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Abstract. In this paper we study the link between formal and cryptographic
models for security protocols in the presence of a passive adversary. In contrast
to other works, we do not consider a fixed set of primitives but aim at results for
an arbitrary equational theory. We define a framework for comparinga crypto-
graphic implementation and its idealizationw.r.t. various security notions. In par-
ticular, we concentrate on the computational soundness of static equivalence, a
standard tool in cryptographic pi calculi. We present a soundness criterion, which
for many theories is not only sufficient but also necessary. Finally, weestablish
new soundness results for the Exclusive Or, as well as a theory of ciphers and
lists.

1 Introduction

Today’s ubiquity of computer networks increases the need for theoretic foundations for
cryptographic protocols. For more than twenty years now, two communities separately
developed two families of models. Both views have been very useful in increasing the
understanding and quality of security protocol design. On the one handformalor logical
models have been developed, based on the seminal work of Dolev and Yao [12]. These
models view cryptographic operations in a rather abstract and idealized way. On the
other handcryptographicor computationalmodels [13] are closer to implementations:
cryptographic operations are modeled as algorithms manipulating bit-strings. Those
models cover a large class of attacks, namely all those implementable by a probabilistic
polynomial-time Turing machine.

The advantage of formal models is that security proofs are generally simpler and
suitable for automatic procedures, even for complex protocols [10, 9, 1]. Unfortunately,
the high degree of abstraction and the limited adversary power raise serious questions
regarding the security offered by such proofs. Potentially, justifying symbolic proofs
with respect to standard computational models has tremendous benefits: protocols can
be analyzed using automated tools and still benefit from the security guarantees of the
computational model.

Recently, a significant research effort has been directed atlinking the two approaches.
One of the first result is presented by Abadi and Rogaway [5]: they prove the computa-
tional soundness of formal (symmetric) encryption in the case a passive attacker. Since
then, many results [7, 6, 14, 15] have been obtained. In particular, Backes et al. [7, 6]



prove the soundness of a rich language including digital signatures, public-key and
symmetric key encryption in the presence of an active attacker. Laud [14] presents an
automated procedure for computationally sound proofs of confidentiality in the case of
an active attacker and symmetric encryption when the numberof sessions is bounded.

Each of these results considers a fixed set of primitives,e.g.symmetric or public-
key encryption. In this paper, we aim at presenting general results for arbitrary equa-
tional theories, such as encryption, but also less studied ones,e.g.groups or exclusive
or. We concentrate onstatic equivalence, a notion of indistinguishability common in
cryptographic pi calculi [4, 3]. Intuitively, static equivalence asks whether an attacker
can distinguish between two tuples of terms, by exhibiting an equation which holds on
one tuple but not on the other. This provides an elegant mean to express security prop-
erties against passive attackers. Moreover there exist exact [2] and approximate [11]
algorithms to decide static equivalence for a large family of equational theories.

Our first contribution is a general framework for comparing formal and computa-
tional models in the presence of a passive attacker. We definethe notions ofsoundness
andfaithfulnessof a cryptographic implementationw.r.t.equality, static equivalence and
deducibility. Soundness holds when each formal proof has a computational interpreta-
tion. Faithfulness is the converse,i.e. the formal model does not provide false attacks.

Our second contribution is a sufficient criterion for soundnessw.r.t static equiva-
lence: intuitively the usual computational semantics of terms has to be indistinguishable
to an idealized one. We also provide a general definition of patterns for arbitrary equa-
tional theories that encompasses the notion usually definedfor symmetric and public
encryption. Those patterns allow us to characterize a largeclass of theories for which
our soundness criterion is necessary.

Our third contribution consists in applying our framework to obtain two novel
soundness results. The first theory deals with the ExclusiveOr. Interestingly, our proof
reflects the unconditional security (in the information-theoretic sense) of the One-Time
Pad encryption scheme. Second we consider a theory of symmetric encryption and lists.
In some sense, the result is similar to the one of Abadi and Rogaway [5]. However,
we consider deterministic, length-preserving, symmetricencryption schemesa.k.a.ci-
phers. To the best of our knowledge, this is the first result onsuch schemes, whose
specificity is that decryption always succeeds.

Outline of the paper.In the next section, we introduce our abstract and concrete models
together with the notions of indistinguishability. We thendefine the notions of sound-
ness and faithfulness and illustrate some consequences of soundnessw.r.t. static equiv-
alence on groups. In Section 4, we define the ideal semantics of abstract terms, present
our soundness criterion and also show that for a large familyof interesting equational
theories, the soundness criterion is a necessary condition. As an illustration (Section 5),
we prove the soundness for the theories modeling Exclusive Or, as well as ciphers and
lists. We then conclude and give directions for future work.

2 Modeling cryptographic primitives with abstract algebras

In this section we introduce some notations and set our abstract and concrete models.
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2.1 Abstract algebras

Our abstract models—which we callabstract algebras—consist of term algebras de-
fined on a first-order signature with sorts and equipped with equational theories.

Specifically asignature(S,F) is made of a set ofsortsS = {s, s1 . . .} and a set of
symbolsF = {f, f1 . . .} together with arities of the formar(f) = s1 × . . .× sk → s,
k ≥ 0. Symbols that takek = 0 arguments are calledconstants; their arity is simply
writtens. We fix an infinite set ofnamesN = {a, b . . .} and an infinite set ofvariables
X = {x, y . . .}. We assume that names and variables are given with sorts. Theset of
terms of sorts is defined inductively by

T ::= term of sorts
| x variablex of sort s
| a namea of sort s
| f(T1, . . . , Tk) application of symbolf ∈ F

where for the last case, we further require thatTi is a term of some sortsi andar(f) =
s1× . . .×sk → s. As usual, we writevar(T ) andnames(T ) for the set of variables and
names occurring inT respectively. A term isgroundor closediff it has no variables.

Substitutions are writtenσ = {x1 = T1, . . . , xn = Tn}with dom(σ) = {x1, . . . , xn}.
We only considerwell-sortedsubstitutions, that is substitutionsσ = {x1 = T1, . . . , xn =
Tn} for whichxi andTi have the same sort.σ is closediff all of the Ti are closed. We
extend the notationnames(.) from terms to substitutions in the obvious way. The ap-
plication of a substitutionσ to a termT is writtenσ(T ) = Tσ.

Symbols inF are intended to model cryptographic primitives, whereas names in
N are used to model noncesi.e. concretely random numbers. The abstract semantics
of symbols is described by an equational theoryE, that is an equivalence relation (also
written =E) which is stable by application of contexts and well-sortedsubstitutions of
variables. We further require thatE is stable by substitution of names. All the equational
theories that we consider in this paper satisfy these properties. For instance, symmetric
and deterministic encryption is modeled by the theoryEenc generated by the classical
equationEenc = {dec(enc(x, y), y) = x}.

2.2 Frames, deducibility and static equivalence

Following [3, 2], a frame is an expressionϕ = νã.σ where ã is a set ofbound (or
restricted) namesandσ is a well-sorted substitution. Intuitively, frames represent se-
quences of messages learned by an attacker during the execution of a protocol.

For simplicity we only consider framesνã.σ which restricteverynames occurring
in σ, that isã = names(σ). In other words, namesa must be disclosedexplicitly by
adding a mappingxa = a to the substitution. Thus we tend to assimilate frames and
their underlying substitutions.

A term T is deduciblefrom a closed frameϕ, written ϕ `E T iff there exists a
termM with var(M) ⊆ dom(ϕ) andnames(M) ∩ (names(ϕ) ∪ names(T )) = ∅
such thatMϕ =E T . Consider for instance the theoryEenc and the frameϕ1 =
νk1, k2, k3, k4. {x1 = enc(k1, k2), x2 = enc(k4, k3), x3 = k3}: the namek4 is de-
ducible fromϕ1 sincedec(x2, x3)ϕ1 =Eenc

k4 but neitherk1 nork2 are deducible.
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Deducibility is not always sufficient to account for the knowledge of an attacker.
E.g. it lacks partial information on secrets. This is why the notion of static equivalence
is used. Two closed framesϕ1 andϕ2 arestatically equivalent, writtenϕ1 ≈E ϕ2, iff (i)
dom(ϕ1) = dom(ϕ2), (ii) for all termsM,N with variables included indom(ϕi) and
using no names occurring inϕ1 orϕ2,Mϕ1 =E Nϕ1 is equivalent toMϕ2 =E Nϕ2.

For instance, the two framesνk. {x = enc(0, k)} andνk. {x = enc(1, k)} are stat-
ically equivalent with respect toEenc, whereas the two framesνk. {x = enc(0, k), y =
k} andνk, k′.{x = enc(0, k′), y = k} are not.

2.3 Concrete semantics

We now give terms and frames a concrete semantics, parameterized by an implemen-
tation of the primitives. Provided a set of sortsS and a set of symbolsF as above, a
(S,F)-computational algebraA consists of

– a non-empty set of bit-strings[[s]]A ⊆ {0, 1}∗ for each sorts ∈ S;
– a functionfA : [[s1]]A × . . . × [[sk]]A → [[s]]A for eachf ∈ F with ar(f) =
s1 × . . .× sk → s, such thatfA is computable in polynomial time;

– a congruence=A,s for each sorts that is computable in polynomial time, in order
to check the equality of elements in[[s]]A (the same element may be represented
by different bit-strings); by congruence, we mean a reflexive, symmetric, transi-
tive relation such thate1 =A,s1 e′1, . . . , ek =A,sk

e′k ⇒ fA(e1, . . . , ek) =A,s

fA(e′1, . . . , e
′
k) (in the remaining we often omits and write=A for =A,s);

– a polynomial-time algorithm to draw random elements from[[s]]A; we denote such

a drawing byx
R
←− [[s]]A; the drawing may not follow a uniform distribution, but

no=A,s-equivalence class should have probability0.

Assume a fixed (S,F)-computational algebraA. We associate to each closed frame
ϕ = {x1 = T1, . . . , xn = Tn} a distributionψ = [[ϕ]]A, of which the drawingŝψ ← ψ

are computed as follows:

1. for each namea appearing inT1, . . . , Tn, draw a valuêa
R
←− [[s]]A;

2. for eachxi (1 ≤ i ≤ n) of sortsi, computeT̂i ∈ [[si]]A recursively on the structure

of terms: ̂f(T ′
1, . . . , T

′
m) = fA(T̂ ′

1, . . . , T̂
′
m);

3. return the valuêψ = {x1 = T̂1, . . . , xn = T̂n}.

Such valuesφ = {x1 = e1, . . . , xn = en} with ei ∈ [[si]]A are calledconcrete
frames. We extend the notation[[.]]A to (sets of) closed terms in the obvious way. We
also generalize the notation to terms or frames with variables, by specifying the concrete
values for all of them:[[.]]A,{x1=e1,...,xn=en}. Notice that when a term or a frame con-
tains no names, the translation is deterministic; in this case, we use the same notation
to denote the distribution and its unique value.

(Families of) distributions over concrete frames benefit from the usual notion of
cryptographic indistinguishability. Let us noteη ≥ 0 the complexity parameter. Two
families(ψη) and(ψ′

η) of distributions over concrete frames areindistinguishable, writ-
ten(ψη) ≈ (ψ′

η), iff for every probabilistic polynomial-time adversaryA, intuitivelyA
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cannot guess whether he is given a sample fromψη orψ′
η with a probability significantly

greater than12 . Rigorously, we ask that theadvantageof A,

AdvIND(A, η, ψη, ψ
′
η) = P

[
ψ̂ ← ψη;A(η, ψ̂) = 1

]
− P

[
ψ̂ ← ψ′

η;A(η, ψ̂) = 1
]

is anegligiblefunction ofη, that is, remains eventually smaller than anyη−n (n > 0)
asη tends to infinity.

3 Relating abstract and computational algebras

In the previous section we have defined abstract and computational algebras. We now
relate formal notions such as equality, (non-)deducibility and static equivalence to their
computational counterparts,i.e.equality, one-wayness and indistinguishability.

3.1 Soundness and faithfulness

We introduce the notions of sound,resp.faithful, computational algebras with respect
to the formal relations studied here: equality, static equivalence and deducibility. In
the remaining of the paper we only consider families of computational algebras(Aη)
such that for any sorts, the probability of collisions of two random elements in[[s]]Aη

,
P

[
e1, e2 ← [[s]]Aη

; e1 =Aη
e2

]
, is negligible.

Specifically a family of computational algebras(Aη) is

– =E-soundiff for every closed termsT1, T2 of the same sort,T1 =E T2 implies that
P

[
e1, e2 ← [[T1, T2]]Aη

; e1 6=Aη
e2

]
is negligible;

– =E-faithful iff for every closed termsT1, T2 of the same sort,T1 6=E T2 implies
thatP

[
e1, e2 ← [[T1, T2]]Aη

; e1 =Aη
e2

]
is negligible;

– ≈E-soundiff for every closed framesϕ1, ϕ2 of the same domain,ϕ1 ≈E ϕ2 im-
plies that([[ϕ1]]Aη

) ≈ ([[ϕ2]]Aη
);

– ≈E-faithful iff for every closed framesϕ1, ϕ2 of the same domain,ϕ1 6≈E ϕ2

implies that there exists a polynomial-time adversaryA for distinguishing concrete
frames, such that1−AdvIND(A, η, [[ϕ1]]Aη

, [[ϕ2]]Aη
) is negligible;

– 6`E-soundiff for every closedϕ andT ,ϕ 6`E T implies that for all polynomial-time
adversaryA, P

[
φ, e← [[ϕ, T ]]Aη

;A(φ) =Aη
e
]

is negligible;
– 6`E-faithful iff for every closedϕ and T , ϕ `E T implies that there exists a

polynomial-time adversaryA such that1 − P
[
φ, e← [[ϕ, T ]]Aη

;A(φ) =Aη
e
]

is
negligible.

Sometimes, it is possible to prove stronger notions of soundness that hold without
restriction on the computational power of adversaries. In particular,(Aη) is uncondi-
tionally =E-soundiff for every closed termsT1, T2 of the same sort,T1 =E T2 implies
thatP

[
e1, e2 ← [[T1, T2]]Aη

; e1 =Aη
e2

]
= 1; unconditionally≈E-soundiff for every

closed framesϕ1, ϕ2 of the same domain,ϕ1 ≈E ϕ2 implies([[ϕ1]]Aη
) = ([[ϕ2]]Aη

);
unconditionally6`E-soundiff for every closedϕ andT s.t.ϕ 6`E T , the distributions
for ϕ andT are independent: for allφ0, e0, P

[
φ, e← [[ϕ, T ]]Aη

;φ = φ0 ande = e0
]

=

P
[
φ← [[ϕ]]Aη

;φ = φ0

]
× P

[
e← [[T ]]Aη

; e = e0
]
.
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Generally, (unconditional)=E-soundness is given by construction. Indeed true for-
mal equations correspond to the expected behavior of primitives and should hold in
the concrete world with overwhelming probability. The other criteria are however more
difficult to fulfill. Therefore it is often interesting to restrict frames towell-formedones
in order to achieve soundness or faithfulness: for instanceAbadi and Rogaway [5] do
forbid encryption cycles (c.f.Section 5.2).

It is worth noting that the notions of soundness and faithfulness introduced above
are not independent.

Proposition 1. Let (Aη) be a=E-sound family of computational algebras. Then(Aη)
is 6`E-faithful. If moreover(Aη) is =E-faithful, then it is also≈E-faithful.

The proof is given in Appendix A.1. For many interesting theories, we have that≈E-
soundness implies all the other notions of soundness and faithfulness. This emphasizes
the importance of≈E-soundness and provides an additional motivation for its study. As
an illustration, let us consider an arbitrary theory which includes keyed hash functions.

Proposition 2. Let(Aη) be a family of≈E-sound computational algebras. Assume that
free binary symbolshs : s × Key → Hash are available for every sorts. Then(Aη)
is =E-faithful and 6`E-sound. Besides if the implementations for thehs are collision-
resistant, then(Aη) is =E-sound,≈E-faithful and 6`E-faithful.

The proof (Appendix A.2) is done by encoding the different problems with≈E andhs.

3.2 ≈E-soundness implies classical assumptions on groups

In this section we present some interesting consequences of≈E-soundness. Inspired
by the work of Rivest on pseudo-freeness [17], we show that several standard crypto-
graphic assumptions are a direct consequence of the soundness of a theory representing
groups. LetEG be the equational theory modeling a free groupG with exponents taken
over a free commutative ringA. (Precise sets of symbols and equations are detailed in
Appendix B.)

We now introduce several classical problems on groups, which in cryptography are
considered to behard, i.e.not feasible by any probabilistic polynomial-time adversary:

– discrete logarithm(DL) problem: giveng andg′, find a, such thatga = g′;
– computational Diffie-Hellman(CDH) problem: giveng, ga andgb, find gab;
– decisional Diffie-Hellman(DDH) problem: giveng, ga andgb, distinguishgab from

a random elementgc;
– RSAproblem: given elementsa andga, find g.

Suppose that there is a family of computational algebras(Aη) which are≈EG
-

sound. Then no probabilistic polynomial-time adversaryA can solve the DDH problem
with non-negligible probability. Indeed consider the two frames

ϕ1 = νg, a, b.{x1 = g, x2 = ga, x3 = gb, x4 = ga·b} and
ϕ2 = νg, a, b, c.{x1 = g, x2 = ga, x3 = gb, x4 = gc}.

The question of distinguishing these two frames encodes exactly the DDH problem.
Given the equational theoryEG, ϕ1 ≈EG

ϕ2. As we suppose≈EG
-soundness, we have
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that the concrete semantics of those two frames cannot be distinguished,i.e.([[ϕ1]]Aη
) ≈

([[ϕ2]]Aη
). Hence,A cannot solve the DDH problem.

Clearly, if one can solve the DL problem, one can also solve the CDH problem,
which itself allows us to solve the DDH problem. Therefore, the hardness of DDH
implies the hardness of the two other problems.

In a similar way we show that≈EG
-soundness implies the hardness of RSA. In-

stead of directly encoding the RSA problem, we introduce a slightly weaker decision
problem, whose hardness implies the hardness of RSA. The encoding of this problem
requires the extension of the signature by a one-way function h : G → G, adding no
equation to the theory. Consider the two frames

ϕ1 = νg, a.{x1 = ga, x2 = a, x3 = h(g)} andϕ2 = νg, g′, a.{x1 = ga, x2 = a, x3 = g′}.

We have thatϕ1 ≈EG
ϕ2. As above, if we suppose≈EG

-soundness of(Aη), we have
that the RSA problem cannot be solved by a probabilistic polynomial-time adversary.

An interesting open question is whether≈EG
-soundness implies or is implied by

Rivest’s notion of pseudo-free groups [17]. We conjecture that the two notions are in
fact incomparable. Indeed, on the one hand, our notion implies the hardness of DDH,
which remains an open question for pseudo-free groups. On the other hand pseudo-
freeness deals with a form of adaptive attackers while our model is purely non-adaptive.

4 A sufficient (and often necessary) criterion for≈E-soundness

We now present useful results for proving≈E-soundness properties in general. Notably,
we provide a sufficient criterion for≈E-soundness in Section 4.1 and prove it necessary
under additional assumptions in Section 4.2.

4.1 Ideal semantics and≈E-soundness criterion

Given an implementation of the primitives, what we called the concrete semantics maps
every closed frameϕ to a distribution[[ϕ]]Aη

in the expected way. We now define the
ideal semanticsof a ϕ, intuitively as the uniform distribution over sequences ofbit-
strings (in the appropriate space) that pass all the formal tests verified byϕ.

Given a closed frameϕ, let us writeeqE(ϕ) for the set of tests that are true inϕ:
eqE(ϕ) = {(M,N) | var(M) ∪ var(N) ⊆ dom(φ), (names(M) ∪ names(N)) ∩
names(ϕ) = ∅ andMϕ =E Nϕ}. Notice thatϕ ≈E ϕ′ iff eqE(ϕ) = eqE(ϕ′).

We say that(Aη) has uniform distributionsiff for every η and every sorts, [[s]]Aη
is

a finite set,=Aη,s is the usual equality and the distribution associated tos byAη is the
uniform one over[[s]]Aη

.

Definition 1 (Ideal semantics).Let (Aη) be an unconditionally=E-sound family of
computational algebras, having uniform distributions. Let ϕ = {x1 = t1, . . . , xn =
tn} be a closed frame andsi the sort ofxi. The ideal semantics[[ϕ]]idealAη

of ϕ is the
uniform distribution over the finite (non-empty) set of concrete frames:

{
{x1 = e1, . . . , xn = en} | (e1, . . . , en) ∈ [[s1]]Aη

× · · · × [[sn]]Aη
and

∀(M,N) ∈ eqE(ϕ) · [[M ]]Aη,{x1=e1,...,xn=en} = [[N ]]Aη,{x1=e1,...,xn=en}

}
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For instance, letϕ = νn1, n2.{x1 = n1, x2 = n2} with n1 andn2 of sort s. Then
eqE(ϕ) ⊆ {(M,N) | M =E N} implies that[[ϕ]]idealAη

is simply the uniform distribu-
tion over[[s]]Aη

× [[s]]Aη
. A more general definition of the ideal semantics, which does

not restrict(Aη) to have only uniform distributions is given in Appendix C.
We can now state our≈E-soundness criterion: intuitively, the two semantics, con-

crete and ideal, should be indistinguishable.

Theorem 1 (≈E-soundness criterion).Let(Aη) be an unconditionally=E-sound fam-
ily of computational algebras. Assume that for every closedframe ϕ it holds that
([[ϕ]]Aη

) ≈ ([[ϕ]]idealAη
). Then(Aη) is≈E-sound.

Proof. Letϕ1 ≈E ϕ2. As eqE(ϕ1) = eqE(ϕ2), for everyη, by construction, the distri-
butions[[ϕ1]]

ideal
Aη

and[[ϕ2]]
ideal
Aη

are equal. We use transitivity of the indistinguishability

relation≈ to conclude:([[ϕ1]]Aη
) ≈ ([[ϕ1]]

ideal
Aη

) = ([[ϕ2]]
ideal
Aη

) ≈ ([[ϕ2]]Aη
). ut

4.2 Patterns revisited

Patterns have been introduced by Abadi and Rogaway [5] and used in subsequent
work [15, 8] as a way to define computationally sound formal equivalences. Typically
frames are mapped to patterns by replacing non-deducible subterms by boxes�. Two
frames are then equivalent iff they yield the same pattern (up to renaming of names). For
example, the pattern associated to the frameϕ1 = {x1 = enc(enc(k4, k3), k1), x2 =
enc(k1, k2), x3 = k2} is {x1 = enc(�, k1), x2 = enc(k1, k2), x3 = k2}.

In this section we propose a general, novel definition of patterns and study some of
their properties. We then use these properties to prove thatour soundness criterion is
necessary in many cases.

Definition 2 (Pattern). A closed frameϕ is apatternif each of its subterms is deducible
fromϕ.

Equivalently a pattern is a closed frame of the formϕ = {x1 = C1[a1, . . . , am], . . . ,
xn = Cn[a1, . . . , am]}, where theC1 . . . Cn are public (non necessarily linear) con-
texts and thea1 . . . am are distinct deducible names:ϕ `E ai. For example, the frame
ϕ1 considered above is not a pattern while{x1 = enc(n1, k1), x2 = enc(k1, k2), x3 =
k2} is.

The following proposition finitely characterizes the equations verified by a pattern.

Proposition 3. Let ϕ be a pattern. For eachai, let ζai
be a public term such that

var(ζai
) ⊆ {x1, . . . , xn} and ζai

ϕ =E ai. Then every equation which holds inϕ is
a logical consequence (in the first-order theory of equality) of E and the equations
xj = Cj [ζa1

, . . . , ζam
], i.e.E ∪ {xj = Cj [ζa1

, . . . , ζam
] | 1 ≤ j ≤ n} |= eqE(ϕ).

Interestingly the concrete and the ideal semantics of patterns often coincide.

Proposition 4. Let (Aη) be an unconditionally=E-sound family of computational al-
gebras, having uniform distributions. Letϕ be a pattern. The concrete and the ideal
semantics ofϕ yield the same family of distributions: for allη, [[ϕ]]Aη

= [[ϕ]]idealAη
.
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The idea of the proof (detailed in Appendix D.2) is that, using the finite characterization
of eqE(ϕ) (Proposition 3), one can draw a bijection between the drawing of nonces and
the eligible values for the ideal semantics.

A theoryE admits patternsiff for every closed frameϕ, there exists a (not neces-
sarily unique) patternϕ such thatϕ ≈E ϕ. In practice many theories useful in cryptog-
raphy satisfy this property,e.g.the theories considered in Section 5. Note that we have
proveden passantthat≈E is decidable for equational theories that admit patterns and
for which =E is decidable, provided the construction of patterns is effective. Indeed,
given two framesϕ1 andϕ2, we associate to each of them static equivalent patternsϕ1

andϕ2. It is then straightforward to check whetherϕ1 andϕ2 are equivalent using the
finite characterization ofeqE(ϕi) by Proposition 3.

The following theorem states that our soundness criterion is actually very tight:
whenever a theory admits patterns, our criterion is a necessary condition.

Theorem 2. Assume that the theoryE admits patterns. Let(Aη) be a family of com-
putational algebras, such that(Aη) has uniform distributions, is≈E- and uncondition-
ally =E-sound. Then the soundness criterion of Theorem 1 is satisfied: for every closed
frameϕ, ([[ϕ]]Aη

) ≈ ([[ϕ]]idealAη
).

Proof. By hypothesis,ϕ ≈E ϕ implies ([[ϕ]]Aη
) ≈ ([[ϕ]]Aη

) and by Proposition 4,
([[ϕ]]Aη

) = ([[ϕ]]idealAη
). We conclude sinceϕ ≈E ϕ implies([[ϕ]]idealAη

) = ([[ϕ]]idealAη
). ut

5 Examples

We now apply the framework of Sections 3 and 4 to establish twonovel≈E-soundness
results, concerning the theory of Exclusive Or and that of ciphers and lists.

5.1 Exclusive Or

We study the soundness and faithfulness problems for the usual theory and implemen-
tation of the Exclusive Or (XOR).

The formal model consists of a single sortData, an infinite number of names, the
infix symbol⊕ : Data × Data → Data and two constants0, 1 : Data. Terms are
equipped with the equational theoryE⊕ generated by:

x⊕ y = y ⊕ x
(x⊕ y)⊕ z = x⊕ (y ⊕ z)

x⊕ x = 0
x⊕ 0 = x

As an implementation, we define the computational algebrasAη, η ≥ 0: the con-
crete domain[[Data]]Aη

is {0, 1}η equipped with the uniform distribution;⊕ is inter-
preted by the usual XOR function over{0, 1}η, [[0]]Aη

= 0η, [[1]]Aη
= 1η.

In this setting, statically equivalent frames enjoy an algebraic characterization. In-
deed, letϕ andϕ′ be two frames withnames(ϕ) ∪ names(ϕ′) ⊆ {a1, . . . , an} and
dom(ϕ) = dom(ϕ′) = {x1, . . . , xm}. We associate toϕ a (m + 1) × (n + 1)-matrix
α = (αi,j) over the two element fieldF2: the 0-th row of α is (1, 0 . . . 0) and for
1 ≤ i ≤ m, 1 ≤ j ≤ n (resp. j = 0) αi,j is the number of occurrences ofaj (resp.of 1)
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in ϕ(xi), modulo2. In the same way, a matrixα′ is associated toϕ′. Using classical
manipulations on matrix, it is easy to show thatϕ ≈E⊕

ϕ′ iff coker(α) = coker(α′),
wherecoker(α) denotes the co-kernel ofα (i.e. the set of rowsβ s.t.β · α = 0).

This characterization is the key point of our main result forthe theory of XOR.

Theorem 3. The usual implementation for the XOR theory is unconditionally =E⊕
-,

≈E⊕
- and 6`E⊕

-sound. It is also=E⊕
-,≈E⊕

- and 6`E⊕
-faithful.

The proof is detailed in Appendix E. We show that the concreteand ideal semantics
coincide using the duality propertyim(α) = coker(α)⊥. This result is comparable to
the work of Bana [8], who shows the unconditional soundness of the One-Time Pad
encryption in a setting similar to that of Abadi and Rogaway [5]. In some sense our
result is more precise as we model the XOR symbol itself and not a particular use of it.

5.2 Symmetric, deterministic, length-preserving encryption and lists

We now detail the example of symmetric, deterministic and length-preserving encryp-
tion schemes. Such schemes, also known asciphers[16], are widely used in practice,
the most famous examples being DES and AES .

Our formal model consists of the set of sortsS = {Data,List0,List1 . . .Listn . . .},
an infinite number of names for each sort and the symbols:

encn, decn : Listn ×Data → Listn encryption, decryption
consn : Data × Listn → Listn+1 list constructor
headn : Listn+1 → Data head of a list
tailn : Listn+1 → Listn tail of a list

nil : List0 0, 1 : Data empty list, constants

We consider the equational theoryEsym generated by (for everyn ≥ 0)

decn(encn(x, y), y) = x

encn(decn(x, y), y) = x

headn(consn(x, y)) = x

tailn(consn(x, y)) = y

consn(headn(x), tailn(x)) = x

enc0(nil, x) = nil

dec0(nil, x) = nil

When oriented from left to right, the equationsEsym form an (infinite) convergent
rewriting system, writtenR. The concrete meaning of sorts and symbols is given by
the computational algebrasAη, η > 0, defined as follows:

– the carrying sets are[[Data]]Aη
= {0, 1}η and [[Listn]]Aη

= {0, 1}nη equipped
with the uniform distribution and the usual equality relation;

– encn, decn are implemented by a cipher for data of sizenη and keys of sizeη (we
discuss the required cryptographic assumptions later);

– [[nil]]Aη
is the empty bit-string,[[consn]]Aη

is the usual concatenation,[[0]]Aη
= 0η,

[[1]]Aη
= 1η, [[headn]]Aη

returns theη first digits of bit-strings (of size(n + 1)η)
whereas[[tailn]]Aη

returns the lastnη digits.

10



We emphasize that no tags are added to messages. Tags—and in particular tags under
encryption— would be harmful to the≈Esym

-soundness. Indeed we expect that the for-
mal equivalenceνa, b.{x = enc(a, b), y = b} ≈Esym

νa, b, c.{x = enc(a, b), y = c}
also holds in the computational world; but this will not be the case ifa is tagged before
encryption.

For simplicity we assume that the encryption keys have the same sizeη as blocks of
data. This is not a real restriction since smaller keys can always be padded with random
digits and the additional digits ignored by the encryption algorithm. We also assume
that keys are generated according to a uniform distribution. (This is the case for AES,
and also for DES if we restrict keys to their 56 significant bits.)

Obviously, the above implementation is unconditionally=Esym
-sound. Before study-

ing the≈Esym
-soundness, we need to characterize statically equivalentframes. Specifi-

cally we show that this theory admits patterns, in the sense of Section 3.

Proposition 5. Letϕ be a closed frame. There exists a patternϕ such thatϕ ≈Esym
ϕ.

Proof (outline).We associate a pattern to any frameϕ by the following procedure:

1. normalizeϕ using the rulesR (the result is still denotedϕ);
2. whileϕ is not a pattern, repeat: find any subtermT of the formT = encn(U, V ),
T = decn(U, V ), T = headn(V ) or T = tailn(V ), with ϕ 6`Esym

V and replaceT
everywhere inϕ by a fresh namea of the appropriate sort.

We prove in Appendix F.1 that this procedure always terminates on a pattern statically
equivalent to the initial frame.

Notice that for any subtermW , ϕ 6`Esym
W impliesϕ{T 7→ n} 6`Esym

W{T 7→ n},
where{T 7→ n} denotes the replacement ofT by n. As a consequence, the procedure
above yields a unique pattern (modulo renaming), no matter in what order the subterms
T are replaced.

Provided that̀ Esym
is decidable, the procedure for associating patterns to frame is

effective. Thus, as noticed in Section 4.2, we obtain another proof of the decidability of
≈Esym

using Proposition 3. Notice that statically equivalent patterns maynot be equal
modulo renaming: considere.g.{x = enc(a, b), y = b} ≈Esym

{x = c, y = b}.
We now study the≈Esym

-soundness problem under realistic cryptographic assump-
tions. Classical assumptions on ciphers include the notions of super pseudo-random
permutation (SPRP) and indistinguishability against lunchtime or adaptive, chosen-
plaintext or chosen-ciphertext attacks (written IND-Pi-Cj, i, j ∈ {0, 1, 2} depending
on the different combinations). These notions and the relations between them have been
studied notably in [16].

Initially, the SPRP and IND-Pi-Cj assumptions apply to ciphers specialized to
plaintexts of a given size. Interestingly, this is not sufficient to imply the≈Esym

-soundness
for frames which contain plaintexts of heterogeneous sizes, encrypted under the same
key. Thus we introduce strengthened versions of these assumptions, applying to acol-
lectionof ciphers(Eη,n,Dη,n), whereη is the complexity parameter andn ≥ 0 is the
number of blocks of sizeη contained in plaintexts and ciphertexts.

We define theω-IND-Pi-Cj assumptioni, j ∈ {0, 1, 2}, by considering the follow-
ing experienceGijη involving a2-stage adversaryA = (A1,A2):

11



– first a keyk is randomly chosen from{0, 1}η;
– (Stage 1)A1 is given access—ifi ≥ 1—to the encryption oraclesEη,n(·, k), and—

if j ≥ 1—to the decryption oraclesDη,n(·, k).A1 outputs two plaintextsm0,m1 ∈
{0, 1}n0η for somen0, and possibly some datad;

– (Stage 2) a random bitb ∈ {0, 1} is drawn.A2 receives thechallenge ciphertext
c = Eη,n0

(mb, k), the datad and is given access—ifi ≥ 2—to the encryption
oraclesEη,n(·, k), and—if j ≥ 2—to the decryption oraclesDη,n(·, k). A2 then
outputs a bitb′;

– A is successful inGη iff b = b′ and, during the two stages, it has not submittedm0

orm1 to an encryption oracle, norc to a decryption oracle.

Define theadvantageof A as:Advω-IND-Pi-Cj
A (η) = 2× P

[
A is successful inGijη

]
− 1.

Theω-IND-Pi-Cj assumption holds for(Eη,n,Dη,n) iff the advantage of any proba-
bilistic polynomial-time adversary is negligible. It holds for theinverseof the encryp-
tion scheme, iff it holds for the collection of ciphers(Dη,n, Eη,n).

The usual IND-Pi-Cj assumption corresponds to the case wheren is restricted to
the value1 in the above definition. A similar strengthening of the SPRP assumption,
writtenω-SPRP, is proposed in Appendix F.2.

As in previous work [5, 15, 6, 14], we restrict frames to thosewith only atomic keys
and no encryption cycles. Specifically a closed frameϕ has only atomic keysif for all
subtermsencn(u, v) anddecn(u, v) of ϕ, v is a name. Given two (atomic) keysk1 and
k2, we say thatk1 encryptsk2 in ϕ, writtenk1 >ϕ k2, iff there exists a subtermU of ϕ
of the formU = encn(T, k1) orU = decn(T, k1) such thatk2 appears inT not used as
a key, i.e.k2 appears inT at a position which is not the right-hand argument of aencn′

or adecn′ . An encryption cycleis a tuplek1 . . . km such thatk1 >ϕ . . . >ϕ km >ϕ k1.
The effect of the condition “not used as a key” is to allow considering more terms as

free of encryption cycles, for instanceencn(encn(a, k), k). This improvement is already
suggested in [5].

We now state our≈Esym
-soundness theorem. A closed frame iswell-formediff its

R-normal form has only atomic keys, contains no encryption cycles and uses nohead

andtail symbols.

Theorem 4 (≈Esym
-soundness).Letϕ1 andϕ2 be two well-formed frames of the same

domain. Assume that the concrete implementations for the encryption and its inverse
satisfy both theω-IND-P1-C1 assumption. Ifϕ1 ≈Esym

ϕ2 then([[ϕ1]]Aη
) ≈ ([[ϕ2]]Aη

).

The proof is detailed in Appendix F.3. The idea is to prove thecomputational sound-
ness of each step of the procedure for mapping frames to patterns (Proposition 5). We
conclude using Proposition 4 on the ideal semantics for patterns.

Note on the cryptographic assumptions.Cryptographic assumptions of Theorem 4 may
appear strong compared to existing work on passive adversaries [5, 15]. This seems
unavoidable when we allow frames to contain both encryptionand decryption symbols.
Nevertheless ifϕ1 andϕ2 contain no decryption symbols, our proofs are easily adapted
to work when the encryption scheme isω-IND-P1-C0 only.

Also, it is possible to recover the classical assumptions IND-Pi-Cj by modeling the
ECB mode (Electronic Code Book). Let us add two symbolsenc : Data × Data →

12



Data anddec : Data×Data → Data, and define the symbolsencn anddecn (formally
and concretely) recursively by

encn+1(x, y) = consn(enc(headn(x), y), encn(tailn(x), y)) and

decn+1(x, y) = consn(dec(headn(x), y), decn(tailn(x), y)).

Define well-formed frames as those of which the normal forms contain no encryp-
tion cycles. The≈Esym

-soundness property for well-formed frames holds as soon asthe
implementations forenc anddec are both IND-P1-C1, or equivalently [16]enc is SPRP.

6 Conclusion and future work

In this paper we developed a general framework for relating formal and computational
models of security protocols in the presence of a passive attacker. These are the first
results on abstract models allowing arbitrary equational theories. We define the sound-
ness and faithfulness of cryptographic implementationsw.r.t. abstract models. We also
provide a soundness criterion which for a large number of theories—those that admit a
general notion of patterns—is not only sufficient but also necessary. Finally, we provide
new soundness results for the Exclusive Or, as well as a theory of ciphers and lists.

As future work, we foresee to study the soundness of other theories. An interesting
case would be the combination of the two theories consideredin this paper: in a the-
ory combining XOR, ciphers and lists, one can precisely model cipher block chaining
commonly used with ciphers such as DES or AES. Another ambitious extension is to
consider the case of an active attacker.
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A Soundness and faithfulness

A.1 Proof of Proposition 1

Proposition 1.Let (Aη) be a=E-sound family of computational algebras. Then

1. (Aη) is 6`E-faithful;
2. if (Aη) is also=E-faithful, (Aη) is≈E-faithful.

Proof.

1. Supposeϕ `E T i.e. there existsM such thatMϕ =E T andvar(M) ⊆ dom(ϕ)
and the names ofM do not occur neither inϕ nor inT . We define the adversaryA
which can deduce[[T ]] from [[ϕ]] as follows:A({xi = ei}) = [[M ]]Aη,{xi=ei}. As
(Aη)η≥0 is =E-sound,A’s success probability is greater than 1 minus a negligible
function.

2. Supposeϕ1 6≈E ϕ2: there exists a testM,N such that (for instance)Mϕ1 =E

Nϕ1 andMϕ2 6=E Nϕ2. LetA be an adversary that, givenη andψ̂, tests whether
[[M ]]

Aη,ψ̂
=Aη

[[N ]]
Aη,ψ̂

and returns the result of the test.A runs in polynomial-
time and by hypothesis its advantage is 1 minus a negligible function. ut
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A.2 Proof of Proposition 2

Proposition 2.Let(Aη) be a family of≈E-sound computational algebras. Assume that
free binary symbolshs : s×Key → Hash are available for every sorts. Then

1. (Aη) is =E-faithful;
2. (Aη) is 6`E-sound;
3. if the implementations for thehs are also collision-resistant, then(Aη) is =E-

sound,6`E-faithful and≈E-faithful.

Proof.

1. Let T1, T2 be two terms of sorts such thatT1 6=E T2. Consider the frameϕ =
{x1 = hs(T1, k), x2 = hs(T2, k)} wherek is a fresh name of sortKey . As
T1 6=E T2 formally andhs has no equations, we haveϕ ≈E {x1 = n, x2 = n′}
wheren, n′ are two distinct fresh names of sortHash. Thus by hypothesis:[[ϕ]] ≈
[[{x1 = n, x2 = n′}]]. The probability for the two names to be equal concretely is
negligible, thus

P
[
e1, e2 ← [[T1, T2]]Aη

; e1 =Aη
e2

]

≤ P
[
e′1, e

′
2 ← [[h(T1, k), h(T2, k)]]Aη

; e′1 =Aη
e′2

]

is negligible.
2. Letϕ be a frame andT a term of sorts. We letϕ1 = ϕ∪{x = hs(T, k), y = k} and
ϕ2 = ϕ ∪ {x = n, y = k} wherex, y are fresh variables,k is a fresh name of sort
Key , n is a fresh name of sortHash. Asϕ 6`E T , we haveϕ1 ≈E ϕ2. Thus by hy-
pothesis,[[ϕ1]] ≈E [[ϕ2]]. By contradiction, suppose there exists a polynomial-time
adversaryA to deduce[[T ]] from [[ϕ]] concretely. We easily build an adversaryB to
distinguish between[[ϕ1]], [[ϕ2]] as follows: callA on the first part ofϕb and obtain
[[T ]]. Usingy = [[k]], compute[[hs(T, k)]] and compare it to the value ofx. Hence,
we contradict the hypothesis of≈E-soundness and conclude that no probabilistic
polynomial-time adversary can deduce[[t]] from [[ϕ]] with significant probability,
i.e. (Aη)η ≥ 0 is 6`E-sound.

3. LetT1, T2 be two terms of sorts such thatT1 =E T2. Consider the same frame as
before:ϕ = {x1 = hs(T1, k), x2 = hs(T2, k)}. AsT1 =E T2 formally andhs has
no equations, we haveϕ ≈E {x1 = n, x2 = n} wheren is a fresh name of sort
Hash. Thus by hypothesis:[[ϕ]] ≈ [[{x1 = n, x2 = n}]] and

P
[
e′1, e

′
2 ← [[h(T1, k), h(T2, k)]]Aη

; e′1 =Aη
e′2

]
≥ 1− εη

whereεη is a negligible function. Thus if the implementation ofhs is collision-
resistant,

P
[
e1, e2 ← [[T1, T2]]Aη

; e1 6=Aη
e2

]

is negligible. Other properties follow from Proposition 1. ut
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B An abstract model of groups

We model a groupG with exponents taken over a commutative ringA and define the
following symbols:

∗ : G×G→ G

1G : G
+ : A×A→ A

0 : A

− : A→ A

· : A×A→ A

1A : A
exp : G×A→ G

As usual, we use infix notation to denote the operators∗, ·, + and writega to denote
exp(g, a). Consider the following equational theoryEG:

x ∗ 1G = x
1G ∗ x = x

x ∗ (y ∗ z) = (x ∗ y) ∗ z
x+ 0 = x
x+ y = y + x

x+ (−x) = 0
x+ (y + z) = (x+ y) + z

x · 1A = x
x · y = y · x

x · (y · z) = (x · y) · z

(x+ y) · z = x · z + y · z
(xa)b = x(a·b)

xa ∗ xb = xa+b

x1A = x
x0 = 1G

Abelian groups are modeled by adding the equationsx∗y = y∗x and(x∗y)a = xa∗ya.

C Ideal semantics

Definition 3 (Ideal semantics, general case).Let (Aη) be a family of unconditionally
=E-sound computational algebras andϕ = {x1 = T1, . . . , xn = Tn} a closed frame.

Theideal semanticsof ϕ is the family of distributions([[ϕ]]idealAη
), where for eachη,

the drawingφ← [[ϕ]]idealAη
is defined as follows:

1. for eachi, drawei
R
←− |Ti|Aη

,
2. check that for all(M,N) ∈ eqE(ϕ),

|M |Aη,{x1=e1,...,xn=en} =Aη
|N |Aη,{x1=e1,...,xn=en}

3. if this is the case, returnφ = {x1 = e1, . . . , xn = en}, otherwise go back to step 1.

By unconditional=E-soundness, the drawingsφ which are (=Aη
-equivalent to values)

in the image of the usual semantics ofϕ always pass the test of step 2. As we required
that the drawing from|Ti|Aη

gives no=Aη
-equivalent class a zero probability, the prob-

ability to succeed at each step2 is thus greater than zero. Hence the loop “eventually”
terminates and the definition makes sense. (Rigorously,[[ϕ]]idealAη

is a conditional distri-
bution.)

As eqE(ϕ) is likely to be infinite, the definition may not be effective; this has no
consequence here. Recent work of Abadi and Cortier [2] and results of Section 4 suggest
thateqE(ϕ) can be described finitely in a way that makes this definition effective, for
many equational theoriesE.
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D Patterns

D.1 Proof of Proposition 3

Proposition 3. Let ϕ be a pattern. For eachai, let ζai
be a public term such that

var(ζai
) ⊆ {x1, . . . , xn} andζai

ϕ =E ai. Then every equation which holds inϕ is a
logical consequence ofE and the equationsxj = Cj [ζa1

, . . . , ζam
], i.e.

{xj = Cj [ζa1
, . . . , ζam

] | 1 ≤ j ≤ n} ∪ E |= eqE(ϕ).

By logical consequence, we mean that the equations are deducible from the hypotheses
in the first-order theory of equality.

Proof. Let (M = N) ∈ eqE(ϕ). By definition, we haveMϕ =E Nϕ, i.e.M [xj 7→
Cj [a1, . . . , am]] =E N [xj 7→ Cj [a1, . . . , am]]. SinceE is stable by substitution of
names, we get:

M [xj 7→ Cj [ζa1
, . . . , ζam

]] =E N [xj 7→ Cj [ζa1
, . . . , ζam

]]

Using the equalitiesxj = Cj [ζa1
, . . . , ζam

] and by transitivity, we obtain{xj =
Cj [ζa1

, . . . , ζam
] | 1 ≤ j ≤ n} ∪ E |= M = N . ut

D.2 Proof of Proposition 4

Proposition 4. Let (Aη) be an unconditionally=E-sound family of computational al-
gebras having only uniform distributions. Letϕ be a pattern. The concrete and the ideal
semantics ofϕ yield the same family of distributions: for allη, [[ϕ]]Aη

= [[ϕ]]idealAη
.

Proof. Let ϕ = {x1 = C1[a1, . . . , am], . . . , xn = Cn[a1, . . . , am]}, with ϕζi =E ai,
1 ≤ i ≤ m as above. Letsi be the sort ofai, s′j be the sort ofxj , , andη a given
complexity parameter.

For simplicity let us fix the order of variablesx1, . . . , xn and see concrete frames
merely as tuples of bit-strings. The concrete values forϕ are then taken from the set:

F = [[s′1]]Aη
× · · · × [[s′n]]Aη

More precisely, the usual concrete semantics consists in mapping every drawing of
names from the setE = [[s1]]Aη

×· · ·× [[sm]]Aη
to a value inF . Let us noteα : E → F

this function, defined by:

α(e1, . . . , em)

=
(
[[C1[a1, . . . , am]]]{a1=e1,...,am=em}, . . . , [[Cn[a1, . . . , am]]]{a1=e1,...,am=em}

)

Using theζi, we can also define a functionβ : F → E:

β(f1, . . . , fn) =
(
[[ζ1]]{x1=f1,...,xn=fn}, . . . , [[ζm]]{x1=f1,...,xn=fn}

)
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As ϕζi =E ai and(Aη) is unconditionally=E-sound (and the distribution overE
forgets no element), we have by construction:β ◦ α = IdE . Thusα is injective and
yields a bijection fromE to its imageG = α(E). MoreoverG satisfies:

G = {(f1, . . . , fn) | α(β(f1, . . . , fn)) = (f1, . . . , fn)}

= {(f1, . . . , fn) | ∀j, [[Cj [a1, . . . , am]]]{a1=e1,...,am=em} = fj

whereei = [[ζi]]{x1=f1,...,xn=fn}}

= {(f1, . . . , fn) | ∀j, [[Cj [ζ1, . . . , ζm]]]{x1=f1,...,xn=fn} = fj}

Asϕ is a pattern, by Proposition 3,eqE(ϕ) is implied by the equationsCj [ζ1, . . . , ζm] =
xj andE. By hypothesis equations inE are true in the concrete world with probability
1, thusG is precisely the set of values that pass all the tests ineqE(ϕ).

Now recall that, by hypothesis,E andF are equipped with uniform distributions.
Hence the concrete and the ideal semantics yield the same distribution for ϕ andAη,
that is the uniform distribution overG. ut

E Soundness and faithfulness results for the theory of XOR

To begin with, let us detail the algebraic characterizationof ≈E⊕
. We use the last two

equations as a rewriting system
x⊕ x→ 0
x⊕ 0→ x

where we allow arbitraryAC-manipulations before (and after) each rewriting step. It
is easy to show that this rewriting system is (AC-)convergenti.e. each term yields a
unique (moduloAC) normal form. Specifically, a termT is in normal form iff each
name or variable occurs at most once inT and eitherT = 0 or 0 does not occur inT .

Let a1 . . . an be distinct names. Using the equations of XOR, each closed term
T with names(T ) ⊆ {a1 . . . an} can be written:T =E⊕

β0 ⊕
⊕n

j=1 βj aj where
βj ∈ {0, 1} and we use the convention0ai = 0 and1ai = ai. In the following, we see
{0, 1} as the two-element fieldF2; thus terms modulo=E⊕

form aF2-vector space.
Similarly a closed frameϕ with names(ϕ) ⊆ {a1 . . . an} is written

ϕ =E⊕




x1 = α1,0 ⊕
n⊕

j=1

α1,j aj , . . . , xm = αm,0 ⊕
n⊕

j=1

αm,j aj






whereαi,j ∈ F2. Let us group the coefficients into a(m+1)×(n+1)-matrixα = (αi,j)
overF2. ϕ is described by the relation:




1
x1

...
xm


 =




1 0 . . . 0
α1,0 α1,1 . . . α1,n

...
...

αm,0 αm,1 . . . αm,n




︸ ︷︷ ︸
α

·




1
a1

...
an



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We now characterize the seteqE⊕
(ϕ) of equations valid inϕ. Let M,N be such

thatvar(M) ∪ var(N) ⊆ dom(φ), (names(M) ∪ names(N)) ∩ names(ϕ) = ∅. First
notice that:Mϕ =E⊕

Nϕ iff (M ⊕ N)ϕ =E⊕
0. Therefore we only study the case

whereN = 0.
AssumeM in normal form.Mϕ =E⊕

0 andnames(M) ∩ names(ϕ) = ∅ implies
names(M) = ∅. LetM =E⊕

β0⊕
⊕m

i=1 βi xi. The conditionMϕ =E⊕
0 is equivalent

to the vectorial equation:

(β0 . . . βm) · α = 0

that is,(β0 . . . βm) belongs to the co-kernel ofα, notedcoker(α).
Finally letϕ andϕ′ be two closed frames withnames(ϕ)∪names(ϕ′) ⊆ {a1 . . . an}

and dom(ϕ) = dom(ϕ′) = {x1 . . . xm}. Let α andα′ be the two corresponding
(m+1)× (n+1)-matrices defined as above. From the previous discussion, wededuce
that:

ϕ ≈E⊕
ϕ′ iff coker(α) = coker(α′)

Theorem 3.The usual implementation for the XOR theory is unconditionally =E⊕
-,

≈E⊕
- and 6`E⊕

-sound. It is also=E⊕
-,≈E⊕

- and 6`E⊕
-faithful.

Proof (of Theorem 3).The unconditional=E⊕
-soundness is clear, hence the6`E⊕

-
faithfulness (Proposition 1).

Let T 6= 0 a closed term in normal form. The semantics ofT is either the constant
1η (if T = 1) or the uniform distribution (ifT 6= 1) on{0, 1}η. ThusP

[
[[T ]]Aη

= 0
]

is
negligible. Hence the=E⊕

-faithfulness holds and by proposition 1, so does the≈E⊕
-

faithfulness.
We use the ideal semantics to address the unconditional≈E⊕

-soundness. Indeed we
shall prove that: for any frameϕ, ([[ϕ]]Aη

) = ([[ϕ]]idealAη
). The result will follow from the

proof of Theorem 1.
Letϕ be a frame, andα = (αi,j) its (m+1)× (n+1)-matrix associated as before.

Let us seeα as aF2-linear function from(F2)
n+1 to (F2)

m+1.
The usual concrete semantics ofϕ consists in drawing a random vector from(F2)

(n+1)η

for the value of names, and then applying aF2-linear functionα̂ : (F2)
(n+1)η →

(F2)
(m+1)η. Specifically, if we see(F2)

(n+1)η asF2
η × . . .× F2

η

︸ ︷︷ ︸
n+1

, the initial distribu-

tion over(F2)
(n+1)η is the uniform distribution over the affine spaceA = (1η, 0η . . . 0η)+

{0η} × (F2)
nη made of vectors of which the first block is1η. (This first constant block

is only a convenience for dealing with the constant term.) The functionα̂ is defined by

α̂ (f0 . . . fn) =




n⊕

j=0

α0,j fj , . . . ,

n⊕

j=0

αm,j fj





On the other hand, the ideal semantics ofϕ consists in drawing a random vector
from the subsetF of (F2)

(m+1)η ≈ F2
η × . . .× F2

η

︸ ︷︷ ︸
m+1

whose elements satisfy all the
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equations ineqE⊕
(ϕ) and have1η as first block. (Again the first block is not present in

the real bit-strings.) From the previous discussion,F is written

F = {(e0, e1 . . . em) | ∀(β0 . . . βm) ∈ coker(α),

m⊕

i=0

βi ei = 0} ∩B

whereB = (1η, 0η . . . 0η) + {0η} × (F2)
mη.

Now let us change the basis of(F2)
(n+1)η and see it asF2

n+1 × . . .× F2
n+1

︸ ︷︷ ︸
η

, that

is: we regroup thei-th bit of each block. Then̂α is simply the product application:
α× . . .× α︸ ︷︷ ︸

η

. Similarly, if (F2)
(m+1)η ≈ F2

m+1 × . . .× F2
m+1

︸ ︷︷ ︸
η

thenF is simply the

product of all values that are orthogonal tocoker(α), restricted toB:

F = (coker(α)⊥ × . . .× coker(α)⊥︸ ︷︷ ︸
η

) ∩B

= (im(α)× . . .× im(α)︸ ︷︷ ︸
η

) ∩B

= im(α̂) ∩B

= α(A)

ThusF is in fact the image ofA by α̂.
As α̂ is linear, it transforms uniform distributions over affine spaces into uniform

distributions. Therefore the ideal and the concrete semantics yield both the uniform
distribution overF . Hence the unconditional≈E⊕

-soundness.
We now prove the unconditional6`E⊕

-soundness. Letϕ be a frame andT a term,
both in normal form, withnames(ϕ)∪names(T ) = {a1 . . . an}. Letα associated toϕ
as before andT =E⊕

β0 ⊕
⊕n

j=1 βj aj .
Suppose thatϕ `E⊕

T , that is there existsζ with names(ζ) ∩ {a1 . . . an} = ∅,
such thatζϕ =E⊕

T i.e.ζϕ⊕ T =E⊕
0. Assumeζ in AC-normal form. As previously,

ζϕ ⊕ T =E⊕
0 impliesnames(ζ) ⊆ {a1 . . . an}, hencenames(ζ) = ∅. Thereforeζ

computes nothing but a linear transformation on the rows ofα. We deduce thatϕ `E⊕
T

holds iff (β0 . . . βm) belongs to the co-image ofα, writtencoim(α).
Now assume thatϕ 6`E⊕

T i.e.β = (β0 . . . βn) 6∈ coim(α). Letγ be the(m+2)×
(n+ 1)-matrix obtained by augmentingα with a (m+ 1)-th row equal toβ:

γ =




1 0 . . . 0
α1,0 α1,1 . . . α1,n

...
...

αm,0 αm,1 . . . αm,n
β0 β1 . . . βn




We know that the concrete semantics ofϕ andT is nothing but the uniform distribution
over the image ofA = (1η, 0 . . . 0) + {0} × (F2)

nη by γ̂ (defined aŝα above).
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Let us seeβ a linear function from(F2)
n+1 to F2 and definêβ as previously. Using

the fact thatβ is independent from the other rows ofγ, we prove that the imagêγ(A)

is the cartesian product of the two spacesα̂(A) and β̂(A); the unconditional6`E⊕
-

soundness will then follow.
The inclusion̂γ(A) ⊆ α̂(A)× β̂(A) is trivial. Asβ is independant from the rows of

α, there exists a vectoru ∈ (F2)
n+1 such thatβ(u) = 1 andα(u) = 0. Let x, y ∈ A.

We prove that there existsz ∈ A such that̂γ(z) = (α̂(x), β̂(y)). Indeed, takez =

x+ (β̂(y)− β̂(x)) · û. We have that̂α(z) = α̂(x) andβ̂(z) = β̂(y). ut

F ≈E-soundness for the theory of ciphers and lists

Before detailing the proofs of Section 5.2, notice that eachwell-sorted term has a unique
sort (recall that variables and names have a fixed sort). As the equations themselves
are well-sorted (ift : s and t =Esym

t′ then t′ : s), and the indicesn of function
symbols are redundant with the sorts, we tend to omit the indices in terms. For instance,
if k, k′ : Data, we write:enc(cons(k, nil), k′) instead of:enc1(cons1(k, nil), k′).

F.1 Detailed proof of Proposition 5

Proposition 5.Letϕ be a closed frame. There exists a patternϕ such thatϕ ≈Esym
ϕ.

The proof of Proposition 5 relies on the following Lemma 1, that is used stepwise to
rewrite a frame into a pattern. As for the termination of the procedure, assume thatϕ is
not a pattern; defineT as the father of the largest non-deducible subterm ofϕ; it is easy
to see thatT is necessarily of the formT = enc(U, V ), T = dec(U, V ), T = head(V )
or T = tail(V ) with ϕ 6`Esym

V .

Lemma 1. Letϕ be a closed frame inR-normal form. LetT be a subterm ofϕ of the
form T = enc(U, V ), T = dec(U, V ), T = head(V ) or, T = tail(V ) andn a fresh
name of the same sort thanT . Assume thatV is not deducible fromϕ, i.e.ϕ 6`Esym

V .
Then:

ϕ ≈Esym
ϕ′

whereϕ′ = ϕ{T 7→ n} is obtained by replacingeveryoccurrence ofT in ϕ byn.

We first introduce an handy lemma that gives a characterization of deducible terms.

Lemma 2. Letϕ be a closed frame inR-normal form andT a term inR-normal form.
If ϕ `Esym

T thenT = C[T1, . . . , Tk] where theTi are deducible subterms ofϕ andC
is a context that does not contain names.

Proof. By definition,ϕ `Esym
T if and only if there exists a termM such thatnames(M)∩

names(ϕ) = ∅ andMϕ =Esym
T , i.e.Mϕ→∗

R T . We prove Lemma 2 by induction on
the size ofM . The base caseM = xi is trivial.

If M = f(M1, . . . ,Mk). We only consider the case whereM = dec(M1,M2)
since the other cases are similar. We haveM1 →

∗
R T1 andM2 →

∗
R T2 Apply-

ing the induction hypothesis toM1 andM2, we get thatT1 = C1[T
′
1, . . . , T

′
k] and
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T2 = C2[T
′
1, . . . , T

′
k] where theT ′

i are deducible subterms ofϕ andC1, C2 are con-
texts that do not contain names. We haveMϕ →∗

R dec(T1, T2). Eitherdec(T1, T2) is
in R-normal form. In that case and by convergence ofR, we haveT = dec(T1, T2),
hence the result. Ordec(T1, T2) is not inR-normal form. By convergence, we have
dec(T1, T2) →R T . SinceT1 andT2 are already in normal form, we must haveT1 =
enc(T ′

1, T2) andT = T ′
1. EitherC1 = enc(C ′

1, C
′′
1 ) and we haveT = C ′

1[T
′
1, . . . , T

′
k].

Or C1 = , which means thatT1 is a deducible subterm ofϕ. We deduce thatT is a
deducible subterm ofϕ, hence the result. ut

We can now start the proof of Lemma 1.

Proof. Sinceϕ = ϕ′{n 7→ t} andEsym is stable by substitutions of names, we have
eqEsym

(ϕ′) ⊆ eqEsym
(ϕ). To proveeqEsym

(ϕ) ⊆ eqEsym
(ϕ′), we introduce the following

lemma. We setθ to be{n 7→ t}. Letn1, . . . , np be the names occurring inϕ′.

Lemma 3. LetC1 be a context such thatϕ′ `Esym
C1[n1, . . . , np] andC1[n1, . . . , np]θ →R

T . Then there exists a public contextC2 such thatC1 →R C2 andT = C2[n1, . . . , np]θ.

The lemma is proved by inspection of the rules ofR. The reduction occurs at some po-
sition p: the reductionC1[n1, . . . , np]|pθ →R T occurs in head. LetC ′

1[n1, . . . , np] =
C1[n1, . . . , np]|p If C ′

1 is itself an instance of the left-hand-side of a rule ofR, than we
clearly have thatC ′

1 →R C ′
2 such thatT = C2[n1, . . . , np]θ, whereC2 is obtained from

C1 by replacingC ′
1 byC ′

2 et positionp. If C ′
1 is not an instance of the left-hand-side of

a rule ofR and sincet is already inR-normal form, there are only four possibilities for
C ′

1[n1, . . . , np].

– C ′
1[n1, . . . , np] = enc(ni, C

′′
1 [n1, . . . , np]). It must be the case thatni = n, t is of

the formdec(u, v) andv = C ′′
1 [n1, . . . , np]. ¿From Lemma 2 and sinceϕ′ `Esym

C1[n1, . . . , np], eitherC ′
1[n1, . . . , np] is subterm ofϕ′ or ni andC ′′

1 [n1, . . . , np]
are deducible. In both cases, we obtain a contradiction. Indeed, ifC ′

1[n1, . . . , np] is
subterm ofϕ′ thenC ′

1[n1, . . . , np]θ = enc(dec(u, v), nj) is a subterm ofϕ, which
contradicts thatϕ is in normal form. Ifni andC ′′

1 [n1, . . . , np] are deducible then
this contradictsϕ 6`Esym

v.
– C ′

1[n1, . . . , np] = dec(ni, nj). This case is very similar to the previous one.
– C ′

1[n1, . . . , np] = cons(ni, C
′′
1 [n1, . . . , np]). It must be the case thatni = n,

t is of the formhead(v) andC ′′
1 [n1, . . . , np] = tail(v). ¿From Lemma 2 and

sinceϕ′ `Esym
C1[n1, . . . , np], eitherC ′

1[n1, . . . , np] is subterm ofϕ′ or ni and
C ′′

1 [n1, . . . , np] are deducible. Like previously, in both cases, we obtain a contradic-
tion. if C ′

1[n1, . . . , np] is subterm ofϕ′ thenC ′
1[n1, . . . , np]θ = cons(head(v), tail(v))

is a subterm ofϕ, which contradicts thatϕ is in normal form. Ifni andC ′′
1 [n1, . . . , np]

are deducible then bothn andtail(v) are deducible invarφ′, which means that both
head(v) andtail(v) are deducible inϕ, thusv is deducible inϕ, contradiction.

– C ′
1[n1, . . . , np] = cons(C ′′

1 [n1, . . . , np], ni). This case is very similar to the previ-
ous one.

Now, let (M = N) ∈ eqEsym
(ϕ) and let us show that(M = N) ∈ eqEsym

(ϕ′).
We haveMϕ =Esym

Nϕ, i.e.Mϕ′θ =Esym
Nϕ′θ. By convergence ofR, we get that

there exists a termT such thatMϕ′θ →∗
R T andNϕ′θ →∗

R T . Applying repeatedly
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Lemma 3, we get thatMϕ′ →∗
R T1 such thatT = T1θ andNϕ′ →∗

R T2 such that
T = T2θ. Assume that we have proved thatT1 = T2. Then we getMϕ′ =Esym

Nϕ′,
i.e. (M = N) ∈ eqEsym

(ϕ′), which concludes the proof. It remains us to prove the
following lemma.

Lemma 4. Let T1 and T2 two terms such thatϕ′ `Esym
Ti (i = 1, 2). T1θ = T2θ

impliesT1 = T2.

The lemma is proved by induction on the sum of the size ofT1 andT2.

– The base case is trivial.
– If none ofT1 or T2 is n: T1 = f(T ′

1, . . . , T
′
k) andT2 = f(T ′′

1 , . . . , T
′′
k ). We must

haveT ′
iθT

′′
i θ for every1 ≤ i ≤ k. Applying the induction hypothesis, we get

T ′
i = T ′′

i thusT1 = T2.
– The most difficult case is whenT1 = n andT2 = f(T ′

1, . . . , T
′
k). We first notice

that sincenθ = f(T ′
1, . . . , T

′
k)θ, n can not occur inT2, thusT2 = T2θ = t. Thanks

to Lemma 2 and sinceϕ′ `Esym
T2, eitherT2 is a subterm ofϕ′, which is impossible

by construction ofϕ′ or the immediate subterms ofT2 are deducible inϕ′ (thus in
ϕ), which contradicts the choice oft. ut

F.2 A generalized SPRP assumption

In the same way as we generalize the IND-Pi-Cj assumption, we propose here a gener-
alization of SPRP to the case of messages of heterogeneous sizes.

Theω-SPRP assumption consists of the following experienceGη involving an ad-
versaryA:

– draw a random bitb ∈ {0, 1};
– if b = 0, draw a keyk; give A access to the encryption oraclesEη,n(·, k) and

decryption oraclesDη,n(·, k);
– if b = 1, draw a random permutationπn over{0, 1}ηn for eachn; giveA access to

theπn andπ−1
n instead of the regular encryption and decryption oracles;

– after interacting with the oracles,A outputs a bitb′;A is successful inGη iff b = b′.

Theadvantageof A is defined as

Advω-SPRP
A (η) = 2× P [A is successful inGη]− 1 (1)

Theω-SPRP assumption holds for(Eη,n,Dη,n) if the advantage (1) of any probabilistic
polynomial-time adversary is a negligible function ofη.

It has been shown [16] that the SPRP assumption (on one given cipher) is equivalent
to asking that the encryption scheme and its inverse are bothIND-P2-C2 or equivalently
both IND-P1-C1. We conjecture that this is still the case forstrengthened version of
these notions—however this falls outside the scope of this paper. Within this (probably
simple) conjecture, the≈Esym

-soundness Theorem 4 holds for anyω-SPRP encryption
scheme.
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F.3 Proof of Theorem 4 (≈Esym
-soundness)

Theorem 4 (≈Esym
-soundness).Letϕ1 andϕ2 be two well-formed frames of the same

domain. Assume that the concrete implementations for the encryption and its inverse
satisfy both theω-IND-P1-C1 assumption. Ifϕ1 ≈Esym

ϕ2 then([[ϕ1]]Aη
) ≈ ([[ϕ2]]Aη

).

We begin by stating a computational counterpart to Lemma 1.

Lemma 5. Let ϕ be a closed frame inR-normal form, with only atomic keys and no
encryption cycles. LetT be a subterm ofϕ of the formT = enc(U, k) (resp.T =
dec(U, k)), withk name of sortData, andn a fresh name of the same sort asT . Assume
that:

– the only occurrences ofk in ϕ are in the positions of an encryption or decryption
key:enc(., k) or dec(., k);

– T itself does not appear under an encryption or a decryption with k;
– the concrete implementations for the encryption and its inverse satisfy both theω-

IND-P1-C1 assumption.

Then:

([[ϕ]]Aη
) ≈ ([[ϕ′]]Aη

)

whereϕ′ = ϕ{T 7→ n} is obtained by replacingeveryoccurrence ofT in ϕ byn.

Notice that the hypothesis of Lemma 5 are stronger than its formal version, Lemma 1.
For instance the encryption keyk is required to be atomic; the first condition onk
trivially implies thatk is not deducible fromϕ. Also nothing is said abouthead andtail

symbols.

Proof (of Lemma 5).Before proving the lemma, let us consider the example of a well-
formed frameϕ1 = {x1 = enc(T1, k), x2 = enc(T2, k)}, wherek does not appear in
T1, T2, andT1 6=Esym

T2. This frame is statically equivalent toϕ2 = {x1 = n1;x2 =
n2}. Our problem here is to prove that[[ϕ1]] and[[ϕ2]] are actually indistinguishable. It is
not hard to see that this will be the case if and only if the probability thatT1 andT2 have
the same concrete value is negligible. A consequence of thisphenomenon is intuitively
that we need to prove Lemma 5 and—at least—a limited form of=Esym

-faithfulness at
the same time.

Formally, let us write|ϕ|e and|T |e for the number of distinct subterms with head
symbolsenc or dec, occurringresp.in a frameϕ and a termT . Let Pn andQn be the
two properties:

(Pn) Lemma 5 holds provided that|ϕ|e ≤ n.

(Qn) For allR-normal termsT1, T2 of the same sort such that:T1, T2 have
only atomic keys, the frameϕ = {x = T1, y = T2} has no encryption cycles,
T1 6= T2 and |ϕ|e ≤ n, the probabilityP

[
e1, e2 ← [[T1, T2]]Aη

; e1 = e2
]

is
negligible.
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We provePn andQn by mutual induction onn, that is, more precisely we prove the
four statements: (1)P0, (2)Pn+1 ⇐ Qn, (3)Q0, (4)Qn+1 ⇐ (Pn+1 andQn).

(1) P0 is trivially true.
(2) Pn+1 ⇐ Qn. Let T 0 = encn0

(U, k) a subterm ofϕ, k andn two names all
satisfying the conditions of Lemma 5. (Of course the case ofT 0 = dec(U, k) is similar.)
Letϕ = {x1 = T 0

1 , . . . , xn = T 0
n}.

Provided an adversaryA able to distinguish([[ϕ]]Aη
) and ([[ϕ′]]Aη

), we build an
adversaryB against theω-IND-P1-C1 assumption on encryption, described as follows:

1. for each namea of sorts appearing inϕ, draw a valuêa
R
←− [[s]]Aη

;

2. draw a valuêa0
R
←− [[s]]Aη

for some fresh namea0 of sortListn0
;

3. for eachxi (1 ≤ i ≤ n) of sortsi, computeT̂ 0
i ∈ [[si]]A recursively as follows:

̂encn(T, k) = En(T̂ ) if T 6= U

̂encn0
(U, k) = E∗(Û , â0)

̂decn(T, k) = Dn(T̂ )

̂f(T1, . . . , Tn) = fAη
(T̂1, . . . , T̂n) if f(T1, . . . , Tn) 6∈ {enc(T ′, k), dec(T ′, k)}

where we have writtenEn(.) andDn(.) for the encryption and decryption oracles
of theω-IND-P1-C1 game, andE∗(Û , â0) for the challenge ciphertext, obtained
after submitting the two plaintextŝU and â0 (this is done only once, just after̂U
has been computed);

4. submit the concrete frame{x1 = T̂1, . . . , xn = T̂n} to A and return the same
answer.

Note that sinceT 0 is not a subterm of an encryption or decryption withk, B is indeed
a 1-stage attacker. The distribution computed byB and submitted toA equals either
([[ϕ]]Aη

) or ([[ϕ′]]Aη
) depending on whicheverE∗(Û , â0) is the encryption of̂U or resp.

that of â0 (in the latter caseE∗(Û , â0) = En0
(â0) is simply a random number). Thus

the probability thatB guesses the right answer is the same asA. Now it may happen
thatB does not meet the second requirement for winning theω-IND-P1-C1 game, that
is: (i) there exists a subtermencn0

(T, k) such thatT 6= U andT̂ ∈ {Û , â0} or (ii) there
exists a subtermdecn0

(T, k) such thatT̂ = E∗(Û , â0).
For (i), the probability that̂T = â0 is negligible by construction. Moreover, asT

andT 0 = encn0
(U, k) are two subterms ofϕ andT 0 is not a subterm ofT , the frame

ϕ′ = {x = T, y = U} has no encryption cycles and|ϕ′|e < |ϕ|e = n + 1. The
induction hypothesisQn implies that the probability for̂T = Û is negligible.

As for (ii), if the challenge ciphertextE∗(Û , â0) is the encryption of its second
argument, that isEn0

(â0), then the probability for̂T = E∗(Û , â0) is negligible; oth-
erwiseE∗(Û , â0) = En0

(Û). Recall thatT 0 = encn0
(U, k) is in normal form, thus

U 6= decn0
(T, k). As T 0 anddecn0

(T, k) are two subterms ofϕ andT 0 is not a sub-
term of decn0

(T, k), the frameϕ′ = {x = U, y = decn0
(T, k)} has no encryption

cycles and|ϕ′|e < |ϕ|e = n + 1, hence the induction hypothesisQn implies that the
probability forT̂ = En0

(Û) is negligible.
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To simplify the case analysis of (3) and (4), it is convenientto introduce to following
lemma:

Lemma 6. Let T1, T2 be two terms of sortListj . Define for each0 < i ≤ j, thei-th
projection of a termT of sortListj , by:

πi(T ) = head(tail(. . . tail︸ ︷︷ ︸
i−1 times

(T )))

Then (i)T1 =Esym
T2 iff for all 1 ≤ i ≤ j, πi(T1) =Esym

πi(T2) and moreover
(ii) P

[
e1, e2← [[T1, T2]]Aη

; e1 = e2
]

is negligible iff for all1 ≤ i ≤ j,

P
[
ei1, e

i
2 ← [[πi(T1) ↓R, πi(T2) ↓R]]Aη

; ei1 = ei2
]

is negligible.
(The notationT ↓R stands for theR-normal form ofT .)

Thanks to this lemma, it is sufficient to prove (3) and (4) forT1 andT2 of sortData

and inR-normal form. (Indeed notice that ifϕ = {x = T1, y = T2} has no encryption
cycles, thenϕ′ = {x′ = πi(T1) ↓R, y′ = πi(T2) ↓R} has no encryption cycles and
|ϕ′|e ≤ |ϕ|e.)

Given the sorting system and the rewriting rules, a termT of sortData inR-normal
form can only be of the following forms:

1. a constant:0 or 1,
2. a name of sortData: T = a,
3. a projection of name of sortListj : T = πi(a) (1 ≤ i ≤ j),
4. a projection of a encryption/decryption of sortListj : T = πi(enc(U, V )) with
U 6∈ {dec(T ′, V )} or T = πi(dec(U, V )) with U 6∈ {enc(T ′, V )}.

(3)Q0. AsT1 andT2 contain no encryption/decryption symbol, only the cases1−
−3 of the case analysis above can occur; the property follows directly.

(4) Qn+1 ⇐ (Pn+1 andQn). Let T1 andT2 be two distinct closed normal terms
andϕ = {x = T1, y = T2}. Assume thatϕ has no encryption cycles nor composed
keys, and|ϕ|e = n+ 1.

1. If one of the two terms—sayT1— is of the form1 (constant),2 (name) or3 (pro-
jection of a name). ThenT2 is of the form4, for instanceT2 = πi(enc(U, k)) with
U 6∈ {dec(T ′, k)}.
(a) If T1 6= k, byPn+1, we have([[ϕ]]Aη

) ≈ ([[{x = T1, y = πi(a)}]]Aη
) for some

fresh namea. In particular, the probability for the two componentsx andy to
be equal is negligible.

(b) If T1 = k, assume thatT1 andT2 yields the same concrete value with signif-
icant probability. LetListn0

be the sort ofU . We build an adversaryA to the
ω-IND-P1-C1 game as follows:

i. for each namea of sorts appearing inT2, draw a valuêa
R
←− [[s]]Aη

;

ii. draw a valueâ0
R
←− [[s]]Aη

for some fresh namea0 of sortListn0
;
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iii. computeT̂2 recursively as follows:

̂encn(T, k) = En(T̂ ) if T 6= U

̂decn(T, k) = Dn(T̂ )

̂f(V1, . . . , Vn) = fAη
(V̂1, . . . , V̂n) if f(V1, . . . , Vn) 6∈ {enc(T ′, k), dec(T ′, k)}

̂encn0
(U, k) = E∗(Û , â0)

(same notations as before)
iv. if En0

(Û , T̂2) = T̂2, returns0, otherwise return1.
ClearlyA guesses the correct answer with non-negligible probability. As be-
fore, we use the propertyQn to conclude that its advantage is non-negligible.

2. SupposeT1 = πi1(enc(u1, k1)) andT2 = πi2(enc(u2, k2)) (the 3 other cases with
decryption symbols are similar). Asϕ has no encryption cycle, we can assume
for instance thatk1 6<ϕ k2. By Pn+1, we have([[ϕ]]Aη

) ≈ ([[ϕ′]]Aη
) whereϕ′ =

ϕ{enc(u1, k1) 7→ a} = {x = T ′
1, y = T ′

2} for some fresh namea. We then apply
Qn to T ′

1 andT ′
2. ut

Proof (of Lemma 6).Point (i) is easily shown by induction oni, using the five last
equations ofEsym. For (ii), notice that:

P
[
e1, e2← [[T1, T2]]Aη

; e1 = e2
]
≤

j∑

i=1

P
[
ei1, e

i
2 ← [[πi(T1), πi(T2)]]Aη

; ei1 = ei2
]

and

∀i, P
[
e1, e2← [[T1, T2]]Aη

; e1 = e2
]
≥ P

[
ei1, e

i
2 ← [[πi(T1), πi(T2)]]Aη

; ei1 = ei2
]

Besides it is clear from the unconditional=Esym
-soundness, that for anyT1, T2:

P
[
e1, e2← [[T1, T2]]Aη

; e1 = e2
]

= P
[
e1, e2← [[T1 ↓R, T2 ↓R]]Aη

; e1 = e2
]
ut

Proof (of Theorem 4).Thanks to the (unconditional)=Esym
-soundness, it is enough to

prove the property on frames inR-normal form.
We begin by proving the following lemma:

Lemma 7. Assume that the concrete implementations for the encryption and its inverse
satisfy both theω-IND-P1-C1 assumption. For every well-formedR-normalized frame
ϕ, ([[ϕ]]Aη

) ≈ ([[ϕ]]Aη
) whereϕ is the pattern associated toϕ following the algorithmic

proof of Proposition 5 (this pattern is uniquely defined modulo renaming of names.).

Now recall that by Proposition 4 and sinceϕ ≈ ϕ, we have:

[[ϕ]]Aη
= [[ϕ]]idealAη

= [[ϕ]]idealAη

Therefore the soundness criterion holds for well-formedR-normalized frames and
we conclude by Theorem 1. ut

Notice that the use of the ideal semantics could not be (easily) avoided as two stati-
cally equivalent patterns may not be equal modulo renaming of bound names.
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Proof (of Lemma 7).We prove the property by induction on the numberm of encryp-
tion and decryption by non-deducible keys inϕ.

If m = 0, by the well-formedness condition,ϕ is already a pattern.
Suppose thatm > 0. As ϕ has no encryption cycle, we choose a non-deducible

(atomic) keyk appearing inϕ, such thatk is maximal for the encryption relation>ϕ.
As k is not deducible, is maximal for>ϕ andϕ contains nohead andtail symbols,

the only occurrences ofk in ϕ are as encryption or decryption keys. LetT be the largest
subterm ofϕ of the formT = enc(U, k) or T = dec(U, k). We apply Lemma 5 onϕ
andT and conclude by induction hypothesis on the obtained frameϕ′. ut
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