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There is a large amount of work dedicated to the formal verification of security protocols. In this

paper, we revisit and extend the NP-complete decision procedure for a bounded number of sessions.

We use a, now standard, deducibility constraint formalism for modeling security protocols. Our
first contribution is to give a simple set of constraint simplification rules, that allows to reduce

any deducibility constraint to a set of solved forms, representing all solutions (within the bound

on sessions).
As a consequence, we prove that deciding the existence of key cycles is NP-complete for a

bounded number of sessions. The problem of key-cycles has been put forward by recent works

relating computational and symbolic models. The so-called soundness of the symbolic model
requires indeed that no key cycle (e.g., enc(k, k)) ever occurs in the execution of the protocol.

Otherwise, stronger security assumptions (such as KDM-security) are required.

We show that our decision procedure can also be applied to prove again the decidability of
authentication-like properties and the decidability of a significant fragment of protocols with

timestamps.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Verifying and Reasoning about
Programs

General Terms: Security

Additional Key Words and Phrases: formal proofs, security protocols, symbolic constraints, veri-

fication

1. INTRODUCTION

Security protocols are small programs that aim at securing communications over a public
network, like Internet. Considering the increasing size of networks and their dependence
on cryptographic protocols, a high level of assurance is needed in the correctness of such
protocols. The design of such protocols is difficult and error-prone; many attacks are dis-
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covered even several years after the publication of a protocol. Consequently, there has
been a growing interest in applying formal methods for validating cryptographic protocols
and many results have been obtained. The main advantage of this approach is its rela-
tive simplicity which makes it amenable to automated analysis. For example, the secrecy
preservation is co-NP-complete for a bounded number of sessions [Amadio and Lugiez
2000; Rusinowitch and Turuani 2001], and decidable for an unbounded number of ses-
sions under some additional restrictions [Comon-Lundh and Cortier 2003; Durgin et al.
1999; Lowe 1998; Ramanujam and Suresh 2005]. Many tools have also been developed to
automatically verify cryptographic protocols, like [Armando et al. 2005; Blanchet 2001;
Millen and Shmatikov 2001; Cremers 2008].

Generalizing the constraint system approach. In this paper, we re-investigate and ex-
tend the NP-complete decision procedure for a bounded number of sessions [Rusinowitch
and Turuani 2001]. In this setting (i.e. finite number of sessions), deducibility constraint
systems have become the standard model for verifying security properties, with a spe-
cial focus on secrecy. Starting with Millen and Shmatikov’s paper [Millen and Shmatikov
2001] many results (e.g. [Comon-Lundh and Shmatikov 2003; Baudet 2005; Bursuc et al.
2007]) have been obtained and several tools (e.g. [Corin and Etalle 2002]) have been devel-
oped within this framework. Our first contribution is to provide a generic approach derived
from [Comon-Lundh and Shmatikov 2003] to decide general security properties. We show
that any deducibility constraint system can be transformed in (possibly several) much sim-
pler deducibility constraint systems that are called solved forms, preserving all solutions
of the original system, and not only its satisfiability. In other words, the deducibility con-
straint system represents in a symbolic way all the possible sequences of messages that
are produced, following the protocol rules, whatever are the intruder’s actions. This set
of symbolic traces is infinite in general. Solved forms are a simple (and finite) represen-
tation of such traces and we show that it is suitable for the verification of many security
properties. We also consider sorted terms, symmetric and asymmetric encryption, pairing
and signatures, but we do not consider algebraic properties like Abelian groups or exclu-
sive or. In addition, we prove termination in polynomial time of the (non-deterministic)
deducibility constraint simplification. Compared to [Rusinowitch and Turuani 2001], our
procedure preserves all solutions. Hence, we can represent for instance, all attacks on the
secrecy and not only decide if there exists one. Moreover, presenting the decision proce-
dure using a small set of simplification rules yields more flexibility for further extensions
and modifications.

The main originality is that the method is applicable to any security property that can
be expressed as a formula on the protocol trace and the agent memories. For example, our
decision procedure (published in the LPAR’06 proceedings [Cortier and Zălinescu 2006])
has been used in [Cortier et al. 2006] for proving that a new notion of secrecy in presence
of hashes is decidable (and co-NP-complete) for a bounded number of sessions. It has also
been used in [Cortier et al. 2007] in the proof of modularity results for security of proto-
cols. To illustrate the large applicability of our decision procedure, we show in this paper
how it can be used for proving co-NP-completeness of three kinds of security properties:
the existence of key cycles, authentication-like properties, and secrecy of protocols with
timestamps.

For authentication properties, we introduce a small logic that allows to specify authen-
tication and some similar security properties. Using our solved forms, we show that any
ACM Transactions on Computational Logic, Vol. V, No. N, January 2009.
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property that can be expressed within this logic can be decided. The logic is smaller than
NPATRL [Syverson and Meadows 1996] or PS-LTL [Corin et al. 2005; Corin 2006], but
we believe that decidability holds for a larger logic, closer to the two above ones. How-
ever, the goal of this work is not to introduce a new logic, but rather to highlight the proof
method. Note also that the absence of key cycles cannot be expressed in any of the three
mentioned logics because it is not only a trace property but also a property of the message
structure (see below).

For timestamps, we actually retrieve a significant fragment of the decidable class identi-
fied by Bozga et al [Bozga et al. 2004]. We believe that our result can lead more easily to an
implementation, since we only need to adapt the procedure implemented in AVISPA [Ar-
mando et al. 2005], while Bozga et al have designed a completely new decision procedure,
which de facto has not been implemented.

Application to key cycles. Our second main contribution is to use this approach to pro-
vide an NP-complete decision procedure for detecting the generation of key cycles during
the execution of a protocol, in the presence of an intruder, for a bounded number of ses-
sions. To the best of our knowledge, this problem has not been addressed before. The key
cycle problem is a problem that arises from the cryptographic community. Indeed, two dis-
tinct approaches for the rigorous design and analysis of cryptographic protocols have been
pursued in the literature: the so-called Dolev-Yao, symbolic, or formal approach on the
one hand and the cryptographic, computational, or concrete approach on the other hand.
In the symbolic approach, messages are modeled as formal terms that the adversary can
manipulate using a fixed set of operations. In the cryptographic approach, messages are
bit strings and the adversary is an arbitrary probabilistic polynomial-time Turing machine.
While results in this model yield strong security guarantees, the proofs are often quite in-
volved and only rarely suitable for automation (see, e.g., [Goldwasser and Micali 1984;
Bellare and Rogaway 1993]).

Starting with the seminal work of Abadi and Rogaway [Abadi and Rogaway 2002],
recent results investigate the possibility of bridging the gap between the two approaches.
The goal is to obtain the best of both worlds: simple, automated security proofs that entail
strong security guarantees. The approach usually consists in proving that the Dolev-Yao
abstraction of cryptographic primitives is correct as soon as strong enough primitives are
used in the implementation. For example, in the case of asymmetric encryption, it has
been shown [Micciancio and Warinschi 2004b] that the perfect encryption assumption is a
sound abstraction for IND-CCA2, which corresponds to a well-established security level.
The perfect encryption assumption intuitively states that encryption is a black-box that can
be opened only when one has the inverse key. Otherwise, no information can be learned
from a cipher-text about the underlying plain-text.

However, it is not always sufficient to find the right cryptographic hypotheses. Formal
models may need to be amended in order to be correct abstractions of the cryptographic
models. A widely used requirement is to control how keys can encrypt other keys. In a
passive setting, soundness results [Abadi and Rogaway 2002; Micciancio and Warinschi
2004a] require that no key cycles can be generated during the execution of a protocol.
Key cycles are messages like enc(k, k) or enc(k1, k2), enc(k2, k1) where a key encrypts
itself or more generally when the encryption relation between keys contains a cycle. Such
key cycles have to be disallowed simply because usual security definitions for encryption
schemes do not yield any guarantees otherwise. In the active setting, the typical hypotheses
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are even stronger. For instance, in [Backes and Pfitzmann 2004; Janvier et al. 2005] the
authors require that a key k never encrypts a key generated before k or, more generally,
that it is known in advance which key encrypts which one. More precisely, the encryption
relation has to be compatible with the order in which keys are generated, or more generally,
it has to be compatible with an a priori given ordering on keys.

Related work on key cycles. Some authors circumvent the problem of key cycles by
providing new security definitions for encryption, Key Dependent Messages security, or
KDM in short, that allow key cycles [Adão et al. 2005; Backes et al. 2007]. However,
the standard security notions do not imply these new definitions, and ad-hoc encryption
schemes have to be constructed. Most of these constructions use the random oracle model,
which is provably non implementable. Though there was some recent progress [Hofheinz
and Unruh 2008] towards constructing a KDM-secure encryption scheme in the standard
model, none of the usual, implemented encryption schemes has been proved to satisfy
KDM-security.

In a passive setting, Laud [Laud 2002] proposed a modification of the Dolev-Yao model
such that the new model is a sound abstraction even in the presence of key cycles. In his
model the intruder’s power is strengthened by adding new deduction rules. With the new
rules, from a message containing a key cycle, the intruder can infer all keys involved in
the cycle as well as the messages encrypted by these keys. Subsequently, Janvier [Janvier
2006] proved that the intruder deduction problem remains polynomial for the modified
deduction system. It was also suggested that this approach can be extended to active in-
truders and incorporated in existing tools, though, to the best of our knowledge, this has
not been completed yet. Note that the definition of key cycles used in [Janvier 2006] is
more permissive than in [Abadi and Rogaway 2002] (which is unnecessarily restrictive)
and it corresponds to the approach of Laud [Laud 2002].

Deciding key cycles. In this paper, we provide an NP-complete decision procedure for
detecting the generation of key cycles during the execution of a protocol, in the presence
of an active intruder, for a bounded number of sessions. Our procedure works for all
the above mentioned definitions of key cycles: strict key cycles (à la Abadi, Rogaway),
non-strict (à la Laud) key cycles, key orderings (à la Backes). We therefore provide a
necessary component for automated tools used in proving strong, cryptographic security
properties, using existing soundness results. Since our approach is an extension of the
transformation rules derived from the result of [Rusinowitch and Turuani 2001], we believe
that our algorithm can be easily implemented since it can be adapted from the associated
procedure, already implemented in AVISPA [Armando et al. 2005] for deciding secrecy
and authentication properties.

Outline of the paper. The messages and the intruder capabilities are modeled in Sec-
tion 2. In Section 3.1, we define deducibility constraint systems and show how they can be
used to express protocol executions. In Section 3.2, we define security properties and their
satisfaction. In Section 4, we show that the satisfaction of any (in)security property can be
non-deterministically, polynomially reduced to the satisfiability of the same problem, this
time on simpler constraint systems. The simplification rules derived from [Comon-Lundh
and Shmatikov 2003] are provided in Section 4.1. They are actually not sufficient to en-
sure termination in polynomial time. Thus we introduce in Section 4.6 a refined decision
procedure, which is correct, complete, and terminating in polynomial time. We show in
ACM Transactions on Computational Logic, Vol. V, No. N, January 2009.
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Section 5 how this approach can be used to obtain our main result of NP-completeness
for the decision of the key cycles generation. In Section 6, we introduce a small logic
to express authentication-like properties and we show how our technique can be used to
decide any formula of this logic. In Section 7, we show how it can be used to derive NP-
completeness for protocols with timestamps. Some concluding remarks about further work
can be found in Section 8.

2. MESSAGES AND INTRUDER CAPABILITIES

2.1 Syntax

Cryptographic primitives are represented by function symbols. More specifically, we con-
sider a signature (S,F) consisting in a set of sorts S = {s, s1 . . .} and a set of function
symbols F = {enc, enca, sign, 〈 〉,priv}. Each function symbol is associated with an ar-
ity: ar is a mapping from F to S∗ × S , which we write ar(f) = s1 × · · · × sn → s.
The four first function symbols in F are binary: for each of them there are s1, s2, s ∈ S
such that ar(f) = s1 × s2 → s. The last symbol is unary: there are s, s′ ∈ S such that
ar(f) = s→ s′.

The symbol 〈 〉 represents the pairing function. The terms enc(m, k) and enca(m, k)
represent respectively the message m encrypted with the symmetric (resp. asymmetric)
key k. The term sign(m, k) represents the message m signed by the key k. The term
priv(a) represents the private key of the agent a. For simplicity, we confuse the agents
names with their public key. (Or conversely, we claim that agents identities are defined by
their public keys).
N = {a, b . . .} is a set of names and X = {x, y . . .} is a set of variables. Each name

and each variable is associated with a sort. We assume that there are infinitely many names
and infinitely many variables of each sort.

The set of terms of sort s is defined inductively by

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tn) application of symbol f ∈ F such that ar(f) = s1 × · · · × sn → s

and each ti is a term of sort si.

We assume a special sort Msg that subsumes all the other sorts: any term is of sort Msg.
Sorts are mostly left unspecified in this paper. They can be used in applications to

express that certain operators can be applied only to some restricted terms. For example,
we use sorts explicitly to express that messages are encrypted by atomic keys (only in
Section 5), and to represent timestamps (only in Section 7).

As usual, we write V(t) for the set of variables occurring in t. For a set T of terms, V(T )
denotes the union of the variables occurring in the terms of T . A term t is ground or closed
if and only if V(t) = ∅. A position or an occurrence in a term t is a sequence of positive
integers corresponding to paths starting from the root in the tree-representation of t. For
a term t and a position p in this term, t|p denotes the subterm of t at position p. We write
St(t) and St(T ) for the set of subterms of a term t, and of a set of terms T , respectively.
The size of a term t, denoted |t|, is defined inductively as usual: |t| = 1 if t is a variable
or a name and t = 1 +

∑n
i=1 |ti| if t = f(t1, . . . , tn) for f ∈ F . If T is a set of terms

then |T | denotes the sum of the sizes of its elements. The cardinality of a set T is denoted
ACM Transactions on Computational Logic, Vol. V, No. N, January 2009.
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Pairing
S ` x S ` y

S ` 〈x, y〉
Symmetric encryption

S ` x S ` y

S ` enc(x, y)

Asymmetric encryption
S ` x S ` y

S ` enca(x, y)
Signing

S ` x S ` y

S ` sign(x, y)

Symmetric decryption
S ` enc(x, y) S ` y

S ` x
First Projection

S ` 〈x, y〉

S ` x

Asymmetric decryption
S ` enca(x, y) S ` priv(y)

S ` x
Second Projection

S ` 〈x, y〉

S ` y

Unsigning(optional)
S ` sign(x, y)

S ` x
Axiom

S, x ` x

Fig. 1. Intruder deduction system.

by ]T . By abuse of notation, we sometimes denote by T, u the set T ∪ {u}.
Substitutions are written σ = {t1/x1 , . . . ,

tn/xn
} with dom(σ) = {x1, . . . , xn}. We only

consider well-sorted substitutions, for which xi and ti have the same sort. σ is closed if
and only if every ti is closed. The application of a substitution σ to a term t is written σ(t)
or tσ. A most general unifier of two terms u and v is denoted by mgu(u, v).

2.2 Intruder capabilities

The ability of the intruder is modeled by the deduction rules displayed in Figure 1 and
corresponds to the usual Dolev-Yao rules.

Pairing, signing, symmetric and asymmetric encryption are the composition rules. The
other rules are decomposition rules. Intuitively, these deduction rules say that an intruder
can compose messages by pairing, encrypting, and signing messages provided she has
the corresponding keys and conversely, she can decompose messages by projecting or de-
crypting provided she holds the decryption keys. For signatures, the intruder is also able
to verify whether a signature sign(m, k) and a message m match (provided she has the
verification key), but this does not give rise to any new message: this capability needs not
to be represented in the deduction system. We also consider an optional rule

S ` sign(x, y)
S ` x

that expresses the ability to retrieve the whole message from its signature. This prop-
erty may or may not hold depending on the signature scheme, and that is why this rule is
optional. Note that this rule is necessary for obtaining soundness properties w.r.t. crypto-
graphic digital signatures. Our results will hold in both cases, whether or not this rule is
considered in the deduction relation.

A proof tree (sometimes simply called a proof) is a tree whose labels are sequents T ` u
where T is a finite set of terms and u is a term. A proof tree is inductively defined as
follows:

—if u is a term and u ∈ T , then T ` u is a proof tree whose conclusion is T ` u, using
the axiom;

ACM Transactions on Computational Logic, Vol. V, No. N, January 2009.
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—if π1, . . . , πn are proof trees, whose respective conclusions are T ` u1, . . . , T ` un

respectively and
S ` t1 · · · S ` tn

S ` t
is a rule R of the Figure 1 such that, for some

(well-sorted) substitution σ, t1σ = u1, . . . , tnσ = un, then
π1 · · · πn

T ` tσ
is a proof tree

using R, whose conclusion is T ` tσ.

We will call subproof a subtree of a proof tree. An strict subproof (resp. immediate
subproof ) of π is a subproof of π distinct from π (resp. a maximal strict subproof of π).

A term u is deducible from a set of terms T , which we sometimes write T ` u by abuse
of notation, if there exists a proof tree whose conclusion is T ` u.

Example 2.1. The term 〈k1, k2〉 is deducible from the set S1 = {enc(k1, k2), k2}, as
the following proof tree shows:

S1 ` enc(k1, k2) S1 ` k2

S1 ` k1 S1 ` k2

S1 ` 〈k1, k2〉

3. DEDUCIBILITY CONSTRAINT SYSTEMS AND SECURITY PROPERTIES

Deducibility constraint systems are quite common (see e.g. [Millen and Shmatikov 2001;
Comon-Lundh and Shmatikov 2003]) in modeling security protocols. We recall here their
definition and show how they can be used to specify general security properties. Then we
prove that any deducibility constraint system can be transformed into simpler ones, called
solved. Such simplified constraints are then used to decide the security properties.

3.1 Deducibility constraint systems

In the usual attacker’s model, the intruder controls the network. In particular she can
schedule the messages. Once such a scheduling is fixed, she can still replace the messages
with fake ones, which are nevertheless accepted by the honest participants. More precisely,
some pieces of messages cannot be analyzed by the participants, hence can be replaced by
any other piece, provided that the attacker can construct the overall message. This can be
used to mount attacks.

In the formal model, pieces that cannot be analyzed are replaced with variables. Any
substitution of these variables will be accepted, provided that the attacker can deduce (us-
ing the deduction system of Figure 1) the corresponding instance. The main problem then
is to decide whether there is such a substitution, yielding a violation of the security prop-
erty.

Let us give a detailed example recalling how possible execution traces are formalized.

Example 3.1. Consider the famous Needham-Schroeder asymmetric key authentica-
tion protocol [Needham and Schroeder 1978] designed for mutual authentication:

A→ B : enca(〈NA, A〉, B)
B → A : enca(〈NA, NB〉, A)
A→ B : enca(NB , B)

The agentA sends toB his name and a fresh nonce (a randomly generated value) encrypted
with the public key of B. The agent B answers by copying A’s nonce and adds a fresh
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nonce NB , encrypted by A’s public key. The agent A acknowledges by forwarding B’s
nonce encrypted by B’s public key.

Formally, this protocol can be described using two roles A and B. The role A has two
parameters: a, b (initiator and responder), and is (informally) specified as follows:

A(a, b) : generate(na)
A1. send(enca(〈na, a〉, b))
A2. receive(enca 〈na, y〉, a)→ send(enca(y, b))

where y is a variable: a cannot check that this piece of the message is a nonce generated
by b. Hence it can be replaced by any term (or any term of a given sort, depending on what
we want to model).

Similarly, the role of B takes the two parameters b, a, and is specified as:

B(b, a) : generate(nb)
B1. receive(enca(〈x, a〉, b))→ send(enca(〈x, nb〉, a))
B2. receive(enca(nb, b))

Without loss of generality, we may assume that send actions are performed as soon as
the corresponding receive action is completed: this is the best scheduling strategy for the
attacker, who will get more information for further computing fake messages. For this
reason, we only need to consider the possible scheduling of receive events.

Let a, b be honest participants and i be a corrupted one. Consider one sessionA(a, i) and
one session B(b, a). There are three message deliveries to schedule: A2, B1, B2 and B2
has to occur after B1. Assume the chosen scheduling is B1, A2, B2. In this scenario, the
possible sequences of message delivery are instances of enca(〈x, a〉, b), enca(〈na, y〉, a),
enca(nb, b). The variables x, y can be replaced by any term, provided that the attacker can
build the corresponding instances from her knowledge at the appropriate control point.

The initial intruder knowledge can be set to T0 = {a, b, i, priv(i)}, including the private
key of the corrupted agent.

For the first message delivery, the attacker has to be able to build the first message
instance from this initial knowledge and the message sent at step A1:

T1
def= T0 ∪ {enca(〈na, a〉, i)} 
 enca(〈x, a〉, b) (1)

This notation will be formally defined later on. Informally, this is a formula, which is
satisfied by a substitution σ on x if enca(〈x, a〉, b)σ is deducible from T1, expressing the
ability of the intruder to construct enca(〈x, a〉, b)σ.

Then, the agent b replies sending the corresponding instance enca(〈x, nb〉, a), which
increases the attacker’s knowledge, hence enabling its use for building the next message;
we get the second deducibility constraint:

T2
def= T1 ∪ {enca(〈x, nb〉, a)} 
 enca(〈na, y〉, a) (2)

Similarly, we construct a third deducibility constraint for the last message delivery:

T3
def= T2 ∪ {enca(y, i)} 
 enca(nb, b) (3)

Definition 3.2. A deducibility constraint system C is a finite set of expressions T 
 u,
called deducibility constraints, where T is a non empty set of terms, called the left-hand
side of the deducibility constraint and u is a term, called the right-hand side of the de-
ducibility constraint, such that:
ACM Transactions on Computational Logic, Vol. V, No. N, January 2009.



Deciding security properties for cryptographic protocols · 9

(1) the left-hand sides of all deducibility constraints are totally ordered by inclusion;
(2) if x ∈ V(T ) for some (T 
 u) ∈ C then

Tx
def= min{T ′ | (T ′ 
 u′) ∈ C, x ∈ V(u′)}

exists and Tx ( T .

Informally, the first condition states that the intruder knowledge is always increasing.
The second condition expresses that variables abstract pieces of received messages: they
have to occur first on the right side of a constraint T 
 u, before occurring in some left side.
Note that, due to point (1), Tx exists if and only if the set {T ′ | (T ′ 
 u′) ∈ C, x ∈ V(u′)}
is not empty. The linear ordering on left hand sides also implies the uniqueness of the
minimum. Hence (2) can be restated equivalently as:

(2) ∀x ∈ V(C), ∃ (T 
 u) ∈ C, x ∈ V(u) \ V(T )

In what follows, we may use this formulation instead.
The left-hand side of a deducibility constraint system C, denoted by lhs(C), is the max-

imal left-hand side of the deducibility constraints of C. The right-hand side of a deducibil-
ity constraint system C, denoted by rhs(C), is the set of right-hand sides of its deducibility
constraints. V(C) denotes the set of variables occurring in C. ⊥ denotes the unsatisfiable
system. The size of a constraint system is defined as |C| def= |lhs(C) ∪ rhs(C)|.

A deducibility constraint system C is also written as a conjunction of deducibility con-
straints

C =
∧

1≤i≤n

(Ti 
 ui)

with Ti ⊆ Ti+1, for all i with 1 ≤ i ≤ n− 1. The second condition in
Definition 3.2 then implies that if x ∈ V(Ti) then ∃j < i such that Tj = Tx and Tj ( Ti.

Definition 3.3. A solution σ of a deducibility constraint system C is a (well-sorted)
ground substitution whose domain is V(C) and such that, for every T 
 u ∈ C, Tσ ` uσ.

Example 3.4. Coming back to Example 3.1, the substitution σ1 = {na/x,
nb/y} is a

solution of the deducibility constraint system since

T0 ∪ {enca(〈na, a〉, i)} ` enca(〈x, a〉, b)σ1

T1σ1 ∪ {enca(〈x, nb〉, a)σ1} ` enca(〈na, y〉, a)σ1

T2σ1 ∪ {enca(y, i)σ1} ` enca(nb, b)

3.2 Security properties

Deducibility constraint systems represent in a symbolic and compact way a possibly infi-
nite set of traces (behaviors), which depend on the attacker’s actions. Security properties
are formulas, that are interpreted over these traces.

Definition 3.5. Given a set of predicate symbols together with their interpretation over
the set of ground terms, a (in)security property is a first-order formula φ built on these
predicate symbols. A solution of φ is a ground substitution σ of V(φ) such that φσ is true
in the given interpretation. (We also write σ |= φ).

If C is a deducibility constraint system and φ is a (in)security property, possibly sharing
free variables with C, a closed substitution σ from V(φ) ∪ V(C) is an attack for φ and C,
if is a solution of both C and φ.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2009.
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Example 3.6. If the security property is simply true (which is always satisfied) and the
only sort is Msg then we find the usual deducibility constraint system satisfaction problem,
whose satisfiability is known to be NP-complete [Rusinowitch and Turuani 2003].

Example 3.7. Secrecy can be easily expressed by requiring that the secret data is not
deducible from the messages sent on the network. We consider again the deducibility
constraint system C1 defined in Example 3.1. The (in)security property then expresses
that nb is deducible: φ is the deducibility constraint T3 
 nb. Note that we may view a
constraint (system) as a first order formula.

Then the substitution σ1 = {na/x,
nb/y} is an attack for φ and C1 and corresponds to the

attack found by G. Lowe [Lowe 1996]. Note that such a deduction-based property can be
directly included in the constraint system by adding a deducibility constraint T3 
 nb.

Example 3.8. Let us show here an example of authentication property. Two agents A
and B authenticate on some message m if whenever B finishes a session believing he has
talked to A then A has indeed finished a session with B and they share the same value
for m. Note that the agents A and B have in general a different view of the message m,
depending e.g. on which nonces they have generated themselves and on which nonces they
have received. If mA denotes the view of m from A and mB the view of m from B, then
the insecurity property states that there is a trace in which these two messages are distinct.

Back to Example 3.1, consider another scenario with two instances of the roleA: A(a, i)
and A(a, b) and one instance of the role B: B(b, a). The attacker schedules the commu-
nications as in Example 3.1: in particular the expected message delivery in A(a, b) is not
scheduled (the message is not delivered). Then the deducibility constraint system C ′1 is
identical to C1, except that T0 is replaced with T ′0 = T0 ∪{enca(〈n′a, a〉, b)}. The nonce x
received by b should correspond to the nonce n′a sent by a for b; we consider mA = n′a,
mB = x.

The failure of authentication can be stated as the simple formula x 6= n′a. The substitu-
tion σ1 defined in Example 3.7 is then an attack, since b accepts the nonce na instead of
n′a: xσ1 6= n′a.

In Sections 5, 6, 7 we provide with other examples corresponding to time constraints,
more general authentication-like properties, or to express that no key cycles are allowed.

4. SIMPLIFYING DEDUCIBILITY CONSTRAINT SYSTEMS

Using simplification rules, solving deducibility constraint systems can be reduced to solv-
ing simpler constraint systems that we call solved. One nice property of the transformation
is that it works for any security property.

Definition 4.1. A deducibility constraint system is solved if it is ⊥ or each of its con-
straints are of

the form T 
 x, where x is a variable.

This definition corresponds to the notion of solved form in [Comon-Lundh and Shmatikov
2003]. Note that the empty deducibility constraint system is solved.

Solved deducibility constraint systems with the single sort Msg are particularly simple
in the case of the true predicate since they always have a solution, as noticed in [Millen
and Shmatikov 2001]. Indeed, let T1 be the smallest (w.r.t. inclusion) left hand side of all
constraints of a deducibility constraint system. From Definition 3.2, T1 is non empty and
ACM Transactions on Computational Logic, Vol. V, No. N, January 2009.
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R1 C ∧ T 
 u  C if T ∪ {x | (T ′ 
 x) ∈ C, T ′ ( T}`u
R2 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t, u), t ∈ St(T ),

t 6= u, t, u not variables
R3 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T ),

t1 6= t2, t1, t2 not variables
R′

3 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t2, t3), enca(t1, t2),priv(t3) ∈ St(T ),

t2 6= t3, t2 or t3 (or both) is a variable
R4 C ∧ T 
 u  ⊥ if V(T, u) = ∅ and T 6` u
Rf C ∧ T 
 f(u, v)  C ∧ T 
 u ∧ T 
 v for f ∈ { 〈 〉, enc, enca, sign}

Fig. 2. Simplification rules.

has no variables. Let t ∈ T1. Then the substitution θ defined by xθ = t for every variable x
is a solution since T ` xθ = t for any constraint T 
 x in the solved system.

4.1 Simplification rules

The simplification rules we consider are defined in Figure 2. For instance, the rule R1

removes a redundant constraint, i.e., when it is a logical consequence of smaller constraints.
The rule R3 guesses some identity (confusion) between two sent sub-messages.

All the rules are in fact indexed by a substitution: when there is no index then the identity
substitution is implicitly assumed. We write C  n

σ C
′ if there are C1, . . . , Cn with n ≥ 1,

C ′ = Cn, C  σ1 C1  σ2 . . .  σn
Cn, and σ = σ1σ2 . . . σn. We write C  ∗σ C

′ if
C  n

σ C
′ for some n ≥ 1, or if C ′ = C and σ is the identity substitution.

Example 4.2. Let us consider the following deducibility constraint system C:{
T1 
 〈 enca(x, a), enca(y, a) 〉
T2 
 k1

where T1 = {a, 〈enca(k1, a), enca(k2, a)〉} and T2 = T1 ∪ {enc(y, x)}. The deducibility
constraint system C can be simplified into a solved form using (for example) the following
sequence of simplification rules.

C
R〈〉
 

T1 
 enca(x, a)
T1 
 enca(y, a)
T2 
 k1

Renca 


T1 
 x
T1 
 a
T1 
 enca(y, a)
T2 
 k1

R1 

T1 
 x
T1 
 enca(y, a)
T2 
 k1

since T1 ` a. Let σ = mgu
(

enca(k1, a), enca(y, a)
)

= {k1/y}. We have T1 
 x
T1 
 enca(y, a)
T2 
 k1

R2 σ

 T1 
 x
T1 
 enca(k1, a)
T2σ 
 k1

R1 

{
T1 
 x
T2σ 
 k1

R1 T1 
 x

since T1 ` enca(k1, a) and T2σ ∪ {x} ` k1. Intuitively, it means that any substitution of
the form {m/x, k1/y} such that m is deducible from T1 is solution of C.

The simplification rules are correct and complete: a deducibility constraint system C
has a solution, which is also a solution of a (in)security property φ, if and only if there
exists a deducibility constraint system C ′ in solved form such that C  ∗σ C

′ and there is a
ACM Transactions on Computational Logic, Vol. V, No. N, January 2009.
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solution of both C ′ and φσ. Note that several simplification rules can possibly be applied
to a given deducibility constraint system.

THEOREM 4.3. Let C be a deducibility constraint system, θ a substitution, and φ a
(in)security property.

(1) (Correctness) If C  ∗σ C
′ for some deducibility constraint system C ′ and some sub-

stitution σ, and if θ is an attack for φσ and C ′, then σθ is an attack for φ and C.
(2) (Completeness) If θ is an attack for C and φ, then there exist a deducibility constraint

system C ′ in solved form and substitutions σ, θ′ such that θ = σθ′, C  ∗σ C
′, and θ′

is an attack for C ′ and φσ.
(3) (Termination) There is no infinite derivation sequenceC  σ1C1 σ2 · · · σn

Cn · · · .

Theorem 4.3 is proved in Sections 4.2, 4.3, and 4.4.
Getting a polynomial bound on the length of simplification sequences requires however

an additional memorization technique. This is explained in Section 4.6.

4.2 Correctness

We first give two simple lemmas.

LEMMA 4.4. If T ` u then V(u) ⊆ V(T ).

PROOF. The statement follows by induction on the depth of a proof of T ` u, observing
that no deduction rule introduces new variables. Indeed, V(t) ⊆

⋃
i V(ti) for deduction

rules of the form
S ` t1 . . . S ` tk

S ` t
with k > 0, and V(t) ⊆ V(S) for the axiom (that is, if t ∈ S).

The next lemma shows the “cut elimination” property for the deduction system `.

LEMMA 4.5. If T ` u and T, u ` v then T ` v.

PROOF. Consider a proof π of T ` u and a proof π′ of T, u ` v. The tree obtained
from π′ by

—replacing the nodes T, u ` t in π′ with T ` t,
—replacing each new leaf T ` u (the old T, u ` u) with the tree π,

is a proof of T ` v.

As a consequence, if T ⊆ T ′, T ′ ` v, and T ` u, for all u ∈ T ′ \ T , then T ` v.
We show now that the simplification rules preserve deducibility constraint systems.

LEMMA 4.6. The simplification rules transform a deducibility constraint system into a
deducibility constraint system.

PROOF. Let C be a deducibility constraint system, C =
∧
i(Ti 
 ui) and C  σ C

′.
Since Ti ⊆ Ti+1 implies Tiσ ⊆ Ti+1σ, C ′ satisfies the first point of the definition of
deducibility constraint systems.

We show thatC ′ also satisfies the second point of the definition of deducibility constraint
systems. Let (T ′ 
 u′) ∈ C ′ and x ∈ V(T ′). We have to prove that T ′x exists and T ′x ( T ′.
We distinguish cases, depending on which simplification rule is applied:
ACM Transactions on Computational Logic, Vol. V, No. N, January 2009.
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—If the rule R1 is applied, eliminating the constraint T 
 u. Then C ′ = C \ {T 
 u}. If
Tx 6= T then T ′x = Tx (and thus T ′x exists and T ′x ( T ′). Suppose that Tx = T . Then
there is (T 
 u′′) ∈ C such that x ∈ V(u′′). If u 6= u′′ then again T ′x = Tx (since
(T ′x 
 u

′′) ∈ C ′). Finally, suppose that u = u′′. By the minimality of T , it follows that
x /∈ V(T ) and x /∈ {y | (T ′′ 
 y) ∈ C, T ′′ ( T}. Since x ∈ V(u), by Lemma 4.4,
T ∪ {y | (T ′′ 
 y) ∈ C, T ′′ ( T} 6` u, which contradicts the applicability of rule R1.

—If one of the rules R2, R3 or R′3 is applied, then, for each constraint (T ′′ 
 u′′) ∈ C ′,
there is a constraint (T 
 u) ∈ C such that Tσ = T ′′ and uσ = u′′. Consider
(T 
 u) ∈ C such that Tσ = T ′ and uσ = u′.
If x is not introduced by σ, then x ∈ V(T ). Then Tx exists and Tx ( T . Thus Txσ ⊆
Tσ. If Txσ = Tσ, then x ∈ V(Tx), which contradicts the minimality of Tx. Thus
Txσ ( Tσ. We also have that {T ′′σ | (T ′′ 
 u′′) ∈ C, x ∈ V(u′′)} ⊆ {T ′′σ | (T ′′σ 

u′′σ) ∈ C ′, x ∈ V(u′′σ)}, since, for any term u′′, if x ∈ V(u′′), then x ∈ V(u′′σ). It
follows that T ′x exists and T ′x ⊆ Txσ. Hence T ′x ( T ′.
Otherwise, assume that x is introduced by σ: ∃y ∈ V(T ) such that x ∈ V(yσ). Then
Ty exists and Ty ( T . Let Y = {z ∈ V(T ) | x ∈ V(zσ)} and let y0 ∈ Y be such that
Ty0 = min{Ty | y ∈ Y }. For all y′ ∈ Y , we have that

A
def= {T ′′σ | (T ′′ 
 u′′) ∈ C ′, x ∈ V(u′′)}
= {Tσ | (T 
 u) ∈ C, x ∈ V(uσ)}
⊇ {Tσ | (T 
 u) ∈ C,∃z ∈ V(u), x ∈ V(zσ)}
⊇ {Tσ | (T 
 u) ∈ C, y′ ∈ V(u), x ∈ V(y′σ)}

= {Tσ | (T 
 u) ∈ C, y′ ∈ V(u)} def= By′ .

Thus T ′x = minA ⊆ minBy′ = Ty′σ. From Ty0 ( T , we obtain that Ty0σ ⊆ Tσ.
Suppose, by contradiction, that Ty0σ = Tσ. Then x ∈ V(Ty0σ) (since x ∈ V(Tσ)).
That is, there exists z ∈ V(Ty0) such that x ∈ V(zσ). From condition 2 of Definition 3.2
applied to z, it follows that Tz ( Ty0 . As z is in Y , this contradicts the choice of y0.
Thus T ′x ⊆ Ty0σ ( Tσ = T ′.

—If the rule R4 is applied then there is nothing to prove.

—If some rule Rf is applied, then the property is preserved, since, if x ∈ V(u′′) for some
term u′′ such that (T ′′ 
 u′′) ∈ C ′, then there is a term v with x ∈ V(v) such that
(T ′′ 
 v) ∈ C.

LEMMA 4.7 CORRECTNESS. If C  σ C ′, then for every solution τ for C ′, στ is a
solution of C.

PROOF. If C ′ is obtained by applying R1, then we have to prove that Tτ ` uτ , where
T 
 u is the eliminated constraint. We know that T ∪ {x | (T ′ 
 x) ∈ C, T ′ ( T} ` u. It
follows that Tτ ∪ {xτ | (T ′ 
 x) ∈ C, T ′ ( T} ` uτ . All constraints T ′ 
 x in C with
T ′ ( T are also constraints in C ′. Thus, for all such constraints, we have that T ′τ ` xτ ,
and hence Tτ ` xτ . Then, from Lemma 4.5, we obtain that Tτ ` uτ .

If C ′ is obtained by applying R2, R3 or R′3, then, for every constraint T 
 u of C,
(Tσ)τ ` (uσ)τ , hence T (στ) ` u(στ).
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14 · Hubert Comon-Lundh et al.

If C ′ is obtained by applying some rule Rf , then we obtain that Tτ ` f(u, v)τ from
Tτ ` uτ and Tτ ` vτ by applying the corresponding inference rule (e.g. encryption if
f = enc).

Finally, C ′ cannot be obtained by the rule R4, since it is satisfiable.
It follows that, in all cases, στ satisfies C.

4.3 Completeness

Let T1 ⊆ T2 ⊆ · · · ⊆ Tn. We say that a proof π of Ti ` u is left minimal if, whenever
there is a proof of Tj ` u for some j < i, then, replacing Ti with Tj in all left members of
the labels of π, yields a proof of Tj ` u. In other words, the left-minimal proofs are those
that can be performed in a minimal Tj .

We say that a proof is simple if all its subproofs are left minimal and there is no repeated
label on any branch. Remark that a subproof of a simple proof is simple.

LEMMA 4.8. If there is a proof of Ti ` u, then there is a simple proof of it.

PROOF. We prove the property by induction on the pair (i,m) (considering the lexico-
graphic ordering), where m is the size of a proof of Ti ` u.

If i = 1 then any (subproof of any) proof of T1 ` u is left minimal and there exists a
proof without repeated labels on any path.

If i > 1 and there is a j < i such that Tj ` u, then we apply the induction hypothesis
to obtain the existence of a simple proof of Tj ` u. This proof is also a simple proof of
Ti ` u.

If i > 1 and there is no j < i such that Tj ` u, then we apply the induction hypothesis
on the immediate subproofs π1, . . . , πn of the proof π of Ti ` u. If the label Ti ` u appears
in one of the resulting proofs π′i, then replace π with a subproof of π′i whose conclusion
is Ti ` u. The new proof does not contain any label Ti ` u. Otherwise, if π is obtained
by applying an inference rule R to π1, . . . , πn, then replace π with the proof obtained by
applying R to π′1, . . . , π

′
n. In both cases the resulting proof and all of its subproofs are left

minimal by construction, and hence the resulting proof is simple.

LEMMA 4.9. Let C be a deducibility constraint system, θ be a solution of C, Ti be
a left hand side of C such that, for any (T 
 v) ∈ C, if T ( Ti, then v is a variable.
Let u be any term. If there is a simple proof of Tiθ ` u, whose last inference rule is a
decomposition, then there is a non-variable t ∈ St(Ti) such that tθ = u.

PROOF. Consider a simple proof π of Tiθ ` u. We may assume, without loss of gen-
erality, that i is minimal. Otherwise, we simply replace everywhere in the proof Ti with a
minimal Tj such that Tjθ ` u is derivable; by left minimality, we get again a proof tree,
whose last inference rule is a decomposition. Such a Tj ⊆ Ti also satisfies the hypotheses
of the lemma.

We reason by induction on the depth of the proof π. We make a case distinction, de-
pending on the last rule of π:

The last rule is an axiom. Then u ∈ Tiθ and there is t ∈ Ti (thus t ∈ St(Ti)) such that
tθ = u. By contradiction, if t was a variable then Tt 
 w, with t ∈ V(w) is a constraint in
C such that Tt ( Ti. Moreover, by hypothesis of the lemma, w must be a variable. Hence
w = t. Then Ttθ ` u, which contradicts the minimality of i.
ACM Transactions on Computational Logic, Vol. V, No. N, January 2009.
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The last rule is a symmetric decryption.

π =
π1

Tiθ ` enc(u,w)
π2

Tiθ ` w
Tiθ ` u

By simplicity, the last rule of π1 cannot be a composition: Tiθ ` u would appear twice
on the same path. Then, by induction hypothesis, there is a non variable t ∈ St(Ti) such
that tθ = enc(u,w). It follows that t = enc(t′, t′′) with t′θ = u. If t′ was a variable,
then Tt′θ ` t′θ would be derivable. Hence Tt′θ ` u would be derivable, which again
contradicts the minimality of i. Hence t′ is not variable, as required.

The last rule is an asymmetric decryption, (resp. projection, resp. unsigning). The proof
is similar to the above one: by simplicity and by induction hypothesis, there is a non-
variable t ∈ St(Ti) such that tθ = enca(u, v) (resp. tθ = 〈u, v〉, resp. tθ = sign(u,priv(v))).
Then t = enca(t′, t′′) (resp. t = 〈t′, t′′〉, resp. t = sign(t, t′′)). t′ ∈ St(Ti), t′θ = u and,
by minimality of i, t′ is not a variable.

LEMMA 4.10. Let C be a deducibility constraint system and θ be a solution of C. Let
Ti be a left hand side of a constraint in C and u be a term, such that:

(1) for any (T 
 v) ∈ C, if T ( Ti, then v is a variable;
(2) Ti does not contain two distinct non-variable subterms t1, t2 with t1θ = t2θ;
(3) Ti does not contain two terms enca(t1, x) and priv(t2) where x is a variable distinct

from t2;
(4) Ti does not contain two terms enca(t1, t2) and priv(x) where x is a variable distinct

from t2;
(5) u is a non-variable subterm of Ti;
(6) Tiθ ` uθ.

Then T ′i ` u, where T ′i = Ti ∪ {x | (T 
 x) ∈ C, T ( Ti}.
PROOF. Let j be minimal such that Tjθ ` uθ. Thus j ≤ i and Tj ⊆ Ti. Consider a

simple proof π of Tjθ ` uθ. We reason by induction on the depth of π. We analyze the
different cases, depending on the last rule of π:

The last rule is an axiom. Suppose, by contradiction, that u /∈ Tj . Then there is t ∈ Tj
such that tθ = uθ and t 6= u. By hypothesis 5, u is not a variable and, by hypothesis 2 of
the lemma, t, u cannot be both non-variable subterms of Ti. It follows that t is a variable.
Then Ttθ ` tθ, which implies Ttθ ` uθ, contradicting the minimality of j, since Tt ( Tj .
Hence u ∈ Tj and then T ′i ` u, as required.

The last rule is the symmetric decryption rule. There is w such that Tjθ ` enc(uθ,w),
Tjθ ` w:

Tjθ ` enc(uθ,w) Tjθ ` w

Tjθ ` uθ
By simplicity, the last rule of the proof of Tjθ ` enc(uθ,w) is a decomposition. By
Lemma 4.9, there is t ∈ St(Tj), t not a variable, such that tθ = enc(uθ,w). Let t =
enc(t1, t2) and t1θ = uθ, t2θ = w. By induction hypothesis, T ′i ` t.
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If t1 was a variable, then Tt1 ( Tj and, by hypothesis 1 of the lemma, Tt1 must be the
left-hand-side of a solved constraint: (Tt1 
 t1) ∈ C and therefore Tt1θ ` uθ, contradict-
ing the minimality of j.

Now, by hypothesis 5 of the lemma, u is a non-variable subterm of Ti, hence t1, u are
two non variable subterms of Ti such that t1θ = uθ. By hypothesis 2 of the lemma, this
implies t1 = u.

On the other hand, if t2 is a variable, t2 ∈ V(Ti) implies Tt2 ( Ti and, since Ti is
minimal unsolved, (Tt2 
 t2) ∈ C, which implies t2 ∈ T ′i . If t2 is not a variable, then,
from Tjθ ` t2θ and by induction hypothesis, T ′i ` t2. So, in any case, T ′i ` t2.

Now, we have both T ′i ` enc(u, t2) and T ′i ` t2, from which we conclude that T ′i ` u,
by symmetric decryption.

The last rule is an asymmetric decryption rule. There is a w such that Tjθ ` priv(w)
and Tjθ ` enca(uθ,w). As in the previous case, there is a non-variable t ∈ St(Tj) such
that tθ = enca(uθ,w). By induction hypothesis, T ′i ` t. Let t = enca(t1, t2).

As in the previous case, t1 cannot be a variable. Therefore t1, u are two non-variable
subterms of Ti such that t1θ = uθ, which implies that t1 = u. (We use here the hypothe-
ses 2 and 5).

On the other hand, the last rule in the proof of Tjθ ` priv(w) is a decomposition (no
composition rule can yield a term headed with priv). Then, by Lemma 4.9 (Tj satisfies
the hypotheses of the lemma since Tj ⊆ Ti), there is a non-variable subterm w1 ∈ St(Tj)
such that w1θ = priv(w). Let w1 = priv(w2). By induction hypothesis, T ′j ` priv(w2).

enca(t1, t2)θ
‖

Tjθ ` enca(uθ,w)

priv(w2)θ
‖

Tjθ ` priv(w)

Tjθ ` uθ

By hypothesis 2 of the lemma, t2 and w2 cannot be both non-variable, unless they are
identical. Then, by hypotheses 3 and 4 of the lemma, we must have t2 = w2. Finally, from
T ′i ` enca(u, t2), T ′i ` priv(t2) we conclude T ′i ` u.

The last rule is a projection rule.

Tjθ ` 〈uθ, v〉

Tjθ ` uθ

As before, by simplicity, the last rule of the proof of Tjθ ` 〈uθ, v〉must be a decomposition
and, by Lemma 4.9, there is a non variable term t ∈ St(Tj) such that tθ = 〈uθ, v〉. We let
t = 〈t1, t2〉. By induction hypothesis, T ′i ` t.

Now, as in the previous cases, t1 cannot be a variable, by minimality of Tj and hypoth-
esis 1 of the lemma. Next, by hypotheses 2 and 5, we must have t1 = u. Finally, from
T ′i ` 〈u, t2〉 we conclude T ′i ` u by projection.

The last rule is an unsigning rule.

Tjθ ` sign(uθ, v)

Tjθ ` uθ

This case is identical to the previous one.
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The last rule is a composition. Assume for example that it is the symmetric encryption
rule.

Tjθ ` v1 Tjθ ` v2

Tjθ ` enc(v1, v2)

with uθ = enc(v1, v2). Since u is not a variable, u = enc(u1, u2), u1θ = v1, and u2θ =
v2. If u1 (resp. u2) is a variable then u1 (resp. u2) belongs to V(Ti) since u ∈ St(Ti). By
point 2 of Definition 3.2 and hypothesis 1 of the lemma, u1 ∈ T ′i (resp. u2 ∈ T ′i ).

Otherwise, u1 and u2 are non-variables. Then, by induction hypothesis, T ′i ` u1 and
T ′i ` u2. Hence in both cases we have T ′i ` u1 and T ′i ` u2. Thus T ′i ` u.

The proof is similar for other composition rules.

LEMMA 4.11 COMPLETENESS. If C is an unsolved deducibility constraint system and
θ is a solution of C, then there is a deducibility constraint system C ′, a substitution σ, and
a solution τ of C ′ such that C  σ C

′ and θ = στ .

PROOF. Consider a constraint Ti 
 ui such that, for any (T 
 v) ∈ C such that T ( Ti,
v is a variable and assume ui is not a variable. If C is unsolved, there is such a constraint
in C.

Since θ is a solution, Tiθ ` uiθ. Consider a simple proof of Tiθ ` uiθ. We distinguish
cases, depending on the last rule applied in this proof:

The last rule is a composition. Since u is not a variable, u = f(u1, . . . , un) and Tiθ `
ujθ for every j = 1, ..., n. Then we may apply the transformation rule Rf to C, yielding
constraints Ti 
 uj in C ′ for every j. θ is a solution of the resulting deducibility constraint
system C ′ by hypothesis.

The last rule is an axiom or a decomposition. By Lemma 4.9, there is a non-variable
term t ∈ St(Ti) such that tθ = uiθ. We distinguish then again between cases, depending
on t, ui:

Case t 6= ui. Then, since t, ui are both non-variable terms, we may apply the simplifica-
tion ruleR2 to C: C  σ C

′ where C ′ = Cσ and σ = mgu(t, ui). Furthermore, tθ = uiθ,
hence (by definition of a mgu) there is a substitution τ such that θ = στ . Finally, θ is a
solution of C, hence τ is a solution of C ′.

Case t = ui. Then ui ∈ St(Ti).
(1) If there are two distinct non-variable terms t1, t2 ∈ St(Ti) such that t1θ = t2θ.

Then we apply the simplification rule R3, yielding a deducibility constraint system
C ′ = Cσ. As in the previous case, there is a substitution τ such that θ = στ and τ is
a solution of C ′.

(2) If there are enca(t1, t2),priv(t3) ∈ St(Ti) such that either t2 or t3 is a variable,
t2 6= t3 and t2θ = t3θ, then we may apply the rule R′3 and conclude as in the previous
case.

(3) Otherwise, we match all hypotheses of Lemma 4.10 and we conclude that T ′i ` ui.
Then the rule R1 can be applied to C, yielding a deducibility constraint system, of
which θ is again a solution.
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4.4 Termination

The simplification rules also terminate, whatever strategy is used for their application:

LEMMA 4.12. The constraint simplification rules of Figure 2 are (strongly) terminat-
ing.

PROOF. Interpret any deducibility constraint system C as a pair of non-negative inte-
gers I(C) = (n,m) where n is the number of variables of the system and m is the number
of function symbols occurring in the right hand sides of the system (here, we assume no
sharing of subterms). If C  σ C

′, then I(C) >lex I(C ′) where ≥lex is the lexicographic
ordering on pairs of integers. Indeed, the first component strictly decreases by applying
R2, R3, R

′
3, and any other rule strictly decreases the second component, while not increas-

ing the first one. The well foundedness of the lexicographic extension of a well-founded
ordering implies the termination of any sequence of rules.

4.5 Proof of Theorem 4.3

Theorem 4.3 follows from Lemmas 4.7, 4.11, and 4.12, by induction on the derivation
length, and since deducibility constraint systems on which no simplification rule can be
applied must be solved. Note that the extension of the correctness and completness lemmas
to security properties is trivial. Indeed, if φ is a (in)security property, then θ is a solution
of φσ if and only if σθ is a solution of φ, for any substitutions θ and σ.

4.6 A decision procedure in NP-time

The termination proof of the last section does not provide with tight complexity bounds.
In fact, applying the simplification rules may lead to branches of exponential length (in the
size of the constraint system). Indeed when applying a simplification rule to a deducibility
constraint, the initial constraint is removed from the constraint system and replaced by
new constraint(s). But this deducibility constraint may appear again later on, due to other
simplification rules. It is the case for example when considering the following deducibility
constraint system.

T0
def= {enc(a, k0)} 
 enc(x0, k0)

T1
def= T0 ∪ {enc(〈x0, 〈x0, a〉〉, k1)} 
 enc(x1, k1)

...
Tn

def= Tn−1 ∪ {enc(〈xn−1, 〈xn−1, a〉〉, kn)} 
 enc(xn, kn)

Tn+1
def= Tn ∪ {a} 
 xn

The deducibility constraint system C is clearly satisfiable and its size is linear in n. We
have that

C  2n
σ

{
T0 
 enc(x0, k0)

Tn+1σ 
 xnσ

with σ(xi+1) = 〈xi, 〈xi, a〉〉 for 0 ≤ i ≤ n − 1. This derivation is obtained by applying
rule R2 and then R1 for each constraint Ti 
 enc(xi, ki) with 1 ≤ i ≤ n. The rule R1

cannot be applied to Tn+1σ 
 xnσ since x0 and the keys ki are not present in or derivable
from Tn+1σ. Note that σ′ = σ ∪ {a/x0} is a solution of C and can be easily obtained by
rule R2 on the first constraint and then rule R1 on both constraints.
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However, there is a branch of length 3(2n − 1) from T 
 xnσ leading to T 
 x0 (in
solved form), where T denotes Tn+1σ. This is easy to see by induction on n. It is true for
n = 0. Then using only the rules R〈 〉 and R1, we have

T 
 xnσ
R〈〉
 

{
T 
 xn−1σ
T 
 〈xn−1σ, a〉

 m

{
T 
 x0

T 
 〈xn−1σ, a〉
R〈〉
  T 
 x0

T 
 xn−1σ
T 
 a

R1 

{
T 
 x0

T 
 xn−1σ
 m T 
 x0

with m = 3(2n−1− 1) by induction hypothesis. The length of the branch is 2× 3(2n−1−
1) + 3 = 3(2n − 1). This shows that there exist branches of exponential length in the size
of the constraint.

We can prove that it is actually not useful to consider deducibility constraints that have
already been seen before (like the constraint T 
 xn−1σ in our example). Thus we mem-
orize the constraints that have already been visited. The constraint simplification rules,
instead of operating on a single deducibility constraint system, rewrite a pair of two con-
straint systems, the second one representing deducibility constraints that have already been
processed at this stage: if C  σ C

′, then

C;D  σ C ′ \D;D ∪ (C \ C ′)

The constraints (“memorized”) in D are those which were already analyzed (i.e. trans-
formed or eliminated). The initial constraint system is C; ∅.

First, memorization indeed prevents from performing several times the same transfor-
mation:

LEMMA 4.13. If C is a deducibility constraint system and C; ∅  ∗σ C ′;D′ then C ′ ∩
D′ = ∅.

PROOF.

(C ′ \D) ∩ ((C \ C ′) ∪D) = ((C ′ \D) ∩D) ∪ ((C ′ \D) ∩ (C \ C ′)) = ∅

This kind of memorization is correct and complete in a more general setting. We assume
in this section that the reader is familiar with the usual notions of first-order formulas, first-
order structures, and models of first-order logic.

A (general) constraint is a (first-order) formula, together with an interpretation struc-
ture S. A (general) constraint system C is a finite set of constraints, whose interpretation
is the same as their conjunction. If σ is an assignment of the free variables of C to the
domain of S, σ is a solution of C if σ, S |= C. In the context of constraint systems, S is
omitted: the satisfaction relation |= refers implicitly to S. It is extended, as usual, to entail-
ment: C |= C ′ if any solution of C is also a solution of C ′. We may consider constraints c
as singleton constraint systems, and thus write for example c |= c′ instead of {c} |= {c′}.

A (general) constraint system transformation is a binary relation ; on constraints such
that, for any sequence (finite or infinite) C1 ; · · · ; Cn ; · · · , there is an ordering ≥
on individual constraints such that, for every i, for every c ∈ Ci \ Ci+1, we have

{d ∈ Ci+1 | d < c} |= c. (4)
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This expresses the correctness of the transformations: only redundant formulas are re-
moved. The ordering needs not to be well-founded.

Our deducibility constraint systems and deducibility constraint simplification rules sat-
isfy these properties. More precisely, we need to consider the substitutions (partial as-
signments) as part of the constraint system, in order to fit with the above definition: con-
straint systems come in two parts: a set of deducibility constraints and a set of solved
equations, recording the substitution computed so-far. In other words, a sequence of sim-
plification steps C0  σ1 C1  σ2 . . . can be written as a general transformation sequence
C0 ; (C1 ∧σ1) ; (C2 ∧σ1 ∧σ2) ; . . . , where substitutions {t1/x1 , . . . ,

tn/xn} are seen
as conjunctions of solved equations (x1 = t1) ∧ · · · ∧ (xn = tn).

We show next that for any sequence C0  σ1 C1  σ2 . . . of simplification steps there
is an ordering ≥ on the corresponding general constraints such that (4) holds.

We start by defining the ordering. First, we order the variables by x > y if, for some i,
y ∈ V(xσ1 . . . σi). Intuitively, x > y if x is instantiated before y in the considered
derivation. Indeed, let ix be the minimum among all indexes i such that xσi 6= x if
this minimum exists and∞ otherwise. Then x > y implies that either ix < iy , or ix = iy
and y ∈ V(xσix). (Note that in this last case we cannot have both y ∈ V(xσix) and
x ∈ V(yσix), by the definition of a mgu.) This observation proves that the relation > on
variables is an ordering. Next, we let (T 
 u) > (T ′ 
 u′) if

—either the multiset of variables occurring in T is strictly larger than the multiset of vari-
ables occurring in T ′; such multisets are ordered by the multiset extension of the order-
ing on variables;

—or else the multisets of variables are identical, and T ′ ( T ;

—or else T = T ′ and the multiset of variables in u is strictly larger than the multiset of
variables in u′;

—or else, T = T ′, the multisets of variable are identical and the size of u is strictly larger
than the size of u′.

This is an ordering as a lexicographic composition of orderings. Finally, any solved equa-
tion (i.e. substitution) is strictly smaller than any deducibility constraint, and equations are
not comparable.

The ordering we have just defined could have been used for the termination proof, as it is
a well-founded ordering. It will now be considered as the default ordering on constraints,
when a derivation sequence is fixed.

This ordering also satisfies the above required hypotheses for general constraint system
transformations, as shown by the proof of the following proposition.

PROPOSITION 4.14. The simplification rules on deducibility constraint systems form a
general constraint system transformation.

PROOF. Let C0  σ0 C1  σ1 . . . be a simplification sequence. We consider the order-
ing on deducibility constraints (viewed as general constraints) defined above.

We show next that (4) holds. Note that in (4), c cannot be a solved equation, because at
each step solved equations (x = xσi) may be added but no equation is eliminated. Thus
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let (T 
 u) ∈ Ci \ Ci+1, for some i ≥ 0. We need to show that∧
(T ′
u′)∈Ci+1

(T ′
u′)<(T
u)

T ′ 
 u′ ∧
∧

1≤j≤i

σj |= T 
 u (5)

We investigate the possible transformation rules.
For the rules R2, R3, R

′
3, Ci+1 = Ciσi. We have (T 
 u) ≥ (Tσi 
 uσi) since

either the multiset of variables of Tσi is strictly smaller than the multiset of variables of
T , or else T = Tσi and, in the latter case, either the multiset of variables of uσi is strictly
smaller than the multiset of variables of u or else uσi = u. Moreover, cσ ∧ σ |= c for all
constraints c and substitutions σ. Indeed, if θ is a solution of cσ ∧ σ then xθ = xσθ for
any x ∈ dom(σ). It follows that cθ = cσθ, and thus θ is a solution of c.

Hence, we have in particular that (Tσi 
 uσi) ∧ σi |= T ` u, which shows that (5)
holds for this case.

For the ruleRf , it suffices to notice that {T 
 u1, . . . , T 
 un} |= (T 
 f(u1, . . . , un))
and (T 
 ui) < (T 
 f(u1, . . . , un)) for every i.

For the rule R1, the constraint T 
 u is a consequence of the (strictly smaller) con-
straints T ′ 
 x for T ′ ( T .

Finally, the rule R4 only applies to unsatisfiable deducibility constraints.

The memorization strategy can be defined, as above, for any general constraint system
transformation. The correctness of the memorization strategy relies on the following in-
variant:

LEMMA 4.15. For any constraint system transformation ;, if C; ∅ ;∗ C ′;D′, then
C ′ |= D′.

PROOF. We prove, by induction on the length of the derivation sequence the following
stronger result: ∀d ∈ D′, {c ∈ C ′ | c < d} |= d.

The base case is straightforward as D′ is empty. Next, assume that C;D ; C ′;D′. By
definition, D′ = D ∪ (C \ C ′). If d ∈ C \ C ′, by definition of a constraint transformation
rule, {c ∈ C ′ | c < d} |= d. If d ∈ D, by induction hypothesis, {c ∈ C | c < d} |= d.
Hence {c ∈ C ′ |c < d} ∪ {c ∈ C \C ′ | c < d} |= d. But, again by definition of constraint
transformations, any constraint in the second set is a consequence of the first set: we get
{c ∈ C ′ |c < d} |= d.

It follows that the memorization strategy is always correct when the original constraint
transformation is correct.

Now, the memorization strategy preserves the properties of our deducibility constraint
systems:

LEMMA 4.16. If C is a deducibility constraint system and C; ∅  ∗σ C ′;D′ then C ′ is
a deducibility constraint system.

PROOF. Let (Ci;Di)  σi+1 (Ci+1;Di+1), with 0 ≤ i < n be the sequence of de-
ducibility constraint systems obtained by applying successively the simplification rules,
where C0 = C, D0 = ∅, Cn = C ′, and Ci  σi+1 C

′
i+1 (and thus Ci+1 = C ′i+1 \ Di,

and Di+1 = Di ∪ (Ci \ C ′i+1)). We know that C ′i is a deducibility constraint system, by
Lemma 4.6.
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First, the left members of Ci are linearly ordered by inclusion, as they are a subset of
the left members of C ′i.

We consider now the other property of deducibility constraint systems. We let ≥ be the
ordering on constraints defined before. We show below, by induction on i that, for every
x ∈ V(Ci), for every (T 
 u) ∈ Di such that x ∈ V(u) \ V(T ), there is a (T ′ 
 u′) ∈ Ci
such that x ∈ V(u′) \ V(T ′) and (T ′ 
 u′) < (T 
 u).

Note that this property implies that Ci is a deducibility constraint system: For every
variable x ∈ V(Ci), there is (Tx 
 u) ∈ C ′i such that x ∈ V(u) \ V(Tx), as C ′i is a
deducibility constraint system. If (Tx 
 u) ∈ Ci then we’re done, otherwise (Tx 
 u) ∈
Di, and hence, by the stated property, there is (T ′x 
 u

′) ∈ Ci such that x ∈ V(u′)\V(T ′x).
This shows that Ci is a deducibility constraint system.

The property holds trivially for i = 0. For the induction step, let x ∈ V(Ci+1) and
(T 
 u) ∈ C ′i+1 be such that x ∈ V(u) \ V(T ). We investigate three cases:

—if Ci+1 is obtained by one of the rules R2, R3, R
′
3, then Ci+1 = Ciσi+1 \ Di, and

x /∈ dom(σi+1). We assume w.l.o.g. that T 
 u is a minimal constraint in Di+1 such
that x ∈ V(u) \ V(T ).
There is (T ′ 
 u′) ∈ Ci such that x ∈ V(u′) \ V(T ′) and (T ′ 
 u′) ≤ (T 
 u): if
(T 
 u) /∈ Ci, then (T 
 u) ∈ Di and by induction hypothesis, there is a (T ′ 
 u′) ∈
Ci such that x ∈ V(u′) \ V(T ′) and (T ′ 
 u′) < (T 
 u).
Let S = {y ∈ V(T ′) | x ∈ V(yσi+1)}. By induction hypothesis Ci is a constraint
system, and hence, for every y ∈ S, there is a (minimal) constraint Ty 
 uy ∈ Ci
such that y ∈ V(uy) \ V(Ty). Since y ∈ V(T ′), Ty ( T ′. Let T1 
 u1 be a minimal
element in {Ty 
 uy | y ∈ S} ∪ {T ′ 
 u′}. Suppose that x ∈ V(T1σi+1). Since
x /∈ V(T ′) and Ty ( T ′, it follows that x /∈ V(Ty), and hence there is z ∈ V(T1) such
that x ∈ V(zσi+1). It follows that z ∈ S and Tz ( T1, which contradicts the minimality
of T1 
 u1. Hence x ∈ V(u1σi+1) \ V(T1σi+1). Also (T1σi+1 
 u1σi+1) ≤ (T1 

u1) ≤ (T ′ 
 u′) ≤ (T 
 u). Furthermore, at least one of the inequalities is strict: if
(T 
 u) ∈ Di the last inequality is strict, otherwise (T 
 u) ∈ (Ci\C ′i+1) = (Ci\Ciσ)
hence (Tσi+1 
 uσi+1) < (T 
 u). It follows that (T1σi+1 
 u1σi+1) ∈ Ci+1 by
minimality of T 
 u.

—if Ci+1 is obtained by an Rf rule. We may assume w.l.o.g. that T 
 u is a minimal
constraint in Di+1 such that x ∈ V(u) \ V(T ).
Either (T 
 u) ∈ Di, in which case, by induction hypothesis, there is (T ′ 
 u′) ∈ Ci
such that x ∈ V(u′) \ V(T ′) and (T ′ 
 u′) < (T 
 u). If (T ′ 
 u′) ∈ Ci+1,
there is nothing to prove. Otherwise, u′ = f(u1, . . . , un) and, for every j, (T ′ 
 uj) ∈
Ci+1∪Di. Moreover, there is an index j such that x ∈ V(uj)\V(T ′) and, by minimality
of T 
 u, (T ′ 
 uj) ∈ Ci+1, hence completing this case.
Or else (T 
 u) ∈ Ci \ C ′i+1, in which case u = f(u1, . . . , un) and (T 
 uj) ∈
Ci+1∪Di. As above, we conclude that for some j, x ∈ V(uj)\V(T ), (T 
 uj) ∈ Ci+1

and (T 
 uj) < (T 
 u).
—if Ci+1 is obtained by the rule R1, removing a constraint T1 
 u1, then Di+1 = Di ∪
{T1 
 u1} and, by Lemma 4.6 for any variable y ∈ V(u1) \ V(T1) there is a strictly
smaller constraint (T2 
 u2) ∈ Ci such that y ∈ V(u2) \ V(T2). Then we simply apply
the induction hypothesis.
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THEOREM 4.17. Let C be a deducibility constraint system, θ a substitution and φ a
security property.

(1) (Correctness) If C; ∅ ∗σ C ′;D′ for some deducibility constraint system C ′ and some
substitution σ, if θ is an attack for C ′ and φσ, then σθ is an attack for C and φ.

(2) (Completeness) If θ is an attack for C and φ, then there exist a deducibility constraint
system C ′ in solved form, a set of deducibility constraints D′ and substitutions σ, θ′

such that θ = σθ′, C; ∅ ∗σ C ′;D′, and θ′ is an attack for C ′ and φσ.

(3) (Termination) If C; ∅ n
σ C

′;D′ for some deducibility constraint system C ′ and some
substitution σ, then n is polynomially bounded in the size of C.

PROOF. For correctness, we rely on Lemmas 4.7, and 4.15: by Lemma 4.15, any solu-
tion θ ofC ′ is also a solutionC ′∪D′σ and, by Lemma 4.7 (and induction), σθ is a solution
of C.

For completeness, from Lemma 4.11, we know that if Ci is an unsolved deducibility
constraint system and θ is an attack for Ci and φ, then there is a deducibility constraint
system C ′i+1, a substitution σi, and an attack τi for C ′i+1 and φσi such that Ci  σi

C ′i+1

and θ = σiτi. Then τi is an attack also for C ′i+1 \ Di and φσ, for any set of constraints
Di. By Lemma 4.16, we know that when Di represents already visited constraints, then
C ′i+1 \ Di is a deducibility constraint system. We can thus conclude by induction on the
derivation length n, taking C0 = C, D0 = ∅, Ci+1 = C ′i+1 \Di for all i, and Cn = C ′.

Concerning termination, we assume a DAG representation of the terms and constraints,
in such a way that the size of the constraint is proportional to the number of the distinct
subterms occurring in it. Next, observe that ]St(tσ) ≤ ](St(t) ∪

⋃
x∈dom(θ) St(xθ)).

Hence, when unifying two subterms of t, with mgu θ, ]St(tθ) ≤ ]St(t) since, for every
variable x ∈ dom(θ), xθ is a subterm of t. It follows that, for any constraint system C ′;D′

such that C; ∅ ∗σ C ′;D′, ]St(C ′) ≤ ]St(C).
Next, observe that the number of distinct left hand sides of the constraints ]lhs(C ′) is

never increasing: ]lhs(C ′) ≤ ]lhs(C). Furthermore, as long as we only apply the rules
R1, Rf , starting from C ′′, the left hand sides of the deducibility constraint systems are
fixed: there are at most ]lhs(C ′′) of them. Now, since, thanks to memorization, we cannot
get twice the same constraint, the number of consecutive R1, Rf steps is bounded by

]lhs(C ′′)× ]St(rhs(C ′′)) ≤ ]lhs(C)× ]St(C)

It follows that the length of a derivation sequence is bounded by ]V(C) × ]lhs(C) ×
]St(C) (for R1, Rf steps) plus ]V(C) (for R2, R3, R

′
3 steps) plus 1 (for a possible R4

step).

Theorem 4.17 extends the result of [Rusinowitch and Turuani 2001] to sorted messages
and general security properties. Handling arbitrary security properties is possible as soon
as we do not forget any solution of the deducibility constraint systems (as we do). If we
only preserve the existence of a solution of the constraint (as in [Rusinowitch and Turuani
2001]), it might be the case that the solution of C that we kept is not a solution of the
property φ, while there are solutions of both φ and C, that were lost in the satisfiability
decision of C. In addition, compared to [Rusinowitch and Turuani 2001], presenting the
decision procedure using a small set of simplification rules makes it more easily amend-
able to further extensions and modifications. For example, Theorem 4.17 has been used
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in [Cortier et al. 2006] for proving that a new notion of secrecy in presence of hashes is
decidable (and co-NP-complete) for a bounded number of sessions.

Note that termination in polynomial time also requires the use of a DAG (Directed
Acyclic Graph) representation for terms.

The following corollary is easily obtained from the previous theorem by observing that
we can guess the simplification rules which lead to a solved form.

COROLLARY 4.18. Any property φ that can be decided in polynomial time on solved
deducibility constraint systems can be decided in non-deterministic polynomial time on
arbitrary deducibility constraint systems.

4.7 An alternative approach to polynomial-time termination

Inspecting the completeness proof, there is still some room for choosing a strategy, while
keeping completeness (correctness is independent of the order of the rules application).
To obtain even more flexibility, we slightly relax the condition on the application of the
rule R2 on a constraint T 
 u: we require unifying a subterm t ∈ St(T ) and a subterm
t′ ∈ St(u) (instead of unifying t with u) where, as before, t 6= t′, t, t′ non-variables.
Remark that this change preserves the completeness of the procedure.

Let us group the rules R2, R3, R
′
3 and call them substitution rules S. We write S(u, v)

if the substitution is obtained by unifying u and v. There are some basic observations:

(1) If C  Rf C ′  S
σ C ′σ, then C  S

σ Cσ  Rf C ′σ. Hence we may always move
forward the substitution rules.

(2) If C1  Rf C ′1 and C2  Rf C ′2, then C1 ∧ C2  Rf C ′1 ∧ C2  Rf C ′1 ∧ C ′2 and
C1 ∧C2  Rf C1 ∧C ′2  Rf C ′1 ∧C ′2, hence any two consecutive applications of Rf
on different constraints can be performed in any order.

(3) The rules R1, R4 can be applied at any time when they are enabled; we may apply
them eagerly or postpone them until no other rule can be applied.

(4) If C  S(u1,v1)
σ1 Cσ1  

S(u2σ1,v2σ1)
σ2 Cσ1σ2, then, for some θ1, θ2,

C  S(u2,v2)
θ1

Cθ1  
S(u1θ1,v1θ1)
θ2

Cσ1σ2

Hence any two consecutive substitution rules can be performed in any order.
(5) If C  S

σ Cσ  
Rf C ′σ, and S 6= R2, then C  Rf C ′  S

σ C
′σ.

This provides with several complete strategies. For instance the following strategy is
complete:

—apply eagerly R4 and postpone R1 as much as possible
—apply the substitution rules eagerly (as soon as they are enabled). This implies that

all substitution rules are applied at once, since the rules R1, R4, Rf cannot enable a
substitution.

—when R4 and substitutions rules are not enabled, apply Rf to the constraint, whose right
hand side is maximal (in size).

Such a strategy will also yield polynomial length derivations, since we cannot get twice the
same constraint: in any derivation sequence C0  σ1 · · · σn

Cn, if (T 
 u) ∈ Ci \Ci+1

(we say then that T 
 u has been eliminated at this step), then, for any j > i, (T 
 u) /∈
Cj . Indeed, for the substitution rules, T 
 u is eliminated only when x ∈ V(T 
 u) and
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x ∈ dom(σi+1), in which case for any j > i, x /∈ V(Cj). And, if T 
 u is eliminated by
an Rf rule, then |u| = maxt∈rhs(Ci) |t|. If, for some j > i, the constraint T 
 u was in
Cj+1 and not in Cj , then we would have maxt∈rhs(Cj) |t| > |u|. Thus the maximum of the
sizes of the right hand sides terms would have increased, which is not possible according
to our strategy.

Then the complexity analysis of the proof of Theorem 4.17 can be applied here.

The above observations can also be used to bound the non-determinism (which is useful
in practice): for instance from (1) and (4), we see that substitution rules can be applied
“don’t care”: if we use a substitution rule, we do not need to consider other alternatives.
More precisely, if S(t, u) is a substitution rule that is applicable to C, let Φ(C) be the set
of substitution rules S(t′, u′), which are applicable to C and such that there is no θ other
than the identity such that mgu(t, u)θ = mgu(t′, u′). Then

θ |= C =⇒
∨

S(t′,u′)∈Φ(C)

∃θ′. θ = mgu(t′, u′)θ′

Similarly, from (5), a right-hand side member that is not unifiable with a non-variable
subterm of the corresponding left hand side, can be “don’t care” decomposed:

θ |= C ∧ (T 
 f(u1, . . . , un)) =⇒ θ |= C ∧ (T 
 u1) ∧ . . . ∧ (T 
 un)

if f(u1, . . . , un) is not unifiable with any non-variable subterm of T .

5. DECIDABILITY OF ENCRYPTION CYCLES

Using the general approach presented in the previous section, verifying particular prop-
erties like the existence of key cycles or the conformation to an a priori given ordering
relation on keys can be reduced to deciding these properties on solved deducibility con-
straint systems. We deduce a new decidability result, useful in models designed for proving
cryptographic properties.

To show that formal models (like the one presented in this article) are sound with respect
to cryptographic ones, the authors usually assume that no key cycle can be produced during
the execution of a protocol or, even stronger, assume that the “encrypts” relation on keys
follows an a priori given ordering.

For simplicity, and since there are very few papers constraining the key relations in an
asymmetric setting, in this section we restrict our attention to key cycles and key orders on
symmetric keys. Moreover, we consider atomic keys for symmetric encryption since there
exists no general definition (with a cryptographic interpretation) of key cycles in the case
of arbitrary composed keys and soundness results are usually obtained for atomic keys.

More precisely, we assume a sort Key ⊂ Msg and we assume that the sort of enc is
Msg × Key → Msg. All the other symbols are of sort Msg × · · · ×Msg → Msg. Hence
only names and variables can be of sort Key. In this section we call key a variable or a
name of sort Key. Finally, for any list of terms L, Ls is the set of terms that are members
of the list.

In this section, we consider (in)security properties of the form P (L) where P is a pred-
icate symbol and L is a list of terms. Informally, σ will be a solution of P (L) if Lsσ
contains a key cycle. The precise interpretation of P depends on the notion of key-cycle:
this is what we investigate first in the following section.
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5.1 Key cycles

Many definitions of key cycles are available in the literature. They are stated in terms of an
“encryption” relation between keys or occurrences of keys. An early definition proposed
by Abadi and Rogaway [Abadi and Rogaway 2002], identifies a key cycle with a cycle
in the encryption relation, with no conditions on the occurrences of the keys. However,
the definition induced by Laud’s approach [Laud 2002] corresponds to searching for such
cycles only in the “visible” parts of a message. For example the message enc(enc(k, k), k′)
contains a key cycle using the former definition but does not when using the latter one and
assuming that k′ is secret. It is generally admitted that the Abadi-Rogaway definition is
unnecessarily restrictive and hence we will say that the corresponding key cycles are strict.
However, for completeness reasons, we treat both cases.

There can still be other variants of the definition, depending on whether the relation
“k encrypts k′” is restricted or not to keys k′ that occur in plain-text. For example,
enc(enc(a, k), k) may or may not contain a key cycle. As above, even if occurrences
of keys used for encrypting (as k in enc(m, k)) need not be considered as encrypted keys,
and hence can safely be ignored when defining key cycles, we consider both cases. Note
that the initial Abadi-Rogaway setting considers that enc(enc(a, k), k) has a key cycle.

We write s <st t if and only if s is a subterm of t. v is the least reflexive and transitive
relation satisfying: s1 v (s1, s2), s2 v (s1, s2), and, if s v t, then s v enc(t, t′).
Intuitively, s v t if s is a subterm of t that either occurs (at least once) in clear (i.e. not
encrypted) or occurs (at least once) in a plain-text position. A position p is a plain-text
position in a term u if there exists an occurrence q of an encryption in u such that q ·1 ≤ p.

Definition 5.1. Let ρ1 be a relation chosen in {<st,v}. Let S be a set of terms and
k, k′ be two keys. We say that k encrypts k′ in S (denoted k ρSe k

′) if there exist m ∈ S
and a term m′ such that

k′ ρ1m
′ and enc(m′, k) v m.

For simplicity, we may write ρe instead of ρSe , if S is clear from the context. Also, if m is
a message we denote by ρme the relation ρ{m}e .

Let S be a set of terms. We define hidden(S)def= {k ∈ St(S) | k of sort Key, S 6` k}.

Definition 5.2 (Strict key cycle). Let K be a set of keys. We say that a set of terms S
contains a strict key cycle on K if there is a cycle in the restriction of the relation ρSe on K.
Otherwise we say that S is strictly acyclic on K.

We define the predicate Pskc as follows: L ∈ Pskc if and only if the set {m | Ls ` m}
contains a strict key cycle on hidden(Ls).

We give now the definition induced by Laud’s approach [Laud 2002]. He has showed
in a passive setting that if a protocol is secure when the intruder’s power is given by a
modified Dolev-Yao deduction system `∅, then the protocol is secure in the computational
model, without requiring a “no key cycle” condition. Rephrasing Laud’s result in terms of
the standard deduction system ` gives rise to the definition of key cycles below, as it has
been proved in [Janvier 2006].

To state the following definition we need a more precise notion than the encrypts re-
lation. We say that an occurrence q of a key k is protected by a key k′ in a term m if
m|q′ = enc(m′, k′) for some term m′ and some position q′, and the occurrence of k at q
in m is a plain-text occurrence of k in m′, that is q′ · 1 ≤ q. We extend this definition in
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the intuitive way to sets of terms. This can be done for example by indexing the terms in
the set and adding this index as a prefix to the position in the term to obtain the position in
the set.

Definition 5.3 (Key cycle [Janvier 2006]). Let K be a set of keys. We say that a set of
terms S is acyclic on K if there exists a strict partial ordering ≺ on K such that for all
k ∈ K, for all occurrences q of k in plain-text position in S, there is k′ ∈ K such that
k′ ≺ k and q is protected by k′ in S. Otherwise we say that S contains a key cycle on K.

We define the predicate Pkc as follows: for any list of terms L, L ∈ Pkc if and only if
the set {m | Ls ` m} contains a key cycle on hidden(Ls).

We say that a term m contains a (strict) key cycle if the set {m} contains one.

Example 5.4. The messagesm = enc(enc(k, k), k′) andm′=〈enc(k1, k2), enc(enc(k2,
k3), k1)〉 are acyclic, while the message m′′ = 〈〈enc(k1, k2), enc(enc(k2, k1), k3)〉, k3〉
has a key cycle. The orderings k′ ≺ k and k3 ≺ k2 ≺ k1 prove it for m and m′ while for
m′′ such an ordering cannot be found since k3 is deducible. However, all three messages
have strict key cycles.

5.2 Key orderings

In order to establish soundness of formal models in a symmetric encryption setting, the
requirements on the encrypts relation can be even stronger, in particular in the case of
an active intruder. In [Backes and Pfitzmann 2004] and [Janvier et al. 2005] the authors
require that a key never encrypts a younger key. More precisely, the encrypts relation has
to be compatible with the ordering in which the keys are generated. Hence we also want
to check whether there exist executions of the protocol for which the encrypts relation is
incompatible with an a priori given order on keys.

Definition 5.5 (Key ordering). Let≺ be a strict partial ordering on a set of keys K. We
say that a set of terms S is compatible with ≺ on K if

k ρSe k
′ ⇒ k′ 6� k, for all k, k′ ∈ K.

Given a strict partial ordering ≺ on a set of keys, we define the predicate P≺ as follows:
P≺ holds on a list of terms L if and only if the set {m | Ls ` m} is compatible with ≺ on
hidden(Ls).

For example, in [Backes and Pfitzmann 2004; Janvier et al. 2005] the authors choose ≺ to
be the order in which the keys are generated: k ≺ k′ if k has been generated before k′. We
denote by P≺ the negation of P≺. Indeed, an attack in this context is an execution such
that the encrypts relation is incompatible with ≺.

5.3 Properties that are independent of the notion of key cycle

We show how to decide the existence of key cycles or the conformation to an ordering in
polynomial time for solved deducibility constraint systems. Note that the set of messages
on which our predicates are applied usually contains all messages sent on the network and
possibly some additional intruder knowledge.

We start with statements, that do not depend on which notion of key cycle we choose.

LEMMA 5.6. Let S be a set of terms, m be a term and k be a key such that S ` m
and S 6` k. Then for any plain-text occurrence q of k in m, there is a plain-text occurrence
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q0 in S such that, if there is key k′ with S 6` k′, and which protects q0 in S, then k′

protects q in m.

PROOF. We reason by induction on the depth of the proof of S ` m:

—if the last rule is an axiom, then m ∈ S. We may simply choose q0 = q.
—if the last rule is a decryption, then S ` enc(m, k′′) and S ` k′′ for some k′′ 6= k. Take

the position q1 = 1 · q in enc(m, k′′). It is an occurrence of k. Applying the induction
hypothesis we obtain an occurrence q0 of k in S such that, if there is a key k′ with S 6` k′
and which protects q0 in S, then k′ protects q1 in enc(m, k′′). Since S 6` k′, it follows
that k′′ 6= k′ and hence k′ protects q in m.

—if the last rule is a another rule, we proceed in a similar way as above.

As a corollary we obtain the following proposition, which states that, in the passive case,
a key cycle can be deduced from a set S only if it already appears in S.

PROPOSITION 5.7. Let L be a list of ground terms, and ≺ a strict partial ordering on
a set of keys. The predicate Pkc (respectively, Pskc or P≺) holds on L if and only if Ls
contains a key cycle (respectively, Ls contains a strict key cycle, or the encrypts relation
on Ls is not compatible with ≺).

PROOF. The right to left direction is trivial since Ls ⊆ {m | Ls ` m}.
We will prove the left to right direction only for the key cycle property, the other two

properties can be proved in a similar way. Assume that there is no strict partial ordering
satisfying the conditions in Definition 5.3 for {m | Ls ` m}. In other words, for any strict
partial ordering≺ on hidden(Ls) there is a key k and an occurrence q of k in {m | Ls ` m}
such that for any key k′, k′ protects q in {m | Ls ` m} implies k′ 6≺ k. Using the previous
lemma we can replace {m | Ls ` m} by Ls in the previous sentence, thus obtaining that
there is a key cycle in Ls.

The next lemma will be used to show that hidden(Lsθ) does not depend on the solution
θ of a solved constraint C.

LEMMA 5.8. Let T 
 x be a constraint of a solved constraint system C, θ a solution
of C and m a non-variable term. If Tθ ` m then there is a non-variable term u with
V(u) ⊆ V(T ) such that T ∪ V(T ) ` u and m = uθ.

PROOF. We write C as
∧
i(Ti 
 xi), with 1 ≤ i ≤ n and Ti ⊆ Ti+1. Consider the

index i of the constraint T 
 x, that is such that (Ti 
 ui) ∈ C, Ti = T and ui = x. The
lemma is proved by induction on (i, l) (considering the lexicographical ordering) where l
is the length of the proof of Tiθ ` m. Consider the last rule of the proof:

—(axiom rule) m ∈ Tiθ. Then there is u ∈ Ti such that m = uθ. If u is a variable
then there is j < i such that Tj 
 u is a constraint of C. We have Tjθ ` uθ. Then
by induction hypothesis there is a non-variable term u′ with V(u′) ⊆ V(Tj) such that
Tj ∪ V(Tj) ` u′ and uθ = u′θ. Hence u′ satisfies the conditions.

—(decomposition rule) Suppose the rule is the decryption rule. Then the premises of the
rule are Tiθ ` enc(m, k) and Tiθ ` k for some term k. By induction hypothesis there
are non-variable terms u1 and u2 with V(u1),V(u2) ⊆ V(Ti) such that Ti∪V(Ti) ` u1,
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Ti ∪ V(Ti) ` u2, u1θ = enc(m, k) and u2θ = k. Then u1 = enc(u, u′2) with uθ = m
and u′2θ = k. If u is a variable then, as in the previous case, we find an u′ satisfying
the conditions. Suppose u is not a variable. We still need to show that Ti ∪ V(Ti) ` u.
If u′2 is a variable then Ti ∪ V(Ti) ` u′2 since u′2 ∈ V(Ti). If u′2 is not a variable then
u′2θ = u′2 hence u′2 = u2. In both cases it follows that Ti ∪ V(Ti) ` u. The projection
rule case is simpler and is treated similarly.

—(composition rule) This case follows easily from the induction hypothesis applied on the
premises.

COROLLARY 5.9. Let T 
 x be a constraint of a solved deducibility constraint system
C, and θ, θ′ be two solutions of C. Then for any key k, Tθ ` k if and only if Tθ′ ` k.

PROOF. Suppose that Tθ ` k. From the previous lemma we obtain that there is a non-
variable u with V(u) ⊆ V(T ) such that T ∪ V(T ) ` u and k = uθ. Since keys are atomic
and θ is a ground substitution it follows that u = k. Hence Tθ′ ∪ {xθ′ | x ∈ V(T )} ` k.
So Tθ′ ` k, since θ′ is a solution (and thus Tθ′ ` xθ′ for all x ∈ V(T )) and by using
Lemma 4.5.

5.4 Decision results

On solved deducibility constraint systems, it is possible to decide in polynomial time,
whether an attacker can trigger a key cycle or not, whatever notion of key cycle we con-
sider:

PROPOSITION 5.10. Let C be a solved deducibility constraint system, L be a list of
messages such that V(Ls) ⊆ V(C) and lhs(C) ⊆ Ls, and ≺ a strict partial ordering on
a set of keys. Deciding whether there exists an attack for C and P (L) can be done in
O(|L|2), for any P ∈ {Pkc, Pskc, P≺}.

We devote the remaining of this section to the proof of the above proposition.
We know by Proposition 5.7 that it is sufficient to analyze the encrypts (or protects)

relation only on Lsθ (and not on every deducible term), where θ is an arbitrary solution.
We can safely assume that there is exactly one deducibility constraint for each variable.

Indeed, eliminating from C all constraints T ′ 
 x for which there is a constraint T 
 x in
C with T ( T ′ we obtain an equivalent deducibility constraint system C ′ : σ is a solution
of C ′ iff it is a solution of C. Let tx be the term obtained by pairing all terms of Tx (in
some arbitrary ordering). We write C as

∧
i(Ti 
 xi), with 1 ≤ i ≤ n and Ti ⊆ Ti+1. We

construct the following substitution τ = τ1 . . . τn, and τj is defined inductively as follows:

- dom(τ1) = {x1} and x1τ1 = tx1

- τi+1 = τi ∪ {txi+1τi/xi+1}.

The construction is correct by the definition of deducibility constraint systems. It is clear
that τ is a solution ofC. We show next that it is sufficient to analyze this particular solution.

Key cycles. We focus first on the property Pkc.

LEMMA 5.11. Let C be a solved deducibility constraint system, L a list of terms such
that V(L) ⊆ V(C), lhs(C) ⊆ Ls, and assume P is interpreted as Pkc. Then there is an
attack for C and P (L) if and only if τ is an attack for C and P (L).
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PROOF. We have to prove that if there is no partial ordering satisfying the conditions in
Definition 5.3 for the setLsθ (according to Proposition 5.7) then there is no partial ordering
satisfying the same conditions for Lsτ . Suppose that there is a strict partial ordering ≺
which satisfies the conditions for Lsτ . We prove that the same partial ordering does the
job for Lsθ.

Let C ′ = C ∧ (Ls 
 z) where z is a new variable. C ′ is a deducibility constraint system
since lhs(C) ⊆ Ls. We writeC ′ as

∧
i(Ti 
 xi), with 1 ≤ i ≤ n and Ti ⊆ Ti+1. We prove

by induction on i that for all k ∈ hidden(Lsθ), for all plain-text occurrences q of k in Tiθ
there is a key k′ ∈ hidden(Lsθ) such that k′ ≺ k and k′ protects q in Tiθ. It is sufficient to
prove this since for i = n we have Ti = Ls. Remark also that from Corollary 5.9 applied
to Ls 
 z we obtain that hidden(Lsθ) = hidden(Lsτ).

For i = 1 we have T1 = T1θ = T1τ hence the property is clearly satisfied for θ since it
is satisfied for τ .

Let i > 1. Consider an occurrence q of a key k ∈ hidden(Lsθ) in a plain-text position
of w for some w ∈ Tiθ. Let t ∈ Ti such that w = tθ.

If q is a non-variable position in t then it is a position in tτ . And since τ is a solution
we have that there is a key k′ ∈ hidden(Lsτ) (hence k′ ∈ hidden(Lsθ)) such that k′ ≺ k
and q is protected by k′ in tτ . The key k′ cannot occur in some xτ , with x ∈ V(t), since
otherwise k′ is deducible (indeed xτ = k′ since the keys are atomic and Txτ ` xτ ). Hence
k′ occurs in t. Then k′ protects q in t, and thus in w also.

If q is not a non-variable position in t then there is a variable xj ∈ V(t) with j < i such
that the occurrence q in tθ is an occurrence of k in xjθ (formally q = p ·q′ where p is some
position of xj in t and q′ is some occurrence of k in xjθ). Applying Lemma 5.6 we obtain
that there is an occurrence q0 of k in Tjθ such that if there is a key k′ with Tjθ 6` k′ and
which protects q0 in Tjθ then k′ protects q′ in xjθ. The existence of the key k′ is assured
by the induction hypothesis on Tjθ. Hence k′ protects q′ in xjθ and thus q in w. since
otherwise there is x ∈ V(Ls) such that xτ = k′, which implies that k′ /∈ hidden(Ls).
Then q′ is a position in Lsθ. Moreover q′ protects q in Lsθ.

If q is not a non-variable position in Ls then there is a variable x ∈ V(Ls) such that

Hence we only need to check whether τ is an attack for C and P (L). Let K =
hidden(Lsτ). We build inductively the sets K0 = ∅ and for all i ≥ 1,

Ki = {k ∈ K | ∀q ∈ Posp(k, Lsτ)∃k′ s.t. k′ protects q and k′ ∈ Ki−1}

where Posp(m,T ) denotes the plain-text positions of a term m in a set T . Observe that for
all i ≥ 0, Ki ⊆ Ki+1. This can be proved easily by induction on i. Moreover, since K is
finite and Ki ⊆ K for all i ≥ 0, then there is l ≥ 0 such that Ki = Kl for all i > l.

LEMMA 5.12. There exists i ≥ 0 such that Ki = K if and only if Lτ ∈ Pkc.

PROOF. Consider first that there exists i ≥ 0 such thatKi = K. Then take the following
strict partial ordering on K: k′ ≺ k if and only if there is j ≥ 0 such that k′ ∈ Kj and
k /∈ Kj . Consider a key k ∈ K and a plain-text occurrence q of k in Lsτ . Then take l ≥ 1
minimal such that k ∈ Kl. By the definition of Kl there is k′ ∈ K such that k′ protects q
and k′ ∈ Kl−1. Since l is minimal k /∈ Ki−1. Hence k′ ≺ k. Thus Lτ ∈ Pkc.

Consider now that τ is a solution. Suppose that Ki+1 = Ki ( K. Let k ∈ K \Ki+1.
Since k 6∈ Ki+1 there is a plain-text occurrence q of k such that for all k′ ∈ K either
k′ does not protect q, or k′ /∈ Ki. But since τ is a solution, there is k′′ ∈ K such that
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k′′ protects q and k′′ ≺ k. It follows that k′′ /∈ Ki, and thus k′′ /∈ Ki+1. Hence for an
arbitrary k ∈ K \ Ki+1 we have found k′′ ∈ K \ Ki+1 such that k′′ ≺ k. That is, we
can build an infinite sequence . . . ≺ k′′ ≺ k with distinct elements from a finite set –
contradiction. So there exists i ≥ 0 such that Ki = K.

Hence to check whether Lτ ∈ Pkc, we only need to construct the sets Ki until Ki+1 =
Ki and then to check whether Ki = K. This algorithm is similar to a classical method
for finding a topological sorting of vertices (and for finding cycles) of directed graphs. It
is also similar to that given by Janvier [Janvier 2006] for the intruder deduction problem
considering the deduction system of Laud [Laud 2002].

Regarding the complexity, there are at most ]K sets to be build and each set Ki can
be constructed in O(|Lsτ |). If a DAG-representation of the terms is used then |Lsτ | ∈
O(|Ls|). This gives a complexity of O(|K| × |Ls|) for the above algorithm.

Strict key cycles and key orderings.. For the other two properties Pskc and P≺ we pro-
ceed in a similar manner.

LEMMA 5.13. Let T 
 x be a constraint of a solved deducibility constraint system C
and θ be a solution. Let m,u, k be terms such that

Tθ ` m and enc(u, k) v m and Tθ 6` k.

Then there exists a non-variable term v such that v v w for some w ∈ T and vθ =
enc(u, k).

PROOF. We write C as
∧
i(Ti 
 xi), with 1 ≤ i ≤ n and Ti ⊆ Ti+1. Consider the

index i of the constraint T 
 x, that is such that Ti 
 ui ∈ C, Ti = T and ui = x. The
lemma is proved by induction on (i, l) (lexicographical ordering) where l is the length of
the proof of Tiθ ` m. Consider the last rule of the proof:

—(axiom rule) m = tθ for some t ∈ Ti. We can have that either there is t′ v t such that
t′θ = enc(u, k), or enc(u, k) v yθ for some y ∈ V(t). In the first case take v = t′,
w = t. In the second case, by the definition of deducibility constraint systems, there
exists (Tj 
 y) ∈ C with j < i. Since Tjθ ` yθ and Tjθ 6` k (since Tj ⊆ Ti), we
deduce by induction hypothesis that there exists a non-variable term v such that v v w
for some w ∈ Tj , hence w ∈ Ti and vθ = enc(u, k).

—(decomposition rule) Let m′ be the premise of the rule. We have that Tiθ ` m′ (with
a proof of a strictly smaller length) and m v m′ thus enc(u, k) v m′. By induction
hypothesis, we deduce that there exists a non-variable term v such that v v w for some
w ∈ Ti and vθ = enc(u, k).

—(composition rule) All cases are similar to the previous one except ifm = enc(u, k) and

the rule is S ` x S ` y

S ` enc(x, y)
. But this case contradicts Tiθ 6` k.

The following simple lemma is also needed for the proof of Lemma 5.15.

LEMMA 5.14. Let T 
 x be a constraint of a solved deducibility constraint system C,
θ be a solution, k ∈ hidden(Tθ), and m a term such that Tθ ` m. If k ρ1m then there is
t ∈ T such that k ρ1 t.
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PROOF. We write C as
∧
i(Ti 
 xi), with 1 ≤ i ≤ n and Ti ⊆ Ti+1. Consider the

index i of the constraint T 
 x, that is such that (Ti 
 ui) ∈ C, Ti = T and ui = x. The
lemma is proved by induction on (i, l) (considering the lexicographical ordering) where l
is the length of the proof of Tiθ ` m. Consider the last rule of the proof:

—(axiom rule) m ∈ Tiθ or m a public constant. If m is a public constant then k 6= m
since k ∈ hidden(Tθ). Thus there is t ∈ Ti such that m = tθ. If k ρ1 t then we’re done.
Otherwise there is a variable y ∈ V(t) such that k ρ1 yθ. Also, there is j < i such that
Tj 
 y is a constraint of C. Then, by induction hypothesis, there is t′ ∈ Tj , hence in Ti,
such that k ρ1 t

′.
—(composition or decomposition rule) By inspection of all the composition and decom-

position rules we observe that there is always a premise Tiθ ` m′ with k ρ1m
′ for some

term m′. The conclusion follows then directly from the induction hypothesis.

The following lemma shows that it is sufficient to analyze τ when checking the proper-
ties Pskc and P≺.

LEMMA 5.15. Let C be a solved deducibility constraint system, L a list of terms such
that V(L) ⊆ V(C) and lhs(C) ⊆ Ls, and θ a solution of C. For any k, k′ ∈ hidden(Lsθ),
if k encrypts k′ in Lsθ then k encrypts k′ in Lsτ .

PROOF. Remember that hidden(Lsθ) = hidden(Lsτ) (Corollary 5.9).
Consider two keys k, k′ ∈ hidden(Lsθ) such that k encrypts k′ in Lsθ. Then there

are terms u, u′ such that u′ ∈ Lsθ, enc(u, k) v u′ and k′ ρ1 u. We can have that either
(first case) there are v, w such that v v w ∈ Ls, v non-variable and enc(u, k) = vθ, or
(second case) enc(u, k) v xθ with x ∈ V(Ls). In the second case, consider the constraint
(Tx 
 x) ∈ C. We have Txθ ` xθ. Hence we can apply Lemma 5.13 for xθ, u and k to
obtain that there exists a non-variable term v such that v v w for some w ∈ Tx and vθ =
enc(u, k). Hence, in both cases, we obtained that there is a non-variable term v ∈ St(Ls)
(since Tx ⊆ Ls) such that vθ = enc(u, k). Thus there is v0 such that v = enc(v0, k).
Indeed, otherwise v = enc(v0, y) for some y ∈ V(Ls), hence y ∈ V(C). Since C is
solved we have Tyσ ` yσ. But yσ = k, contradicting k ∈ hidden(Lsθ).

We have v0θ = u. Since k′ ρ1 u and k′ is a name or a variable, we can have that k′ ρ1 v0,
or k′ ρ1 yθ for some y ∈ V(v0). If k′ ρ1 v0 then k encrypts k′ in Ls, hence in Lsτ also.
If k′ ρ1 yθ then from the previous lemma k′ ρ1 t for some t ∈ Ty , and hence k′ ρ1 yτ .
Therefore in both cases we have that k encrypts k′ in Lsτ .

We deduce that deciding whether there is an attack for C and P (L), when P is inter-
preted as Pskc,can be done simply by deciding whether the restriction of the relation ρLsτ

e

to K ×K is cyclic.
Deciding whether there is an attack for C and P (L), when P is interpreted as P≺, can

be done by deciding whether the restriction toK×K of the relation ρLsτ
e has the following

property Q: there are k, k′ ∈ K such that kρLsτ
e k′ and k � k′.

Checking the cyclicity of the relation ρLsτ
e reduces to checking the cyclicity of the cor-

responding directed graph, using a classic algorithm inO(|K|2). Then, checking the prop-
erty Q can be performed by analyzing all pairs (k, k′) ∈ K ×K hence also in O(|K|2).

Verifying any of the three properties requires a preliminary step of computing K =
hidden(Lsτ). Computing deducible subterms can be performed in linear time, hence this
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computation step requiresO(|Lsτ |). |Lsτ | ≤ |Ls|+ |τ | ≤ |Ls|+O(|C|). If lhs(C) ⊆ Ls,
then |Lsτ | = O(|L|). It follows that the complexity of deciding whether there is an attack
for C and P (L) is O(|L|2), when P is interpreted as Pkc, Pskc or P≺.

5.5 NP-completeness

Let C be a deducibility constraint system and L a list of terms such that V(Ls) ⊆ V(C)
and lhs(C) ⊆ Ls. The NP membership of deciding whether there is an attack for C and
P (L) (for our 3 possible interpretations of P ) follows immediately from Corollary 4.18
and Proposition 5.10.

NP-hardness is obtained by adapting the construction for NP-hardness provided in [Rusi-
nowitch and Turuani 2003]. More precisely, we consider the reduction of the 3SAT prob-
lem to our problem. For any 3SAT Boolean formula we construct a protocol such that the
intruder can deduce a key cycle if and only if the formula is satisfiable. The construction
is the same as in [Rusinowitch and Turuani 2003] (pages 15 and 16) except that, in the
last rule, the participant responds with the term enc(k, k), for some fresh key k (initially
secret), instead of Secret. Then it is easy to see that the only way to produce a key cycle
on a secret key is to play this last rule which is equivalent, using [Rusinowitch and Turuani
2003], to the satisfiability of the corresponding 3SAT formula.

6. AUTHENTICATION-LIKE PROPERTIES

We propose a simple decidable logic for security properties. This logic enables in particular
to specify authentication-like properties.

6.1 A simple logic

The logic enables terms comparisons and is closed under Boolean connectives.

Definition 6.1. The logic L is inductively defined by:

φ ::= [m1 = m2] | ¬φ | φ ∨ φ | φ ∧ φ | ⊥ m1,m2 terms

V(φ) is the set of variables occurring in its atomic formulas.

σ |= [m1 = m2] if m1σ and m2σ are identical terms. σ 6|=⊥. This satisfaction relation
is extended to any of the above formulas, interpreting the Boolean connectives as usual.

Example 6.2. Let us consider again the authentication property introduced in Exam-
ple 3.8. There is an attack on authentication between A and B if A and B do not agree on
the nonce n′a sent by A for B, that is if x = n′a at the end of the run of the protocol. This
can be expressed by the following formula

φ1 = [x 6= n′a]

The substitution σ1 (assigning x to na) is an attack for C ′1 (defined in Example 3.8) and φ1

and demonstrates a failure of authentication.

More sophisticated properties can be expressed using the logic L. For example, when
two sessions of the same role are executed, one can expressed that an agent has received
exactly once the right nonce na, with the following formula.

φ2 = ([x1 = na] ∧ [x2 6= na]) ∨ ([x1 6= na] ∧ [x2 = na])
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where x1 (resp. x2) represents the nonce received by the agent in the first (resp. second)
session.

We can also express properties of the form: if two agents agree on some term u, they
also agree on some term v. This can be indeed modeled by the formula

φ3 = [u1 = u2]→ [v1 = v2]

where u1 (resp. u2) represents the view of u by the first (resp. second) agent and v1 (resp.
v2) represents the view of v by the first (resp. second) agent. The formula A → B is the
usual notation for the formula ¬A ∨B.

6.2 Decidability

THEOREM 6.3. Let C be a deducibility constraint system and φ be a formula of L.
Deciding whether there is an attack for C and φ can be performed in non-deterministic
polynomial time.

PROOF. First, choosing non-deterministically φ1 or φ2 in any subformula φ1 ∨ φ2, we
may, w.l.o.g. only consider the case where φ is a conjunction

∧
j [uj = u′j ] ∧ φd, where

φd =
∧
l[vl 6= v′l].

Let σ be a mgu (idempotent, which does not introduce new variables) of
∧
j uj = u′j .

The deducibility constraint system C has a joined solution with φ if and only if Cσ and
φdσ have a common solution. As in the previous sections, we choose a representation
of expressions, such that applying a mgu of subterms of an expression e on e does not
increase the size of the expression e.

We are now left to the case where we have to decide whether a deducibility constraint
system has a solution together with a property of the form φ =

∧k
i=1[ui 6= vi].

Applying Theorem 4.3, there exists a solution θ of C and φ if and only if there exist a
deducibility constraint system C ′ in solved form and substitutions σ, θ′ such that θ = σθ′,
C  ∗σ C ′ and θ′ is an attack for C ′ and φσ. Thus, we are now left to decide whether
there exists a solution to a solved constraint system C ′ and a formula φσ of the form
φσ =

∧k
i=1[ui 6= vi].

If, for some i, ui is identical to vi, then there is clearly no solution. We claim that,
otherwise, there is always a solution. This is an independence of disequation lemma (as
in [Colmerauer 1984] for instance), and the proof is similar to other independence of dise-
quations lemmas:

LEMMA 6.4. Let C be a solved deducibility constraint system and φ be the formula
t1 6= u1 ∧ . . . ∧ tn 6= un such that V(φ) ⊆ V(C) and, for every i, ti is not identical to ui.
Then there is always a solution θ of C and φ.

This is proved by induction on the number of variables of φ. In the base case, there is no
variable and the result is trivial as φ is a tautology.

Let T0 be the smallest left-hand side of C. T0 must be a non empty set of ground terms.
Note that there is an infinite set of deducible terms from T0.

Let x ∈ V(φ). For each i, either ti = ui has no solution, in which case ti 6= ui is always
satisfied, or else let S = {xσi | σi = mgu(ti, ui)}. We choose tx such that T ` tx and
tx /∈ S. This is possible since S is finite and there are infinitely many terms deducible
from T . Now, for every i, ti[tx/x] is not identical to ui[tx/x] by construction. Hence, we
may apply the induction hypothesis to φ[tx/x] and conclude.
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7. TIMESTAMPS

For modeling timestamps, we introduce a new sort Time ⊆ Msg for time and we assume
an infinite number of names of sort Time, represented by rational numbers or integers. We
assume that the only two sorts are Time and Msg. Any value of time should be known to
an intruder, that is why we add to the deduction system the rule

S ` a
for any name a of

sort Time. All the previous results can be easily extended to such a deduction system since
ground deducibility remains decidable in polynomial time.

To express relations between timestamps, we use timed constraints.

Definition 7.1. An integer timed constraint or a rational timed constraint T is a con-
junction of formulas of the form

Σki=1αixi n β,

where the αi and β are rational numbers, n ∈ {<,≤}, and the xi are variables of sort
Time. A solution of a rational (resp. integer) timed constraint T is a closed substitution
σ = {c1/x1 , . . . ,

ck/xk
}, where the ci are rationals (resp. integers), that satisfies the con-

straint.

Such timed properties can be used for example to say that a timestamp x1 must be
fresher than a timestamp x2 (x1 ≥ x2) or that x1 must be at least 30 seconds fresher than
x2 (x1 ≥ x2 + 30).

Example 7.2. We consider the Wide Mouthed Frog Protocol [Clark and Jacob 1997].

A→ S : A, enc(〈Ta, B,Kab〉,Kas)
S → B : enc(〈Ts, A,Kab〉,Kbs)

A sends to a server S a fresh key Kab intended for B. If the timestamp Ta is fresh enough,
the server answers by forwarding the key to B, adding its own timestamps. B simply
checks whether this timestamp is older than any other message he has received from S. As
explained in [Clark and Jacob 1997], this protocol is flawed because an attacker can use the
server to keep a session alive as long as he wants by replaying the answers of the server.

This protocol can be modeled by the following deducibility constraint system:

S1
def= {a, b, s, 〈a, enc(〈0, b, kab〉, kas)〉} 
 〈a, enc(〈xt1 , b, y1〉, kas)〉, xt2 (6)

S2
def= S1 ∪ {enc(〈xt2 , a, y1〉, kbs)} 
 〈b, enc(〈xt3 , a, y2〉, kbs)〉, xt4 (7)

S3
def= S2 ∪ {enc(〈xt4 , b, y2〉, kas)} 
 〈a, enc(〈xt5 , b, y3〉, kas)〉, xt6 (8)

S4
def= S3 ∪ {enc(〈xt6 , a, y3〉, kbs)} 
 enc(〈xt7 , a, kab〉, kbs) (9)

where y1, y2, y3 are variables of sort Msg and xt1 , . . . , xt7 are variables of sort Time. We
add explicitly the timestamps emitted by the agents on the right hand side of the constraints
(that is in the messages expected by the participants) since the intruder can schedule the
message transmission whenever he wants. Note that on the right hand side of constraints
we do have terms, but by abuse of notation we have omitted the pairing function symbol.

Initially, the intruder simply knows the names of the agents and A’s message at time 0.
Then S answers alternatively to requests from A and B. Since the intruder controls the
network, the messages can be scheduled as slow (or fast) as the intruder needs it. The
server S should not answer if A’s timestamp is too old (let’s say older than 30 seconds)
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thus S’s timestamp cannot be too much delayed (no more than 30 seconds). This means
that we should have xt2 ≤ xt1 + 30. Similarly, we should have xt4 ≤ xt3 + 30 and
xt6 ≤ xt5 + 30. The last rule corresponds to B’s reception. In this scenario, B does not
perform any check on the timestamp since it is the first message he receives.

We say that there is an attack if there is a joined solution of the deducibility constraint
system and the previously mentioned time constraints together with xt7 ≥ 30. This last
constraint expresses that the timestamp received by B is too large to come from A. Al-
together, the time constraint becomes xt2 ≤ xt1 + 30 ∧ xt4 ≤ xt3 + 30 ∧ xt6 ≤
xt5 + 30 ∧ xt7 ≥ 30. Then the substitution corresponding to the attack is

σ = {kab/y1 ,
kab/y2 ,

kab/y3 ,
kab/y4 ,

0/xt1
, 30/xt2

, 30/xt3
, 60/xt4

, 60/xt5
, 90/xt6

, 90/xt7
}.

PROPOSITION 7.3. There is an attack to a solved deducibility constraint system and a
time constraint T iff T has a solution.

PROOF SKETCH. Let C be a solved deducibility constraint system, and T a timed con-
straint. Let y1, . . . , yn be the variables of sort Msg in C and x1, . . . , xk the variables of
sort Time in C. Clearly, any substitution σ of the form yiσ = ui where ui ∈ Si for some
(Si 
 yi) ∈ C and xiσ = ti for ti any constant of sort Time is a solution of C. Let σ′ be
the restriction of σ to the timed variables x1, . . . , xk.
σ is an attack for C and T if and only if σ′ is a solution to T . Thus there exists an attack

for C and T if and only if T is satisfiable.

COROLLARY 7.4. Deciding whether a deducibility constraint system, together with a
time constraint, has a solution is NP-complete.

PROOF. The NP membership follows from the NP membership of time constraint satis-
fiability, Theorem 4.3 and Proposition 7.3.

NP-hardness directly follows from the NP-hardness of deducibility constraint system
solving, considering an empty timed constraint.

8. CONCLUSIONS

We have shown how, revisiting the approach of [Comon-Lundh and Shmatikov 2003; Rusi-
nowitch and Turuani 2003], we can preserve the set of solutions, instead of only deciding
the satisfiability. We also derived NP-completeness results for some security properties:
key-cycles, authentication, time constraints.

Since the constraint-based approach [Comon-Lundh and Shmatikov 2003; Rusinowitch
and Turuani 2003] has already been implemented in AVISPA [Armando et al. 2005], it is
likely that we can, with only slight efforts, adapt this implementation to the case of key
cycles and timestamps.

More generally, we would like to take advantage of our result to derive decision proce-
dures for even more security properties. A typical example would be the combinations of
several properties. Also, we could investigate non-trace properties such as anonymity or
guessing attacks, for which there are very few decision results (only [Baudet 2005], whose
procedure is quite complex).

Regarding key cycles, our approach is valid for a bounded number of sessions only. Se-
crecy is undecidable in general [Durgin et al. 2004] for an unbounded number of sessions.
Such an undecidability result could be easily adapted to the problem of detecting key cy-
cles. Secrecy is decidable for several classes of protocols [Ramanujam and Suresh 2003;
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Comon-Lundh and Cortier 2003; Blanchet and Podelski 2003; Verma et al. 2005] and an
unbounded number of sessions. We plan to investigate how such fragments could be used
to decide key cycles.
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HÉAM, P., KOUCHNARENKO, O., MANTOVANI, J., MÖDERSHEIM, S., VON OHEIMB, D., RUSINOWITCH,
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CORTIER, V., KREMER, S., KÜSTERS, R., AND WARINSCHI, B. 2006. Computationally sound symbolic se-
crecy in the presence of hash functions. In Proc. of the 26th Int. Conf. on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’06). Lecture Notes in Computer Science, vol. 4337. Springer
Verlag, 176–187.
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