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Abstract. In this paper we study the link between formal and cryptographic
models for security protocols in the presence of a passive advehsamyntrast

to other works, we do not consider a fixed set of primitives but aimsatltefor

an arbitrary equational theory. We define a framework for compaxingypto-
graphic implementation and its idealizatir.t. various security notions. In par-
ticular, we concentrate on the computational soundness of static equieake
standard tool in cryptographic pi calculi. We present a soundnessamitevhich

for many theories is not only sufficient but also necessary. Finallyestablish
new soundness results for the Exclusive Or, as well as a theory orsigimd
lists.

1 Introduction

Today’s ubiquity of computer networks increases the neethforetic foundations for
cryptographic protocols. For more than twenty years now,tammunities separately
developed two families of models. Both views have been vegful in increasing the
understanding and quality of security protocol design.l@mne hanébrmalor logical
models have been developed, based on the seminal work of BieteYao [12]. These
models view cryptographic operations in a rather abstradtidealized way. On the
other hanccryptographicor computationaimodels [13] are closer to implementations:
cryptographic operations are modeled as algorithms méatipg bit-strings. Those
models cover a large class of attacks, namely all those imgai¢able by a probabilistic
polynomial-time Turing machine.

The advantage of formal models is that security proofs aregdly simpler and
suitable for automatic procedures, even for complex paisdd 0, 9, 1]. Unfortunately,
the high degree of abstraction and the limited adversaryepoaise serious guestions
regarding the security offered by such proofs. Potenti@listifying symbolic proofs
with respect to standard computational models has tremenioenefits: protocols can
be analyzed using automated tools and still benefit from dloarity guarantees of the
computational model.

Recently, a significant research effort has been directié@tkatg the two approaches.
One of the first result is presented by Abadi and Rogaway ligly prove the computa-
tional soundness of formal (symmetric) encryption in theeca passive attacker. Since
then, many results [7, 6, 14, 15] have been obtained. Inquéati, Backes et al. [7, 6]



prove the soundness of a rich language including digitahatigres, public-key and
symmetric key encryption in the presence of an active attadtlaud [14] presents an
automated procedure for computationally sound proofs ofidentiality in the case of
an active attacker and symmetric encryption when the nuwhsrssions is bounded.

Each of these results considers a fixed set of primitigeg,symmetric or public-
key encryption. In this paper, we aim at presenting genesllts for arbitrary equa-
tional theories, such as encryption, but also less studied,e.g.groups or exclusive
or. We concentrate ostatic equivalengea notion of indistinguishability common in
cryptographic pi calculi [4, 3]. Intuitively, static equailence asks whether an attacker
can distinguish between two tuples of terms, by exhibitinggquation which holds on
one tuple but not on the other. This provides an elegant nteargress security prop-
erties against passive attackers. Moreover there exist §hand approximate [11]
algorithms to decide static equivalence for a large famiilgquational theories.

Our first contribution is a general framework for compariognial and computa-
tional models in the presence of a passive attacker. We défineotions osoundness
andfaithfulnessof a cryptographic implementationr.t. equality, static equivalence and
deducibility. Soundness holds when each formal proof hasapatational interpreta-
tion. Faithfulness is the converses. the formal model does not provide false attacks.

Our second contribution is a sufficient criterion for souesBw.r.t static equiva-
lence: intuitively the usual computational semantics ofiehas to be indistinguishable
to an idealized one. We also provide a general definition tiepas for arbitrary equa-
tional theories that encompasses the notion usually deforesymmetric and public
encryption. Those patterns allow us to characterize a lelags of theories for which
our soundness criterion is necessary.

Our third contribution consists in applying our framework dbtain two novel
soundness results. The first theory deals with the Excl@ivénterestingly, our proof
reflects the unconditional security (in the informatioedhetic sense) of the One-Time
Pad encryption scheme. Second we consider a theory of syiometryption and lists.
In some sense, the result is similar to the one of Abadi andaRay [5]. However,
we consider deterministic, length-preserving, symmaegdricryption schemes.k.a.ci-
phers. To the best of our knowledge, this is the first resulsach schemes, whose
specificity is that decryption always succeeds.

Outline of the paperln the next section, we introduce our abstract and concretieta
together with the notions of indistinguishability. We theéefine the notions of sound-
ness and faithfulness and illustrate some consequencesimdisessv.r.t. static equiv-
alence on groups. In Section 4, we define the ideal semaritadsstract terms, present
our soundness criterion and also show that for a large faofilgteresting equational
theories, the soundness criterion is a necessary conditoan illustration (Section 5),
we prove the soundness for the theories modeling Exclusiyvawell as ciphers and
lists. We then conclude and give directions for future work.

2 Modeling cryptographic primitives with abstract algebras

In this section we introduce some notations and set ouradisind concrete models.



2.1 Abstract algebras

Our abstract models—which we cabstract algebras-consist of term algebras de-
fined on a first-order signature with sorts and equipped vgtragonal theories.

Specifically asignature(S, F) is made of a set afortsS = {s, s; ...} and a set of
symbolsF = {f, f1 ...} together with arities of the formr(f) = s1 x ... X s — s,
k > 0. Symbols that také = 0 arguments are callecbnstantstheir arity is simply
written s. We fix an infinite set ohames\" = {a, b...} and an infinite set ofariables
X = {z,y...}. We assume that names and variables are given with sortssefrod
terms of sorts is defined inductively by

T : term of sorts

x variablex of sort s
a nameq of sort s
f(Ty, ..., Ty) application of symbof € F

where for the last case, we further require thais a term of some sost; andar(f) =
81 X...%X 8 — s. As usual, we writerar(7") andnames(T") for the set of variables and
names occurring iff"’ respectively. A term igroundor closediff it has no variables.
Substitutions are writtem = {z; = T3, ..., z, = T, } withdom(o) = {z1,...,2,}.
We only considewell-sortedsubstitutions, that is substitutioas= {z, = 11, ..., 2, =
T, } for which z; andT; have the same sou. is closediff all of the T; are closed. We
extend the notationames(.) from terms to substitutions in the obvious way. The ap-
plication of a substitutiom to a termT is writtenc(T) = To.
Symbols inF are intended to model cryptographic primitives, whereasesin
N are used to model noncés. concretely random numbers. The abstract semantics
of symbols is described by an equational theBrthat is an equivalence relation (also
written =g) which is stable by application of contexts and well-sogabstitutions of
variables. We further require thatis stable by substitution of names. All the equational
theories that we consider in this paper satisfy these ptiegeFor instance, symmetric
and deterministic encryption is modeled by the thebgy. generated by the classical
equationF,. = {dec(enc(z,y),y) = z}.

2.2 Frames, deducibility and static equivalence

Following [3, 2], aframeis an expressiop = va.c wherea is a set ofbound (or
restricted) namesind o is a well-sorted substitution. Intuitively, frames represse-
guences of messages learned by an attacker during the iexeafié protocol.

For simplicity we only consider framesi.oc which restricteverynames occurring
in o, that isa = names(c). In other words, names must be disclosedxplicitly by
adding a mapping, = « to the substitution. Thus we tend to assimilate frames and
their underlying substitutions.

A term T is deduciblefrom a closed framep, written ¢ -5 T iff there exists a
term M with var(M) C dom(y) andnames(M) N (names(¢) U names(T)) = 0
such thatM ¢ =g T. Consider for instance the theo®.,. and the framep; =
vky, ko, ks, ky. {.%'1 = enc(k:l, kz), Ty = enc(k4,k3), T3 = 1{33}: the nameky is de-
ducible fromy; sincedec(xs, z3)¢01 =g, k4 but neitherk; nor k- are deducible.



Deducibility is not always sufficient to account for the kredge of an attacker.
E.g.it lacks partial information on secrets. This is why the antof static equivalence
is used. Two closed frames andy- arestatically equivalentwritteny; ~g o, iff (i)
dom(p;) = dom(g2), (ii) for all terms M, N with variables included inlom(y;) and
using no names occurring isy, or o, My =g N is equivalent taVl p; =g Nps.

For instance, the two frames. {x = enc(0, k)} andvk. {x = enc(1, k)} are stat-
ically equivalent with respect t,., whereas the two frames:. {x = enc(0, k), y =
k} andvk, k'.{x = enc(0,%), y = k} are not.

2.3 Concrete semantics

We now give terms and frames a concrete semantics, parapeetdry an implemen-
tation of the primitives. Provided a set of sofsand a set of symbol§ as above, a
(S, F)-computational algebra consists of

— a non-empty set of bit-strinds] 4 C {0, 1}* for each sort € S;

—afunctionfs : [s1]a X ... X [sk]a — [s]a for eachf € F with ar(f) =
$1 X ... X s — s, such thatf 4 is computable in polynomial time;

— acongruence-=4 ; for each sort that is computable in polynomial time, in order
to check the equality of elements [a] 4 (the same element may be represented
by different bit-strings); by congruence, we mean a reflexasymmetric, transi-
tive relation such thaty =4, €},....ex =as, € = faler,...,ex) =a.s
fa(eq, ..., e) (in the remaining we often omitand write=4 for =4 ;);

— a polynomial-time algorithm to draw random elements fipf; we denote such

a drawing byz Xl [s]a; the drawing may not follow a uniform distribution, but
no =4 .-equivalence class should have probability

Assume a fixed{, F)-computational algebrd. We associate to each closed frame
o={x1=T,...,z, =T,} adistribution) = [] 4, of which the drawings) — v
are computed as follows:

1. for each name appearing iff1, ..., T,, draw a valu& £ [s] 4;
2. for eachr; (1 < i < n) of sorts;, computel; € [s;] 4 recursively on the structure

ofterms:f(Tl’,/...\,T;l) = fa(Ty,...,T");
3. returnthevalu® = {x1 =T1,...,2, = Ty }.

Such values) = {z1 = e1,...,z, = e,} With e; € [s;]4 are calledconcrete
frames We extend the notatioh] 4 to (sets of) closed terms in the obvious way. We
also generalize the notation to terms or frames with vaegtily specifying the concrete
values for all of them{.] 4 1»,—c, ...z, —e,}- Notice that when a term or a frame con-
tains no names, the translation is deterministic; in thigecae use the same notation
to denote the distribution and its unique value.

(Families of) distributions over concrete frames beneéirfrthe usual notion of
cryptographic indistinguishability. Let us note> 0 the complexity parameter. Two
families(¢,,) and(+/;,) of distributions over concrete frames amdistinguishablewrit-
ten () = (1), iff for every probabilistic polynomial-time adversag, intuitively .A

4



cannot guess whether he is given a sample fggror ¢;, with a probability significantly
greater than}. Rigorously, we ask that tredvantageof A,

AdVIND(A;7]7¢n7w;7) =P qZ(— 1/}77;,4(7]7’(2) = 1] —P |:'(Z<— 1#7/7,14(77,72) =1

is anegligiblefunction ofn, that is, remains eventually smaller than any* (n > 0)
asn tends to infinity.

3 Relating abstract and computational algebras

In the previous section we have defined abstract and conqmahglgebras. We now
relate formal notions such as equality, (non-)deducibditd static equivalence to their
computational counterpartse. equality, one-wayness and indistinguishability.

3.1 Soundness and faithfulness

We introduce the notions of sounsp.faithful, computational algebras with respect
to the formal relations studied here: equality, static esjence and deducibility. In
the remaining of the paper we only consider families of cotafional algebragA,)
such that for any so#, the probability of collisions of two random elements[ij 4, ,
P [61, €9 — [[S]]A"; €1 =4, 62], is negllglble

Specifically a family of computational algebr@s,,) is

— =g-soundiff for every closed termq’, T, of the same sorfl}, =g 15 implies that
P [61,62 «— [[Tl, TQ:HAW; e1 #An 62] is negllglble,

— =g-faithful iff for every closed termd?, T of the same sort[}, #g T, implies
thatP e, e2 < [T1, To]a,; €1 =a, e2] is negligible;

— =~ g-soundiff for every closed frameg, ¢» of the same domainy; ~g o iIM-
plies that([1],) ~ ([¢2]a,);

— ~p-faithful iff for every closed frames, o of the same domainy; #g o
implies that there exists a polynomial-time adversdrfor distinguishing concrete
frames, such that — Adv™® (A, 7, [p1] 4, . [¢2] 4, ) is negligible;

— /g-soundiff for every closedp andT', ¢ /g T implies that for all polynomial-time
adversaryd, P [¢,e — [, T]a,; A(¢) =4, €] is negligible;

— K/ g-faithful iff for every closedy and T, ¢ Fg T implies that there exists a
polynomial-time adversaryl such thatl — P [¢,e — [, T]a,; A(¢) =4, €] is
negligible.

Sometimes, it is possible to prove stronger notions of snassl that hold without
restriction on the computational power of adversaries.drigular, (A,) is uncondi-
tionally =g-soundiff for every closed term§7, 75 of the same sorfl; =g 75 implies
thatP [e1, e2 « [T1, To]a,; €1 =a, e2] = 1; unconditionally~ -soundiff for every
closed framesp;, ¢, of the same domaing; ~g ¢, implies([p1]a,) = ([v2]a,);
unconditionallyt/g-soundiff for every closedy andT s.t. ¢ /g T, the distributions
for ¢ andT are independent: for afly, eo, P [¢, e < [, T]a,; ¢ = ¢o ande = eg| =

P [¢ — [¢la,;¢ = o] X Ple— [T]a,;e=eo.



Generally, (unconditionak- p-soundness is given by construction. Indeed true for-
mal equations correspond to the expected behavior of pvasitand should hold in
the concrete world with overwhelming probability. The athgteria are however more
difficult to fulfill. Therefore it is often interesting to ragct frames towell-formedones
in order to achieve soundness or faithfulness: for instazadi and Rogaway [5] do
forbid encryption cyclesq.f. Section 5.2).

It is worth noting that the notions of soundness and faiti#at introduced above
are not independent.

Proposition 1. Let(A,) be a=g-sound family of computational algebras. Theh,)
is I g-faithful. If moreover(A,)) is =g-faithful, then it is alsox g-faithful.

The proof is given in Appendix A.1. For many interesting tfies, we have that: -
soundness implies all the other notions of soundness atidufliess. This emphasizes
the importance ofz z-soundness and provides an additional motivation for itdystAs
an illustration, let us consider an arbitrary theory whictliides keyed hash functions.

Proposition 2. Let(A,,) be afamily ok z-sound computational algebras. Assume that
free binary symbolé; : s x Key — Hash are available for every sor¢. Then(A4,)

is =g-faithful andt/g-sound. Besides if the implementations for theare collision-
resistant, therfA,) is = g-sound ~ g-faithful andt/ g-faithful.

The proof (Appendix A.2) is done by encoding the differergtpems with~z andh,.

3.2 = g-soundness implies classical assumptions on groups

In this section we present some interesting consequences;efoundness. Inspired
by the work of Rivest on pseudo-freeness [17], we show thatraéstandard crypto-
graphic assumptions are a direct consequence of the saamaha theory representing
groups Let E¢ be the equational theory modeling a free gréupith exponents taken
over a free commutative ringd. (Precise sets of symbols and equations are detailed in
Appendix B.)

We now introduce several classical problems on groups,wihicryptography are
considered to bhard, i.e. not feasible by any probabilistic polynomial-time adveysa

— discrete logarithm(DL) problem: giveng andg’, find a, such thay® = ¢';

— computational Diffie-HellmafCDH) problem: givery, ¢* andg®, find g;

— decisional Diffie-HellmaiDDH) problem: givery, ¢* andg®, distinguishy®® from
a random elemeny’;

— RSAproblem: given elemenisandg?, find g.

Suppose that there is a family of computational algelirds) which are~pg,-
sound. Then no probabilistic polynomial-time adversdrgan solve the DDH problem
with non-negligible probability. Indeed consider the twarhes

1 =vg,a,b{z1 =g, 22 = g", 23 = ", z4 = g**} and
p2 =vg,a,b, c.{xl =g,x2 = g% x3 = 9b7$4 = gc}~
The question of distinguishing these two frames encodestlgxéhe DDH problem.
Given the equational theoy/, 1 ~g, w2. AS We Suppose: . -soundness, we have



that the concrete semantics of those two frames cannottieglishedj.e. ([01]4,) ~
([2] a,). Hence,A cannot solve the DDH problem.

Clearly, if one can solve the DL problem, one can also soleeGDH problem,
which itself allows us to solve the DDH problem. Therefoteg hardness of DDH
implies the hardness of the two other problems.

In a similar way we show that g -soundness implies the hardness of RSA. In-
stead of directly encoding the RSA problem, we introduceghtl weaker decision
problem, whose hardness implies the hardness of RSA. Thalemngof this problem
requires the extension of the signature by a one-way fumétioG — G, adding no
equation to the theory. Consider the two frames

Y1 = Vg7a'{l‘1 = ga7w2 =a,T3 = h(g)} and¢2 = ngg/aa’{ml = ga7I2 =a,T3 = g/}

We have thatp; ~p, 2. As above, if we suppose g -soundness of4,,), we have
that the RSA problem cannot be solved by a probabilistic patyial-time adversary.
An interesting open question is whethel; -soundness implies or is implied by
Rivest's notion of pseudo-free groups [17]. We conjecthia the two notions are in
fact incomparable. Indeed, on the one hand, our notion @sghe hardness of DDH,
which remains an open question for pseudo-free groups. ®mtier hand pseudo-
freeness deals with a form of adaptive attackers while outetis purely non-adaptive.

4 A sufficient (and often necessary) criterion forx g-soundness

We now present useful results for proving;-soundness properties in general. Notably,
we provide a sufficient criterion fee g-soundness in Section 4.1 and prove it necessary
under additional assumptions in Section 4.2.

4.1 Ideal semantics andx g-soundness criterion

Given an implementation of the primitives, what we callegl tbncrete semantics maps
every closed frame to a distribution[] 4, in the expected way. We now define the
ideal semantic®f a ¢, intuitively as the uniform distribution over sequencesbif
strings (in the appropriate space) that pass all the fores#s verified byp.

Given a closed frame, let us writeeq () for the set of tests that are true ¢n
eqp(p) = {(M,N) | var(M)Uvar(N) C dom(¢), (names(M) U names(N)) N
names(p) = ) andMy =g N¢}. Notice thaty ~g ¢ iff eqr () = eqr(¢’).

We say tha{ 4,)) has uniform distributionf for every n and every sor#, [s] 4, is
afinite set=4, . is the usual equality and the distribution associatedlig A, is the
uniform one ovefs] 4, .

Definition 1 (Ideal semantics).Let (A,) be an unconditionally=-sound family of
Computational algebras, having uniform distributionst ke= {x; = ¢1,...,z, =

t,} be a closed frame ang; the sort ofz;. Theideal semanucﬁap]]lde“l of ¢ is the
uniform distribution over the finite (hon-empty) set of aete frames:

{{$1:617-~~7

—en} | (1, ven) € [sala, X -+ X [sala, and
(M, N) € eq(p) -

[[ }]An,{xlzel,...@n:en} = HN]]An,{ml:el,...,xn:en}}



For instance, letp = vny,na.{x1 = n1,22 = na} with n; andny of sorts. Then
eqg(p) € {(M,N) | M =5 N} implies that[o]{** is simply the uniform distribu-
tion over[s] 4, x [s]a,- A more general definition of the ideal semantics, which does
not restrict(A,)) to have only uniform distributions is given in Appendix C.

We can now state oug g-soundness criterion: intuitively, the two semantics,-con
crete and ideal, should be indistinguishable.

Theorem 1 (=g-soundness criterion)Let(A,,) be an unconditionally= z-sound fam-
ily of computational algebras. Assume that for every closadhe ¢ it holds that
([¢la,) = ([p]’de*). Then(4,) is ~x-sound.

Proof. Lety, ~g pa. ASeqp(¢1) = eqgr(p2), for everyn, by construction, the distri-
butions[i1]{* and[p-]’* are equal. We use transitivity of the indistinguishability

relation~ to conclude{[¢1]4,) ~ ([[(pl]]fg:“l) = ([[992]]%:@1) ~ ([e2]a,)- O

4.2 Patterns revisited

Patterns have been introduced by Abadi and Rogaway [5] aed ims subsequent
work [15, 8] as a way to define computationally sound formaliesjences. Typically
frames are mapped to patterns by replacing non-deducibkersos by boxe§]. Two
frames are then equivalent iff they yield the same pattegniduenaming of names). For
example, the pattern associated to the frame= {z; = enc(enc(ky, k3), k1), 22 =
enc(kl, ]{72), xr3 = kg} is {J}l = enc(D, kl), To = enc(kl, ]{32), xr3 = kg}

In this section we propose a general, novel definition ofgpat and study some of
their properties. We then use these properties to proveotitasoundness criterion is
necessary in many cases.

Definition 2 (Pattern). A closed framep is apatternif each of its subterms is deducible
from .

Equivalently a pattern is a closed frame of the fopm= {z1 = Cila1,...,am),-- .,
xn = Chpla,...,an]}, where theCy ... C, are public (hon necessarily linear) con-
texts and the; .. . a,, are distinct deducible nameg:+g a;. For example, the frame
1 considered above is not a pattern wHilte = enc(n1, k1), 22 = enc(kq, ko), 25 =
kz} is.

The following proposition finitely characterizes the edoias verified by a pattern.

Proposition 3. Let ¢ be a pattern. For each;, let {,, be a public term such that
var(Cq,;) C {x1,...,2,} @and(,,» =g a;. Then every equation which holds ¢nis
a logical consequence (in the first-order theory of equpldl £ and the equations
Tj= CJ[CH&?' . ’Cam,]’ i.e. B U {‘Tj = Cj[C(Ll?' . ’Cam,] | 1< J< TL} ': GQE(W)'

Interestingly the concrete and the ideal semantics of petiaften coincide.

Proposition 4. Let (A,,) be an unconditionally=z-sound family of computational al-
gebras, having uniform distributions. Letbe a pattern. The concrete and the ideal
semantics of yield the same family of distributions: for ajl [¢] 4, = [@]%<.

n



The idea of the proof (detailed in Appendix D.2) is that, gdime finite characterization
of eqz(¢) (Proposition 3), one can draw a bijection between the drgwfmonces and
the eligible values for the ideal semantics.

A theory E admits patternsff for every closed framep, there exists a (not neces-
sarily unique) patterip such thatp ~g . In practice many theories useful in cryptog-
raphy satisfy this propertg.g.the theories considered in Section 5. Note that we have
proveden passanthat~ is decidable for equational theories that admit patteris an
for which =g is decidable, provided the construction of patterns iscéffe. Indeed,
given two framesp; andys, we associate to each of them static equivalent pattgerns
andys. It is then straightforward to check whethgr andp; are equivalent using the
finite characterization aofq;(;) by Proposition 3.

The following theorem states that our soundness criteigoactually very tight:
whenever a theory admits patterns, our criterion is a nacgssndition.

Theorem 2. Assume that the theory admits patterns. LetA,) be a family of com-
putational algebras, such th&#,,) has uniform distributions, isz - and uncondition-
ally =g-sound. Then the soundness criterion of Theorem 1 is sdti$fieevery closed

framegp, ([¢]a,) = ([£]4).

Proof. By hypothesisy ~p % implies ([¢]4,) ~ ([?]a4,) and by Proposition 4,
(Iela,) = ([4="). We conclude since ~ 7 implies ([]§!) = ([]{*). O

5 Examples

We now apply the framework of Sections 3 and 4 to establishiwe| ~ z-soundness
results, concerning the theory of Exclusive Or and thatpiiers and lists.

5.1 Exclusive Or

We study the soundness and faithfulness problems for the tieeory and implemen-
tation of the Exclusive Or (XOR).

The formal model consists of a single s@ttta, an infinite number of names, the
infix symbol @ : Data x Data — Data and two constant8, 1 : Data. Terms are
equipped with the equational thealy, generated by:

rDQy=ydx r®dx=0
(z@y) Dz=2® (y® 2) r®0=2z

As an implementation, we define the computational algelrgs; > 0: the con-
crete domair Data] 4, is {0,1}" equipped with the uniform distributior is inter-
preted by the usual XOR function ovgb, 1}7, [0] 4, = 07, [1] 4, = 17.

In this setting, statically equivalent frames enjoy an htg& characterization. In-
deed, letp and ¢’ be two frames withhames(y) U names(¢’) C {a1,...,a,} and
dom(yp) = dom(¢’) = {x1,..., 2, . We associate tp a (m + 1) x (n + 1)-matrix
a = (o ;) over the two element field,: the 0-th row of « is (1,0...0) and for
1<i<m,1<j<n(resp.j=0 a;isthe number of occurrences @f (resp.of 1)



in ¢(x;), modulo2. In the same way, a matrix’ is associated t@’. Using classical
manipulations on matrix, it is easy to show thatep, ¢’ iff coker(a) = coker(a’),
wherecoker(«) denotes the co-kernel of (i.e. the set of rows? s.t. 3 - « = 0).

This characterization is the key point of our main resulttfar theory of XOR.

Theorem 3. The usual implementation for the XOR theory is unconditigna g, -,
~p,- andi/g, -sound. Itis also=g,, -, ~ g, - and/ g, -faithful.

The proof is detailed in Appendix E. We show that the conceste ideal semantics
coincide using the duality propertyn(a) = coker(a)*. This result is comparable to
the work of Bana [8], who shows the unconditional soundnégbe One-Time Pad
encryption in a setting similar to that of Abadi and Rogawal [n some sense our
result is more precise as we model the XOR symbol itself ané particular use of it.

5.2 Symmetric, deterministic, length-preserving encrypbn and lists

We now detail the example of symmetric, deterministic amgdjib-preserving encryp-
tion schemes. Such schemes, also knowaiplsers[16], are widely used in practice,
the most famous examples being DES and AES .

Our formal model consists of the set of sa$ts= { Data, Listg, Listy . .. List,, ...},
an infinite number of names for each sort and the symbols:

enc,, dec, : List, x Data — List, encryption, decryption
cons,, : Data x List, — List,11 list constructor
head,, : List,+1 — Data head of a list
tail,, : List,41 — Listy, tail of a list
nil : Listg 0,1: Data empty list, constants

We consider the equational theaky,, generated by (for every > 0)

consy, (head,, (x), tail,(z)) = z
enco(nil, z) = nil

dec,, (enc,, (z,y T
T

=z deco(nil, z) = nil
Y

)
enc, (dec, (z,y)
head,, (cons, (z,

tail,, (cons, (z,

When oriented from left to right, the equatioti,, form an (infinite) convergent
rewriting system, writteiR. The concrete meaning of sorts and symbols is given by
the computational algebras,, n > 0, defined as follows:

— the carrying sets arData] 4, = {0,1}" and[List,]4, = {0,1}"" equipped
with the uniform distribution and the usual equality redat;

— enc,, dec,, are implemented by a cipher for data of sizmgand keys of size) (we
discuss the required cryptographic assumptions later);

— [nil] 4, is the empty bit-string[cons,,] 4, is the usual concatenatiof)] 4, = 07,
[1]4, = 17, [head,] 4, returns they first digits of bit-strings (of sizén + 1)n)
whereadtail,,] 4, returns the lasty digits.

10



We emphasize that no tags are added to messages. Tags—anmticulgratags under
encryption— would be harmful to the i, -soundness. Indeed we expect that the for-
mal equivalencea, b.{z = enc(a,b), y = b} =g, va,b,c{r = enc(a,b), y = c}
also holds in the computational world; but this will not be tase ifz is tagged before
encryption.

For simplicity we assume that the encryption keys have theesazen as blocks of
data. This is not a real restriction since smaller keys canyd be padded with random
digits and the additional digits ignored by the encryptidgoathm. We also assume
that keys are generated according to a uniform distribu(ibhis is the case for AES,
and also for DES if we restrict keys to their 56 significanshit

Obviously, the above implementation is unconditionadly, -sound. Before study-
ing the~g,, -soundness, we need to characterize statically equivaeemes. Specifi-
cally we show that this theory admits patterns, in the sehSection 3.

Proposition 5. Lety be a closed frame. There exists a pattgrauch thatp ~g,, ©.
Proof (outline).We associate a pattern to any framéy the following procedure:

1. normalizep using the rulesk (the result is still denoteg);

2. while ¢ is not a pattern, repeat: find any subtefhof the formT = enc, (U, V),
T = dec,(U,V), T = head,, (V) or T = tail,,(V), with ¢ I/, V and replacd’
everywhere inp by a fresh name of the appropriate sort.

We prove in Appendix F.1 that this procedure always terngigain a pattern statically
equivalent to the initial frame.

Notice that for any subteri’, ¢ I7g,, W implieso{T +— n} i/p,, W{T  n},
where{T — n} denotes the replacementBfby n. As a consequence, the procedure
above yields a unique pattern (modulo renaming), no mattehat order the subterms
T are replaced.

Provided that-g,, is decidable, the procedure for associating patterns togfia
effective. Thus, as noticed in Section 4.2, we obtain angiheof of the decidability of
~E,,, Using Proposition 3. Notice that statically equivalentgats maynot be equal
modulo renaming: considerg.{z = enc(a,b), y = b} ~p,,, {x =c, y = b}.

We now study thev g, -soundness problem under realistic cryptographic assump-
tions. Classical assumptions on ciphers include the netansuper pseudo-random
permutation (SPRP) and indistinguishability against htime or adaptive, chosen-
plaintext or chosen-ciphertext attacks (written INB<®), 7,5 € {0, 1,2} depending
on the different combinations). These notions and theiogiabetween them have been
studied notably in [16].

Initially, the SPRP and IND-PC; assumptions apply to ciphers specialized to
plaintexts of a given size. Interestingly, this is not sufitt to imply thex g, -soundness
for frames which contain plaintexts of heterogeneous sizesrypted under the same
key. Thus we introduce strengthened versions of these gugums, applying to &ol-
lection of ciphers(&, .., D, »), Wheren is the complexity parameter amd> 0 is the
number of blocks of sizg contained in plaintexts and ciphertexts.

We define thevu-IND-Pi-Cj assumptioni, j € {0, 1,2}, by considering the follow-
ing experience,’ involving a2-stage adversaml = (A;, Ay):

11



— first a keyk is randomly chosen frorf0, 1}";

— (Stage 1)A, is given access—if > 1—to the encryption oracles, ,,(-, k), and—
if j > 1—to the decryption oracleB,, ,, (-, k). A, outputs two plaintexts:y, m; €
{0, 1} for someny, and possibly some dati

— (Stage 2) a random bit € {0,1} is drawn.. A, receives thehallenge ciphertext
¢ = &y no(ms, k), the datad and is given access—if > 2—to the encryption
oraclest, ., (-, k), and—if j > 2—to the decryption oracle®, (-, k). A then
outputs a bit';

— Ais successful iz, iff b =0’ and, during the two stages, it has not submitied
or m; to an encryption oracle, nerto a decryption oracle.

Define theadvantageof A as:Adv""> " () = 2 x P [Ais successful ig/] — 1.
Thew-IND-Pi-C;j assumption holds fot&,, ., D, ) iff the advantage of any proba-
bilistic polynomial-time adversary is negligible. It haldor theinverseof the encryp-
tion scheme, iff it holds for the collection of ciphe®,, ,,, £,.,.)-

The usual IND-R-Cj assumption corresponds to the case wherg restricted to
the valuel in the above definition. A similar strengthening of the SPRBuanption,
written w-SPRP, is proposed in Appendix F.2.

As in previous work [5, 15, 6, 14], we restrict frames to thest only atomic keys
and no encryption cycles. Specifically a closed frapigas only atomic keyis for all
subtermsenc,, (u, v) anddec, (u, v) of ¢, v is a name. Given two (atomic) keys and
k2, we say thak; encryptsk, in o, writtenk; >, ko, iff there exists a subtertl of ¢
of the formU = enc,, (T, k1) orU = dec,, (T, k1) such thak. appears irf’ not used as
akeyi.e. ky appears irf” at a position which is not the right-hand argument efia,/
or adec, . An encryption cyclés a tuplek; ...k, suchthat; >, ... >, kn, >, k1.

The effect of the condition “not used as a key” is to allow ddagng more terms as
free of encryption cycles, for instaneec,, (enc,, (a, k), k). This improvement is already
suggested in [5].

We now state ourg, , -soundness theorem. A closed framevisll-formediff its
R-normal form has only atomic keys, contains no encryptiotieyand uses nieead
andtail symbols.

Theorem 4 (~g,,-soundness)Lety; andy, be two well-formed frames of the same
domain. Assume that the concrete implementations for theyption and its inverse
satisfy both thes-IND-P1-C1 assumption. Ifp; ~g,,, @2 then([ei1]a,) ~ ([¢2]a,)-

The proof is detailed in Appendix F.3. The idea is to provedtmputational sound-
ness of each step of the procedure for mapping frames tapai@roposition 5). We
conclude using Proposition 4 on the ideal semantics foepatt

Note on the cryptographic assumptior@ryptographic assumptions of Theorem 4 may
appear strong compared to existing work on passive advessgr, 15]. This seems
unavoidable when we allow frames to contain both encrymiwthdecryption symbols.
Nevertheless if; andp, contain no decryption symbols, our proofs are easily adhpte
to work when the encryption schemedsIND-P1-CO0 only.

Also, itis possible to recover the classical assumption3-P-C; by modeling the
ECB mode (Electronic Code Book). Let us add two symhkels : Data x Data —

12



Data anddec : Data x Data — Data, and define the symbodaic,, anddec,, (formally
and concretely) recursively by

enc,+1(x,y) = cons,(enc(head, (z),y), enc,(tail,(x),y)) and
dec,11(x,y) = cons,(dec(head,, (z), y), dec, (tail,(z),y)).

Define well-formed frames as those of which the normal fororgain no encryp-
tion cycles. Thex g, -soundness property for well-formed frames holds as sotneas
implementations foenc anddec are both IND-R-C1, or equivalently [16Enc is SPRP.

6 Conclusion and future work

In this paper we developed a general framework for relatimmél and computational

models of security protocols in the presence of a passieelkat. These are the first
results on abstract models allowing arbitrary equatiomabties. We define the sound-
ness and faithfulness of cryptographic implementatioms. abstract models. We also
provide a soundness criterion which for a large number afriee—those that admit a
general notion of patterns—is not only sufficient but alscassary. Finally, we provide

new soundness results for the Exclusive Or, as well as ayteéaiphers and lists.

As future work, we foresee to study the soundness of otherittse An interesting
case would be the combination of the two theories considierélds paper: in a the-
ory combining XOR, ciphers and lists, one can precisely rhoier block chaining
commonly used with ciphers such as DES or AES. Another aoustextension is to
consider the case of an active attacker.
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A Soundness and faithfulness

A.1 Proof of Proposition 1
Proposition 1.Let(A,,) be a=g-sound family of computational algebras. Then

1. (A,) ist/g-faithful,
2. if (A,) is also=g-faithful, (4,) is ~ g-faithful.

Proof.

1. Suppose Fg T i.e.there exists\/ such thatM ¢ =g T andvar(M) C dom(yp)
and the names af/ do not occur neither iy nor inT". We define the adversary
which can deducg?’] from [¢] as follows: A({z; = e;}) = [M]a, {z,=c,}- AS
(Ay)n>0 iIs =g-sound,A’s success probability is greater than 1 minus a negligible
function.

2. Supposer; %Eg 9. there exists a test/, N such that (for instance)/p; =g
N¢q andMg, #5 Nes. Let A be an adversary that, giverandq), tests whether
[[M]]AM; =4, [[N]]AM? and returns the result of the test.runs in polynomial-
time and by hypothesis its advantage is 1 minus a negligilsietfon. ad
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A.2  Proof of Proposition 2

Proposition 2.Let(A,)) be a family of=g-sound computational algebras. Assume that
free binary symbolk; : s x Key — Hash are available for every sor. Then

1. (4,) is =g-faithful;

2. (A,) ist/g-sound;

3. if the implementations for thie; are also collision-resistant, thef,)) is =g-
sound}/g-faithful and= g-faithful.

Proof.

1. LetTy, T be two terms of sort such thatly #g T,. Consider the frame =
{z1 = hs(T1,k), o = hs(To, k)} wherek is a fresh name of sorkey. As
T, #g Ty formally andh has no equations, we hayex~g {x1 = n, 2o = n'}
wheren, n’ are two distinct fresh names of sdiush. Thus by hypothesidi] ~
[{x1 = n, z2 = n'}]. The probability for the two names to be equal concretely is
negligible, thus

Ple1,ex « [T1, To]a,; €1 =4, €2]
<P[ef, ey« [h(T1, k), h(To,k)]a,; €] =a, €3]

is negligible.

2. Letyp be aframe and aterm of sors. We letp; = pU{x = hy(T, k),y = k} and
p2 = U {x =n,y = k} wherez, y are fresh variableg; is a fresh name of sort
Key, n is a fresh name of soffash. As p /g T, we havep; ~g . Thus by hy-
pothesis]p1] ~g [¢2]. By contradiction, suppose there exists a polynomial-time
adversaryA to deducdT] from [¢] concretely. We easily build an adversdyo
distinguish betweefiy1], [¢2] as follows: call4 on the first part ofp, and obtain
[T]. Usingy = [k], computelhs (T, k)] and compare it to the value af Hence,
we contradict the hypothesis efg-soundness and conclude that no probabilistic
polynomial-time adversary can dedufd from [¢] with significant probability,
i.e.(4,), > 0isl/g-sound.

3. LetT}, T be two terms of sort such thatly; =g T5. Consider the same frame as
before:p = {1 = hs(T1, k), 2 = hs(T, k)}. AsT) =g T formally andh, has
no equations, we have ~g {x; = n, x2 = n} wheren is a fresh name of sort
Hash. Thus by hypothesidi] ~ [{z1 = n, z2 = n}] and

P [6’1,6'2 — [h(T1, k), (T2, k)] a,; €1 =4, 6’2] >1—¢

wheree,, is a negligible function. Thus if the implementation lof is collision-
resistant,

P[e1,ex « [T1, To]a,; €1 #4, €2]

is negligible. Other properties follow from Proposition 1. O

15



B An abstract model of groups

We model a grouf> with exponents taken over a commutative riagand define the
following symbols:

* :GxGE—G - 1A— A
1¢: G - AXA— A
+:AxA—- A 14 1 A

0:A exp:GxA—G

As usual, we use infix notation to denote the operators + and writeg® to denote
exp(g, a). Consider the following equational theoB:

zxlg == x4+ (—x)=0 (x4+y)-z=z-z2+y-z
lgxz=2a r+y+z)=(x+y) += ()b = gla)
xx(yxz)=(z*y)*z x-lg=x x% % b = poth
z+0=x T-Y=yYy-x zha =g
ry=yte v (g2 =(z-y) 2 =1

Abelian groups are modeled by adding the equations= yxx and(zxy)® = z%*xy®.

C Ideal semantics

Definition 3 (Ideal semantics, general casel.et(A,) be a family of unconditionally
=pg-sound computational algebras agd= {z; = T1,...,x, = T,,} a closed frame.
Theideal semanticsf ¢ is the family of distributionﬂcp]]i‘(:“l), where for eachy,

the drawinge «— [[@]]fgfal is defined as follows:

1. for eachi, drawe; xil T3 A,
2. check that for al{ M, N) € eqg (),

|M|Anv{m1:31 aaaaa Tn=en} — Ay N|An,{x1:el,...,mn:en}

3. ifthisis the case, returh = {x; = ey, ..., z, = e, }, otherwise go back to step 1.

By unconditional=-soundness, the drawingswhich are & 4, -equivalent to values)

in the image of the usual semanticshlways pass the test of step 2. As we required
that the drawing fronfil;| 4, gives no=4, -equivalent class a zero probability, the prob-
ability to succeed at each steps thus greater than zero. Hence the loop “eventually”
terminates and the definition makes sense. (Rigoroﬁlsﬂ%:al is a conditional distri-
bution.)

As eqg () is likely to be infinite, the definition may not be effectivéid has no
consequence here. Recent work of Abadi and Cortier [2] asdtseof Section 4 suggest
thateq () can be described finitely in a way that makes this definitiéecgfe, for
many equational theories.
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D Patterns

D.1 Proof of Proposition 3

Proposition 3. Let ¢ be a pattern. For eaclu;, let (,, be a public term such that
var(Cq;) C {z1,...,z,} and{,, ¢ =g a;. Then every equation which holdsnis a
logical consequence @& and the equations; = C;[(,,,---,Ca,.], i-€.

{2 = Cj[Cars-+Ca,] | 1 <G <n} UE = eqp(e).

By logical consequence, we mean that the equations are d#eldiom the hypotheses
in the first-order theory of equality.

Proof. Let (M = N) € eqg(y). By definition, we haveM ¢ =g Ny, i.e. M[z; —
Cjlar,...,an]] =g Nlz; — Cjlai,...,an]]. SinceE is stable by substitution of
names, we get:

M[xj = Oj[cal’ .- '7<a7nH =E N[xj i Cj[<a17"'7<a7n]]

Using the equalitiesc; = Cj[Ca,,---,Ca,] and by transitivity, we obtaif{z; =
Cj[Can-"vCam}‘]-Sjgn}UE’:M:N. 0

D.2 Proof of Proposition 4

Proposition 4. Let (4,,) be an unconditionally=-sound family of computational al-
gebras having only uniform distributions. Legbe a pattern. The concrete and the ideal
semantics op yield the same family of distributions: for ajl [¢] 4, =[]

Proof. Letp = {x1 = Cia1,...,am],...,xzn = Cplai,...,an]}, With o =g a;,
1 < ¢ < m as above. Let; be the sort ofa;, s; be the sort otz;, , andn a given
complexity parameter.

For simplicity let us fix the order of variables, ..., z, and see concrete frames
merely as tuples of bit-strings. The concrete valuesfare then taken from the set:

F =[s]a, x---x[sp]a,

More precisely, the usual concrete semantics consists ppim@ every drawing of
names from the sef = [s1]a, x - x [s,n] 4, to@valueinF. Letus notex : £ — F'
this function, defined by:

aler, ..., em)

_ ([[c1 [ty amll gy —er.an—enys - [Culan, ... ,am]ﬂ{alzel,‘.,,am:em})

Using the(;, we can also define a functigh: ' — E:
ﬁ(fla R fn) = ([Kl]]{xlzfl,.“,xn:fn}7 ey [Km]] {mlzfl,“.,mn:fn})
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As ¢(; =g a; and(A,) is unconditionally=-sound (and the distribution ovés
forgets no element), we have by constructign o = Idg. Thusc is injective and
yields a bijection fron¥ to its imageGG = a(FE). MoreoverG satisfies:

G=A{(fr,-- s fu) [ (B(frs -, fu)) = (frs o fu)}
={(f1,---, fa) | V], [[Cj[a17~-~>am]]]{a1:el am=em} — i

,,,,,

Wher867 - HC?H {J/'l:fh“wwn:fn}}
= {(f17 RN fn | Vj? IICJ[Cla RN Cm]]]{xlth...,wn:fn} = fj}

As pis a pattern, by Proposition & ; () is implied by the equationS; (1, . .. , (] =
x; and E. By hypothesis equations ii are true in the concrete world with probability
1, thusG is precisely the set of values that pass all the tests ji{¢).

Now recall that, by hypothesidy and F' are equipped with uniform distributions.
Hence the concrete and the ideal semantics yield the satnidwli®n for ¢ and A4,,,
that is the uniform distribution oveF. ad

E Soundness and faithfulness results for the theory of XOR

To begin with, let us detail the algebraic characterizatbr . We use the last two
equations as a rewriting system

r®dxr—0

r®0—x

where we allow arbitraryAC-manipulations before (and after) each rewriting step. It
is easy to show that this rewriting system i({-)convergenti.e. each term yields a
unigue (moduloAC) normal form. Specifically, a terr#’ is in normal form iff each
name or variable occurs at most oncédimnd eithefl" = 0 or 0 does not occur iff".
Let a; ...a, be distinct names. Using the equations of XOR, each closad te
T with names(T') C {a;...a,} can be writtenT" =g, (o © @)_, B; a; where
B; € {0,1} and we use the conventi®ia, = 0 andla; = a;. In the following, we see
{0,1} as the two-element fieldly; thus terms module-,, form alF,-vector space.
Similarly a closed frame with names(¢) C {a; .. .a,} is written

n n
Y =Fg {T1=Q10D @al,j Aj oy ovey Ty = Q0 @ @am,j a;
Jj=1 j=1

whereo; ; € F. Letus group the coefficients intda+1) x (n+1)-matrixa = («; ;)
overlFy. ¢ is described by the relation:

1 1 0 ... 0 1
T @10 1,1 ... Q1 ay
Tm Um0 Om,1 --- Omn 2%

[e3%
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We now characterize the sejr,, () of equations valid inp. Let M, N be such
thatvar(M) U var(N) C dom(¢), (names(M) U names(N)) N names(p) = @. First
notice that:M¢ =g, Ny iff (M © N)p =g, 0. Therefore we only study the case
whereN = 0.

Assumel/ in normal form.M¢ =g, 0 andnames(M) N names(p) = @ implies
names(M) = 0. LetM =g, Bo® ;" f; x;. The conditiom/ ¢ =g, 0is equivalent
to the vectorial equation:

(ﬁo...,@m)'azo

thatis, (0o . . . Bm) belongs to the co-kernel of, notedcoker(c).

Finally lety andy’ be two closed frames witltames(p)Unames(¢’) € {a1 ... a,}
anddom(p) = dom(y¢’') = {x1...z,}. Let a anda’ be the two corresponding
(m+1) x (n+ 1)-matrices defined as above. From the previous discussiodediece
that:

¢ R, ¢ iff coker(a) = coker(a)

Theorem 3.The usual implementation for the XOR theory is unconditignag, -,
~p, - andi/ g, -sound. Itis also=g,, -, ~ g, - and/ g, -faithful.

Proof (of Theorem 3)The unconditionak=g,-soundness is clear, hence tie, -
faithfulness (Proposition 1).

LetT # 0 a closed term in normal form. The semanticg o either the constant
17 (if T = 1) or the uniform distribution (if’ # 1) on {0, 1}". ThusP [[T]4, = 0] is
negligible. Hence the- g, -faithfulness holds and by proposition 1, so does#hg, -
faithfulness.

We use the ideal semantics to address the unconditiepatsoundness. Indeed we
shall prove that: for any frame, ([¢] 4, ) = ([¢]’{**"). The result will follow from the
proof of Theorem 1. !

Let p be aframe, and = («; ;) its (m+ 1) x (n + 1)-matrix associated as before.
Let us seev as aF»-linear function from(Fy)" ™ to (Fy)™ 1.

The usual concrete semanticsofonsists in drawing a random vector frgfy, ) (+1)7
for the value of names, and then applyingalinear functiona : (Fy)™+tVn —
(Fo)(m+1n Specifically, if we segF,)+t1)7 asF," x ... x Fy", the initial distribu-

N————
n+1
tion over(IF,)("*+1)7 is the uniform distribution over the affine spade= (17,07 ...0")+
{07} x (IF3)™" made of vectors of which the first block 8. (This first constant block
is only a convenience for dealing with the constant termg filmctiona is defined by

afo.. fo)=|Pooifi . Pam;fs
j=0 j=0

On the other hand, the ideal semanticscofonsists in drawing a random vector
from the subsef” of (Fg)(mﬂ)” ~ Fy" x ... x Fy" whose elements satisfy all the
N—————

m+1

19



equations ireq g, () and havel” as first block. (Again the first block is not present in
the real bit-strings.) From the previous discussibns written

F ={(ep,e1...em) |Y(Bo...0m) € coker(a), @ﬁi e;=0}NDB
i=0

whereB = (17,07...07) 4 {07} x (F3)™".
Now let us change the basis @)+ and see it af," " x ... x Fy"!, that

n
is: we regroup the-th bit of each block. Them is simply the product application:
a % ... x a. Similarly, if (Fo)™+D7 ~ F,™ 1 5 x Fy™ ! then F is simply the
N————

n n
product of all values that are orthogonaktsker(«), restricted taB:

F = (coker(a)® x ... x coker(a)t)N B

=im(a)N B
= a(A)

ThusF is in fact the image ofd by a.

As & is linear, it transforms uniform distributions over affingases into uniform
distributions. Therefore the ideal and the concrete seicsagteld both the uniform
distribution overF'. Hence the unconditionat . -soundness.

We now prove the uncondition&g, -soundness. Lep be a frame and” a term,
both in normal form, witmames(¢) Unames(T') = {a; ... a,}. Leta associated te
as before and’ =g, B © Dj_, 5; a;.

Suppose thap g, T, that is there existg with names(¢) N {a1...a,} = 0,
suchthaty =g, Ti.e.(p ©T =g, 0. Assume( in AC-normal form. As previously,
Cp ®T =g, 0impliesnames(¢) € {ai ...a,}, hencenames(¢) = 0. Therefore(
computes nothing but a linear transformation on the rows d¥e deduce thap -z, T’
holds iff (5 . . . Bn) belongs to the co-image of, written coim(«).

Now assume thap /g, T'i.e.5 = (0o...03n) € coim(a). Lety be the(m + 2) x
(n + 1)-matrix obtained by augmentingwith a (m + 1)-th row equal tQ3:

1 0O ... 0
@10 1,1 --. Q1
"y =
Qom0 Om,1 --- Omn
/80 61 ﬁn

We know that the concrete semanticg.odind is nothing but the uniform distribution
over the image off = (1"7,0...0) + {0} x (F3)™ by~ (defined asy above).
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Let us see? a linear function fron{F,)"*! to F, and define3 as previously. Using
the fact thatg is independent from the other rowspfwe prove that the image(A)
is the cartesian product of the two spacgsi) and 3(A); the unconditional/g,, -
soundness will then follow. R

The inclusiory(A) C a(A) x B(A) is trivial. As 8 is independant from the rows of
«, there exists a vectar € (Fy)" ! such that3(u) = 1 anda(u) = 0. Letz,y € A.
We prove that there exists € A such thaty(z) = (@(z), B(y)). Indeed, take: =

o~

z+ (B(y) — B(z)) - & We have thafi(z) = a(z) andB(z) = B(y). 0

F = g-soundness for the theory of ciphers and lists

Before detailing the proofs of Section 5.2, notice that eaelrsorted term has a unique
sort (recall that variables and names have a fixed sort). A®tjuations themselves
are well-sorted (ift : s andt =g, t' thent’ : s), and the indices: of function
symbols are redundant with the sorts, we tend to omit the@wdin terms. For instance,
if k, k" : Data, we write:enc(cons(k, nil), k') instead ofenc; (cons; (k, nil), k).

F.1 Detailed proof of Proposition 5

Proposition 5.Let ¢ be a closed frame. There exists a pattgrauch thatp ~p,, ».

The proof of Proposition 5 relies on the following Lemma httis used stepwise to
rewrite a frame into a pattern. As for the termination of thegedure, assume thatis
not a pattern; defing as the father of the largest non-deducible subtermy; dfis easy
to see thaf is necessarily of the forf = enc(U, V), T = dec(U, V), T = head(V)
or T = tail(V) with o g, V.

Lemma 1. Letp be a closed frame iR-normal form. Letl" be a subterm op of the
formT = enc(U,V), T = dec(U,V), T = head(V) or, T = tail(V) andn a fresh
name of the same sort thanh Assume that’ is not deducible fronp, i.e. ¢ /g, V.
Then:

/

P REym ¥
wherey’ = o{T — n} is obtained by replacingveryoccurrence of" in ¢ by n.

We first introduce an handy lemma that gives a charactevizafi deducible terms.

Lemma 2. Lety be a closed frame ifR-normal form andl” a term inR-normal form.
If ¢ g, TthenT = C[T1,...,T,] where theTl; are deducible subterms gfandC
is a context that does not contain names.

Proof. By definition,p -, T'ifand only if there exists a terd/ such thahames ()N
names(p) =) andMy =g, T,i.e. My —% T.\We prove Lemma 2 by induction on
the size ofM. The base cas& = z; is trivial.

If M = f(M,...,My). We only consider the case wheké = dec(M;, M>)
since the other cases are similar. We have —5 77 and My —% T» Apply-
ing the induction hypothesis td/; and M,, we get thatl; = C4[T7,...,T}] and
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Ty = Cy[Ty,...,T}] where theT] are deducible subterms gfandC4, C; are con-
texts that do not contain names. We hae> —% dec(11,T3). Eitherdec(T1,T?) is
in R-normal form. In that case and by convergencéRofwe havel' = dec(T7,73),
hence the result. Qdec(7},75) is not in R-normal form. By convergence, we have
dec(Th,T>) —x T. SinceT; andT; are already in normal form, we must halie =
enc(T],T») andT = Tj. EitherC; = enc(C{,CY') and we havd’ = C{[17,...,T}].
Or C; = _, which means thdl} is a deducible subterm @f. We deduce thal’ is a
deducible subterm @, hence the result. O

We can now start the proof of Lemma 1.

Proof. Sincep = ¢’'{n — t} and E;,, is stable by substitutions of names, we have
edp,, (¢') Ceqg, (¢). Toproveeqy, (¢) Ceqp (¢'), we introduce the following
lemma. We sef to be{n — t}. Letn,, ..., n, be the names occurring is.

Lemma 3. LetC, be acontextsuchthat g, Ci[ng,...,n,]andCi[ny, ..., n,)0 —r

sym

T. Then there exists a public cont€¥ such thatC; —x Cy andT = Cy[nq,...,n,)6.

The lemma is proved by inspection of the rulegfThe reduction occurs at some po-
sition p: the reductiorC[n,, ..., ny)|,0 —x T occursin head. Lef'[n,...,ny] =
Cilna,...,npl|p If C] isitself an instance of the left-hand-side of a ruléRfthan we
clearly have thaf| —x C% suchthafl’ = Cs[ng,...,n,)0, whereC, is obtained from
C4 by replacingC] by C/, et positionp. If C7 is not an instance of the left-hand-side of
arule of R and since is already inR-normal form, there are only four possibilities for
Cilna,...,np).

— Ci[n1,...,np] = enc(n;, CY[n1,...,np]). It must be the case that = n, ¢ is of
the formdec(u,v) andv = CY[n4,...,n,]. ¢From Lemma 2 and singg g,
Ci[ni,...,ny], eitherCi[ny,...,n,| is subterm ofy’ or n; andC?[n4,...,n,]
are deducible. In both cases, we obtain a contradictiordddifC{[n,. .., n,)] is
subterm ofy’ thenC{[na,...,np)0 = enc(dec(u,v), n;) is a subterm of, which
contradicts tha is in normal form. Ifn; andC{'[n4, ..., n,| are deducible then
this contradictsp i/, ,, v.

— Ci[n,...,np] = dec(n;, n;). This case is very similar to the previous one.

- C{[n1,...,n,] = cons(n;, C{[n1,...,ny]). It must be the case that; = n,

t is of the formhead(v) and C{[nq,...,n,] = tail(v). ¢From Lemma 2 and
sincey’ g, Ci[ni,...,n,l, eitherCiny,...,n,] is subterm ofy’ or n; and
CY[n1,...,n,| are deducible. Like previously, in both cases, we obtaimaredic-
tion. if C{[n, ..., ny]is subterm of’ thenC{[n1, ..., n,|0 = cons(head(v), tail(v))
is a subterm of, which contradicts thap is in normal form. Ifn; andC?' [n4, . . ., n,)]
are deducible then bothandtail(v) are deducible irar ¢’, which means that both
head(v) andtail(v) are deducible irp, thuswv is deducible inp, contradiction.

— C{[n1,...,ny] = cons(C{[n,...,ny],n;). This case is very similar to the previ-
ous one.

Now, let (M = N) € eqg,_, () and let us show thatM = N) € eqg, (¥').
We haveM ¢ =g, Ny, i.e. M¢'0 =g, N¢'6. By convergence oR, we get that
there exists a terrfi’ such thatM ¢'6 —% T andN¢'0 —5, T. Applying repeatedly
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Lemma 3, we get that/ ¢’ —% T such thatl’ = 716 and Ny’ —% T5 such that

T = T>0. Assume that we have proved that = 7,. Then we getM ¢’ =g, N¢',

i.e. (M = N) € eqg,, (¢'), which concludes the proof. It remains us to prove the
following lemma.

Lemma4. Let T} and T, two terms such thap’ Fey, Ti (i = 1,2). T10 = T30
impliesT; = Ts.

The lemma is proved by induction on the sum of the siz&,0dndT5.

— The base case is trivial.

— Ifnone of Ty or Tr isn: Ty = f(T7,...,T}) andT> = f(T7,...,T}). We must
haveT/0T!'6 for everyl < i < k. Applying the induction hypothesis, we get
Ti/ = Ti// thUSTl =Ts.

— The most difficult case is whely, = n andT, = f(77,...,T}). We first notice
that sincend = f(17,...,T})0, n can not occur iffy, thusT, = T,6 = t. Thanks
to Lemma 2 and sincg’ g, T3, eitherT; is a subterm o', which is impossible
by construction ofy’ or the immediate subterms @} are deducible i’ (thus in
), which contradicts the choice of O

F.2 A generalized SPRP assumption

In the same way as we generalize the INDE&J assumption, we propose here a gener-
alization of SPRP to the case of messages of heterogeneess si

Thew-SPRP assumption consists of the following experigf¢évolving an ad-
versaryA:

— draw a random bit € {0,1};

— if b = 0, draw a keyk; give A access to the encryption oraclés,, (-, k) and
decryption oracle®,, (-, k);

— if b =1, draw a random permutation, over{0, 1}"™ for eachn; give A access to
ther, andr, ! instead of the regular encryption and decryption oracles;

— after interacting with the oracleg| outputs a bit'; A is successful i, iff b = b'.

Theadvantageof A is defined as
AdvSPRAn) = 2 x P[Ais successful ig,] — 1 (1)

Thew-SPRP assumption holds f¢f,, ,,, D,, ,,) if the advantage (1) of any probabilistic
polynomial-time adversary is a negligible functionpf

It has been shown [16] that the SPRP assumption (on one gpkeargis equivalent
to asking that the encryption scheme and its inverse arel N@HP2-C2 or equivalently
both IND-P1-C1. We conjecture that this is still the casedwengthened version of
these notions—however this falls outside the scope of thpepaVithin this (probably
simple) conjecture, the:g,, -soundness Theorem 4 holds for amSPRP encryption
scheme.
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F.3 Proof of Theorem 4 &g, -soundness)

Theorem 4 (~g,, -soundness)Lety; andy, be two well-formed frames of the same
domain. Assume that the concrete implementations for theyption and its inverse
satisfy both thev-IND-P1-C1 assumption. lfp; ~g,,, @2 then([p1]a,) = ([v2]a,)-

We begin by stating a computational counterpart to Lemma 1.

Lemma 5. Let ¢ be a closed frame ifk-normal form, with only atomic keys and no
encryption cycles. Lel’ be a subterm ofp of the formT = enc(U, k) (resp.T =
dec(U, k)), with k name of sorData, andn a fresh name of the same sortBsAssume
that:

— the only occurrences df in  are in the positions of an encryption or decryption
key:enc(., k) or dec(., k);

— T itself does not appear under an encryption or a decrypticth v

— the concrete implementations for the encryption and iters® satisfy both the-
IND-P1-C1 assumption.

Then:
(lela,) = ([¢']4,)

wherep’ = o{T — n} is obtained by replacingveryoccurrence off" in ¢ by n.

Notice that the hypothesis of Lemma 5 are stronger than itadbversion, Lemma 1.
For instance the encryption keyis required to be atomic; the first condition é&n
trivially implies thatk is not deducible fronp. Also nothing is said abouitead andtail
symbols.

Proof (of Lemma 5)Before proving the lemma, let us consider the example of & wel
formed framep; = {z1 = enc(T1, k), 2 = enc(T», k)}, wherek does not appear in
11, T, andTy #g,,, T». This frame is statically equivalent to, = {z; = ni;22 =
ns }. Our problem here is to prove thigt; | and[p2] are actually indistinguishable. Itis
not hard to see that this will be the case if and only if the phility that7; and7; have
the same concrete value is negligible. A consequence opli@aomenon is intuitively
that we need to prove Lemma 5 and—at least—a limited form gf -faithfulness at
the same time.

Formally, let us writelp|. and|T'|. for the number of distinct subterms with head
symbolsenc or dec, occurringresp.in a frameyp and a ternil". Let P,, and@,, be the
two properties:

(P,) Lemma 5 holds provided thap|. < n.

(Qn) For all R-normal termsT;, T, of the same sort such thdfy, 7> have
only atomic keys, the frame = {« = T3,y = T»} has no encryption cycles,
Ty # Ty and|p|. < n, the probabilityP [e1,es — [T1,T2]a,;€1 = €3] IS
negligible.
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We proveP,, and@,, by mutual induction om, that is, more precisely we prove the
four statements: (1%, (2) P7L+1 = Qnr (3) QO- (4) Q7L+1 <~ (P7L+1 andQn)-

(1) Py is trivially true.

(2) Por1 < Qn. LetTY = enc,, (U, k) a subterm ofp, k andn two names all
satisfying the conditions of Lemma 5. (Of course the case’of dec(U, k) is similar.)
Letp = {z1 =17,...,2, = T0}.

Provided an adversaryl able to distinguish([¢]4,) and ([¢'] 4, ), we build an
adversarys against theo-IND-P1-C1 assumption on encryption, described as follows:

1. for each name of sorts appearing inp, draw a value: £ [s]a,;
2. draw a value, il [s] 4, for some fresh name, of sort List,,,;
3. for eachr; (1 <i < n) of sorts,, computeTiO € [si] a recursively as follows:

ency (T, k) = En(T)if T £ U
encnO(U, k)= 5*(1? ap)
decn(T k) =D, (T )
FT0 T = fa, (Th,..., To) if F(Th,..., Ty) & {enc(T, k), dec(T", k)}

where we have writted, (.) andD;,(.) for the encryption and decryption oracles
of the w-IND-P1-C1 game, and‘:*(U ap) for the challenge ciphertext, obtained
after submitting the two pIaintex@ anday (this is done only once, just aftér
has been computed);

4. submit the concrete framlgr; = TL e Ty = T;} to A and return the same
answer.

Note that sinc&™ is not a subterm of an encryption or decryption with3 is indeed
a 1-stage attacker. The distribution computed ®yand submitted tod equals either
([] a,) or ([¢'] a,) depending on whichevet (U, ap) is the encryption of/ or resp.
that of @y (in the latter cas€* (U, ay) = En, (@) 1s simply a random number). Thus
the probability that3 guesses the right answer is the sameda®low it may happen
that B does not meet the second requirement for winningtiBD-P1-C1 game, that
is: (i) there exists a subteramc,,, (T, k) such thafl’ £ U andT € {U, a} or (i) there
exists a subtermdec,,, (7', k) such thal’ = 5*((7, agp).

For (i), the probability thafl’ = a is negligible by construction. Moreover, s
andT? = enc,, (U, k) are two subterms agp and 7" is not a subterm of’, the frame
¢ = {x = T,y = U} has no encryption cycles ang¢’|. < |¢le = n + 1. The
induction hypothesig),, implies that the probability fol' = U is negligible.

As for (i), if the challenge ciphertex*(U, c?o) is the encryption of its second
argument, that i€, (@p), then the probability fofl = £*(U,ay) is negligible; oth-
erwise&* (U, ay) = SnO(U) Recall thatT® = enc,,, (U, k) is in normal form, thus
U # dec,, (T, k). AsT° anddec,, (T, k) are two subterms ap and 7" is not a sub-
term of dec,,, (T, k), the framey’ = {& = U,y = dec,,(T, k)} has no encryption
cycles andy’|. < |¢le = n + 1, hence the induction hypothegis, implies that the
probability forT' = &, (U) is negligible.
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To simplify the case analysis of (3) and (4), it is convententtroduce to following
lemma:

Lemma 6. LetTy, 15 be two terms of sorList;. Define for eacl) < i < j, thei-th
projection of a termil” of sort List ;, by:

mi(T) = head(tail(. . . tail(T)))
w—/

Then ()11 =g, Ty iffforall 1 < i < j, 7(T1) =g, m(12) and moreover
(i) P [el,e2 « [T1,To]a,; €1 = e2] is negligible iff for all1 < i < j,

n?

P [e},eb — [m(T) lr,mi(T2) |R]a, ;€] = €]

is negligible.
(The notationl” |z stands for theR-normal form ofT".)

Thanks to this lemma, it is sufficient to prove (3) and (4)forandT; of sort Data
and inR-normal form. (Indeed notice that@f = {« = T}, y = T>} has no encryption
cycles, theny’ = {2’ = m;(T1) |wr,y = 7 (T2) =} has no encryption cycles and
lo'le < lele-)

Given the sorting system and the rewriting rules, a térof sort Data in R-normal
form can only be of the following forms:

1. aconstant) or 1,

2. aname of sorData: T' = a,

3. aprojection of name of softist;: T' = m;(a) (1 <1 < j),

4. a projection of a encryption/decryption of sdrtst;: T = m;(enc(U,V)) with
U ¢ {dec(T',V)} or T = 7m;(dec(U, V)) with U ¢ {enc(T",V)}.

(3) Qo. As T} andT; contain no encryption/decryption symbol, only the calses
—3 of the case analysis above can occur; the property follovexdy.

4) Qn+1 < (Prt1 and@,,). Let Ty andT;, be two distinct closed normal terms
andy = {z = T1,y = T»}. Assume thaty has no encryption cycles nor composed
keys, andp|. = n + 1.

1. If one of the two terms—say;,— is of the form1 (constant)2 (name) or3 (pro-
jection of a name). Thef; is of the form4, for instancel’, = ;(enc(U, k)) with

U & {dec(T",k)}.

(@ Ty # k, by Py1, we have([¢]a,) = ([{z = T1,y = mi(a)}] 4,) for some
fresh namex. In particular, the probability for the two componentandy to
be equal is negligible.

(b) If Ty = k, assume thdl; andTs yields the same concrete value with signif-
icant probability. LetList,,, be the sort ol/. We build an adversary to the

w-IND-P1-C1 game as follows:
i. for each name of sorts appearing ifif,, draw a value: £ [s]a,;

n?

. ~ R .
ii. draw a valueay < [s] 4, for some fresh name, of sort List,,,;
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iii. computeTs recursively as follows:

)
)

FVy o Vi) = fa, (Vi Vi) i F(Viy. ., Vi) & {enc(T', k), dec(T, k) }
)

(same notations as before)

iv. if £,,(U,Ts) = Ty, returns0, otherwise returr.

Clearly A guesses the correct answer with non-negligible probgb#is be-

fore, we use the property,, to conclude that its advantage is non-negligible.

2. Supposd; = m;, (enc(uq, k1)) andTy = m;, (enc(uq, k2)) (the 3 other cases with

decryption symbols are similar). As has no encryption cycle, we can assume
for instance that; £, ks. By P,y 1, we have([p]a,) = ([¢']a,) wherey' =
p{enc(uy, k1) — a} = {x = T{,y = T4} for some fresh name. We then apply
Q, to T{ andTy. O

Proof (of Lemma 6)Point (i) is easily shown by induction o) using the five last
equations oft. For (i), notice that:
P [6].7 e2 «+— [[TlvTQHAn; €1 = 62] S ZP [611, 612 — Hﬂi(Tl)aWi(TQ)]]An; 611 = 612]
=1

and

Vi, Plel,e2«— [T1,To]a,;e1 = e2] > Plel, el — [mi(T1), m(T)]a,; €] = €b]

n? n?

Besides it is clear from the unconditional, , -soundness, that for affy, 7>:

P [61,82 — [[Tl,TQ]]A ;€1 = 62} = P [61,62 — IITl lR,TQ lR]]A €1 = 62] O

n? n?

Proof (of Theorem 4)Thanks to the (unconditionat; g, -soundness, it is enough to
prove the property on frames f-normal form.
We begin by proving the following lemma:

Lemma 7. Assume that the concrete implementations for the encryptid its inverse
satisfy both thes-IND-P1-C1 assumption. For every well-formé&@-normalized frame
o, ([¢]a,) = ([?]4,) whereg is the pattern associated tofollowing the algorithmic
proof of Proposition 5 (this pattern is uniquely defined mlodenaming of names.).

Now recall that by Proposition 4 and singex , we have:
[P, = [PLi = [l
Therefore the soundness criterion holds for well-forrfi@dormalized frames and
we conclude by Theorem 1. O

Notice that the use of the ideal semantics could not be ggasibided as two stati-
cally equivalent patterns may not be equal modulo renamfifi@ond names.
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Proof (of Lemma 7)We prove the property by induction on the numbeiof encryp-
tion and decryption by non-deducible keysdn

If m = 0, by the well-formedness conditiop,is already a pattern.

Suppose thain > 0. As ¢ has no encryption cycle, we choose a non-deducible
(atomic) keyk appearing inp, such that is maximal for the encryption relatios,,.

As k is not deducible, is maximal fas, andy contains nchead andtail symbols,
the only occurrences @fin ¢ are as encryption or decryption keys. llebe the largest
subterm ofip of the formT = enc(U, k) or T' = dec(U, k). We apply Lemma 5 op
andT and conclude by induction hypothesis on the obtained fratme ad
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