
http://www.lsv.ens−cachan.fr/Publis/
In Proc. 28th Int. Coll. Automata, Languages, and Programming (ICALP’2001), Crete, Greece, July 2001,
volume 2076 of Lecture Notes in Computer Science, pages 682−693. Springer, 2001.Tree automata with one memory, set
onstraintsand ping-pong proto
ols?Hubert Comon12 and V�eronique Cortier2 and John Mit
hell11 Department of Computer S
ien
e, Gates 4B, Stanford University, CA 94305-9045f
omon,j
mg�theory.stanford.edu, Fax: (650) 725 46712 Laboratoire Sp�e
i�
ation et V�eri�
ation, CNRS and E
ole Normale Sup�erieure deCa
han,f
omon,
ortierg�lsv.ens-
a
han.frAbstra
t. We introdu
e a
lass of tree automata that perform tests ona memory that is updated using fun
tion symbol appli
ation and proje
-tion. The language emptiness problem for this
lass of tree automata isshown to be in DEXPTIME. We also introdu
e a
lass of set
onstraintswith equality tests and prove its de
idability by
ompletion te
hniquesand a redu
tion to tree automata with one memory. Set
onstraints withequality tests may be used to de
ide se
re
y for a
lass of
ryptographi
proto
ols that properly
ontains a
lass of memoryless \ping-pong pro-to
ols" introdu
ed by Dolev and Yao.1 Introdu
tionSet
onstraints were introdu
ed in the eighties and have been studied thoroughlysin
e, with appli
ations to the analysis of programs of various styles (see [2℄ fora survey). Typi
ally, the problem of interest is to de
ide the satis�ability ofa
onjun
tion of set expression in
lusions e � e0 in whi
h the set expressionsare built from variables and various
onstru
tions, in
luding, e.g., proje
tion.Athough some set variable may o

ur several time in an expression, most
lassesof set
onstraints do not make it possible to write a set expression for a set ofterms of the form f(t; t), in whi
h one subterm o

urs more than on
e. Oneex
eption is the
lass of
onstraints studied in [6℄.Our motivating interest is to develop
lasses of
ryptographi
 proto
ols forwhi
h some form of se
re
y is de
idable. A histori
al
lass of de
idable proto
olsare the so-
alled ping-pong proto
ols [10℄. Although none of the proto
ols of [8℄belongs to this
lass, ping-pong proto
ols remain a de
idable
lass, while mostlarger
lasses of se
urity proto
ols are unde
idable [5℄. One of the main restri
-tions in [11, 10℄ is that messages are built using unary symbols only. In
ontrast,many proto
ols of interest are written using a binary en
ryption symbol and apairing fun
tion. Another restri
tion in [11, 10℄ is that ea
h proto
ol parti
ipantis stateless: after a message is sent, the parti
ipant does not retain any memory ofthe
ontents of the message. This is a signi�
ant limitation sin
e many proto
ols? Partially supported by DoD MURI \Semanti
 Consisten
y in Information Ex-
hange," ONR Grant N00014-97-1-0505, and NSF CCR-9629754.

rely on
hallenge-response steps, that require memory. A previous investigationof ping-pong proto
ols with added state led to unde
idability [13℄.It is insightful to observe that Dolev and Yao's result [11℄
an be proved usingset
onstraints. This suggests a generalization of their approa
h to trees. A te
h-ni
al
ompli
ation, though, is that the generalization to trees is less expressivethan one might expe
t: in the
ase of unary fun
tions only, a fun
tion and itsinverse are set inverses of ea
h other, in the sense that f(f�1(X)) is pre
iselyX . However, this is no longer true with trees: if f�11 and f�12 are the two proje
-tions
orresponding to a binary fun
tion symbol f , the set f(f�11 (X); f�12 (X))
ontains pairs f(t1; t2) whi
h are not ne
essarily in X . In order to in
reasethe expressiveness of set
onstraints with binary fun
tions, we need a \diagonal
onstru
tion", enabling us to test for equalities the members of sets.In this paper, we introdu
e a new
lass of set
onstraints, allowing limiteddiagonal
onstru
tions. This
lass is in
omparable with the
lass sket
hed in [6℄.We show that satis�ability is de
idable for this
lass, allowing us to generalizeDolev and Yao's result to trees. Our
lass of set
onstraints does not
aptureall proto
ol
on
epts of interest. In parti
ular, as
an be seen from the survey[8℄, many authenti
ation proto
ols make use of non
es or time stamps, whi
hwe
annot express. On the other hand, properties of proto
ols that are modeledusing set
onstraints are de
idable, while non
es and timestamps typi
ally leadto unde
idability [5℄. Moreover, we
an express
onservative approximations ofgeneral proto
ols, and it is possible in prin
iple that set
onstraints with equalitytests provide algorithms for determining the se
urity of some su
h proto
ols.We prove the de
idability of set
onstraints with equality tests by a redu
-tion to an emptiness problem for a
lass of tree automata with
onstraints. Treeautomata with various forms of
onstraints have been studied by several authors(see [9℄ for a survey). However, the
lass we
onsider in this paper is in
ompa-rable with known de
idable
lasses. Roughly, we allow ea
h state to hold onearbitrarily large memory register and restri
t the use of this memory to equalitytests. Sin
e memory registers are updated using proje
tions and fun
tion appli-
ation, this
lass is a generalization of pushdown word (alternating) automata.Despite the generality of the
lass, there is a simple proof that emptiness de
isionis in DEXPTIME.After dis
ussing the
orresponden
e between proto
ols and set
onstraints inthe next se
tion, we re
all known results on de�nite set
onstraints whi
h willbe used later (se
tion 3). Then we introdu
e tree automata with one memoryin se
tion 4; this se
tion
an be seen as a stand-alone de
idability result andrelies on de�nite set
onstraints. Next, we introdu
e in se
tion 5 our
lass of set
onstraints with one equality, showing how to redu
e the satis�ability of these
onstraints to the non-emptiness de
ision for tree automata with one memory.The redu
tion is similar to the saturation pro
ess des
ribed in [7℄ for set
on-straints with interse
tion, but it is slightly more
ompli
ated due to equalitytests. (In fa
t, we obtain a doubly exponential algorithm if the maximum arityof all fun
tion symbols is not
onstant.) Finally, we dis
uss the appli
ation tose
urity proto
ols in se
tion 6.

2 Proto
ol motivationDolev and Yao [11℄
onsider proto
ols in whi
h ea
h prin
ipal holds a singlepubli
 key (whi
h is known to everybody) and a
orresponding private key thatis known to them only. The prin
ipals are able to build messages using plaintext, en
ryption eX with the publi
 key of X and signatures dX appending thename of prin
ipal X . Here is a simple example from [11℄:A! B : eB(dA(eB(s))) Ali
e sends to Bob a message en
rypted using Bob'spubli
 key
onsisting of a signed en
rypted text sB ! A : eA(s) Bob a
knowledges the re
eption by sending ba
k to Ali
ethe text s, en
rypted using the publi
 key of Ali
eIn this model,
ommuni
ation
hannels are inse
ure. This allows an intruderto inter
ept messages, remember them, and repla
e them with alternate (possiblyforged) messages. The intruder may de
rypt a message if the
orresponding keyhas be
ome known to him, may append or remove signatures, and may en
ryptusing any publi
 key. The se
re
y question asks whether there is a way for anintruder to get the plain text message s that is supposed to be kept se
retbetween Ali
e and Bob. In the above example, the answer is yes (the proto
ol isinse
ure).The possible use of set
onstraints in
ryptographi
 proto
ols analysis hasbeen suggested in several papers, e.g. [14℄. It is however interesting to see that theDolev-Yao de
idability proof
an be summarized using set
onstraints by lettingI be the set of messages that
an be built by the intruder (after any number ofsessions). Sin
e I
an inter
ept any message of any run of the proto
ol, we writeset
onstraints putting every proto
ol message in I . For the example proto
olabove, we haveeY (dX (eY (s))) � I eX(e�1Y (d�1X (e�1Y (I)))) � Ifor every pair of prin
ipalsX;Y , sin
e Bob a
knowledges a messagem from Ali
eby sending eA(e�1B (d�1A (e�1B (m)))). Finally, for every prin
ipal X , we express theability of the intruder to perform operations using publi
 information about X :dX(I) � I; eX(I) � I; d�1X (I) � IThis pro
ess translates a proto
ol into a
olle
tion of set
onstraints about theset I of messages available to the intruder. Se
re
y now be
omes the questionwhether the set
onstraints, together with s =2 I , is satis�able ? Assuming a �xednumber of prin
ipals, this is de
idable in polynomial time for set
onstraints aris-ing from Dolev-Yao's ping-pong proto
ols: we
an
ompute the minimal solutionof the de�nite set
onstraint and
he
k the membership of s.There are several restri
tions in the Dolev-Yao approa
h. In parti
ular, onlya �xed number of prin
ipals and, as mentioned above, only unary symbols maybe used. A pairing fun
tion or a binary en
ryption symbol, allowing to writee.g. e(k;m) instead of ek(m), i.e. allowing to
onsider keys as �rst-
lass obje
ts,would
onsiderably in
rease the expressive power.

3 De�nite set
onstraintsThis
lass of set
onstraints has been introdu
ed in [15℄ and studied by variousauthors (e.g. [7℄). Ea
h
onstraint is a
onjun
tion of in
lusions e1 � e2 wheree1 is a set expression and e2 is a term set expression. Term set expressions arebuilt out of a �xed ranked alphabet of fun
tion symbols F , the symbol > andset variables. A set expression is either a term set expression or a union of twoset expressions e1 [e2, or an interse
tion of two set expressions e1 \ e2 or theimage of set expressions by some fun
tion symbol f(e1; : : : ; en) or a proje
tionf�1i (e1) where f is a fun
tion symbol and i 2 [1::n℄ if n is the rank of f . Notethat negation is not allowed. Here is a de�nite set
onstraint:f�12 (X) � g(Y) f(f(X;Y) \X;X) � X g(Y) \ Y � X a � YSet expressions denote sets of subsets of the Herbrand universe T (F); if � assignsea
h variable to some subset of T (F), then [[℄℄� is de�ned by:[[X ℄℄� def= X� [[f(e1; : : : ; en)℄℄� def= ff(t1; : : : ; tn) j 8i 2 [1::n℄; ti 2 [[ei℄℄�g[[e1 \ e2℄℄� def= [[e1℄℄� \ [[e2℄℄� [[f�1i (e)℄℄� def= fti j 9t1; :::; tn:f(t1; :::; tn) 2 [[e℄℄�g[[>℄℄� def= T (F) [[e1 [e2℄℄� def= [[e1℄℄� [[[e2℄℄�� satis�es e1 � e2 i�, [[e1℄℄� � [[e2℄℄� . This extends to
onjun
tions of in
lusions.Theorem 1 ([7℄). The satis�ability of de�nite set
onstraints is DEXPTIME-
omplete and ea
h satis�able
onstraint has a least solution.4 Tree automata with one memoryThe idea is to enri
h the expressiveness of tree automata by allowing them to
arry and test some information. For instan
e, a pushdown automaton will keepa sta
k in its memory and
he
k the symbols at the top of the sta
k. What wedo here is something similar. Our automata work on trees instead of words andmay perform more general
onstru
tions and more general tests.Informally, a tree automaton with one memory
omputes bottom-up on a treet by synthesizing both a state (in a �nite set of states Q) and a memory, whi
his a tree over some alphabet � . Ea
h transition uses some parti
ular fun
tionwhi
h
omputes the new memory from the memories at ea
h dire
t son. Ea
htransition may also
he
k for equalities the
ontents of the memories at ea
h son.Given an alphabet of fun
tion symbols � , the set of fun
tions � whi
h we
onsider here (and whi
h may be used to
ompute on memories) is the least setof fun
tions over T (�) whi
h is
losed by
omposition and
ontaining:{ for every f 2 � of arity n, the fun
tion �x1; :::xn:f(x1; : : : ; xn){ for every n and every 1 � i � n, the fun
tion �x1; ::::; xn:xi{ for every f 2 � of arity n and for every 1 � i � n, the (partial) fun
tionwhi
h asso
iates ea
h term f(t1; : : : ; tn) with ti, whi
h we write �f(x):xi.

For instan
e, if �
ontains a
onstant (empty sta
k) and unary fun
tion symbols,� is the set of fun
tions whi
h push or pop after
he
king the top of the sta
k.De�nition 1. A tree automaton with one memory is a tuple (F ; �;Q;Qf ; �)where F is an alphabet of input fun
tion symbols, � is an alphabet of memoryfun
tion symbols, Q is a �nite set of states, Qf is a subset of �nal states, � isa �nite set of transition relations of the form f(q1; :::; qn)
�!F q where{ f 2 F is
alled the head symbol of the rule,{
 is a subset of f1; :::; ng2, de�ning an equivalen
e relation on f1; : : : ; ng.{ �x1:::; xkF (x1; : : : ; xk) 2 �, where k is the number of
lasses modulo
{ q1; : : : ; qn; q 2 Q, (q is the target of the rule).A
on�guration of the automaton
onsists of a state and a term in T (�)(the memory). Then
omputations work as follows: if t = f(t1; : : : ; tn) and the
omputation on t1; : : : ; tn respe
tively yields the
on�gurations q1; �1, ... , qn; �n,then the automaton, reading t, may move to q; � when there is a transition rulef(q1; : : : ; qn)
�!F q and for every i = j 2
, �i = �j and � = F (�i1 ; : : : ; �ik)where i1; : : : ; ik are representatives of the equivalen
e
lasses for
. A tree t isa

epted by the automaton whenever there is a
omputation of the automatonon t yielding a
on�guration q;
 with q 2 Qf .Example 1. Assume that the transitions of the automaton A are (other
ompo-nents of the automaton are obvious from the
ontext, > is the identity relation):g(q) >����!�x1:x1 q f(qa; qa) 1=2������!�x1:h(x1) q a >�!b qag(qa) >������!�x1:h(x1) q f(q; q) 1=2������!�h(x1):x1 qA
omputation of the automaton on f(g(f(a; a)); g(a)) is displayed on �gure 1,in whi
h the
on�gurations rea
hed at ea
h node are displayed in a frame.f q; b��� PPPgq; h(b) g q; h(b)fq; h(b) a qa; b��� PPPaqa; b a qa; bFig. 1. A tree t and a
omputation of A on t

Pushdown automata (on words) perform transitions a; q; � �
 ! q0; � �
where a is an input symbol, q; q0 are states and �; �;
 are words over the sta
kalphabet (the rule pops � and pushes �). Su
h a rule
an be translated inthe above formalism, viewing letters as unary symbols: a(q) ������!�x:���11 x q0. Thistranslation does not make use of equality tests. Orthogonally, if we use the tests,but assume that F = �x:f(x) for ea
h rule headed with f , then we get treeautomata with equality tests between brothers (see [4℄).Theorem 2. The emptiness of the language re
ognized by a tree automaton withone memory is de
idable in DEXPTIME. More generally, the rea
hability of agiven
on�guration is de
idable in DEXPTIME.Proof. (sket
h) For every q 2 Q, let Mq be the subset of T (�) of memory
ontents m su
h that there is a tree t and a
omputation of the automaton on tyielding the
on�guration < q;m >. Then the sets Mq are the least solutions ofthe de�nite set
onstraint,
onsisting, for ea
h transition rule f(q1; : : : ; qn)
�!F qof the in
lusion F (Lqi1 ; :::Lqik) �Mq and Lqij is the interse
tion for all indi
esl equivalent (w.r.t.
) to ij of Ml. Then the non-emptiness of the language(resp. rea
hability of a
on�guration) redu
es to similar questions on de�nite set
onstraints, whi
h are solvable in DEXPTIME.The result
an be generalized to alternating tree automata with one memorykeeping the same
omplexity. Alternation here has to be understood as follows:we may repla
e the states o

urring in the left hand sides of the rules witharbitrary positive Boolean
ombinations of states. The above proof simply works,using additional interse
tions and unions.Corollary 1. The emptiness problem of alternating tree automata with onememory is DEXPTIME-
omplete.Note however that the
lass of automata with one memory is neither
losedunder interse
tion nor
omplement (both yield unde
idable models).5 Set
onstraints with equality testsWe
onsider now de�nite set
onstraints as in se
tion 3 with an additional
on-stru
tion: fun
tion symbols
an be labeled with equality tests, whi
h are
on-jun
tions of equalities p1 = p2 between paths. The intention is to represent setsof terms t su
h that the subterms at positions p1 and p2 are identi
al.More pre
isely, if
 is a
onjun
tion of equalities between paths (whi
h weassume w.l.o.g.
losed under transitivity and su
h that no stri
t pre�x of a pathin
 is in
), we de�ne[[f
(e1; : : : ; en)℄℄� def= ft 2 [[f(e1; : : : ; en)℄℄� j t j=
gand t j=
 if, for every equality p1 = p2 in
, p1; p2 are positions in t and tjp1 =tjp2 . If p1 = p2 2
, we say thatp1; p2 are
he
ked by
. All other
onstru
tions

are the same as in se
tion 3. In parti
ular, right hand sides of in
lusions shouldnot
ontain
onstru
tions f
. When
 is empty, we may omit it or write >.Example 2. f21=12(f(Z; Y)\X; g(X)\Y) � f(Y;X) is an in
lusion
onstraint.� = fX 7! fa; b; f(a; b)g;Y 7! fb; g(a); g(b); f(a; b)g;Z 7! fa; bgg is a solution ofthe
onstraint sin
e [[f12=21(f(Z; Y) \X; g(X) \ Y)℄℄� = ff(f(a; b); g(b))gAs a
onsequen
e of unde
idability results on tree automata with equality tests(see e.g. [9℄), the satis�ability of su
h general
onstraints is unde
idable. Thatis why we are going to put more restri
tions on the
onstraints.If X is a variable of a
onstraint S, then let R(X) be the set of atomi

onstraints whose right hand side
ontains X . The set of variables having abasi
 type is the least set of variables X su
h that R(X)
onsists of in
lusionsgi(X i1; : : : ; X ini) � X and su
h that{ if the symbols gi do not o

ur anywhere else in S and every X ij is either Xitself or has a basi
 type, then X has a basi
 type{ if every X ij has a basi
 type, then X has a basi
 type.Intuitively, the basi
 types
orrespond to data whose format is irrelevant (�rst
ase in the de�nition) or whi
h
an be built using a bounded number of symbolson su
h data (se
ond
ase). For example, Nat and U have basi
 types inR(Nat) [R(U) def= zero � Nat; s(Nat) � Nat; pn(Nat) � Uif zero and s are not used elsewhere in S.This notion is extended to expressions: an expression e is basi
 if{ e is a basi
 variable or{ e is an interse
tion e1 \ e2 and either e1 or e2 is basi
{ e is an expression e1 [e2 and both e1 and e2 are basi
{ e is an expression f(e1; : : : ; en) (or f
(e1; : : : ; en)) and e1; : : : ; en are basi
The set of paths in an expression e is de�ned as follows: �(f
(e1; : : : ; en)) def=1��(e1)[: : :[n��(en), �(e1\e2) def= �(e1[e2) def= �(e1)[�(e2), �(f�1i (e)) def=;. ejp is any of the subexpressions at position p. When there is no [or \ symbolalong a path p then ejp denotes a single expression.The assumption: We assume that, in ea
h subexpression f
(e1; : : : ; en), for everyp1 = p2 2
, p1 and p2 are paths of f(e1; : : : ; en). (This is a
tually equivalentto restri
ting the use of proje
tions below an f

onstru
tion). Then, for ea
hexpression f
(e1; :::; en) we require that, if p � i � q is
he
ked by
 and p is notempty then, for i 6= j, either p � j = p � i � q 2
 or any subexpression at positionp � j has a basi
 type or any subexpression at p � i � q has a basi
 type. This willbe referred to as the basi
ness
ondition.Example 3. If
 is 12 = 21 = 11 ^ 22 = 3. the basi
ness
ondition imposes thateither ej21 or ej22 has a basi
 type (and hen
e the other expressions at equivalentpositions).

The resulting
onstraints are
alled set
onstraints with equality tests (ET-
onstraints for short). We
an
onstru
t an ET-
onstraint whose least solution isthe set of trees � = ff(t; t) j t 2 T (F)g. The only other de
idable set
onstraintformalism whi
h allows to express� is the
lass de�ned in [6℄, in whi
h, however,equality tests are restri
ted to brother positions (whi
h is not the
ase here). Onthe other hand, we have restri
tions whi
h are not present in [6℄.5.1 SaturationWe use here a �xed point
omputation method whi
h is similar to the one in [7℄:the goal is to dedu
e enough
onsequen
es so that the in
lusions whose right handside is not a variable be
ome redundant, hen
e
an be dis
arded. Unfortunately,the �rst step (representation) in [7℄
annot be used in the same way here, sin
eit does not preserve the
lass of
onstraints we
onsider. Still, as a �rst step,we
an get rid of proje
tions and unions: we
an
ompute in plynomial time anequivalent ET-
onstraints
ontaining no union or proje
tion.Next, we normalize the expressions a

ording to the following rule Norm:f
(e1; : : : ; en) \ f
0(e01; : : : ; e0n)! f
^
0(e1 \ e01; : : : ; en \ e0n)Lemma 1. (Norm) transforms an expression in an equivalent one. Moreover,if the basi
ness
ondition is satis�ed by the premises, then there is a (e�e
tively
omputable)
onstraint
00 whi
h is logi
ally equivalent to
 ^
0 and su
h thatf
00(e1 \ e01; : : : ; en \ e0n) satis�es the basi
ness
ondition.We
an get rid of basi
 type variables:Lemma 2. For ea
h basi
 variable X, there is a ground expression tX su
h that,if S0 is the ET-
onstraint obtained by repla
ing in S ea
h basi
 variable X withtX , then � is a solution of S0 i� � Æ �X is a solution of S.We may assume now that there is no basi
 variable in the
onstraint. Thenthe tests
an be simpli�ed, removing positions of basi
 expressions.Next, as in [7℄, we extend the language allowing non-emptiness pre
onditionsin the rules, whi
h allow to simplify (some but not all) in
lusion
onstraintsf
(e) � f(e0). Formally, the set
onstraints are now
lauses of the formnonempty(e1); : : : ; nonempty(en)) e � e0where e; e1; : : : ; en are set expressions,e0 is a set expression using only inter-se
tions, variables and fun
tion symbols (without
onstraints). nonempty(ei) issatis�ed by an assignment � i� [[ei℄℄� is not empty.Then we remove
onstraints of the form �) C[f
(e) \ g
0(e0)℄ � e00 andrepla
e
onstraints �) e � C[f(e) \ g(e0)℄ with �; nonempty(e)) false forevery
ontext C and every f 6= g. These rules are
orre
t, by de�nition of theinterpretation.We also abstra
t out subexpressions introdu
ing new variables, as long asthis preserves the form of the
onstraints. For instan
e, for
ontexts C[℄p, an

in
lusion C[f
(e)℄p � e0 be
omes C[X ℄p � e0; f
(e) � X where X is a newvariable. This results in an equivalent
onstraint (on the original variables) inwhi
h the in
lusions are e � e0 where e0 is either an interse
tion of variablesX1 \ : : : \Xn or an expression f(X1; : : : ; Xn) and e is either an interse
tion ofvariables or an expression f
(e) in whi
h, at any position whi
h is not a stri
tpre�x of a position
he
ked by
, there is a (non-basi
) variable or a term tX .In addition, ea
h time p1 = p2 appears in
 in an expression f
(e), weassume that all subexpressions at positions p1; p2 are identi
al, whi
h
an beeasily ensured repla
ing both subexpressions with their interse
tion.Transitivity 1 �1) e1 � e2 �2) e2 � e3�1; �2) e1 � e3Transitivity 2 �) f
(e)[X \ g(e1) \ e2℄p � e3 �0) g
0(e4) � X�;�0) f
(e)[g
0(e4) \ g(e1) \ e2℄p � e3 provided p isa stri
t pre-�x of a path
he
ked in
Compatibility �) e1 � e2 �0) e01 � e02�; �0) e1 \ e01 � e01 \ e02Clash �) f(e) � g(e0)�) false if f 6= gWeakenings �) e1 � e2 \ e3�) e1 � e2 �) e1 � e2�) e1 \ e3 � e2 If e3 is an expres-sion o

urring some-where in the set of
on-straintsProje
tion �) f
(e1; : : : ; en) � f(e01; : : : ; e0n)�; nonempty(f
(e1; : : : ; en)))) e
#ii � e0i If the subexpression at ev-ery stri
t pre�x of a position
he
ked in
 is of the formg(e00) for some g.Fig. 2. The saturation rulesNow, we are ready to apply the dedu
tion rules given in �gure 2, applyingagain abstra
tions and normalisation (eagerly) if ne
essary to keep the spe
ialform of the
onstraint. We use e[e0℄p to express either that e0 is repla
ed by e atposition p or that e0 has to o

ur at position p. This means in parti
ular thatthe subexpression at position p in e has to be de�ned in a unique way.
 #i isde�ned by (
 ^
0) #idef=
 #i ^
0 #i, (i � p = i � q) #idef= p = q and (j � p = q) #idef= >when i 6= j. e
 is the expression in whi
h the top symbol of e is
onstrained by
. (It is used only in a
ontext where e must be headed with a fun
tion symbolor
 = >).

Lemma 3. The inferen
e rules in �gure 2 are
orre
t: the new
onstraint is a
onsequen
e of the previous ones.Lemma 4. The rules of �gure 2 are terminating: a �xed point is rea
hed after�nitely many steps (at most O(2jSj�j
j�b�2a) where a is the maximal arity of afun
tion symbol, b is the number of basi
 types and j
j is the maximal depth ofan equality test).If S is an ET-
onstraint, let solved(S) be the
lauses � ! a in S su
h thateither a is false or else a is an in
lusion f
(e) � e0 where e0 is an interse
tion ofvariables and f
(e) does not
ontain any subexpression of the form X \ g
(e0)where X is a variable. Using a
lassi
al
onstru
tion, we
an show that:Lemma 5. solved(S) is either unsatis�able or has a least solution.As in [7℄, the following
ompleteness result is obtained by inspe
ting ea
h
lauseC 2 S whi
h is not in solved(S), showing that, thanks to saturatedness, the leastsolution of solved(S) is a solution of C. There are only some additional
ases fornon-
at
onstraints e.g. f
(X \ g(e); e0) � f(e00).Theorem 3. If S is saturated, then either both S and solved(S) are unsatis�ableor else S has a least solution, whi
h is the least solution of solved(S).5.2 The main resultWe build, for ea
h ET-
onstraint S, an automaton with one memory AS su
hthat if � is the least solution of S, for very variable X , �(X) is a simple homo-morphi
 image of the set of terms a

epted by AS in state qX . 1 The memoryalphabet of the automaton is the set of fun
tion symbols used in the
onstraintand the alphabet F is the memory alphabet with some additional symbols al-lowing to
he
k on auxilliary bran
hes non emptiness
onditions.The set of states is the set of subexpressions o

urring in the
onstraint,together with some lo
al memory. We keep in the (unbounded) memory atta
hedto ea
h state the tree whi
h will be
he
ked later for equality. The idea is toa

ept in state e a term t i� there is at least one term in [[e℄℄� for every solution� of the
onstraint. We have no room here to detail the
onstru
tion.As a
onsequen
e of lemma 3, lemma 4, theorem 2, theorem 3 and the above
onstru
tion, we get:Theorem 4. The satis�ability of ET-
onstraints is de
idable. Furthermore, givena set
onstraint with equality tests S, a term t and a free variable X of S, the
onsisten
y of S^ t =2 X is equivalent to the non-rea
hability of the
on�gurationqX ; t in AS, whi
h is de
idable.1 Note that we
ould prove the result dire
tly, using the same tri
k as in the proofof theorem 2, without any referen
e to automata with one memory. However, webelieve that theorem 2 is interesting in itself.

6 Analysis of
ryptographi
 proto
olsWe sket
h here a proto
ol example (inspired by Kerberos) that
an be analyzedusing ET-
onstraints, but is beyond the s
ope of [11℄. We use a tupling fun
tion< ; >, a binary en
ryption en
 and several additional symbols.1: A! S : A;B2: S ! A : en
(k(A); < B;K(A;B); en
(k(B); < A;K(A;B) >) >)3: A! B : en
(K(A;B);m(A;B)); en
(k(B); < A;K(A;B) >)4: B ! A : en
(K(A;B); h(m(A;B)))In words, A tells the key server S that she wants to se
urely
ommuni
atewith B. Then S sends ba
k to A a message, en
rypted using A's publi
 key and
ontaining a session keyK(A;B) together with a
erti�
ate whi
h
an be openedby B only. At the third step, A sends her message m(A;B), en
rypted using thekey K(A;B), together with the
erti�
ate, whi
h is
opied blindly from message2. Finally, B a
knowledges the re
eption, sending ba
k a digest h(m(A;B)) ofthe previous message, en
rypted using the shared key.Be
ause of la
k of spa
e, we only sket
h here very brie
y how to express theintruder
apabilities on one hand and how the equality tests are used.As in se
tion 2, the intruder's knowledge is represented using a set variable I .We use a set variable Si resp. Ri) for the set of messages sent (resp. re
eived) atstep i (see e.g. [12℄ for more details). Sin
e the intruder I potentially inter
eptsall messages and may send any message he
an forge, we have Si � I � Ri. Inaddition, he has some
apabilities to alter messages. For instan
e:en
(I; I) � I en
(I;>) \ I � en
(>; I)In words, I
an en
rypt a known message using a known key and I
an de
rypta message whose en
rypting key is known to him.Now
omes the proto
ol-dependent part of the
onstraints. The memorywhi
h is kept by the parti
ipants is modeled by sending at step i not only the ithmessage, but also relevant previous messages. This tri
k does not
hange any-thing to I 's knowledge as previous messages were known to him. For instan
e,step 2 will
onsist of:< R1\ < U; U >; en
(k(U); < U;K(U; U); en
(k(U); < U;K(U; U) >) >) >
� S2where
 def= 11 = 211 = ::: ^ 12 = 221 = ::: expresses that prin
ipal names do mat
h.This is ne
essary sin
e the intruder may be a parti
ipant in another session of theproto
ol: we would get a too rough overapproximation without these tests. Atstep 3, A in
ludes blindly a pie
e of message 2, whi
h
an be expressed using anequality test on non-basi
 variables of the form: < R2 \ en
(:::; :::X:::); X >
�S3 where
 restri
ts the interpretations of the left hand side to sets of terms< en
(:::; :::t:::); t >. The last message is su

essful only if B answers
orre
tlythe
hallenge, whi
h
an be expressed using an equality
onstraint representingA's memory: < R4 \ en
(X;h(Y)); S3 \ en
(X;Y) >
� S5 where
 restri
ts theinstan
es of the expression to sets of terms < en
(t1; h(t2)); en
(t3; t2) >.

We
an handle an unbounded number of prin
ipals and messages may bebuilt using any set of fun
tion symbols with any arity. However, we
annothandle non
es (randomly generated numbers) in general. In this respe
t, ourde
idability result is not more general than e.g. [3℄.Considering non
es introdu
es several
ompli
ations (whi
h we
an expe
t[12℄): �rst we have to ensure that all non
es are distin
t. This is possible atthe pri
e of introdu
ing disequality tests on basi
 types in the set
onstraints,hen
e disequality tests in the automata. This may yield a still de
idable model.A mu
h harder issue is the freshness of the non
es. Indeed, ea
h non
e has alifetime, hen
e a s
ope (this be
omes quite
lear in spi-
al
ulus formalizations[1℄). Modeling the s
ope hardly �ts into the (�nite) set
onstraints formalism.Referen
es1. M. Abadi and A. Gordon. A
al
ulus for
ryptographi
 proto
ols: the spi
al
ulus.Information and Computation, 148(1), 1999.2. A. Aiken. Introdu
tion to set
onstraint-based program analysis. S
ien
e of Com-puter Programming, 35:79{111, 1999.3. R. Amadio and D. Lugiez. On the rea
hability problem in
ryptographi
 proto
ols.In Pro
. CONCUR'00, volume 1877 of Le
ture Notes in Computer S
ien
e, 2000.4. B. Bogaert and S. Tison. Equality and disequality
onstraints on brother terms intree automata. In A. Finkel, editor, Pro
. 9th. Symposium on Theoreti
al Aspe
tsof Comp. S
ien
e, Ca
han, Fran
e, 1992.5. I. Cervesato, N. Durgin, P. Lin
oln, J. Mit
hell, and A. S
edrov. A meta-notationfor proto
ol analysis. In P. Syverson, editor, 12-th IEEE Computer Se
urity Foun-dations Workshop. IEEE Computer So
iety Press, 1999.6. W. Charatonik and L. Pa
holski. Negative set
onstraints with equality. In Pro
.IEEE Symp. on Logi
 in Computer S
ien
e, pages 128{136, Paris, 1994.7. W. Charatonik and A. Podelski. Set
onstraints with interse
tion. In Pro
. IEEESymposium on Logi
 in Computer S
ien
e, Varsaw, 1997.8. J. Clarke and J. Ja
obs. A survey of authenti
ation proto
ol. literature: Version1.0. Draft paper, 1997.9. H. Comon, M. Dau
het, R. Gilleron, F. Ja
quemard, D. Lugiez, S. Tison,and M. Tommasi. Tree automata te
hniques and appli
ations. Available on:http://www.grappa.univ-lille3.fr/tata, 1997.10. D. Dolev, S. Even, and R. Karp. On the se
urity of ping pong proto
ols. Infor-mation and Control, 55:57{68, 1982.11. D. Dolev and A. Yao. On the se
urity of publi
 key proto
ols. In Pro
. IEEESymp. on Foundations of Computer S
ien
e, pages 350{357, 1981.12. N. Durgin, P. Lin
oln, J. Mit
hell, and A. S
edrov. Unde
idability of boundedse
urity proto
ols. In Pro
. Workshop on formal methods in se
urity proto
ols,Trento, Italy, 1999.13. S. Even and O. Goldrei
h. On the se
urity of multi-party ping-pong proto
ols.Te
hni
al Report 285, Te
hnion, Haifa, Israel, 1983. Extended abstra
t appearedin IEEE Symp. Foundations of Computer S
ien
e, 1983.14. N. Heintze and J. Tygar. A model for se
ure proto
ols and their
ompositions.IEEE transa
tions on software engineering, 22(1), 1996.15. N. Heinze and J. Ja�ar. A de
ision pro
edure for a
lass of set
onstraints. InPro
. IEEE Symp. on Logi
 in Computer S
ien
e, Philadelphia, 1990.

