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Abstract crucial for mechanizing the process of proof construction,
but verifications still require considerable effort andig
We develop a systematic proof procedure for establishinginto the workings of the protocol under consideration. Co-
secrecy results for cryptographic protocols. Part of thepr  hen’s [Coh00] approach is much more automatic. He con-
cedure is to reduce messages to simplified constituents, andtructs a first-order invariant from a protocol description
its core is a search procedure for establishing secrecy re- and uses first-order reasoning for establishing safety-prop
sults. This procedure is sound but incomplete in that it may erties. Cohen’s approach is amenable to both hand proofs
fail to establish secrecy for some secure protocols. How- and automation. Indeed, he applies his method to verify
ever, it is amenable to mechanization, and it also has a con-the large majority of the benchmark protocols in the Clark
venient visual representation. We demonstrate the utfity and Jacob survey [CJ97] with only a small amount of user
our procedure with secrecy proofs for standard benchmarksintervention.
such as the Yahalom protocol. In contrast to the work by Paulson and Cohen we do not
consider safety properties in general, but we restrict our-
selves to the specific case of proving secrecy invariants of
1 Introduction cryptographic protocols; that is, our main interest is iovpr
ing that secrets are not accidentally revealed to unawtbdri
Cryptographic protocols are used to achieve goals like agents. Proving secrecy invariants for cryptographicgerot
authentication and key distribution in a possibly hostile e  cols has often been found to be the hardest task in analyz-
vironment. These protocols are notoriously difficult to de- ing a protocol [Pau98]. Indeed, secrecy has been shown to
sign and test, and serious flaws have been found in manybe undecidable even under very weak assumptions on the
protocols. Consequently there has been a growing inter-protocol [DLMS99], while specialized logics for establish
est in applying formal methods for validating cryptographi  ing authentication are usually decidable [Mon99]. Authen-
protocols. In particular, standard program verificatiothte  tication logics depend on assumptions about secrecy, so the
nigues such as model checking, theorem proving, or invari- most efficient way to prove authentication may be to use a
ant generation have been found to be essential tools; atrecerfechnique like ours to prove secrecy, and use a quick deci-
overview has been given by Meadows [Mea00]. sion procedure to establish authentication once the secrec
A popular choice is to use model checking procedures assumptions have been verified.
for debugging purposes by searching for attacks. These Our proof technique is to perform inductive proofs,
techniques, however, are not directly applicable for veri- as advocated by Paulson [Pau98]. To help express se-
fication, since search spaces usually can not be explorectrecy goals, we make use of the “spell” events introduced
exhaustively. In contrast, approaches based on theorenin [MR0OO]. However, this paper does not use the trace
proving techniques aim at mathematical proofs of the de- model as in [MRO0O] or [Pau98], but a new state-transition
sired protocol properties [DS97, Sch98, Pau98, Coh00]. model similar to the MSR model proposed by Mitchedl
We review the techniques that are most closely related toal [CDL*99]. We have found that the Secrecy Theorem
our work. Paulson [Pau98] uses an interactive theoremin [MROQ] could be adapted to work just as well in this
prover to prove invariance properties by proving that they context. The current model and our use of PVS to perform
areinductive i.e. they are preserved by the execution of inductive proofs with this model were presented at a work-
each and every protocol rule. Domain-specific tactics are shop that did not have a published proceedings [RM00]. We



have used this approach mainly for proving secrecy of stan- Each agentd has some long-term keys: a public key
dard benchmark protocols such as the Otway-Rees and theub(A), a corresponding private keyv(A), and a symmet-
Needham-Schroeder protocol. Dutengteal [DSS01] used  ric keyshr(A), which is shared betweeth and a designated
our techniques for verifying the group management servicesserver agentSrv. Each keyK has an inverse key —*;

of Enclaves [Gon97]. in particular,pub(A) =1 = prv(A), prv(4)~! = pub(A),

The starting point for this paper is the observation that while shr(4)~! = shr(A), as is the case with any sym-
secrecy proofs based on the decomposition of the Secrecynetric keys. Keys generated during a protocol session are
Theorem follow a standard pattern that is amenable toalways symmetric keys.
mechanization, and which also has a convenient visual rep-

resentation. Part of the procedure is to reduce messages tgvents and Global States. There are three kinds of
simplified constituents calldaranches The core isasearch  events:messagespell andstateevents. A message event
procedure for establishing secrecy results. This pro@edur js simply a field representing the content of the message.
is sound and automatic but incomplete in that it may fail to A spell eventC' = St I € Spells, generates thbook or
establish secrecy for some secure protocols. session-specific set of basic secrBsk(C) = S, which

The paper is structured as follows. In Section 2 we re- are shared among the sétbal(C') = L of agents, thea-
view a state-based model for modeling cryptographic pro- bal.
tocols, and we state a suitable security policy togethdn wit A state event is of the forr@ = A,,(X) € States where
a corresponding secrecy theorem as introduced in [RMOO]. A is a role namen is a natural number that represents the
This theorem reduces secrecy proofs to local proof obliga- step of the protocol, and = Mem(Q) is a concatenated
tions on protocol transitions; these obligations are dalle field that represents the memory held by the state. We also
occultnessconditions. In Section 3 we develop a charac- write Mem(H) = {Mem(Q)|Q € H N States} for any
terization of the occultness notion, which is used to ititia event set//. As a notational convention, we ugg (and
ize our proof procedure. Then, in Section 4 we describe avariants) to denote state events, whileis a message event,
search procedure for establishing secrecy results. Mereov andC is a spell event. The set tiasic secret®f a spell
Section 4 contains a soundness result for this search proceeonsists of its book plus the long-term keys of its cabal:
dure, and we sketch a convenient graphical representation
for occultness proofs. Section 5 includes some case stud- Sec(C) = Book(C) U Itk (Cabal(C))
ies drawn from the Clark-Jacob survey [CJ97] such as the
Yahalom and the Kao Chow repeated authentification pro-
tocol. We also demonstrate a proof of non-occultness from
a failed proof attempt. Section 6 contains some concluding
remarks.

The long-term keys are those generatedpb¥(.), prv(.),
andshr(.).

A global stateis a set (not a multiset) of events. Nota-
tionally, variants ofH are global states or event sets. The
contentof a global state is its set of messages, written:

def

2 Background Cont(H) £ H N Fields

. . , Similarly, the secrets of a global state are obtained fram it
We give an overview of state-based encodings of proto- spell events

cols, a security policy based on the notion of coideals, and a
secrecy theorem for generating local verification condiio Sec(H) & U{Sec(())\() € H}
More detailed descriptions can be found in [MR0O, RMO0O].
A basic fieldX isunusedn H if it is neither a part of a field

Message Fields. The setFields of message fields is made in the content nor a secret &f.

up of primitive and compound fields. The primitive fields def ,

are those of typesigent, Key, and Nonce. Keys and unused(H) = {X € Basic |

nonces form the seBasic; these basic fields are the only X ¢ parts(Cont(H)), X & Sec(H)}

types of fields that may be designated as secret, as a protocol

policy goal. Compound fields are constructed by concate-Inductive Relations. parts(S) is the set of all subfields

nation [X, Y] (often written without brackets) or encryption  of fields in the set of fieldsS, including components of

{X}k. concatenations and the plaintext of encryptions (but ret th
As a notational convention, variables B and variants ~ keys).analz(S) is the subset ofarts(.S) consisting of only

always stand for agentdy and variants always stand for those subfields that are accessible to an attacker. These in-

keys; andV and variants are always nonces. The reservedclude components of concatenations, and the plaintext of

subscript “s” identifies a set, s¥; is a set of nonces. those encryptions where the inverse key isaimalz(S).



(Na, Ny, K} 1 {A, B}, specify a possible global state change in a way to be ex-

0 {N”ﬂg’]{} A1 (A, B, Srv), ) plained below. o . N . . .
Bi(B, Srv), Except for an initialization transition, in whicRre(t) is
Srvi (Srv) empty, a transitiort shows a state change for one role. It
(No.J1{A.B} | (V) [ Aa(A B, Srv.No), may also ;_)ro_quce_, in the po;t, amessage or a spell but not
{ Ai(A, B, Srv) { [N, A, {Na,N Blen(a)] }(1) both. A primitive field occurring in post messages or state
memory must occur in the messages or state memory of the
|[§N g fw @ pre or among the nonces. This condition is callegular-
{lel” }i{A B} ity, and it implies that no long-term keys are deliberately

introduced into a post message. There is also a restriction
that secrets in a post spell are allizw(t). (The freshness
of nonces inNew(t) is implied by the definition of global
state transitions given below.)

©) A protocolis simply a set of protocol transitions. A pro-
tocol specification is a set of rules, where each rule is a

B, A, X,{Ny, N, A}shv(B)

}
-
{[B( P 1}
-

{ Srv1 Srv),
{K, }i{A B}

Srva (Srv), .. .. . .

{ IN. (Na, K}ty (Vo K Y] } sch_ema defining a set of transnpps using terms with free

variables. More formally, a transitiohis aninstanceof a

{IN, X ANy, K]} 2 {N, XT} @ rule rl !ﬂ‘ there exists a ground substitutian defined on

the variables of, such that = o ().
whereM = [N, B, A, {Na, N. B} ay. {No. N, Al ()] Protocol rules for the first three messages of the fa-
] ) miliar Otway-Rees [OR87] (OR) and Needham-Schroeder-
Figure 1. Encoding of part of Otway-Rees pro- Lowe [NS78, Low96] (NSL) public key protocols can be

tocol. found in Figures 1 and 2, respectively. Often, as in the

Needham-Schroeder specification, we omit the state events
for brevity when they are not needed for our purposes.
More preciselyanalz(.9) is the smallest superset Sfsuch In both protocols, each session is initiated with a spell to
thatX € analz(S) andY € analz(S5) if [X,Y] € analz(S), introduce the session-specific secrets and a corresponding
and X € analz(S) if {X}x € analz(S) and K~ ' € cabal. In addition, the Otway-Rees protocol introduces a
analz(.S). Finally, synth(S) is the set of fields constructible non-secret nonc#’ in rule 1.
from S by concatenation and encryption using fields and

keys inS. It is defined to be the smallest supersetsof  Gjopal State Transitions. Given a protocolP and a set
such that{ X, Y] € synth(S) if X' € synth(S5) andY" € of initial knowledgeI (of the spy), theglobal succession
synth(S), and{X}x € synth(S) if X € synth(S) and  relation transforms a statdf to a new statéd’. A succes-
K € synth(S). The intruder in our model synthesizes faked  gjon is eithemonesti.e. it corresponds to an action by an
messages from analyzable parts of a set of available fleldsagem following the protocol, or it iakedby the spy.

def

This motivates the definitiofake(S) = synth(analz(95)).
e H' is an honest successor of H, denoted by

honest(P)(H, H'), if there exists an applicable tran-

Ideals and Coideals. An ideal Z(S) denotes the set of sitiont in P such thatd’ = (H\(Pre(t) N States)) U

fields that have to be protected in order not to reveal any se-

crets inS [THGO8]. It is defined as the smallest superset of Post(t).

S such tha{X. Y] € Z(S) if X € Z(S) orY e Z(S), and « H' is a fake successor of H, denoted by
{X}k € Z(9) if X € Z(S)and K ! ¢ Z(S). The com- fake(I)(H, H'), if there exists a field X e
plement of an ideal, the coideal, is denoteddgy). This fake( Cont(H) U I) such that’ = H U {X).

defines the set of fields that are public with respect to the
basic secret§, i.e., fields whose release would not compro- In the honest case, a transitignis applicablein H if
mise any secrets ifi. Coideals are interesting because they Pre(t) C H andNew(t) C unused(H). In the fake case,
are closed under attacker analysis; fake(C(S)) = C(S) the spy is restricted to adding only messages that can be in-
for all primitive fieldsS. ferred from the content of the current state and the initial
knowledge. In either case, we writgobal(P,I)(H, H').
Protocols. A protocol transition ¢ is of the form This relation determines a Iogicgl _t_ransition system with
New(t) the empty set of even_ts as |t_s_ initial state._ The set of
Pre(t) — "~ Post(t), wherePre(t) and Post(t) are set  reachable states of this transition system is denoted by
of events andVew(t) is a set of nonces. Such transitions reachable(P,T).



Because protocol spell books introduce only unused se-
crets, it is easy to show that the spell books of different
spells are disjoint.

Lemma 1 (Disjoint Book) If C,C’ € H €
reachable(P,I) then eitherC = (' or Book(C) and
Book(C") are disjoint.

Secrecy Policy. A spell is compatible with an initial
knowledge sef that does not mention its associated basic
secrets.
compatible(I) £ {C | Sec(C) N parts(I) = 0}

Given the spy’s initial knowledgd, a global statel
is called I-discreetif Cont(H) C C(Sec(C)) for all I-
compatible spell€’ € H; these states are collected in the
set discreet(I). Now, a protocolP is called discreetif
discreet(I) is an invariant of the transition relation asso-
ciated with P; i.e. for all I, reachable(P, ) is a subset of
discreet(I).

Secrecy Theorem. As in [MROO], the Secrecy Theo-
rem serves to split the secrecy proof for a protocol into a
protocol-independent part and a protocol-dependent part.

o e gNL MY A BY 0

{Na, 31{A,BY 5 {{Ne Abpnm]} @)

{ [{{]}[\l;;:;i}jui}ffh } i} {[{Nava’B}pub(A)]} (2)
{{Na, No, Boup(n)]} == {H{No}pun(m))} 3)

Figure 2. Encoding of Needham-Schroeder-
Lowe protocol.

e A(A,B,Srv) € H,and

H)

that [N, A, {N,, N, B}g(a)] € C(Sec(C)). To establish
this, we have to check two cases, depending on whether
is the spell in the rule or not. Ifitis, we note their(A) is
in the coideal; in the other case, there is no secret to protec
because the Disjoint Book Lemma implies thg} is not
in Book(C'). This case split argument is one of the tasks
that are simplified away using the search procedure we will
present.

It is undecidable whether or not a given protodoalis

o N € unused(

The protocol-dependent part is expressed by the occultnessccult. Undecidability of protocol security is well known,

property. It says that if the prior state is discreet, thetnex

message event generated by the protocol does not comproexample,

mise a secret.

Some more notation needs to be introduced before defin-
ing occultness. AP-configurationis a tuple (I, H,C')
such thatd € reachable(P,1), H € discreet(I), C €
compatible(T), andC € H. Now, a protocolP is said to
be occultif for all P-configurations(I, H, C') and for each
applicable transition in P,

Cont(Post(t)) C C(Sec(C)).

The protocol-independent part of a secrecy proof is the Se-
crecy Theorem.

Theorem 1 (Secrecy Theorem)A protocolP is discreet iff
it is occult.

This theorem reduces secrecy proofs to proving occultnessc

of individual rules of the protocol. In the case of the Otway-
Rees protocol in Figure 1, for example, we are reduced to
showing occultness of the rules (1),(2),(3), since ocassn
holds trivially for rule (0). (The fourth rule is also easy to
handle.) For rule 1 of the Otway-Rees protocol we have to
prove that for all reachable anddiscreet global stated,

and for all spellg” in H, compatible with/, it follows from

the applicability conditions

e {N,,_}1{A,B} € H,

and has been proved in several different models. See, for
[DLMS99] and its references. A proof for this
particular model works by a simple encoding of the reach-
ability problem of Turing machines such that the encoded
Turing machine reaches its final state iff the protocol is not
occult (see Appendix B). Using Theorem 1 it follows that
it is also undecidable whether or not a given protocol is dis-
creet.

3 Branches

Occultness proofs work by case analysis. In prov-
ing occultness of rule 1 of the Otway-Rees proto-
col in Figure 1, for example, one tries to prove that
[N, A, {Na, N, B}sne(ay)] € C(Sec(C)). Using the def-
inition of ideals we are reduced to showing that <
(Sec(C)), A € C(Sec(C)), and {Ny, N, B}she(ay €
C(Sec(C)) The second case is shown to be true immedi-
ately, since agent names are not elements of ideals. Fur-
thermore, using the definition of ideals, the third case can
be simplified further to the disjunctiamr(A) € Sec(C') or
[Na, N, B] € C(Sec(C)). In general, a fieldV is in the
coideal generated h§ec(C) iff for each nonce or key in
parts(M), eitherZ is notinSec(C) or 7 is encrypted with
at least one key itvec(C').

This observation suggests that, instead of examinihg
itself, we examine the basic secrets occurring in it and the



keys protecting them. Aranchis a pair consisting of a
basic field and a set of keys. The following recursion com-
putes the branches occurring in a fiélfl

Definition 1 bnch(M) is defined adnch(M, 0)), where

bnch(N, Ks) = {(NV,K,)}

brch(, K,) = {(K.K.)}

bnch(A, Ks) = 0
bnch([My, M), Ks) = bnch(M;, K,) U

bnch(Ms, K)

bnch({M} k., Ks) bnch(M, Ky U{K})

Thus,
anh([Nv Av {Nav N, B}shr(A)]) =
{(NV,0), (Na,{shr(A)}), (N,{shr(A)})}.

It turns out that a fieldM is in C(S) if and only if its
branches satisfy a simple condition. The proof is by induc-
tion on the operator depth aff.

Proposition 1 Let S be a set of basic fields; then:

M e C(S)iffforall (Y, K) € bnch(M):
Y ¢SorK;tnS +#0.

Definition 2 For a protocol P, a branchb = (Y, K),
E, a set of events, and&v, a set of nonces, the pred-
icate occ(P,b)(Es, Ny) is defined to hold iff for allP-
configurationg I, H, C') such that

1. E,CH,
2. N, C unused(H), and
3. Y € Sec(C)

itis the case thaf< ;! N Sec(C) # . For a transitiont we
write occ(P, b)(t) instead ofocc(P, b)(Pre(t), New(t)).

The following characterization of protocol occultness is a
straightforward consequence of Proposition 1.

Proposition 2 A protocol P is occult iff
1. for all transitionst € P,
2. for all message field®/ such that\/ € Post(t), and
3. for all branches) € bnch(M)

the predicatencc(P, b)(t) holds.

4 A Search Procedure for Establishing Oc-
cultness

Now, we describe a search procedure for establishing
occ(P, b)(t) for a given branchh and a transitiort. This
algorithm proceeds by applying sonfmsic testswhich
are sufficient for establishing that the occultness pradica
above holds. Whenever these tests faihazk stegs per-
formed. Such a step explores every possibility of how cer-
tain message fields could have been published on the net-
work.

Lemma 2 (Basic Tests)Let b (Z,K) be a branch,
E, a set of events, andV, a set of nonces; then:
occ(P,b)(E,, Ny) holds if one of the following is true.

1. 7 € Ny

2. There exists &, such thatK, C K, and(Z, K))

bnch(Cont(FEy)); in this case we writeg 7, K)
bnch(Cont(FEy)).

S
S

3. There exists a spell' € E, such thatZ € Book(C)
and K, ' N Sec(C) # 0; in this case we write
db(E,, 7, Ky).

Note that we employ the obvious extensionbath(.) to

sets of fields. The operat&r says that a branch may have
more keys than necessary, which is not harmful, since one
good key is enough.

Given aP-configuration(Z, H, C') such that the require-
ments listed in Definition 2 hold, Lemma 2 is proved as
follows. First, consider the basic tegt € N,. Since
Ns C wunused(H), it follows thatZ ¢ Sec(C). Thus,

occ(P,b)(Es, Ng) holds. Second, assumgZ, K;) €
bnch(Cont(Es)) and letK! C K, be such thatZ, K.) €
bnch(Cont(FEy)). SinceEy C H and H is I-discreet, it
follows that Cont(E;) C C(Sec(C')). Consequently, using
Lemma 1,k ' NSec(C) # 0, and thusk, ~* N Sec(C') #

(. The third part of Lemma 2 is a consequence of the dis-
joint book lemma (Lemma 1).

Consider, for example, rule 2 of the Otway-Rees proto-
col in Figure 1. This rule, denoted hy2, contains a mes-
sage variableX in its pre. Thus,or2 denotes an infinite
set of transitions, and a uniform proof of the occultness of
this family of transitions starts by introducing a symbolic
constantX”’.

(N.0), (N, {shr(B)}) €
bnch(Cont({[N, A, X'], {Ny, _} t{A, B}})),

it follows that both

occ(OR, (N, 0))(or2)



and
occ(OR, (N, {shr(B)}))(or2)

hold. Furthermore, since the predicate
db({[N, A, X"], {Ny, -} 1{A, B}}, Ny, {shr(B)}) holds,
it follows thatocc(OR, (N, {shr(B)}))(or2) holds, too.

The occultness proof of the Otway-Rees protocol uses

If the predicate search(P,b)(F;) holds, then
occ(P,b)(Es, -) holds, too.

Altogether, soundness of the search procedure follows from
the Lemmas 2 and 3, and the secrecy theorem (Theorem 1).

Theorem 2 (Soundness).et P be a protocol. If

only basic tests. In general, however, other rules have to bemain(P, b)(t) holds
taken into consideration. Consider, for example, the case

(Na,{pub(A)}) € bnch({Na, Ny, B}pupa)) for proving
rule 2 of the Needham-Schroeder-Lowe protocol in Fig-
ure 2; this rule is denoted bys/2. None of the basic tests
above establishes thatc(NSL, (N,, {pub(A)}))(nsl2)
holds. The purpose of back steps to obtain additional

e for all transitionst € P,
e for all message evenf¥ € Posi(t), and

M),

e for all branchesh € bnch(

information for applying the basic tests. For each messagethen? is discreet.

eventM in E, two possibilities have to be taken into con-
sideration: eithef/ has been published by an honest agent
following the protocol rules oM/ was injected by the in-
truder.

Definition 3 (Search) Let P be a protocol be a transition
of P, andb be a branch of the forM\Z, K); then:

def

main(P,b)(t) Z € New(t)V

search(P,b)(Pre(t))

def

search(P,b)(E,) b € bnch(Cont(E,)) V

db(Es, Z, K,) V' back(P,b)(E,)

def

back(P,b)(Fs) (IM € Es : Z € parts(M))

(honest(P,b)(M) A fake(P,b)(M))

def

honest(P,b)(M) = (Vt'e P, M€ parts(Cont(Post(t'))))

(M €parts(Cont(Pre(t')))) V search(P,b)(Pre(t'))

fake(P,b)(M) = (YMy,...,My: [My,...,M,] = M)
Vo, (Z € parts(M;) A search(P,b)({M;}))

These predicates determine a search procedure in the

usual way. For exampleP; v P, is computed non-
deterministically: if the computation aP; (or P) termi-
nates withtrue, then the computation d@f; v P, terminates
with true. Using these conventions, Definition 3 gives rise
to a nondeterministic proof procedure for establishing oc-
cultness.

Now we outline the proof of soundness for our pro-
cedure. The proof of the main lemma applies induction
on the number of back steps in deducing that predicate
search(P, 7, Ks)(FE;) holds. A detailed proof can be found
in the appendix.

Lemma 3 (Main Lemma) Let P be a protocol) be some
branch, andF, a set of of events; then:

Our method, however, is not complete. If one of the
proof obligations can not be shown to hold, then one may
not necessarily conclude that the protocol is not discreet.
Moreover, there are occult protocols for which our search
procedure does not terminate; such an example can be found
in Section 5.

Let us return to proving occultness of the rulgl2; for
the branchh = (N,, {pub(A)}) the derivation starts as fol-
lows.

main(NSL,b)(nsl2)

<= search(NSL)(b)({{Ns|-} 1 {4, B},
{Na: A}pun(m)1})
= back(NSTY)({{Ny|} £ {4, BY,
[{Na; A}pub()]})
<= honest(NSL,b)({Na, A}pub()) N

fake(NSL,b)({Na, A} pun(5))

Since only the first rule of the Needham-Schroeder-Lowe
protocol contains a message of the fofiN,, A} ,,p(5) in
its post,

honest(NSL,b)({Na, A} pun(B))
search(NSL,b)({{Na|-} 1 {A, B}})

true

—
—

This reduces tarue because of the disjoint book test. Fur-
thermore,

fake(NSL,b)({Na, Atpun())
search(NSL,b)(N,, A)

true

—
T

since (N, {pub(A)}) € bnch([N,, A]).
rule nsl2 is occult.

Derivations based on the predicates in Definition 3 can
be visualized as search trees. These search trees have set of

Consequently,



events as nodes, the edges are labeled either with a bdsic teket b € bnch(M’) such thatM’ € Post(t). If b €
or with the name of one of the search steps. A leafig if bnch(M), then the predicaterain (P, b)(Pre(t), New(t))
one of the basic tests succeeds, arisk if all the basic tests  holds by the definition ofnain’ (P, b)(Pre(rl), New(rl)).
fail and if there are no more messages in the set of events ofOtherwise, if b = (Z,K,) comes from an in-
the parent node. Branching corresponds to a conjunction,stantiation o of a field variable, there exists
and disjunctions are realized by copying derivation trees. X € parts(M) such that (X,K;) € bnch(M)

For the rulensi2 and the branchiN,, {pub(A)}), for ex- and (7Z,K,) € bnch(Xo) with K = K; U K.
ample, the run ofearch is visualized as follows. Now, main’ (P, (X, K1))(Pre(rl), New(rl))  holds,
{{Na, Ny} £ {A, B}, [{Na, Abpu() ]} and coanequentIy(X, Ky) € bnch(Cont(Pre(rl))),
b € bnch(Cont(Pre(rlo))), and finally
backstep main(P,b)(Pre(t), New(t)) hold.  This finishes the

proof of Lemma 4.

Theorem 3 Let P be a protocol.

Na, N/ A, B Ng, A
t v {4 BH fl N]} If main’(P,b)(Pre(rl), New(rl)) holds
disjointbook €
e forallrulesri € P,
true true

In general, the search tree generated by the predicates ® 'oF all message events/ Post(rl), and

in Definition 3 may be infinitely branching whenever there o for all branches < bnch(M),
is an infinite set of protocol transitions. However, the set o

of honest transitions is usually generated by a finite set ofthen#” is discreet.

rules of the formrl = Pre(rl) — Post(rl), such that

each transitiont of the protocol is obtained by a substitu-

tion o, i.e. Pre(t) = Pre(rl)o, New(t) = New(rl)o, etc. 0 el N, Ka} 1{ABY (0)
The remainder of't.his section is devot_ed to lifting the rgul 0 Yoy (1A, N )
above from transitions to rules. In this way, we obtain oc- {(Ny. Kap} £ {A, B}.) 0
cultness proof obligations for rules which possibly contai {[A, Na] } — {IBAANw, Nty (2)
variables. {Ny, Kas} 1 {A,B}, | 0

The notion of branches has to be extended to include {[B,{A,Na,Nb}sh,(B)]} — {{B.Kap:Na:Noter(a). (3)
message fields containing variabl&sby adding the case {A Kab}sn(m)l}

bnch(X, Ks) = {(X,Ks)} to Definition 1. Now, the
search algorithm in Definition 3 is lifted to this new case
of field variables in branches.

(4B, Kb sNa: No Yenriay XY 5 41X AN i, 1} @)

Figure 3. Encoding of the Yahalom protocol.
Definition 4 Let P be a protocolp be a branch, and! be

arule; then:
~ {Na}
b € bnch(Cont(Pre(rl))) 0 — {{Na}i{A1, A2}} (0)
P ; i . {[A1,Aa,--- Ay,
i (P.b)(r]) & if b= (Z,_) andZ is a variable; ({Na} 1 {A1, As}} BN @
main’ (P, b)(rl) main(P.b)(l) {A1, Natenr(ayl}

{lA1, As, - An,

otherwise.
{Al-, Na}shr(A)]}

l> {[{A11A27Nﬂr}shr(z41)]} (2)

The soundness of this extension follows from the following
fact. Figure 4. A protocol which requires atleast n

back steps for proving occultness.
Lemma 4 If main’(P,b)(Pre(rl), New(rl)) holds for all

M € Post(rl), for all b € bnch(M), then

e for all instances of rule ri,
5 Examples
o for all message eveni®’ € Post(t),
o for all branchesh € bnch(M') In the previous sections, we have already demonstrated
that the Otway-Rees protocol can be proved to be occult us-
the predicatenain (P, b)(Pre(t), New(t)) holds. ing only basic tests. Likewise, the occultness proof of the



{[{Bvl{abvNa-,Nb}shr(A)vx]}

back
honest (r12)
honest (rl3)

{Nlnl(ab}i{AvB}v } { [{Bvi:lbvN(lz-,N{,}shr(A’)v
[Bv{AvNava}shr(B)] {BaKabvNa-,Nb}shr(A)]

Needham-Schroeder-Lowe protocol requires at most one
back step for each rule and each branch. Here we give
an overview of the proof of Yahalom’s protocol, which re-
quires up to three back steps for proving occultness. More-
over, we demonstrate the incompleteness of our algorithm{
with an example of an occult protocol for which the search
procedure is non-terminating. Then, we give an example of
a protocol that requires at leastback steps in proving oc-
cultness. Finally, we use a failed proof attempt of the orig-
inal Needham-Schroeder protocol to show that it is indeed

fake

fake

{[{Bv Kap, Na, Nb}shr(A)}}

‘db

true

not occult.

Yahalom Protocol. This protocol has been studied exten-

sively by Paulson [Pau97]. An encoding of the Yahalom
protocol (without state events) can be found in Figure 3.

Occultness of the initial rule (1) is obvious. For verifying

occultness of rule (2) we have to consider the two branches

(Ng, {shr(B)}), (N, {shr(B)}) of the single message in
the post.

(Na,{shr(B)}):

{Msg(A++Na) } {Msg(AHNa) }
Cast({Ny, Kap}, {A, B}) Cast({Ny, Ko}, {A, B})

€

(N, {shr(B)}):

db

true true

In verifying occultness of rule (3) four branches have
to be considered. Occultness for the caS¥s, {shr(A)}),
(Kap, {shr(A)}), and(K,p, {shr(B)}) is established using
the disjoint book test, whereas the brar{éi,, {shr(A)})
needs two back steps.

{ {NbaKab}i{AtB}v }
[Bv {Av Na, Nb}shr(B)]

back
hones fake
{ {Nvaab}i{AtB}v } {[{A-,Na7Nb}shr(B)}}
[A, Na|
€

true

{ {Nvaab}i{A’B}v } {[A,Nava]}

[A, Ng|

~ ~

€ S
true

true
Finally, the branche$X, () and (N,,{K,}) have to

back
honest fake

{ {Ny, Kap} 1 {A, B}, } {IB, Kap, Na, Ny}
[Bv{AvNa-,Nb}shr(B)} ‘N

=
‘ db true

true

Altogether, the Yahalom protocol is occult.

Non terminating procedure. We slightly modify the
Needham-Schroeder-Lowe protocol : the encoding of this
protocol is identical to the one in Figure 2 except for
the post of rule 3. This post is nhow assumed to be
given by {[{ Ny} pub(8): {Nas A}pub(sy]}- The protocol re-
mains occult (the agemt just sends again the first mes-
sage{N,, A}pun(py)) but for the rule 2 and the branch
(Ng, {pub(A)}), our procedure creates an infinite tree as
visualized below. Consequently, our procedure fails to de-
tect occultness of this protocol.

{{Nbv} i{A B}7 [{Nav A}pub(B)]}

backstep
honest (rl2)

honest (r13)
{{Na,y H{A. B}}

db
{[{NaaN’ba B}pub(A)]}
true true
backstep
honest fake
{{Név} I{AB}v [{NavA}pub(B)]} {[NalebvB]}
: €

true

Arbitrary Number of Backsteps. Occultness of the
Otway-Rees protocol is proved using only basic tests, the
proof of the Needham-Schroeder-Lowe protocol needs at

be considered for establishing occultness of the rule (4). most one back step for verifying each occultness obliga-

The proof for the(X, #) branch only needs the basic test

= bnch(...)” and the following proof for the branch
(Ny, {Kap}) requires three back steps.

tion, and the Yahalom protocol is proved using at most two
back steps. In general, given a natural numbgthere is
an occult protocol which requires at leasback steps for



proving occultness. Such a family of protocols is given in

Figure 4. The proof tree for demonstrating occultness of the

rule 2 of this protocol is given as follows; obviously, there
is no deduction requiring fewer back steps.

[A17A27""An', {AlvNa}shr(A)]
back

honest

fake| " fake
(Na}1{A1, A} [{AL Nafenr(a)l
db [A27"'7An7{A1aNa}shr(A)]
true back
honest =

fake

db
true

[{A1, Notshr(a)l

back
honest fake

{Na} 1 {A1, A2} [A1, No]
db ‘ €
true true

Failed Proof Attempts. Lowe [Low96] showed that the
original description of the Needham-Schroeder [NS78] pro-
tocol was flawed. The encoding of this protocol is identical

to the one in Figure 2 except for the post of rule 2. This pr

post is now assumed to be given By N., Ny }pup(a)l}-

leaf is directly connected with the root by an honest edge.

{

Having reached the root of the tree, one applies the rule for
which our algorithm fails.

{Nbv—} i {A7B}

[{NavA}pub(B’)] } L {[{N“’Nb}Pub(A)]}

{H{Na, Ny Youn(a)]} = {1{No}pun()]}

Thus{ Ny }pub(B) ¢ C(Sec({Na, Ny} 1 {A, B'})), and the
protocol is not occult.

6 Discussion

We have developed an automatic search procedure for
proving the occultness of protocol rules and proved its cor-
rectness. If the procedure terminates withie, then the
argument rule is occult. Moreover, occultness of all rules
implies that the protocol is indeed secure. Our procedure
follows the informal reasoning steps in [MR0O0], mecha-
nizations do not require any user intervention, and there is
a visually appealing graphical representation of occskne
oofs.

We have tested our proof procedure on selected protocols

Our search procedure terminates with an incomplete proofffom the the Clark and Jacob survey [CJ97]. Usually, we

for this modified rule.

{[{Naa Nb}pub(A)]}

{N},,,}i{A,B/}, {[NaaNb]}

[{Na, A}pub(57)] }

‘ true

{

false

Using this failed proof attempt, we can show that the proto-
col is indeed not occult. The construction starts at the leaf

labelled with false. Its parent node contains a cast and is
exactly thePre of one of the rules, sayl, of the protocol.
Now, we consider a (partial) run of the protocol where all
the rules preceding in the protocol description are applied
in the given order.

0 B NG, N 1A, B
(INo N} EH{ABY S {[{Na, A g}

Next, we simulate an attack by following the branch from
the false leaf up to its root. The parent node of tli@se

can prove occultness using only a small number of search
space extensions. The Otway-Rees and the Carlson proto-
col, for example, are proved to be secure using only basic
tests, the Needham-Schroeder protocol needs at most one
back step for verifying occultness of each rule and branch,
and the Yahalom protocol needs at most three back steps for
verifying each occultness conditions. We have also given
examples of protocols whose occultness proofs need at least
n back steps for an arbitrary natural number.

Much work remains to be done. In order to deal with
many protocols used in practice, we have to extend our
methods and support protocol features like hashing and
timestamps. The algorithm described here is not a semi-
decision procedure in the sense that occultness is eventu-
ally detected. It may be interesting to investigate sulselas
of protocols which only require a bounded number of back
steps, and for which our algorithm acts as a decision proce-
dure. Also, we do not yet know under what circumstances a
failed proof attempt implies that the protocol is insecure.
An advantage of our method seems to be that it permits
constructing attacks from failed proof attempts. For exam-
ple from the failed proof attempt for the original Needham-
Schroeder protocol in Section 5 we can construct Lowe’s
man-in-the-middle attack. We plan to investigate methods
for constructing such attacks from failed proof attempts.
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A Proof of the Main Lemma

Main Lemma:

If the predicatesearch(P, (Z, K))(Es) holds,
thenoce(P, 7, K;)(Fs, —) holds, too.
Proof : Instead of proving thabee(P, Z, K)(Fs, Ns)
holds, we prove the stronger property

ocestrong(P, Z, K)(Es) defined to hold iff for all
P-configurationg 7, H, C') such that

1. Nonstates(Es) C H and

2. Z € Sec(C)

itis the case tha¥ N Sec(C) # 0 ,. The setNonstates(E;)
includes all non-state events ;. Obviously,
ocestrong(P, Z, K)(Es) impliesoce(P, Z, K¢)(Es, —).

The proof is by induction on the minimum number of back
steps for deriving thatearch(P, 7, Ks)(F5) holds.



Initialization.  If the derivation ofsearch(P, Z, K)(E)
terminates withtrue and if no back steps has been

used, then either(Z,K,) € bnch(Cont(E,)) or
db(FEs, Z, K,) holds. Using basic tests one concludes that
ocestrong(P, Z, K,)(F,) holds in both cases.

Step. Assume thabcestrong(P, Z, K)(Es) holds for ev-
ery search(P, Z, K¢)(Es) with a derivation that uses or
fewer back steps. Furthermore, consider Z, K, and
E, such that the derivation ekarch(P, Z, K, )(E,) termi-
nates withtrue and uses: + 1 back steps, and assume a
P-configuration(1, H, C') such thatNonstates(Es) € H
andZ € Sec(C).

Consequently, the back step terminates withue,
and there exists a\/ € E, and Z € parts(M),
such thathonest(P, Z, Ks)(M) A fake(P,Z, Ks)(M) =
true and the derivation ofhonest(P, Z, K )(M) and
fake(P, Z, K¢)(M) uses at most back steps. Now)M
isin F,, soM is in H. By induction onH there exist two
global stated7,, H, such that

global(P,I)(H,, Hz) & Nonstates(Hy) € H &
M € parts(Cont(Hz)) & M ¢ parts(Cont(Hy)).

contradicts the hypothesid € Book(C)) and M ¢
parts(Cont(H,)), thus M ¢ parts(Cont(H) U I).
ConsequentlyM must have been synthesized, mean-
ing X € fake(Cont(Hy) UT)if M = {X}x orthere
exist My, My such thatVl = M, My and M, M, €
fake(Cont(H,) U I)C fake(Cont(H)UI).

Now, let H' = H U {M,, M>} (respectivelyH’ =

H U{X}). Itis easy to verify thatl, H',C) is still a
P-configuration, and we g€t\V, M, } € H' (respec-
tively {X} € H')andZ € Sec(C).

Assume (without loss of generality) that
7 € parts(My). By definition of fake(I)(Hy, Hy),
search(P, 7, K)({M}) (respectively
search(P, Z,Ks)({X})) holds and its deriva-
tion uses at mostr back steps. Therefore, the
predicate  ocestrong(P, Z, K,)({M1}) (resp.
ocestrong(P, Z, K)({X})) holds. Finally, one
concludes thabcestrong(P, 7, K)(E) holds.

B Proof of undecidability of occultness

Undecidability:

Apply case analysis depending on whether the global exten-

sion is honest or faked.

Casehonest(P)(H,, Hy): There exists an applicable tran-
sitiont € P such that, = Post(t) U (H,\(Pre(t)N
States)); thus, Nonstates(Pre(t)) C H and M €
parts(Cont(Post(t))). Sincehonest(P, Z, K)(M)
reduces tatrue and M € parts(Cont(Post(t))), we
have two cases : eithe¥/ € parts(Cont(Pre(t)))
or search(P,Z, K¢)(Pre(t)) holds. In the first
case, we obtain a contradiction immediatelyf
parts(Cont(Pre(t))) and Pre(t) € H; impliesM €
parts(Cont(H,)). Thus, search(P, Z, Ks)(Pre(t))
holds, and its derivation uses at mastback steps.
Thus,ocestrong (P, Z, K)(Pre(t)) holds. Because of
the factsNonstates(Pre(t)) € H andZ € Sec(C),
it follows that S N Sec(C) = 0. Consequently, the
predicateoccstrong(P, Z, K)(Es) holds.

Casefake(I)(Hy, Hy): By definition of fake, Hy, = H; U
{M'} where M' € fake(Cont(Hy) U I). Since
M € parts(Cont(H,)) andM ¢ parts(Cont(Hy)),
we know thatM € parts(fake(Cont(H,) U I)). Itis
easy to verify that

parts(fake(Cont(H) U I)) =
fake(Cont(H) U T) U parts(Cont(H) UT) .

In addition, M ¢ parts(7) (unlessZ € parts(7), in
which case”Z ¢ Book(C) by choice ofC', which

Itis undecidable wether or not a given protoéol
is occult.

Proof sketch:We encode the reachability problem of Tur-
ing machines in such a way that encoded Turing machine
reaches its final state iff the protocol is not occult.

Let T be a Turing machingy the set of states{ is the
initial state andy; is the final state)y. the tape alphabet (
is the blank symbol), its transitions are of the fogim:; —
g2 az, D,whereq;, g2 € Q,a1,a2 € XandD € {L, R, S}.
The interpretation is : if the machirg is in stateq; and
its head points tai; thenT' changes to state,, replaces
a1 With a3 and moves the head right (i0 = R), left (if
D = L) or remains in the current cell (ib = 5).

Let Agent be a set of agent constants such that

Y UQ C Agent

and such that another special symhat Agent.

The location of the head is designated by placing am
the right of the symbol under the head.

We encode the transitions a; — ¢2 as, R by the rules:

{[{K q1; Xa at, h, b‘ Y}Shr(A)]}g{[{K q2 Xa a2, b’ h‘, Y}shr(A)]}
forallb € &
{{K, ¢, X. ai, h/}shr(A)]}g{[{K a2 X, as, i h}ene(ay] }

and the same rules where respectiv&ly X andY, andY
are omitted.



L andS transitions are encoded in the same way.
Each message is of the forfd K, g, X }«r(a)] Where g
holds for the current state and describes the current tape.
shr(A) is a private key shared between the server 4nd
but it could be any shared key between two agents.
The initialization rule is

0 {ﬂ)\’} {KIA,[{K,QO:ﬁ?h}ShV(‘A)}}

and the “final” rule is

{{K a5, XYene()]} 2 KD

The final state of the Turing machine is reachable iff this
protocol is not occult. Indeedy is revealed iff a message
of the form [{ K, g5, X }hr(4) is SNt (Whergy; is the final
state of the Turing machine) which corresponds to the fact
thatq; is reached.
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