http://lwww.Isv.ens—cachan.fr/Publis/

In Proc. 28th Int. Coll. Automata, Languages, and Programming (ICALP’'2001), Crete, Greece, July 2001,
volume 2076 of Lecture Notes in Computer Science, pages 682-693. Springer, 2001.

Tree automata with one memory, set constraints
and ping-pong protocols*

Hubert Comon'? and Véronique Cortier? and John Mitchell’

! Department of Computer Science, Gates 4B, Stanford University, CA 94305-9045
{comon, jecm}@theory.stanford.edu, Fax: (650) 725 4671
2 Lahoratoire Spécification et Vérification, CNRS and Ecole Normale Supérieure de
Cachan,{comon, cortier}@lsv.ens-cachan.fr

Abstract. We introduce a class of tree automata that perform tests on
a memory that is updated using function symbol application and projec-
tion. The language emptiness problem for this class of tree automata is
shown to be in DEXPTIME. We also introduce a class of set constraints
with equality tests and prove its decidability by completion techniques
and a reduction to tree automata with one memory. Set constraints with
equality tests may be used to decide secrecy for a class of cryptographic
protocols that properly contains a class of memoryless “ping-pong pro-
tocols” introduced by Dolev and Yao.

1 Introduction

Set constraints were introduced in the eighties and have been studied thoroughly
since, with applications to the analysis of programs of various styles (see [2] for
a survey). Typically, the problem of interest is to decide the satisfiability of
a conjunction of set expression inclusions e C e’ in which the set expressions
are built from variables and various constructions, including, e.g., projection.
Athough some set variable may occur several time in an expression, most classes
of set constraints do not make it possible to write a set expression for a set of
terms of the form f(¢,¢), in which one subterm occurs more than once. One
exception is the class of constraints studied in [6].

Our motivating interest is to develop classes of cryptographic protocols for
which some form of secrecy is decidable. A historical class of decidable protocols
are the so-called ping-pong protocols [10]. Although none of the protocols of [8]
belongs to this class, ping-pong protocols remain a decidable class, while most
larger classes of security protocols are undecidable [5]. One of the main restric-
tions in [11,10] is that messages are built using unary symbols only. In contrast,
many protocols of interest are written using a binary encryption symbol and a
pairing function. Another restriction in [11,10] is that each protocol participant
is stateless: after a message is sent, the participant does not retain any memory of
the contents of the message. This is a significant limitation since many protocols

* Partially supported by DoD MURI “Semantic Consistency in Information Ex-
change,” ONR, Grant N00014-97-1-0505, and NSF CCR-9629754.

rely on challenge-response steps, that require memory. A previous investigation
of ping-pong protocols with added state led to undecidability [13].

It is insightful to observe that Dolev and Yao’s result [11] can be proved using
set constraints. This suggests a generalization of their approach to trees. A tech-
nical complication, though, is that the generalization to trees is less expressive
than one might expect: in the case of unary functions only, a function and its
inverse are set inverses of each other, in the sense that f(f (X)) is precisely
X . However, this is no longer true with trees: if £, ' and f, ' are the two projec-
tions corresponding to a binary function symbol f, the set f(f, ' (X), f, (X))
contains pairs f(t1,t2) which are not necessarily in X. In order to increase
the expressiveness of set constraints with binary functions, we need a “diagonal
construction”, enabling us to test for equalities the members of sets.

In this paper, we introduce a new class of set constraints, allowing limited
diagonal constructions. This class is incomparable with the class sketched in [6].
We show that satisfiability is decidable for this class, allowing us to generalize
Dolev and Yao’s result to trees. Our class of set constraints does not capture
all protocol concepts of interest. In particular, as can be seen from the survey
[8], many authentication protocols make use of nonces or time stamps, which
we cannot express. On the other hand, properties of protocols that are modeled
using set constraints are decidable, while nonces and timestamps typically lead
to undecidability [5]. Moreover, we can express conservative approximations of
general protocols, and it is possible in principle that set constraints with equality
tests provide algorithms for determining the security of some such protocols.

We prove the decidability of set constraints with equality tests by a reduc-
tion to an emptiness problem for a class of tree automata with constraints. Tree
automata with various forms of constraints have been studied by several authors
(see [9] for a survey). However, the class we consider in this paper is incompa-
rable with known decidable classes. Roughly, we allow each state to hold one
arbitrarily large memory register and restrict the use of this memory to equality
tests. Since memory registers are updated using projections and function appli-
cation, this class is a generalization of pushdown word (alternating) automata.
Despite the generality of the class, there is a simple proof that emptiness decision
is in DEXPTIME.

After discussing the correspondence between protocols and set constraints in
the next section, we recall known results on definite set constraints which will
be used later (section 3). Then we introduce tree automata with one memory
in section 4; this section can be seen as a stand-alone decidability result and
relies on definite set constraints. Next, we introduce in section 5 our class of set
constraints with one equality, showing how to reduce the satisfiability of these
constraints to the non-emptiness decision for tree automata with one memory.
The reduction is similar to the saturation process described in [7] for set con-
straints with intersection, but it is slightly more complicated due to equality
tests. (In fact, we obtain a doubly exponential algorithm if the maximum arity
of all function symbols is not constant.) Finally, we discuss the application to
security protocols in section 6.

2 Protocol motivation

Dolev and Yao [11] consider protocols in which each principal holds a single
public key (which is known to everybody) and a corresponding private key that
is known to them only. The principals are able to build messages using plain
text, encryption ex with the public key of X and signatures dx appending the
name of principal X. Here is a simple example from [11]:

Alice sends to Bob a message encrypted using Bob’s

A= B:ep(dalen(s)) public key consisting of a signed encrypted text s

Bob acknowledges the reception by sending back to Alice

B — A:ea(s) the text s, encrypted using the public key of Alice

In this model, communication channels are insecure. This allows an intruder
to intercept messages, remember them, and replace them with alternate (possibly
forged) messages. The intruder may decrypt a message if the corresponding key
has become known to him, may append or remove signatures, and may encrypt
using any public key. The secrecy question asks whether there is a way for an
intruder to get the plain text message s that is supposed to be kept secret
between Alice and Bob. In the above example, the answer is yes (the protocol is
insecure).

The possible use of set constraints in cryptographic protocols analysis has
been suggested in several papers, e.g. [14]. It is however interesting to see that the
Dolev-Yao decidability proof can be summarized using set constraints by letting
I be the set of messages that can be built by the intruder (after any number of
sessions). Since I can intercept any message of any run of the protocol, we write
set constraints putting every protocol message in I. For the example protocol
above, we have

ey (dx(ey(s) C T ex(ey' (dy' (ex () C 1

for every pair of principals X, Y, since Bob acknowledges a message m from Alice
by sending ea(ez' (d,' (e5' (m)))). Finally, for every principal X, we express the
ability of the intruder to perform operations using public information about X:

dx(I) C 1, ex(I)C 1, dy'(I)C 1

This process translates a protocol into a collection of set constraints about the
set. I of messages available to the intruder. Secrecy now becomes the question
whether the set constraints, together with s ¢ I, is satisfiable ? Assuming a fixed
number of principals, this is decidable in polynomial time for set constraints aris-
ing from Dolev-Yao’s ping-pong protocols: we can compute the minimal solution
of the definite set constraint and check the membership of s.

There are several restrictions in the Dolev-Yao approach. In particular, only
a fixed number of principals and, as mentioned above, only unary symbols may
be used. A pairing function or a binary encryption symbol, allowing to write
e.g. e(k,m) instead of ej(m), i.e. allowing to consider keys as first-class objects,
would considerably increase the expressive power.

3 Definite set constraints

This class of set constraints has been introduced in [15] and studied by various
authors (e.g. [7]). Each constraint is a conjunction of inclusions e; C e; where
ey is a set expression and es is a term set expression. Term set expressions are
built out of a fixed ranked alphabet of function symbols F, the symbol T and
set variables. A set expression is either a term set expression or a union of two
set expressions e; U e, or an intersection of two set expressions e; N ey or the
image of set expressions by some function symbol f(e1,...,e,) or a projection
f; '(e1) where f is a function symbol and i € [1..n] if n is the rank of f. Note
that negation is not allowed. Here is a definite set constraint:

LX) CeY) X Y)NX,X)CX gYV)NYCX aCY

Set expressions denote sets of subsets of the Herbrand universe T'(F); if o assigns
each variable to some subset of T'(F), then [], is defined by:

[X], £ Xo [fers. . en)o & {f(tr,.. . tn) | Vi € [Lon],t; € [ei]o}
[er Neale E [eo Nleale [fi @)l & {ti | 31, oestu. f(tr1, s tn) € [e]o)
[T], & 7(F) [er Uesle & [er]s U [e2]s

o satisfies e; C eq iff, [e1], C [ea],. This extends to conjunctions of inclusions.

Theorem 1 ([7]). The satisfiability of definite set constraints is DEXPTIME-
complete and each satisfiable constraint has a least solution.

4 Tree automata with one memory

The idea is to enrich the expressiveness of tree automata by allowing them to
carry and test some information. For instance, a pushdown automaton will keep
a stack in its memory and check the symbols at the top of the stack. What we
do here is something similar. Our automata work on trees instead of words and
may perform more general constructions and more general tests.

Informally, a tree automaton with one memory computes bottom-up on a tree
t by synthesizing both a state (in a finite set of states () and a memory, which
is a tree over some alphabet I'. Each transition uses some particular function
which computes the new memory from the memories at each direct son. Each
transition may also check for equalities the contents of the memories at each son.

Given an alphabet of function symbols I', the set of functions ¢ which we
consider here (and which may be used to compute on memories) is the least set
of functions over T'(I") which is closed by composition and containing:

— for every f € I' of arity n, the function Az1,...z,.f(21,...,24)

— for every n and every 1 <14 < n, the function Azq,....,z,.%;

— for every f € I' of arity n and for every 1 < i < n, the (partial) function
which associates each term f(ty,...,t,) with #;, which we write Af(x).z;.

For instance, if I" contains a constant (empty stack) and unary function symbols,
@ is the set of functions which push or pop after checking the top of the stack.

Definition 1. A tree automaton with one memory is a tuple (F,I,Q,Q¢,A)
where F is an alphabet of input function symbols, I' is an alphabet of memory
function symbols, Q is a finite set of states, Q¢ is a subset of final states, A is

a finite set of transition relations of the form f(qu,...,qn) —;> q where
— f € F is called the head symbol of the rule,
— ¢ is a subset of {1,....,n}2, defining an equivalence relation on {1,... n}.
— Ae1..,xp F(z1, ... ,x) € @, where k is the number of classes modulo ¢

— q1,---,qn,q € Q, (q is the target of the rule).

3

A configuration of the automaton consists of a state and a term in T'(I")
(the memory). Then computations work as follows: if ¢ = f(¢;,...,t,) and the
computation on t1, ..., t, respectively yields the configurations ¢, 71, ... , Gn, Tn,
then the automaton, reading ¢, may move to g, 7 when there is a transition rule
flar, -, qn) —;) g and for every i = j € ¢, ;, = 7 and 7 = F(75,,...,Ti,)

where i1,...,i; are representatives of the equivalence classes for ¢. A tree t is
accepted by the automaton whenever there is a computation of the automaton
on t yielding a configuration ¢,y with ¢ € Q.

Exzample 1. Assume that the transitions of the automaton A are (other compo-
nents of the automaton are obvious from the context, T is the identity relation):

T 1=2 T
glg) —— ¢ f(a:qa) —— ¢ a — qq
Az1.T1 Azq.h(z1) b
(7)) —— fla.g) ———
g qﬂ)\Tlh(’rl) q q7q)\h(’rl)"l'l q

A computation of the automaton on f(g(f(a,a)), g(a)) is displayed on figure 1,
in which the configurations reached at each node are displayed in a frame.

q,b

f
] A 0]
g g

e l |)
; a
—
a a

Fig. 1. A tree t and a computation of A on ¢

Pushdown automata (on words) perform transitions a,q,a -7y — ¢',8 -~
where a is an input symbol, g, ¢ are states and «, 3,y are words over the stack
alphabet (the rule pops « and pushes (). Such a rule can be translated in

the above formalism, viewing letters as unary symbols: a(q) — q'. This
Az.fa; x

translation does not make use of equality tests. Orthogonally, if we use the tests,
but assume that F = Az.f(x) for each rule headed with f, then we get tree
automata with equality tests between brothers (see [4]).

Theorem 2. The emptiness of the language recognized by a tree automaton with
one memory is decidable in DEXPTIME. More generally, the reachability of a
given configuration is decidable in DEXPTIME.

Proof. (sketch) For every q € @, let M, be the subset of T(I") of memory
contents m such that there is a tree ¢ and a computation of the automaton on ¢
yielding the configuration < ¢, m >. Then the sets M, are the least solutions of

the definite set constraint, consisting, for each transition rule f(qi, ..., qn) —;> q

of the inclusion F(Lg,, ,...Lg,) C My and Ly, is the intersection for all indices
I equivalent (w.r.t. ¢) to i; of M;. Then the non-emptiness of the language

(resp. reachability of a configuration) reduces to similar questions on definite set
constraints, which are solvable in DEXPTIME.

The result can be generalized to alternating tree automata with one memory
keeping the same complexity. Alternation here has to be understood as follows:
we may replace the states occurring in the left hand sides of the rules with
arbitrary positive Boolean combinations of states. The above proof simply works,
using additional intersections and unions.

Corollary 1. The emptiness problem of alternating tree automata with one
memory s DEXPTIME-complete.

Note however that the class of automata with one memory is neither closed
under intersection nor complement (both yield undecidable models).

5 Set constraints with equality tests

We consider now definite set constraints as in section 3 with an additional con-
struction: function symbols can be labeled with equality tests, which are con-
junctions of equalities p; = ps between paths. The intention is to represent sets
of terms ¢ such that the subterms at positions p; and ps are identical.

More precisely, if ¢ is a conjunction of equalities between paths (which we
assume w.l.o.g. closed under transitivity and such that no strict prefix of a path
in ¢ is in ¢), we define

def

[f(er, . sen)le = {t € [fler,.. . en)ls | 1= c}

and t |= c if, for every equality p1 = ps in ¢, p1,p2 are positions in ¢ and t|,, =
tlps. If p1 = p2 € ¢, we say thatpy,ps are checked by c. All other constructions

are the same as in section 3. In particular, right hand sides of inclusions should
not contain constructions f¢. When ¢ is empty, we may omit it or write T.

Ezample 2. f2'=2(f(Z,Y)NX,g(X)NY) C f(V, X) is an inclusion constraint.
o={X — {a,b, f(a,b)}; Y — {b,g(a),g(b), f(a,b)}; Z — {a,b}} is a solution of
the constraint since [f2=2(f(Z,Y)N X, g(X) NY)], = {f(f(a,b),g(b)}

As a consequence of undecidability results on tree automata with equality tests
(see e.g. [9]), the satisfiability of such general constraints is undecidable. That
is why we are going to put more restrictions on the constraints.

If X is a variable of a constraint S, then let R(X) be the set of atomic
constraints whose right hand side contains X. The set of variables having a
basic type is the least set of variables X such that R(X) consists of inclusions
gi(Xi,..., X}) C X and such that

— if the symbols g; do not occur anywhere else in S and every X; is either X
itself or has a basic type, then X has a basic type
— if every X7 has a basic type, then X has a basic type.

Intuitively, the basic types correspond to data whose format is irrelevant (first
case in the definition) or which can be built using a bounded number of symbols
on such data (second case). For example, Nat and U have basic types in
R(Nat) U R(U) L zero C Nat, s(Nat) C Nat, pn(Nat) CU
if zero and s are not used elsewhere in S.
This notion is extended to expressions: an expression e is basic if

— e is a basic variable or

e is an intersection e; N ey and either e; or ey is basic

— e is an expression e; U e; and both e; and ey are basic

— e is an expression f(eq,...,e,) (or f¢(e1,...,e,)) and eq, ..., e, are basic

The set of paths in an expression e is defined as follows: IT(f¢(e1,...,ey)) def
def def — def
1-II(ey)U...Un-II(e,), II(e1Nes) = I (eyUey) = II(e1)UI (e), II(f; *(e)) =

(2
0. e|, is any of the subexpressions at position p. When there is no U or N symbol

along a path p then e|, denotes a single expression.

The assumption: We assume that, in each subexpression f¢(eq, ..., e,), for every
p1 = p2 € ¢, p1 and py are paths of f(eq,...,e,). (This is actually equivalent
to restricting the use of projections below an f¢ construction). Then, for each
expression f¢(ey, ..., e,) we require that, if p -4 - ¢ is checked by ¢ and p is not
empty then, for i # j, either p- j = p-i-q € ¢ or any subexpression at position
p - j has a basic type or any subexpression at p -4 - ¢ has a basic type. This will

be referred to as the basicness condition.

Ezample 3. If ¢ is 12 = 21 = 11 A 22 = 3. the basicness condition imposes that
either e|91 or e|22 has a basic type (and hence the other expressions at equivalent
positions).

The resulting constraints are called set constraints with equality tests (ET-
constraints for short). We can construct an ET-constraint whose least solution is
the set of trees A = {f(¢,t) | t € T(F)}. The only other decidable set constraint
formalism which allows to express A is the class defined in [6], in which, however,
equality tests are restricted to brother positions (which is not the case here). On
the other hand, we have restrictions which are not present in [6].

5.1 Saturation

We use here a fixed point computation method which is similar to the one in [7]:
the goal is to deduce enough consequences so that the inclusions whose right hand
side is not a variable become redundant, hence can be discarded. Unfortunately,
the first step (representation) in [7] cannot be used in the same way here, since
it does not preserve the class of constraints we consider. Still, as a first step,
we can get rid of projections and unions: we can compute in plynomial time an
equivalent ET-constraints containing no union or projection.
Next, we normalize the expressions according to the following rule Norm:

feler,...,en) N (e, ... €)= fN (e Nel,....enNe)

Lemma 1. (Norm) transforms an expression in an equivalent one. Moreover,
if the basicness condition is satisfied by the premises, then there is a (effectively
computable) constraint ¢ which is logically equivalent to ¢ A ¢’ and such that
fe (e1Nel,...,e,Nel) satisfies the basicness condition.

We can get rid of basic type variables:

Lemma 2. For each basic variable X, there is a ground expression tx such that,
if S' is the ET-constraint obtained by replacing in S each basic variable X with
tx, then o is a solution of S' iff 0 o ox is a solution of S.

We may assume now that there is no basic variable in the constraint. Then
the tests can be simplified, removing positions of basic expressions.

Next, as in [7], we extend the language allowing non-emptiness preconditions
in the rules, which allow to simplify (some but not all) inclusion constraints
fe(e) C f(e’). Formally, the set constraints are now clauses of the form

nonempty(e;), ..., nonempty(e,) = e C ¢’

where e,e1,...,e, are set expressions,e’ is a set expression using only inter-
sections, variables and function symbols (without constraints). nonempty(e;) is
satisfied by an assignment o iff [e;], is not empty.

Then we remove constraints of the form ¢ = C[f°(e) N ¢ (e’)] C e" and
replace constraints ¢ = e C C[f(e) N g(e’)] with ¢, nonempty(e) = false for
every context C' and every f # g. These rules are correct, by definition of the
interpretation.

We also abstract out subexpressions introducing new variables, as long as
this preserves the form of the constraints. For instance, for contexts C[],, an

inclusion C[f°(e)], C €' becomes C[X], C €', f°(e) C X where X is a new
variable. This results in an equivalent constraint (on the original variables) in
which the inclusions are e C e’ where e’ is either an intersection of variables
Xi1N...Nn X, or an expression f(X;,...,X,) and e is either an intersection of
variables or an expression f¢(e) in which, at any position which is not a strict
prefix of a position checked by ¢, there is a (non-basic) variable or a term ¢x.

In addition, each time p; = po appears in ¢ in an expression f¢(e), we
assume that all subexpressions at positions p;,ps are identical, which can be
easily ensured replacing both subexpressions with their intersection.

¢1$€1g82 ¢2=>€2g€3

Transitivity 1
$1,¢2 = e1 Ces

6= f ()X Ngler)Nesly Ces ¢ = ¢ (ea) C X Provided v s
a strict pre-

fix of a path
checked in ¢

Transitivity 2

6, ¢' = f°(e)lg” (ea) Ng(er) Nealy C e

p=>e1 Ces ¢ =e) Ceh
Compatibility

¢, ¢ = er1Nel CeiNel

¢ = f(e) € g(e)

Clash - it f#g
¢ = false

¢ =e1 CexNes ¢ =e1 Ces I_f €3 15 an expres-

Weakenings sion occurring some-

m m where in the set of con-

straints

If the subexpression at ev-
ery strict prefix of a position
checked in c¢ is of the form
g(e'") for some g.

¢:>fc(617"'56n) g f(ella"'7eln)
Projection

6. nonempty(f<(e1, .., en))) = €5 C e}

Fig. 2. The saturation rules

Now, we are ready to apply the deduction rules given in figure 2, applying
again abstractions and normalisation (eagerly) if necessary to keep the special
form of the constraint. We use e[e’], to express either that e’ is replaced by e at
position p or that e’ has to occur at position p. This means in particular that

the subexpression at position p in e has to be defined in a unique way. ¢ |; is

defined by (cAc') L= el Ac by (i-p=i-¢) L% p=qand (- p=¢q) LE T

when i # j. e° is the expression in which the top symbol of e is constrained by
c. (It is used only in a context where e must be headed with a function symbol
orc=T).

Lemma 3. The inference rules in figure 2 are correct: the new constraint is a
consequence of the previous ones.

Lemma 4. The rules of figure 2 are terminating: a fized point is reached after
finitely many steps (at most O(2/511¢1X2X2"y where a is the mazimal arity of a
function symbol, b is the number of basic types and |c| is the mazimal depth of
an equality test).

If S is an ET-constraint, let solved(S) be the clauses ¢ — a in S such that
either a is false or else a is an inclusion f¢(e) C e’ where €’ is an intersection of
variables and f¢(e) does not contain any subexpression of the form X N g°(e’)
where X is a variable. Using a classical construction, we can show that:

Lemma 5. solved(S) is either unsatisfiable or has a least solution.

As in [7], the following completeness result is obtained by inspecting each clause
C € S which is not in solved(S), showing that, thanks to saturatedness, the least
solution of solved(S) is a solution of C. There are only some additional cases for
non-flat constraints e.g. f°(X Ng(e),e’) C f(e”).

Theorem 3. If S is saturated, then either both S and solved(S) are unsatisfiable
or else S has a least solution, which is the least solution of solved(S).

5.2 The main result

We build, for each ET-constraint S, an automaton with one memory Ag such
that if « is the least solution of S, for very variable X, a(X) is a simple homo-
morphic image of the set of terms accepted by Ag in state gx. ! The memory
alphabet of the automaton is the set of function symbols used in the constraint
and the alphabet F is the memory alphabet with some additional symbols al-
lowing to check on auxilliary branches non emptiness conditions.

The set of states is the set of subexpressions occurring in the constraint,
together with some local memory. We keep in the (unbounded) memory attached
to each state the tree which will be checked later for equality. The idea is to
accept in state e a term ¢t iff there is at least one term in [e], for every solution
o of the constraint. We have no room here to detail the construction.

As a consequence of lemma 3, lemma 4, theorem 2, theorem 3 and the above
construction, we get:

Theorem 4. The satisfiability of ET-constraints is decidable. Furthermore, given
a set constraint with equality tests S, a term t and a free variable X of S, the
consistency of SAt ¢ X is equivalent to the non-reachability of the configuration
qx,t in As, which is decidable.

! Note that we could prove the result directly, using the same trick as in the proof
of theorem 2, without any reference to automata with one memory. However, we
believe that theorem 2 is interesting in itself.

6 Analysis of cryptographic protocols

We sketch here a protocol example (inspired by Kerberos) that can be analyzed
using ET-constraints, but is beyond the scope of [11]. We use a tupling function
<, >, a binary encryption enc and several additional symbols.

1.A—- S :AB

2.5 — A :enc(k(A
3. A — B:enc(K(A,
4. B — A :enc(K(A,

),< B,K(A, B),enc(k(B),< A, K(A,B) >) >)
B),m(A, B)),enc(k(B),< A,K(A,B) >)
B), h(m(A, B)))

In words, A tells the key server S that she wants to securely communicate
with B. Then S sends back to A a message, encrypted using A’s public key and
containing a session key K (A, B) together with a certificate which can be opened
by B only. At the third step, A sends her message m (A, B), encrypted using the
key K (A, B), together with the certificate, which is copied blindly from message
2. Finally, B acknowledges the reception, sending back a digest h(m(A, B)) of
the previous message, encrypted using the shared key.

Because of lack of space, we only sketch here very briefly how to express the
intruder capabilities on one hand and how the equality tests are used.

As in section 2, the intruder’s knowledge is represented using a set variable [I.
We use a set variable S; resp. R;) for the set of messages sent (resp. received) at
step 7 (see e.g. [12] for more details). Since the intruder I potentially intercepts
all messages and may send any message he can forge, we have S; C I C R;. In
addition, he has some capabilities to alter messages. For instance:

enc(I,I)C 1T enc(I, T)NI C enc(T,I)

In words, I can encrypt a known message using a known key and I can decrypt
a message whose encrypting key is known to him.

Now comes the protocol-dependent part of the constraints. The memory
which is kept by the participants is modeled by sending at step ¢ not only the ith
message, but also relevant previous messages. This trick does not change any-
thing to I's knowledge as previous messages were known to him. For instance,
step 2 will consist of:

< RN < U, U >,enc(k(U),< U, K(U,U),enc(k(U),< U, K(U,U) >) >) >°C Sy

where ¢ ©' 11 =211 = .. A12 =221 = ... expresses that principal names do match.
This is necessary since the intruder may be a participant in another session of the
protocol: we would get a too rough overapproximation without these tests. At
step 3, A includes blindly a piece of message 2, which can be expressed using an
equality test on non-basic variables of the form: < Ry Nenc(...,..X...), X >°C
S3 where c¢ restricts the interpretations of the left hand side to sets of terms
< enc(...,...t...),t >. The last message is successful only if B answers correctly
the challenge, which can be expressed using an equality constraint representing
A’s memory: < RyNenc(X,h(Y)),S3Nenc(X,Y) >°C S5 where c restricts the
instances of the expression to sets of terms < enc(ty, h(t2)), enc(ts, t2) >

We can handle an unbounded number of principals and messages may be
built using any set of function symbols with any arity. However, we cannot
handle nonces (randomly generated numbers) in general. In this respect, our
decidability result is not more general than e.g. [3].

Considering nonces introduces several complications (which we can expect
[12]): first we have to ensure that all nonces are distinct. This is possible at
the price of introducing disequality tests on basic types in the set constraints,
hence disequality tests in the automata. This may yield a still decidable model.
A much harder issue is the freshness of the nonces. Indeed, each nonce has a
lifetime, hence a scope (this becomes quite clear in spi-calculus formalizations
[1]). Modeling the scope hardly fits into the (finite) set constraints formalism.

References

1. M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus.
Information and Computation, 148(1), 1999.

2. A. Aiken. Introduction to set constraint-based program analysis. Science of Com-
puter Programming, 35:79-111, 1999.

3. R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols.
In Proc. CONCUR’00, volume 1877 of Lecture Notes in Computer Science, 2000.

4. B. Bogaert and S. Tison. Equality and disequality constraints on brother terms in
tree automata. In A. Finkel, editor, Proc. 9th. Symposium on Theoretical Aspects
of Comp. Science, Cachan, France, 1992.

5. I Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A meta-notation
for protocol analysis. In P. Syverson, editor, 12-th IEEE Computer Security Foun-
dations Workshop. IEEE Computer Society Press, 1999.

6. W. Charatonik and L. Pacholski. Negative set constraints with equality. In Proc.
IEEE Symp. on Logic in Computer Science, pages 128-136, Paris, 1994.

7. W. Charatonik and A. Podelski. Set constraints with intersection. In Proc. IEEE
Symposium on Logic in Computer Science, Varsaw, 1997.

8. J. Clarke and J. Jacobs. A survey of authentication protocol. literature: Version
1.0. Draft paper, 1997.

9. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-1ille3.fr/tata, 1997.

10. D. Dolev, S. Even, and R. Karp. On the security of ping pong protocols. Infor-
mation and Control, 55:57—68, 1982.

11. D. Dolev and A. Yao. On the security of public key protocols. In Proc. IEEE
Symp. on Foundations of Computer Science, pages 350-357, 1981.

12. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In Proc. Workshop on formal methods in security protocols,
Trento, Italy, 1999.

13. S. Even and O. Goldreich. On the security of multi-party ping-pong protocols.
Technical Report 285, Technion, Haifa, Israel, 1983. Extended abstract appeared
in IEEE Symp. Foundations of Computer Science, 1983.

14. N. Heintze and J. Tygar. A model for secure protocols and their compositions.
IEEE transactions on software engineering, 22(1), 1996.

15. N. Heinze and J. Jaffar. A decision procedure for a class of set constraints. In
Proc. IEEE Symp. on Logic in Computer Science, Philadelphia, 1990.

