z)〉

We also assume an analogous equation for decryption:

dec(〈x, y〉, z) = 〈dec(x, z), dec(y, z)〉

As usual, we write 〈x, y〉 instead of pair(x, y). The signature Σhomo is {pair, enc, fst,
snd, dec}, and the theory Ehomo is defined by the axioms:

enc(〈x, y〉, z) = 〈enc(x, z), enc(y, z)〉
dec(〈x, y〉, z) = 〈dec(x, z), dec(y, z)〉

fst(〈x, y〉) = x
snd(〈x, y〉) = y

dec(enc(x, y), y) = x

We consider the rewriting system Rhomo obtained from Ehomo by orienting the equa-
tions from left to right. With this choice of Rhomo, the theory Ehomo is convergent: its
only critical pair is joinable.

〈x1, dec(enc(x2, y), y)〉

〈dec(enc(x1, y), y), dec(enc(x2, y), y)〉

〈x1, x2〉 dec(〈enc(x1, y), enc(x2, y)〉, y)

dec(enc(〈x1, x2〉, y), y)

Example 4 The theory of XOR is also AC-convergent. The XOR operator is repre-
sented by the ⊕ function symbol, with the following properties:

Exor =

⎧⎪⎪⎨
⎪⎪⎩

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
x ⊕ y = y ⊕ x
x ⊕ x = 0
x ⊕ 0 = x

⎫⎪⎪⎬
⎪⎪⎭

where 0 is a constant symbol and the signature Σxor is {0,⊕}. We associate to Exor the
rewriting system Rxor:

Rxor =
{

x ⊕ x → 0
x ⊕ 0 → x

}
Using this choice of Rxor, it is easy to verify that Exor is AC-convergent.
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5.1.2 Local stability

Our second hypothesis roughly says that, for every frame, there is a finite set of terms
deducible from the frame that satisfies certain closure conditions. Stating this hypothe-
ses precisely requires a few auxiliary definitions and notations.

Assume that there exists some rule M0 → N0 of the rewriting system R and some
substitution θ such that either there exists a term U1 such that U =AC U1, U1 = M0θ,
and V = N0θ, or there exist terms U1 and U2 such that U =AC U1 ⊕ U2 for some AC
symbol ⊕, U1 = M0θ, and V =AC N0θ ⊕ U2. Then we say that the reduction U → V

occurs in head, and we write U
h→ V .

We write α ·⊕ M for the term M ⊕ · · · ⊕ M , α times (for α ∈ N
∗). We simply

write αM when the AC symbol is clear from the context. Given a set of terms S and
a set of names ñ, we write sum⊕(S, ñ) for the set of arbitrary sums of terms of S and
other names, closed modulo AC-rewriting:

sum⊕(S, ñ) def=

⎧⎨
⎩

(α1 ·⊕ T1) ⊕ · · · ⊕ (αn ·⊕ Tn)
⊕

(β1 ·⊕ n1) ⊕ · · · ⊕ (βk ·⊕ nk)

∣∣∣∣∣∣
αi, βi ∈ N

∗,
ni /∈ ñ,
Ti ∈ S

⎫⎬
⎭

Typically, the names in ñ will be private, and the others public. Then we define
sum(S, ñ) as the union of the sum⊕(S, ñ) for any AC symbol ⊕ of the theory.

For convergent subterm theories, the main step of the proof of the decidability of
� and ≈s shows the existence, for each frame φ, of a set sat(φ) stable by application
of “small” contexts. We generalize this condition by requiring that the application of
a rewriting rule to a “small” context C applied to arbitrary sums of terms in sat(φ)
is again a “small” context C′ applied to sums of terms in sat(φ). The definition of
“small” is partly arbitrary; we bound the size of C by cE and the size of C′ by cE

2, but
other finite size bounds may be suitable.

Definition 6 (locally stable) An AC-convergent equational theory E is locally stable
if, for every frame φ = νñ{M1/x1, . . . , Mk/xk}, where the terms Mi are closed and
in normal form, there exists a finite (computable) set sat(φ), closed modulo AC, such
that

1. for every 1 ≤ i ≤ k, Mi ∈ sat(φ), and for every n ∈ fn(φ), n ∈ sat(φ),

2. if M1, . . . , Mk ∈ sat(φ) and f(M1, . . . , Mk) ∈ st(sat(φ)), then f(M1, . . . ,
Mk) ∈ sat(φ),

3. if C[S1, . . . , Sl]
h→ M , where C is a context such that |C| ≤ cE and fn(C) ∩

ñ = ∅, and where S1, . . . , Sl ∈ sum⊕(sat(φ), ñ) for some AC symbol ⊕ (or
Si ∈ sat(φ) if there is no AC symbol), then there exist a context C′, a term
M ′, and S′

1, . . . , S
′
k ∈ sum⊕(sat(φ), ñ) (or S′

1, . . . , S
′
k ∈ sat(φ) if there is no

AC symbol), such that |C′| ≤ c2
E , fn(C ′) ∩ ñ = ∅, and M →∗

AC M ′ =AC

C ′[S′
1, . . . , S

′
k],

4. if M ∈ sat(φ) then φ � M .
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The set sat(φ) need not be unique, nor minimal. Any set that satisfies the four condi-
tions is adequate for our present purposes.

Example 5 For the equational theory Ehomo of Example 3, given a frame φ in nor-
mal form, the set sat(φ) is simply obtained by adding subterms of φ deducible from φ.
Suppose for example that the attacker listens to two messages: enc(〈n1, n2〉, k) and
enc(n3, enc(n1, k)). Since enc(〈n1, n2〉, k) =Ehomo

〈enc(n1, k), enc(n2, k)〉, the cor-
responding frame can be written

φ2 = ν(n1, n2, n3, k){〈enc(n1, k), enc(n2, k)〉/x1, enc(n3, enc(n1, k))/x2}

Then, the deducible subterms of the frame φ2 are enc(n1, k), enc(n2, k), and n3, so
sat(φ2) is the set

{〈enc(n1, k), enc(n2, k)〉, enc(n3, enc(n1, k)), enc(n1, k), enc(n2, k), n3}

In Section 5.2.2 we prove that this construction satisfies the requirements.

In general, establishing that an equational theory is locally stable may be difficult.
We give other examples of locally stable theories in Section 5.2.

5.1.3 Local finiteness and local decidability

For our third hypothesis, we consider a certain set of “small” equations that a frame
satisfies. One of our results says that this set characterizes the frame. The third hypoth-
esis, which this section presents, pertains to deciding whether another frame satisfies
this set. In fact, this section discusses two versions of the third hypothesis, called local
finiteness and local decidability. Either is sufficient for our purposes; the former has
been more attractive in applications; the latter is more general. As the use of equations
may suggest, we rely on the third hypothesis in the study of static equivalence but not
deduction.

For each frame φ = νñσ, we assume a fixed set of terms ρ(φ) = {ζM | M ∈
sat(φ)} such that for each ζM , fn(ζM ) ∩ ñ = ∅ and ζMσ =E M . Intuitively, the term
ζM explains how M may be obtained from the terms of φ. Since all the terms of sat(φ)
are deducible, such a set exists by Proposition 1. For instance, for Example 5, the terms
associated with enc(n1, k), enc(n2, k), and n3 are respectively ζenc(n1,k) = fst(x1),
ζenc(n2,k) = snd(x1), and ζn3 = dec(x2, fst(x1)).

Much as in Section 4.3, we associate a set of “small” equations Eq(φ) with each
frame φ, in such a way that two frames are equivalent if and only if they satisfy the
equations of each other’s set (see Proposition 17).

Definition 7 Let φ = νñσ be a frame in normal form. The set Eq(φ) is the set of
equations of the form

C1[χ1, . . . , χk] = C2[χ′
1, . . . , χ

′
l]

where (C1[χ1, . . . , χk] =E C2[χ′
1, . . . , χ

′
l])φ, (fn(C1)∪ fn(C2))∩ ñ = ∅, |C1| ≤ cE ,

|C2| ≤ c2
E , and the terms χi and χ′

i are in the set sum⊕(ρ(φ), ñ) for some AC symbol
⊕ (or χi and χ′

i are in ρ(φ) if there is no AC symbol).
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When φ and ψ are frames and (M =E N)ψ for every (M = N) ∈ Eq(φ), we say
that ψ satisfies the equations of Eq(φ), and write ψ |= Eq(φ).

Definition 8 (locally decidable) A locally stable equational theory is locally decid-
able if the question of whether ψ |= Eq(φ), for frames φ and ψ, is decidable.

The set Eq(φ) may in general be infinite since the terms χi may be of arbitrary
size. Local finiteness means that the set Eq(φ) is always equivalent to a finite set of
equations.

Definition 9 (locally finite) A locally stable equational theory is locally finite if, for
every frame φ, there exists a finite (computable) set of equations Eq′(φ) such that, for
every frame ψ:

ψ |= Eq(φ) if and only if ψ |= Eq′(φ)

This property suffices for local decidability:

Proposition 12 Every locally finite equational theory is locally decidable.

Local finiteness is always true when there are no AC symbols since then the set
Eq(φ) contains only finitely many equations up to renaming:

Proposition 13 Let E be a locally stable equational theory with no AC symbols. Then,
for any frame φ, there exists a finite set of equations Eq′(φ) such that for every frame
ψ, we have ψ |= Eq(φ) if and only if ψ |= Eq′(φ). In other words, E is locally finite.

Each equation of Eq(φ) is of the form C1[χ1, . . . , χk] = C2[χ′
1, . . . , χ

′
l] with χi, χ′

i in
ρ(φ). Thus it contains a finite number of names (bounded by cE + c2

E). The set Eq′(φ)
is obtained from Eq(φ) by renaming the names to a fixed set of names.

In Section 5.2 we present some non-trivial examples of locally finite theories with
AC symbols. Establishing local finiteness is our preferred way of proving local decid-
ability for such theories. Here we show that at least an (infinite) subset of Eq(φ) may
always be replaced by a finite number of equations.

Definition 10 Let φ = νñσ be a frame. Let N be a set of public names (that is, such
that N ∩ ñ = ∅). We write EqAC (φ,N) for the set of equations of the form χ1 = χ2

such that χ1, χ2 ∈ sum⊕(ρ(φ), ñ), fn(χ1) ∪ fn(χ2) ⊆ N , and (χ1 =E χ2)φ.

Note that EqAC (φ,N) is a subset of Eq(φ). We show that the set EqAC (φ,N) may
always be replaced by a finite number of equations if N is a finite set of public names.

Proposition 14 Let φ = νñσ be a frame and N a finite set of names such that N∩ñ =
∅. There exists a finite set EqbAC (φ,N) ⊆ EqAC (φ,N), such that for every frame ψ:

ψ |= EqAC (φ,N) if and only if ψ |= EqbAC (φ,N)

In addition, the cardinality of EqbAC (φ) is at most the cardinality of sat(φ) plus the
cardinality of N .
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This proposition can be proved using elementary results on Z-modules. (Facts on Z-
module may be found in [32], for example.) Assume that sat(φ) = {M1, . . . , Mk},
N = {n1, . . . , nl}, and let Γ ∈ Z

k+l. For 1 ≤ i ≤ k + l, Γi denotes the ith coefficient
of Γ, and Γ̂ denotes the equation:⊕

Γi>0,i≤k

ΓiζMi
⊕

⊕
Γi>0,i>k

Γini =
⊕

Γi<0,i≤k

(−Γi)ζMi
⊕

⊕
Γi<0,i>k

(−Γi)ni

Let Eq′AC (φ,N) = {Γ̂ | Γ ∈ Z
k+l, (Γ̂)φ}. It is easy to verify that for any frame ψ,

ψ |= EqAC (φ,N) if and only if ψ |= Eq′AC (φ,N). It is also easy to verify (simplifying
the equations) that Eq′AC (φ,N) is a Z-submodule of Z

k+l and thus can be generated
by a finite number of vectors V1, . . . , Vr with r ≤ k + l. We define EqbAC (φ,N) =
{V̂1, . . . , V̂r}. It is then easy to conclude that, for any frame ψ, ψ |= EqAC (φ,N) if
and only if ψ |= EqbAC (φ,N).

Example 6 Consider for example a pure AC theory with only one AC symbol + (and
no other function symbol), and the frame

φ3 = ν(n1, n2, n3){3n1 + 2n2 + 4n3/x1, n2 + 3n3/x2, n1 + 2n3/x3, 3n2 + n3/x4}

The set Eq(φ3) consists of the equations of the form α1x1+α2x2+α3x3+α4x4+T =
α′

1x1 + α′
2x2 + α′

3x3 + α′
4x4 + T ′ with αi, α

′
i ∈ N, and T and T ′ sums of names

distinct from n1, n2, and n3. By convention, if αi = 0 (resp. α′
i = 0) then the

term αixi (resp. α′
ixi) does not appear in the sum. Since the equation is true for

φ3, we must have T = T ′, thus it is sufficient to consider the equations of the form
α1x1 + α2x2 + α3x3 + α4x4 = α′

1x1 + α′
2x2 + α′

3x3 + α′
4x4 with αi, α

′
i ∈ N.

Adopting the convention that a negative term αx (with α < 0) in an equation actually
appears on the other side of the equation, it is sufficient to consider the equations of
the form α1x1 +α2x2 +α3x3 +α4x4 = 0, with αi, α

′
i ∈ Z. For example, the equation

3x1 − 2x2 + x3 = 0 stands for the equation 3x1 + x3 = 2x2. Then, the set of vectors
(α1, α2, α3, α4) such that the equation α1x1 + α2x2 + α3x3 + α4x4 = 0 holds for φ3

is exactly the set of vectors U of Z
4 such that AU = 0 with

A =

⎛
⎝ 3 0 1 0

2 1 0 3
4 3 2 1

⎞
⎠

By using classical elementary operations on rows and columns, we find that AU = 0
if and only if

U = λ

⎛
⎜⎜⎝

1
1
−3
−1

⎞
⎟⎟⎠

for λ ∈ Z. We deduce that the set of equations satisfied by φ3 is exactly the set of
equations of the form: λx1 + λx2 = 3λx3 + λx4. Thus, in order to decide whether a
frame ψ satisfies Eq(φ3), it is sufficient to check whether ψ satisfies the single equation
x1 + x2 = 3x3 + x4.
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5.2 Examples

In this section, we give examples of locally stable and locally finite equational theories.
In Section 5.3, we prove that local stability implies the decidability of deduction, and
that local stability and local finiteness imply the decidability of static equivalence.

Several equational theories related to cryptographic operations are locally stable
and locally finite. In particular, we prove that convergent subterm theories are lo-
cally stable. We show that a theory of homomorphic encryption, a simple theory for
addition, and a theory for blind signatures (which are not subterm theories) are also
locally stable. These equational theories do not have AC symbols, so local finiteness
follows from Proposition 13. As examples of theories with AC symbols, we prove that
the pure AC theory and a theory of the XOR operator are locally stable and locally
finite. The proofs of these properties require only a few lines, and thus are much sim-
pler than direct proofs of decidability. We have also drafted proofs that the theory of
Abelian groups is locally stable and locally finite, but in that case the proofs are quite
tedious—probably more than direct proofs of the decidability of deduction and static
equivalence.

As the examples may suggest, proving local stability often requires a precise un-
derstanding of the cryptographic primitives represented by an equational theory. In
particular, removing some equations need not always preserve local stability.

5.2.1 Convergent subterm theories

It is easy to verify that the definition of sat(φ) given in Definition 1 fits our require-
ments for local stability.

Proposition 15 Every convergent subterm theory is a locally finite theory.

Consequently, we obtain again that both deducibility and static equivalence are decid-
able for convergent subterm theories.

5.2.2 Homomorphism

We consider again the equational theory Ehomo (defined in Example 3), which repre-
sents an encryption scheme with a homomorphism property. The size of the theory
is 7.

Comon-Lundh and Treinen have investigated a very similar equational theory [20].
They have shown that its deduction relation is decidable in PTIME. Here we show that
Ehomo is locally stable, and it is obviously locally finite (since it has no AC symbol).
These properties will imply that both deduction and static equivalence are decidable.

Let φ = νñ{M1/x1, . . . , Mk/xk} be any frame in normal form. We define sat(φ)
to be the smallest set such that:

1. for every 1 ≤ i ≤ k, Mi ∈ sat(φ), and for every n ∈ fn(φ), n ∈ sat(φ),

2. if M1, . . . , Mk ∈ sat(φ) and f(M1, . . . , Mk) ∈ st(sat(φ)), then f(M1, . . . ,
Mk) ∈ sat(φ),
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3. if M1,M2 ∈ sat(φ) and dec(M1,M2)
h→ M and the rule dec(enc(x, y), y) → x

has been applied, or fst(M1)
h→ M , or snd(M1)

h→ M , then M ∈ sat(φ).

The set sat(φ) is finite since we add only subterms of terms of φ. It trivially satisfies
conditions 1, 2, and 4 of Definition 6. Let us show that it satisfies condition 3. Let
M1, . . . , Mk ∈ sat(φ) and assume that C[M1, . . . , Mk] h→ M where |C| ≤ 7. The
case where C is a single hole is covered by the fact that the terms are in normal form.
The other cases are covered by rule 3 except in the following cases:

• C = enc( , ), C = enc( , T ), or C = enc(T, ) where fn(T ) ∩ ñ = ∅ and
|T | ≤ 5.

– For enc(M1,M2) → M with M1,M2 ∈ sat(φ): In this case, M1 must be
of the form M1 = 〈M ′

1,M
′
2〉 and M = 〈enc(M ′

1,M2), enc(M ′
2,M2)〉. By

rule 3, we know that both M ′
1 and M ′

2 are in sat(φ) since fst(M1) → M ′
1

and snd(M1) → M ′
2. Thus M is a context over terms of sat(φ) where

the context may be chosen as C′ = 〈enc( , ), enc( , )〉 since |C ′| = 7 ≤
72 = 49.

– For enc(M1, T ) → M with M1 ∈ sat(φ), fn(T ) ∩ ñ = ∅, and |T | ≤ 5:
We have similarly that M = 〈enc(M ′

1, T ), enc(M ′
2, T )〉 with M ′

1 and M ′
2

in sat(φ). Thus M is a context over terms of sat(φ) where the context may
be chosen as C′ = 〈enc( , T ), enc( , T )〉 since |C ′| ≤ 5 + 2|T | ≤ 15 ≤
72 = 49.

– For enc(T,M2) → M with M2 ∈ sat(φ), fn(T ) ∩ ñ = ∅, and |T | ≤ 5:
We must have T = 〈T1, T2〉 with |T1| + |T2| ≤ 4. We obtain M =
〈enc(T1,M2), enc(T2,M2)〉, so M is a context over terms of sat(φ) where
the context may be chosen as C′ = 〈enc(T1, ), enc(T2, )〉 since |C ′| ≤
5 + |T1| + |T2| ≤ 9 ≤ 49.

• C = dec( , ), C = dec( , T ), or C = dec(T, ) where fn(T ) ∩ ñ = ∅ and
|T | ≤ 5, and the rule dec(〈x, y〉, z) → 〈dec(x, z), dec(y, z)〉 has been applied.

These three cases are very similar to the three cases above.

5.2.3 Addition

We consider a simple theory for addition. Let Σadd be any signature that contains 0, s,
pred, and plus, with the equations:

Eadd =

⎧⎨
⎩

plus(x, s(y)) = plus(s(x), y)
plus(x, 0) = x

pred(s(x)) = x

⎫⎬
⎭

The size cEadd
of this theory is at least 4 (and possibly higher if Σadd contains symbols

other than 0, s, pred, and plus). We define Radd by simply orienting the equations from
left to right. Using this choice of Radd, it is easy to verify that Eadd is convergent. (Note
that Eadd has no AC symbol.) For local stability, when φ = νñ{M1/x1, . . . , Mk/xk}
is any frame in normal form, we define sat(φ) to be the smallest set such that:
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1. for every 1 ≤ i ≤ k, Mi ∈ sat(φ), and for every n ∈ fn(φ), n ∈ sat(φ),

2. if M1, . . . , Mk ∈ sat(φ) and f(M1, . . . , Mk) ∈ st(sat(φ)), then f(M1, . . . ,
Mk) ∈ sat(φ),

3. if pred(M) h→ M ′ and M ∈ sat(φ) then M ′ ∈ sat(φ).

The set sat(φ) is finite since we add only subterms of terms of φ. The set sat(φ)
trivially satisfies conditions 1, 2, and 4 of Definition 6. Let us show that it satisfies

condition 3. Assume that C[M1, . . . , Mk] h→ M with Mi ∈ sat(φ) and |C| ≤ cEadd
.

The only non-trivial case is the one where plus(M1,M2)
h→ M ′ with M1,M2 ∈

sat(φ) and the rule plus(x, s(y)) → plus(s(x), y) has been applied. We must have

that M2 = s(M ′
2). Hence pred(M2)

h→ M ′
2, so M ′

2 ∈ sat(φ). Now, we have M ′ =
plus(s(M1),M ′

2), with M1,M
′
2 ∈ sat(φ) and |plus(s( ), )| = 4 ≤ 42, so condition 3

is satisfied.
Note that, were we to omit the equation pred(s(x)) = x in our equational theory,

the proof of local stability would no longer be valid.

5.2.4 Blind signatures

We consider a theory recently introduced by Kremer and Ryan in order to model
blind signatures and related constructs in their analysis of a protocol for electronic
voting [26]. This theory treats signatures much like that of Section 4, with four differ-
ences: the checking construct is called checksign (rather than check); checking does not
require plaintext; there is no separate signature-key computation (no function sk); and,
most importantly, this theory also describes signature blinding and unblinding func-
tions. Let Σblind be any signature that contains open, commit, getpk, host, checksign,
sign, unblind, and blind, with the equations:

Eblind =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

open(commit(x, y), y) = x
getpk(host(x)) = x

checksign(sign(x, y), pk(y)) = x
unblind(blind(x, y), y) = x

unblind(sign(blind(x, y), z), y) = sign(x, z)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The size cEblind
of the theory is at least 7 (and possibly higher if Σblind contains ad-

ditional symbols). We define Rblind by simply orienting the equations from left to
right. The theory Eblind is clearly convergent. To prove that Eblind is locally stable,
we extend the definition of subterms by requiring that sign(M1,M3) is a subterm of
sign(blind(M1,M2),M3). More formally, we define:

stext(u) = u
stext(sign(blind(M1,M2),M3)) =

{sign(M1,M3)} ∪ {sign(blind(M1,M2),M3)}
∪ stext((blind(M1,M2)) ∪ stext(M3)

stext(f(M1, . . . , Mk)) =
{f(M1, . . . , Mk)} ∪

⋃k
i=1 stext(Mi)

otherwise (that is, for other terms)
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When φ = νñ{M1/x1, . . . , Mk/xk} is any frame in normal form, we define sat(φ) to
be the smallest set such that:

1. for every 1 ≤ i ≤ k, Mi ∈ sat(φ), and for every n ∈ fn(φ), n ∈ sat(φ),

2. if M1, . . . , Mk ∈ sat(φ) and f(M1, . . . , Mk) ∈ st(sat(φ)), then f(M1, . . . ,
Mk) ∈ sat(φ),

3. if C[M1, . . . , Mk] h→ M , Mi ∈ sat(φ) and M ∈ stext(sat(φ)) then M ∈ sat(φ).

The set sat(φ) is finite since we add only extended subterms of terms of φ. The set
sat(φ) trivially satisfies conditions 1, 2, and 4 of Definition 6. Let us show that it

satisfies condition 3. Assume that C[M1, . . . , Mk] h→ M with Mi ∈ sat(φ) and
|C| ≤ cEblind

. If one of the four first rules of Rblind has been applied, then M is a
subterm of C[M1, . . . , Mk]. Thus either M = C ′[M1, . . . , Mk] for some context C′

and condition 3 is satisfied or M is a subterm of one of the terms Mi, thus M ∈ sat(φ)
and condition 3 is satisfied. If the fifth rule of Rblind has been applied, then three
(non-trivial) cases may arise.

• If M2
h→ M then M is an extended subterm of M2, so M ∈ sat(φ) and condi-

tion 3 is satisfied.

• Similarly, if unblind(M1,M2)
h→ M then M is an extended subterm of M1, so

M ∈ sat(φ) and condition 3 is satisfied.

• Finally, suppose that unblind(sign(M1,M2),M3)
h→ M . It must be the case that

M1 = blind(M ′
1,M3). Since unblind(M1,M3)

h→ M ′
1 and M ′

1 is a subterm of
M1, we have M ′

1 ∈ sat(φ). Now, since M = sign(M ′
1,M2) and |sign( , )| =

3 ≤ 72, condition 3 is satisfied.

5.2.5 Pure AC theory

We consider the case where the signature contains only constant symbols and AC sym-
bols ⊕1, . . . ,⊕k and the equational theory Eac contains only the AC equations for each
symbol:

Eac =
k⋃

i=1

{
(x ⊕i y) ⊕i z = x ⊕i (y ⊕i z)

x ⊕i y = y ⊕i x

}

With the empty rewriting system Rac = ∅, Eac is an AC-convergent theory. When
φ = νñ{M1/x1, . . . , Mk/xk} is any frame, we define sat(φ) to be the smallest set
such that:

1. for every 1 ≤ i ≤ k, Mi ∈ sat(φ), and for every n ∈ fn(φ), n ∈ sat(φ),

2. if M1,M2 ∈ sat(φ) and M1 ⊕i M2 ∈ st(sat(φ)), then M1 ⊕i M2 ∈ sat(φ),

3. if M1 =AC M2 and M1 ∈ sat(φ) then M2 ∈ sat(φ).
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The set sat(φ) is finite since we add only terms smaller or equal than the maximal size
of the terms of φ. The set sat(φ) trivially satisfies conditions 1, 2, and 4 of Definition 6.
It also satisfies condition 3 since the rewriting system Rac is empty. Thus Eac is locally
stable.

Now, for any frame φ = νñσ, the set of equations Eq(φ) simply consists of
EqAC (φ,N − ñ). Since names that do not appear in φ need not be considered,
EqAC (φ,N − ñ) is equivalent to EqAC (φ,N) where N is the set of free names of φ, in
the sense that for any frame ψ, ψ |= EqAC (φ,N − ñ) if and only if ψ |= EqAC (φ,N).
By Proposition 14, we conclude that the equational theory Eac is locally finite.

5.2.6 XOR

We consider the theory Exor of the XOR operator (defined in Example 3).
We have seen that Exor is AC-convergent. We wish to verify that Exor is locally

stable. When φ = νñ{M1/x1, . . . , Mk/xk} is any frame in normal form, we define
sat(φ) to be the smallest set, closed under AC, such that:

1. for every 1 ≤ i ≤ k, Mi ∈ sat(φ), and for every n ∈ fn(φ), n ∈ sat(φ), and
0 ∈ sat(φ),

2. if M1, . . . , Mk ∈ sat(φ) and f(M1, . . . , Mk) ∈ st(sat(φ)), then f(M1, . . . ,
Mk) ∈ sat(φ),

3. if M1,M2 ∈ sat(φ), then (M1 ⊕ M2)↓ ⊆ sat(φ),

4. if a is a name not in ñ and if M ⊕ a →AC M ′ with M ′ ∈ st(sat(φ)), then
M ′ ∈ sat(φ).

Let us first show that sat(φ) is finite. Let the set sst(φ) of simple subterms of φ be the
set of subterms of φ whose head symbol is not ⊕. Let S = {T1 ⊕ · · · ⊕ Tn | Ti ∈
sst(φ), Ti �= 0, Ti = Tj ⇒ i = j} be the set of sums of distinct terms of sst(φ).
The set S is finite and sat(φ) ⊆ S. Indeed, it is easy to show that S satisfies the four
conditions above, using that st(S) = S.

The set sat(φ) trivially satisfies conditions 1, 2, and 4 of Definition 6. Let us
show that it satisfies condition 3. Let M1, . . . , Mk ∈ sat(φ) and C be a context

such that fn(C) ∩ ñ = ∅ and assume that C[M1, . . . , Mk] h→ M . We have that
C[M1, . . . , Mk] =AC

⊕k
i=1 Mi ⊕

⊕n
i=1 ai, where each ai is a name not in ñ or the

constant 0. Let us show that one of the normal forms of C[M1, . . . , Mk] is a con-
text of terms in sat(φ). Applying recursively rule 3, we obtain that (

⊕k
i=1 Mi)↓ ⊆

sat(φ). Now, applying recursively rule 4, we obtain that C[M1, . . . , Mk]↓ =AC M ′ ⊕⊕r
j=1 aij

, with M ′ ∈ sat(φ). By AC-convergence, we know that M →∗
AC=AC

M ′ ⊕
⊕r

j=1 aij
with M ′ ⊕

⊕r
j=1 aij

∈ sum⊕(sat(φ), ñ), since no aij
is 0 (for other-

wise the term would not be in normal form), so the context C′ that simply consists of
a hole satisfies the required conditions.

Like in the pure AC case, for any frame φ, the set of equation Eq(φ) simply consists
of EqAC (φ,N − ñ) since the only constant is 0 and 0 is itself in sat(φ). Since names
that do not appear in φ do not need to be considered, EqAC (φ,N − ñ) is equivalent to
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EqAC (φ,N) where N is the set of free names of φ, in the sense that for any frame ψ,
ψ |= EqAC (φ,N − ñ) if and only if ψ |= EqAC (φ,N). Thus, by Proposition 14, the
equational theory Exor is locally finite.

Note that, in this example, we can also conclude without using Proposition 14.
Indeed, we can consider the set Eq′(φ) that consists of the equations

k1⊕
j=1

ζMij
⊕

k2⊕
j=1

nij
=

l1⊕
j=k1+1

ζMij
⊕

l2⊕
j=k2+1

nij

such that ⎛
⎝ k1⊕

j=1

ζMij
⊕

k2⊕
j=1

nij
=E

l1⊕
j=k1+1

ζMij
⊕

l2⊕
j=k2+1

nij

⎞
⎠ φ

nij
∈ fn(φ), and l �= j =⇒ Mil

�= Mij
, nil

�= nij
. Clearly, Eq′(φ) is finite and it is

easy to verify that, for any frame ψ, ψ |= EqAC (φ, ñ) if and only if ψ |= Eq′(φ).

5.3 Decidability results

In this section, we state and prove our decidability results for deduction and static
equivalence.

5.3.1 Decidability of deduction

Theorem 2 For locally stable equational theories, deduction is decidable. More pre-
cisely, given a frame φ and a term M , once M↓ and sat(φ) are computed, φ � M can
be decided in polynomial time in |M↓ | and |sat(φ)|.

The proof is based on the following lemma.

Lemma 9 Let E be a locally stable theory. Let φ = νñσ be a frame. For every
context C1 such that fn(C1) ∩ ñ = ∅, for every Mi ∈ sat(φ), for every term T such
that C1[M1, . . . , Mk] →AC T , there exist a context C2 such that fn(C2) ∩ ñ = ∅, and
terms M ′

i ∈ sat(φ), such that T →∗
AC C2[M ′

1, . . . , M
′
l ].

This lemma is a weak version of Lemma 11 presented in Section 5.3.2. Applying
repeatedly this lemma leads to the following corollary.

Corollary 1 Let E be a locally stable theory. Let φ = νñσ be a frame. For every
context C1 such that fn(C1) ∩ ñ = ∅, for every Mi ∈ sat(φ), for every term T in
normal form such that C1[M1, . . . , Mk] →∗

AC T , there exist a context C2 such that
fn(C2) ∩ ñ = ∅, and terms M ′

i ∈ sat(φ), such that T =AC C2[M ′
1, . . . , M

′
l ].

Assuming Lemma 9, let φ = νñσ be a frame, C1 be a context such that fn(C1) ∩ ñ =
∅, Mi ∈ sat(φ), and T a term in normal form such that C1[M1, . . . , Mk] →∗

AC T .
Either C1[M1, . . . , Mk] =AC T and we are done or we have C1[M1, . . . , Mk] →AC

T ′ →∗
AC T . By Lemma 9, there exist a context C2 such that fn(C2) ∩ ñ = ∅, and

terms M ′
i ∈ sat(φ), such that T ′ →∗

AC C2[M ′
1, . . . , M

′
l ]. By AC-confluence of the
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equational theory and since T is in normal form, C2[M ′
1, . . . , M

′
l ] →∗

AC T . Since the
equational theory is AC-terminating, we repeat this transformation until we obtain that
T =AC C3[M ′′

1 , . . . , M ′′
l ] for some terms M ′′

i ∈ sat(φ) and some context C3.
We show that for any term deducible from a frame φ, one of its normal forms is a

context over terms in sat(φ).

Proposition 16 Let φ = νñσ be a frame, M be a closed term, and M↓ its set of
normal forms. Then φ � M if and only if there exist a term T ∈ M↓, a context C, and
terms M1, . . . , Mk ∈ sat(φ) such that fn(C) ∩ ñ = ∅ and T == C[M1, . . . , Mk].

If there exists T ∈ M↓ such that T == C[M1, . . . , Mk] with fn(C) ∩ ñ = ∅, then
T =E C[ζM1 , . . . , ζMk

]σ, by construction of ζM1 , . . . , ζMk
. Therefore, by Proposi-

tion 1, φ � T , so φ � M .
Conversely, if φ � M , then by Proposition 1, there exists ζ such that fn(ζ) ∩

ñ = ∅ and M =E ζσ. Thus there exists T ′ ∈ (M↓ ∩ (ζσ)↓). Since ζσ →∗
AC T ′,

applying Corollary 1, we obtain that T ′ =AC C[M1, . . . , Mk] for some M1, . . . , Mk ∈
sat(φ) and C such that fn(C) ∩ ñ = ∅. Thus we end the proof by choosing T ==
C[M1, . . . , Mk].

We derive that φ � M can be decided by checking whether one of the terms in M↓
is of the form C[M1, . . . , Mk] with Mi ∈ sat(φ). Regarding the complexity, once M↓
and sat(φ) are computed, φ � M can be decided in polynomial time in |M ↓ | and
|sat(φ)| using the same procedure as for Theorem 1.

5.3.2 Decidability of static equivalence

Theorem 3 For locally decidable equational theories, static equivalence is decidable.
A fortiori, for locally finite equational theories, static equivalence is decidable.

The complexity of the resulting decision procedure closely depends on the com-
plexity of the procedure that ensures local decidability. For locally decidable equational
theories, this complexity is simply the complexity of checking whether φ |= Eq(ψ)
given the frames φ and ψ. For locally finite equational theories, it depends polynomi-
ally on the time needed to compute Eq′(φ) and the time needed to check whether ψ
satisfies each equation of Eq′(φ).

Our result relies on three hypotheses, namely AC-convergence, locally stability,
and local decidability. We leave as an open problem whether the third hypothesis is
essential. As far as we know, it might be that AC-convergence and local stability imply
local decidability. However, our experience with proofs of local decidability suggests
that this implication does not hold, at least not trivially.

The proof is based on two main lemmas that we prove in Appendix B.

Lemma 10 Let E be a locally stable theory. Let φ = νñσ and ψ = νñ′σ′ be two
frames such that ψ |= Eq(φ). For all contexts C1 and C2 such that (fn(C1)∪fn(C2))∩
ñ = ∅, for all terms Mi,M

′
i ∈ sat(φ), if C1[M1, . . . , Mk] =AC C2[M ′

1, . . . , M
′
l ], then

(C1[ζM1 , . . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

Lemma 11 Let E be a locally stable theory. Let φ = νñσ be a frame. For every
context C1 such that fn(C1)∩ñ = ∅, for every Mi ∈ sat(φ), for every term T such that
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C1[M1, . . . , Mk] →AC T , there exist a context C2 such that fn(C2)∩ ñ = ∅, and terms
M ′

i ∈ sat(φ), such that T →∗
AC C2[M ′

1, . . . , M
′
l ] and for every frame ψ |= Eq(φ),

(C1[ζM1 , . . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

As for Corollary 1, applying repeatedly Lemma 11 leads to the following corollary.

Corollary 2 Let E be a locally stable theory. Let φ = νñσ be a frame. For every
context C1 such that fn(C1) ∩ ñ = ∅, for every Mi ∈ sat(φ), for every term T in
normal form such that C1[M1, . . . , Mk] →∗

AC T , there exist a context C2 such that
fn(C2) ∩ ñ = ∅, and terms M ′

i ∈ sat(φ), such that T =AC C2[M ′
1, . . . , M

′
l ] and for

every frame ψ |= Eq(φ), (C1[ζM1 , . . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

In order to check whether two frames satisfy the same equations, we show (using
these two lemmas) that it is sufficient to check whether they satisfy the same “small”
equations.

Proposition 17 Let E be a locally stable theory. For all frames φ and ψ, we have
φ ≈s ψ if and only if φ |= Eq(ψ) and ψ |= Eq(φ).

By definition of static equivalence, if φ ≈s ψ then φ |= Eq(ψ) and ψ |= Eq(φ).
Conversely, assume now that ψ |= Eq(φ) and consider M and N such that there

exist ñ and σ such that φ = νñσ, (fn(M) ∪ fn(N)) ∩ ñ = ∅, and (M =E N)φ. Then
Mσ =E Nσ, so ((Mσ)↓∩ (Nσ)↓) �= ∅. Let T ∈ ((Mσ)↓∩ (Nσ)↓). Since Mσ →∗

AC

T , by applying Corollary 2 we obtain that there exist CM and M1, . . . , Mk ∈ sat(φ)
such that fn(CM ) ∩ ñ = ∅, T =AC CM [M1, . . . , Mk], and (M =E CM [ζM1 , . . . ,
ζMk

])ψ. Since Nσ →∗
AC T , we obtain similarly that there exist CN and M ′

1, . . . ,
M ′

l ∈ sat(φ) such that fn(CN ) ∩ ñ = ∅, T =AC CN [M ′
1, . . . , M

′
l ], and (N =E

CN [ζM ′
1
, . . . , ζM ′

l
])ψ. Moreover, since CM [M1, . . . , Mk] =AC CN [M ′

1, . . . , M
′
l ], we

derive from Lemma 10 that (CM [ζM1 , . . . , ζMk
] =E CN [ζM ′

1
, . . . , ζM ′

l
])ψ, so (M =E

N)ψ. Symmetrically, if (M =E N)ψ and φ |= Eq(ψ), then (M =E N)φ. We
conclude that φ ≈s ψ.

Therefore, given φ and ψ, we may consider Eq(φ) and Eq(ψ) in order to decide
whether φ ≈s ψ. By local decidability of the theory, we can decide whether φ |=
Eq(ψ) and ψ |= Eq(φ).

6 Conclusion

This paper investigates decidability questions for message deducibility and static equiv-
alence, two formal representations for knowledge in the analysis of security protocols.
This investigation yields a few somewhat negative results, for example that static equiv-
alence cannot always be reduced to message deducibility. On the other hand, the main
results are strong, positive ones: message deducibility and static equivalence are decid-
able under a wide class of equational theories. This class includes, in particular, stan-
dard theories for basic cryptographic primitives. It also includes some less standard,
more advanced examples: theories of XOR, homomorphic encryption, blind signa-
tures, addition, and pure AC theories. We succeed in giving a unified treatment for this
disparate collection of theories, with a body of techniques that apply to all of them plus
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special techniques for verifying that particular theories belong in the class. In addition,
for a simple, syntactically defined subclass of theories, we prove that deducibility and
static equivalence are actually decidable in polynomial time.

The performances of the corresponding decision procedures obviously depend on
the choice of equational theory, and we do not expect them to be very good in many
cases. Nevertheless, for many theories of interest, deciding deducibility and static
equivalence may well be practical. Baudet has recently implemented a variant of our
procedures [6]. The tool ProVerif supports another approach for establishing static
equivalences [13].

As indicated in the introduction, deduction and static equivalence are static notions,
but they play an important role in analyses with respect to active attacks. Nevertheless,
it remains challenging to obtain decidability results with respect to active attacks. This
problem is addressed in recent and ongoing work. That work is still largely under way,
so detailed descriptions may be premature, but we briefly mention some interesting
developments. Going beyond the work of Delaune and Jacquemard [21] (described
in the introduction), Baudet has proved that both deduction and static equivalence are
decidable under convergent subterm theories [7]. Comon-Lundh is studying the de-
cidability of deduction under general equational theories, including associativity and
commutativity properties [18]. Overall, this field appears as a lively one, with increas-
ingly sophisticated techniques and powerful theorems. We may therefore look forward
to much progress in algorithmic reasoning about the knowledge of active attackers in
security protocols.
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Appendix

A Proof of Proposition 6 and additional material on
Proposition 5

Proposition 6. The following problem is undecidable.
Input: Two machines M(M1,M2) and M(M ′

1,M
′
2) and a word w of A∗.

Output: Does the following property (P) hold for M(M1,M2) and M(M ′
1,M

′
2): for

any sequences s1, s2 ∈ {1, 2}∗, M(M1,M2), w
s1→ and M(M1,M2), w

s2→ have the
same tape if and only if M(M ′

1,M
′
2), w

s1→ and M(M ′
1,M

′
2), w

s2→ have the same
tape?

The halting problem for a deterministic Turing machine can be reduced to this prob-
lem. Given any deterministic Turing machine M = (Q,A, q0, Qf , δ), we construct the
deterministic Turing machine T (M) = (Q,A 
 {co}, q0, Qf , δ′), where we modify
the transitions for the final states:{

δ′(q, a) = δ(q, a) ∀a ∈ A, q /∈ Qf

δ′(q, a) = (q, c0, L) ∀a ∈ A, q ∈ Qf .

Then M(M, T (M)), w s1→ and M(M, T (M)), w s2→ have the same tape for any se-
quences s1, s2 ∈ {1, 2}∗ if and only if M does not reach its final state on w.

Now, let M0 be any fixed deterministic Turing machine. For any sequences s1, s2 ∈
{1, 2}∗, M(M0,M0), w

s1→ and M(M0,M0), w
s2→ have the same tape. We deduce

that M does not reach its final state on w if and only M(M, T (M)) and M(M0,M0)
satisfy the property (P ). This ends the proof of proposition 6.

In order to reduce this undecidable problem to ≈s, we consider the equational
theory Etm displayed in figure 2. By orienting the equations from left to right, we
obtain convergent rewriting rules such that M =Etm M ′ if and only if M ↓== M ′↓
where M↓ is the normal form of M for these rewriting rules. Intuitively, we consider
terms of the form h(w1, q, w2, s

n(0)), where w1 represents the tape before the ma-
chine’s head, w2 represents the tape after the machine’s head, q is the control state, and
sn(0) is a counter that represents the number of rules that have been applied. A term
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Apply(1, [(xq, x1 → xq′ , x2, R), y], h(z1, xq, x1 · z2, x
′))

= h(z1 · x2, xq′ , z2, s(x′))
Apply(1, [(xq, x1 → xq′ , x2, R), y], h(z1, xq, x1, x

′))
= h(z1 · x2, xq′ ,#, s(x′))

Apply(1, [(xq, x1 → xq′ , x2, L), y], h(z1 · x3, xq, x1 · z2, x
′))

= h(z1, xq′ , x3 · (x2 · z2), s(x′))
Apply(2, [y, (xq, x1 → xq′ , x2, R)], h(z1, xq, x1 · z2, x

′))
= h(z1 · x2, xq′ , z2, s(x′))

Apply(2, [y, (xq, x1 → xq′ , x2, R)], h(z1, xq, x1, x
′))

= h(z1 · x2, xq′ ,#, s(x′))
Apply(2, [y, (xq, x1 → xq′ , x2, L)], h(z1 · x3, xq, x1 · z2, x

′))
= h(z1, xq′ , x3 · (x2 · z2), s(x′))

Figure 2: The equational theory Etm.

[(q, a → q1, a1,D1), (q, a → q2, a2,D2)] represents a couple of rules of two Turing
machine. Then the term

Apply(i, [(q, a → q1, a1,D1), (q, a → q2, a2,D2)], h(w1, q, w2, s
n(0))),

where i ∈ {1, 2},D1,D2 ∈ {L,R}, represents the application of the rule number 1
or 2 (depending on i) on the tape h(w1, q, w2, s

n(0)). The result of this application is
given by the equational theory Etm.

Now, to each machine M(M1,M2), we associate the frame φM(M1,M2):

ν(A ∪ Q)[h(#, q0,#, 0)/x0] ∪
⋃

a∈A,q∈Q

[[(q, a → δ1(q, a)), (q, a → δ2(q, a))]/xa,q]

Then we can verify that two machines M(M1,M2) and M(M ′
1,M

′
2) verify the prop-

erty (P) of proposition 6 if and only if φM(M1,M2) ≈s φM(M ′
1,M ′

2)
. We deduce that ≈s

is undecidable for the equational theory Etm.
At the same time, � remains decidable: in order to decide whether φ � M , where

φ = νñσ, it is sufficient to decide if there exists ζ such that fn(ζ) ∩ ñ = ∅ and
ζσ =Etm M , that is, ζσ ↓== M ↓. Intuitively, for φ of the form φM(M1,M2) and
for M of the form h(w1, q, w2, s

n(0)), we are looking for some sequences of choices
(represented by ζ) such that the tape of the machine M(M1,M2) after this sequence of
choices is equal to M . Since the term M contains the number of rules that have been
applied, it is sufficient to test any sequence of choices of length equal to this number of
rules, so there is a finite number of sequences to check. This idea can be generalized
to any φ and M , establishing that � is decidable. (We do not give the proof of this
generalization, in light of Borgström’s alternative proof of Proposition 5.)
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B Proofs of Lemmas 10 and 11

Definition 11 The set P(M) of paths of a term M is defined inductively by:

P(u) = ε

P(f(M1, . . . , Mn)) = ε ∪
n⋃

i=1

i · P(Mi) for i ≤ n

The subterm of M at position p ∈ P(M), written M |p, is defined inductively by:

M |ε = M

f(M1, . . . , Mn)|i·p = Mi|p for i ≤ n

Lemma 10. Let E be a locally stable theory. Let φ = νñσ and ψ = νñ′σ′ be two
frames such that ψ |= Eq(φ). For all contexts C1 and C2 such that (fn(C1)∪fn(C2))∩
ñ = ∅, for all terms Mi,M

′
i ∈ sat(φ), if C1[M1, . . . , Mk] =AC C2[M ′

1, . . . , M
′
l ], then

(C1[ζM1 , . . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

This lemma is proved by induction on the sum of the sizes of C1 and C2.

Base case: If |C1|, |C2| ≤ cE , then the equation

(C1[ζM1 , . . . , ζMk
] = C2[ζM ′

1
, . . . , ζM ′

l
])

is in Eq(φ) since |C1| ≤ cE and |C2| ≤ cE ≤ c2
E , so ψ |= Eq(φ) implies

(C1[ζM1 , . . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

Inductive step: If neither C1 nor C2 is a hole, then C1 == f(C1
1 , . . . , Cr

1) and
C2 == f(C1

2 , . . . , Cr
2). There are two cases.

• f is not an AC symbol. Then, for every 1 ≤ i ≤ r, Ci
1[M1, . . . , Mk] =AC

Ci
2[M

′
1, . . . , M

′
l ]. By applying the induction hypothesis, we obtain

(Ci
1[ζM1 , . . . , ζMk

] =E Ci
2[ζM ′

1
, . . . , ζM ′

l
])ψ

so
(C1[ζM1 , . . . , ζMk

] =E C2[ζM ′
1
, . . . , ζM ′

l
])ψ

• f is an AC symbol ⊕. We write C1 = C1
1 ⊕ · · · ⊕ Cr

1 ⊕ x1 ⊕ · · · ⊕ xp

and C2 = C1
2 ⊕ · · · ⊕ Cr′

2 ⊕ y1 ⊕ · · · ⊕ yp′ in such a way that the head
symbol of the contexts Ci

1 and Cj
2 is not ⊕, Ci

1 and Cj
2 are not holes, and

the variables xi and yj refer to the holes of C1 and C2. If the equation
can be split, with C1 =AC C ′

1 ⊕ C ′′
1 and C2 =AC C ′

2 ⊕ C ′′
2 such that

(C ′
1[ζM1 , . . . , ζMk

] =E C ′
2[ζM ′

1
, . . . , ζM ′

l
])φ and (C ′′

1 [ζM1 , . . . , ζMk
] =E

C ′′
2 [ζM ′

1
, . . . , ζM ′

l
])φ, then we conclude as above, applying the induction

hypothesis. On the other hand, if the equation cannot be split, for every
1 ≤ i ≤ r, Ni

def= Ci
1[M1, . . . , Mk] is not equal to some Cj

2 [M ′
1, . . . , M

′
l ]

so it must be a subterm of some M ′
j . Since each M ′

j is in sat(φ) and by

39



applying recursively rule 2 of Definition 6, we get that Ni is in sat(φ), thus
there exists ζNi

∈ ρ(φ) such that ζNi
σ =E Ni. Symmetrically, for every

1 ≤ j ≤ r, N ′
j

def= Cj
1 [M ′

1, . . . , M
′
k] is not equal to some Ci

1[M1, . . . , Ml],
so N ′

j ∈ sat(φ) and there exists ζN ′
j
∈ ρ(φ) such that ζN ′

j
σ =E N ′

j .

– From Ni == Ci
1[M1, . . . , Mk] and applying the induction hypothe-

sis, we get ζNi
σ′ =E Ci

1[ζM1 , . . . , ζMk
]σ′ and similarly, ζN ′

j
σ′ =E

Cj
2 [ζM1 , . . . , ζMk

]σ′.
– Renaming Ci

1[M1, . . . , Mk] by Ni in our initial equation, we get N1⊕
· · · ⊕ Nr ⊕ M1 ⊕ · · · ⊕ Mp = N ′

1 ⊕ · · · ⊕ N ′
r′ ⊕ M ′

1 ⊕ · · · ⊕ M ′
p′ .

Applying the base case, we get (ζN1⊕· · ·⊕ζNr
⊕ζM1⊕· · ·⊕ζMp

=E

ζN ′
1
⊕· · ·⊕ζN ′

r′
⊕ζM ′

1
⊕· · ·⊕ζM ′

p′ )σ. Since this equation is in Eq(φ),
we deduce (ζN1 ⊕· · ·⊕ζNr

⊕ζM1 ⊕· · ·⊕ζMp
=E ζN ′

1
⊕· · ·⊕ζN ′

r′
⊕

ζM ′
1
⊕ · · · ⊕ ζM ′

p′ )σ
′.

Combining these equations, we get

(C1[ζM1 , . . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ

If C1 or C2 is a hole, then let us say C1 == f(C1
1 , . . . , Cr

1) and C2 == .
Let M,M1, . . . , Mk ∈ sat(φ) and assume C1[M1, . . . , Mk] =AC M . Again we
consider two cases.

• f is not an AC symbol. Then we have

f(C1
1 [M1, . . . , Mk], . . . , Cr

1 [M1, . . . , Mk]) =AC M

For every 1 ≤ i ≤ r, let Ni
def= Ci

1[M1, . . . , Mk]. Thus, each Ni is a
subterm of M , so it is in st(sat(φ)). Since each Mj is in sat(φ) and by
applying repeatedly rule 2 of Definition 6, we get that Ni is in sat(φ).
Thus there exists ζNi

∈ ρ(φ) such that ζNi
σ =E Ni.

– From Ni == Ci
1[M1, . . . , Mk] and applying the induction hypothesis,

we get ζNi
σ′ =E Ci

1[ζM1 , . . . , ζMk
]σ′.

– From M =AC f(N1, . . . , Nr) and applying the base case, we get
ζMσ′ =E f(ζN1 , . . . , ζNr

)σ′.

Combining these equations, we get

(ζM =E C1[ζM1 , . . . , ζMk
])ψ

• f is an AC symbol ⊕. We write C1 = C1
1 ⊕ · · · ⊕ Cr

1 ⊕ x1 ⊕ · · · ⊕ xp

and C2 = x, and we have C1
1 [M1, . . . , Mk] ⊕ . . . ⊕ Cr

1 [M1, . . . , Mk] ⊕
M ′

1 ⊕ . . . ⊕ M ′
p =AC M . Each Ni

def= Ci
1[M1, . . . , Mk] is a subterm of

M ∈ sat(φ) thus is in sat(φ). Again, there exists ζNi
∈ ρ(φ) such that

ζNi
σ =E Ni.

– From Ni == Ci
1[M1, . . . , Mk] and applying the induction hypothesis,

we get ζNi
σ′ =E Ci

1[ζM1 , . . . , ζMk
]σ′.
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– From N1 ⊕ . . . ⊕ Nr ⊕ M ′
1 ⊕ . . . ⊕ M ′

p =AC M and by the equation
ζN1 ⊕ · · · ⊕ ζNr

⊕ ζM ′
1
⊕ · · · ⊕ ζM ′

p
=E ζM is in Eq(φ), we get

(ζN1 ⊕ · · · ⊕ ζNr
⊕ ζM ′

1
⊕ · · · ⊕ ζM ′

p
=E ζM )σ′.

Combining these equations, we get

(C1[ζM1 , . . . , ζMk
] =E ζM )ψ

Lemma 11. Let E be a locally stable theory. Let φ = νñσ be a frame. For every
context C1 such that fn(C1)∩ñ = ∅, for every Mi ∈ sat(φ), for every term T such that
C1[M1, . . . , Mk] →AC T , there exist a context C2 such that fn(C2)∩ ñ = ∅, and terms
M ′

i ∈ sat(φ), such that T →∗
AC C2[M ′

1, . . . , M
′
l ] and for every frame ψ |= Eq(φ),

(C1[ζM1 , . . . , ζMk
] =E C2[ζM ′

1
, . . . , ζM ′

l
])ψ.

An easy case is when the reduction occurs inside one of the terms Mi: Mi →AC

M ′
i . By definition of sat(φ) (since E is locally stable), we know that there exists C such

that |C| ≤ c2
E , fn(C) ∩ ñ = ∅, and M ′

i →∗
AC C[M ′′

1 , . . . , M ′′
l ] where M ′′

i ∈ sat(φ).
In addition, the equation ζMi

= C[ζM ′′
1
, . . . , ζM ′′

l
] is in Eq(φ) (since |C| ≤ c2

E), thus
(ζMi

=E C[ζM ′′
1
, . . . , ζM ′′

l
])ψ. We obtain that

T == C1[M1, . . . , Mi−1,M
′
i ,Mi+1, . . . , Mk]

→∗
AC C1[M1, . . . , C[M ′′

1 , . . . , M ′′
l ], . . . , Mk]

and ⎛
⎝ (C1[ζM1 , . . . , ζMk

]
=E

C1[ζM1 , . . . , C[ζM ′′
1
, . . . , ζM ′′

l
], . . . , ζMk

]

⎞
⎠ ψ

We now consider the case where the reduction does not occur inside the terms Mi.
We can assume that

for every path p of C1,
if C1|p[M1, . . . , Mk] is in sat(φ), (*)
then C1|p is the single hole context.

Indeed, if there exists a path p of C1 such that T1
def= C1|p[M1, . . . , Mk] ∈ sat(φ) and

C1|p is not a hole then C1[M1, . . . , Mk] == C ′
1[T1,M1, . . . , Mk] where T1,Mi ∈

sat(φ) and C ′
1 is a context strictly smaller than C1. In that case, we consider C′

1[T1,
M1, . . . , Mk] instead of C1[M1, . . . , Mk] and we apply the transformation again until
property (*) holds.

We have

C1[M1, . . . , Mk] == C3[M ′′ ⊕ M ′ ⊕
r⊕

i=1

C ′
i[M1, . . . , Mk],M1, . . . , Mk]

where M ′ = M ′
1 ⊕ . . . ⊕ M ′

l , M ′′ = M ′′
1 ⊕ . . . ⊕ M ′′

l with M ′
i ⊕ M ′′

i ∈ sat(φ),
the head symbol of the context C′

i is not ⊕, C ′
i is not a single hole, and T1

def= M ′ ⊕⊕r
i=1 C ′

i[M1, . . . , Mk] is an instance M0θ (modulo AC) of the left-hand side of some
rule M0 → N0 of the rewriting system associated with E.

For each variable x of M0, we consider the occurrences of xθ in T1.
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1. Either xθ occurs as a subterm of one of the terms Mi or M ′
i ;

2. or there exists a subterm of T1 of the form N1⊕. . .⊕Np with Ni =AC N ′
i⊕N ′′

i ∈
sat(φ) for some N ′′

i such that xθ =AC N ′
1 ⊕ . . . ⊕ N ′

p;

3. or there exists a subterm of T1 of the form

N1 ⊕ . . . ⊕ Np ⊕
r′⊕

i=1

C ′′
i [M1, . . . , Mk]

(modulo AC) where the head symbols of the contexts C′′
i are not ⊕ and the

contexts C ′′
i are not a hole, and

xθ =AC N ′
1 ⊕ . . . ⊕ N ′

p ⊕
r′⊕

i=1

C ′′
i [M1, . . . , Mk]

with Ni =AC N ′
i ⊕ N ′′

i ∈ sat(φ) for some N ′′
i , thus the terms N ′

i are subterms
of terms of sat(φ).

Note that case 3 cannot occur simultaneously with case 1 or case 2 for the same
variable x. If case 3 were to occur simultaneously with case 1 or case 2, we would have
that some C ′′

i [M1, . . . , Mk] is a subterm of some Mi or M ′
i , thus applying recursively

rule 2 of Definition 6, we would get that C′′
i [M1, . . . , Mk] ∈ sat(φ), which contradicts

property (*) (since C ′′
i is not a hole).

Without loss of generality, we assume that the variables of M0 are x1, . . . , xk1 , y1,
. . . , yk2 where the variables xi are in case 1 or case 2 and the variables yj are in case 3.
For each variable yj , we consider the l occurrences of yj in T1.

yjθ =AC N1
1 ⊕ . . . ⊕ N1

k1
⊕

⊕r1
i=1 C1

i [M1, . . . , Mk]
...

=AC N l
1 ⊕ . . . ⊕ N l

kl
⊕

⊕rl

i=1 Cl
i [M1, . . . , Mk]

where the terms N j
i are subterms of terms in sat(φ) and the head symbols of the con-

texts Cj
i are not ⊕.

We write cl(Cj
i [M1, . . . , Mk]) for the class of Cj

i [M1, . . . , Mk] modulo AC, and
we associate a fresh name symbol acl(Cj

i [M1,...,Mk]) with each cl(Cj
i [M1, . . . , Mk]).

Therefore, a
cl(C

j1
i1

[M1,...,Mk])
and a

cl(C
j2
i2

[M1,...,Mk])
are the same symbol whenever

Cj1
i1

[M1, . . . , Mk] =AC Cj2
i2

[M1, . . . , Mk]. In each equation

N j1
1 ⊕ . . . ⊕ N j1

kj1
⊕

rj1⊕
i=1

Cj1
i [M1, . . . , Mk]

=AC N j2
1 ⊕ . . . ⊕ N j2

kj2
⊕

rj2⊕
i=1

Cj2
i [M1, . . . , Mk]
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every Cj1
i [M1, . . . , Mk] must be equal modulo AC to one of the terms Cj2

i [M1, . . . ,

Mk]. If Cj1
i [M1, . . . , Mk] were equal to some subterm of the terms N j2

i , Cj1
i [M1, . . . ,

Mk] would be a term of sat(φ), contradicting property (*). Thus, we obtain that

N1
1 ⊕ . . . ⊕ N1

k1
⊕

⊕r1
i=1 aC1

i [M1,...,Mk]

...
=AC N l

1 ⊕ . . . ⊕ N l
kl
⊕

⊕rl

i=1 aCl
i [M1,...,Mk]

def= Tyj

We consider the substitution θ′ such that xiθ
′ = xiθ and yjθ

′ = Tyj
. We define

θ′′(acl(Cj
i [M1,...,Mk])) = Cj

i [M1, . . . , Mk].
We also consider the term T2 that is obtained from

⊕r
i=1 C ′

i[M1, . . . , Mk] by re-
placing each Cj

i [M1, . . . , Mk] with acl(Cj
i [M1,...,Mk]).

We have T2 == C2[S1, . . . , Sk] for some context C2 such that | ⊕ C2| ≤ |M0| ≤
cE and Si ∈ sum⊕(sat(φ), ñ). Since M ′′ ⊕ T2 is an instance M0θ

′ of M0 we have
M ′ ⊕ M ′′ ⊕ T2 →AC M ′ ⊕ N0θ

′. Applying condition 3 of Definition 6, there exist
S′

i ∈ sum⊕(sat(φ), ñ), there exists a context C′, such that |C ′| ≤ c2
E , fn(C ′)∩ ñ = ∅,

and M ′ ⊕ N0θ
′ →∗

AC C ′[S′
1, . . . , S

′
l ]. Applying the substitution θ′′, we deduce that

M ′ ⊕N0θ =AC M ′ ⊕N0θ
′θ′′ →∗

AC C ′[S′
1, . . . , S

′
l ]θ

′′. Note that C ′[S′
1, . . . , S

′
l ]θ

′′ is a
context of terms of sat(φ):

C ′[S′
1, . . . , S

′
l ]θ

′′ = C ′′[M1, . . . , Mk, S′
1, . . . , S

′
l ]

To each sum S = α1M1 ⊕ · · · ⊕αnMn ⊕ β1n1 ⊕ · · · ⊕ βknk in sum⊕(sat(φ), ñ),
we associate the term ζS = α1 ·⊕ ζM1 ⊕ · · · ⊕αn ·⊕ ζMn

⊕ β1 ·⊕ n1 ⊕ · · · ⊕ βk ·⊕ nk.
Now, since the equation ζM ′⊕M ′′ ⊕ C2[ζS1 , . . . , ζSk

] = C ′[ζS′
1
, . . . , ζS′

l
] is in

Eq(φ), we deduce

(ζM ′⊕M ′′ ⊕ C2[ζS1 , . . . , ζSk
] = C ′[ζS′

1
, . . . , ζS′

l
])ψ

If a
cl(C

j1
i1

[M1,...,Mk])
= a

cl(C
j2
i2

[M1,...,Mk])
, we have

Cj1
i1

[M1, . . . , Mk] =AC Cj2
i2

[M1, . . . , Mk]

thus (by Lemma 10) we have

(Cj1
i1

[ζM1 , . . . , ζMk
] = Cj2

i2
[ζM1 , . . . , ζMk

])ψ

So we can reconstruct M ′′ ⊕ T1 and obtain

ζM ′⊕M ′′ ⊕
r⊕

i=1

C ′
i[ζM1 , . . . , ζMk

] = C ′′[ζM1 , . . . , ζMk
, ζS′

1
, . . . , ζS′

l
])ψ

which allows us to conclude the proof of Lemma 11.

43



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


