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Abstract

We develop a systematic proof procedure for establishing
secrecy results for cryptographic protocols. Part of the pro-
cedure is to reduce messages to simplified constituents, and
its core is a search procedure for establishing secrecy re-
sults. This procedure is sound but incomplete in that it may
fail to establish secrecy for some secure protocols. How-
ever, it is amenable to mechanization, and it also has a con-
venient visual representation. We demonstrate the utilityof
our procedure with secrecy proofs for standard benchmarks
such as the Yahalom protocol.

1 Introduction

Cryptographic protocols are used to achieve goals like
authentication and key distribution in a possibly hostile en-
vironment. These protocols are notoriously difficult to de-
sign and test, and serious flaws have been found in many
protocols. Consequently there has been a growing inter-
est in applying formal methods for validating cryptographic
protocols. In particular, standard program verification tech-
niques such as model checking, theorem proving, or invari-
ant generation have been found to be essential tools; a recent
overview has been given by Meadows [Mea00].

A popular choice is to use model checking procedures
for debugging purposes by searching for attacks. These
techniques, however, are not directly applicable for veri-
fication, since search spaces usually can not be explored
exhaustively. In contrast, approaches based on theorem
proving techniques aim at mathematical proofs of the de-
sired protocol properties [DS97, Sch98, Pau98, Coh00].
We review the techniques that are most closely related to
our work. Paulson [Pau98] uses an interactive theorem
prover to prove invariance properties by proving that they
are inductive, i.e. they are preserved by the execution of
each and every protocol rule. Domain-specific tactics are

crucial for mechanizing the process of proof construction,
but verifications still require considerable effort and insight
into the workings of the protocol under consideration. Co-
hen’s [Coh00] approach is much more automatic. He con-
structs a first-order invariant from a protocol description,
and uses first-order reasoning for establishing safety prop-
erties. Cohen’s approach is amenable to both hand proofs
and automation. Indeed, he applies his method to verify
the large majority of the benchmark protocols in the Clark
and Jacob survey [CJ97] with only a small amount of user
intervention.

In contrast to the work by Paulson and Cohen we do not
consider safety properties in general, but we restrict our-
selves to the specific case of proving secrecy invariants of
cryptographic protocols; that is, our main interest is in prov-
ing that secrets are not accidentally revealed to unauthorized
agents. Proving secrecy invariants for cryptographic proto-
cols has often been found to be the hardest task in analyz-
ing a protocol [Pau98]. Indeed, secrecy has been shown to
be undecidable even under very weak assumptions on the
protocol [DLMS99], while specialized logics for establish-
ing authentication are usually decidable [Mon99]. Authen-
tication logics depend on assumptions about secrecy, so the
most efficient way to prove authentication may be to use a
technique like ours to prove secrecy, and use a quick deci-
sion procedure to establish authentication once the secrecy
assumptions have been verified.

Our proof technique is to perform inductive proofs,
as advocated by Paulson [Pau98]. To help express se-
crecy goals, we make use of the “spell” events introduced
in [MR00]. However, this paper does not use the trace
model as in [MR00] or [Pau98], but a new state-transition
model similar to the MSR model proposed by Mitchellet
al [CDL+99]. We have found that the Secrecy Theorem
in [MR00] could be adapted to work just as well in this
context. The current model and our use of PVS to perform
inductive proofs with this model were presented at a work-
shop that did not have a published proceedings [RM00]. We



have used this approach mainly for proving secrecy of stan-
dard benchmark protocols such as the Otway-Rees and the
Needham-Schroeder protocol. Dutertreet al [DSS01] used
our techniques for verifying the group management services
of Enclaves [Gon97].

The starting point for this paper is the observation that
secrecy proofs based on the decomposition of the Secrecy
Theorem follow a standard pattern that is amenable to
mechanization, and which also has a convenient visual rep-
resentation. Part of the procedure is to reduce messages to
simplified constituents calledbranches. The core is a search
procedure for establishing secrecy results. This procedure
is sound and automatic but incomplete in that it may fail to
establish secrecy for some secure protocols.

The paper is structured as follows. In Section 2 we re-
view a state-based model for modeling cryptographic pro-
tocols, and we state a suitable security policy together with
a corresponding secrecy theorem as introduced in [RM00].
This theorem reduces secrecy proofs to local proof obliga-
tions on protocol transitions; these obligations are called
occultnessconditions. In Section 3 we develop a charac-
terization of the occultness notion, which is used to initial-
ize our proof procedure. Then, in Section 4 we describe a
search procedure for establishing secrecy results. Moreover,
Section 4 contains a soundness result for this search proce-
dure, and we sketch a convenient graphical representation
for occultness proofs. Section 5 includes some case stud-
ies drawn from the Clark-Jacob survey [CJ97] such as the
Yahalom and the Kao Chow repeated authentification pro-
tocol. We also demonstrate a proof of non-occultness from
a failed proof attempt. Section 6 contains some concluding
remarks.

2 Background

We give an overview of state-based encodings of proto-
cols, a security policy based on the notion of coideals, and a
secrecy theorem for generating local verification conditions.
More detailed descriptions can be found in [MR00, RM00].

Message Fields. The setFields of message fields is made
up of primitive and compound fields. The primitive fields
are those of typesAgent , Key , andNon
e. Keys and
nonces form the setBasi
; these basic fields are the only
types of fields that may be designated as secret, as a protocol
policy goal. Compound fields are constructed by concate-
nation [X;Y ] (often written without brackets) or encryptionfXgK .

As a notational convention, variablesA, B and variants
always stand for agents;K and variants always stand for
keys; andN and variants are always nonces. The reserved
subscript “s” identifies a set, soNs is a set of nonces.

Each agentA has some long-term keys: a public keypub(A), a corresponding private keyprv(A), and a symmet-
ric key shr(A), which is shared betweenA and a designated
server agentSrv . Each keyK has an inverse keyK�1;
in particular,pub(A)�1 = prv(A), prv(A)�1 = pub(A),
while shr(A)�1 = shr(A), as is the case with any sym-
metric keys. Keys generated during a protocol session are
always symmetric keys.

Events and Global States. There are three kinds of
events:message, spell, andstateevents. A message event
is simply a field representing the content of the message.
A spell eventC = S z L 2 Spells , generates thebook, or
session-specific set of basic secretsBook(C) = S, which
are shared among the setCabal(C) = L of agents, theca-
bal.

A state event is of the formQ = An(X) 2 States where
A is a role name,n is a natural number that represents the
step of the protocol, andX = Mem(Q) is a concatenated
field that represents the memory held by the state. We also
write Mem(H) = fMem(Q)jQ 2 H \ Statesg for any
event setH. As a notational convention, we useQ (and
variants) to denote state events, whileM is a message event,
andC is a spell event. The set ofbasic secretsof a spell
consists of its book plus the long-term keys of its cabal:Se
(C) = Book(C) [ ltk(Cabal(C))
The long-term keys are those generated bypub(:), prv(:),
andshr(:).

A global stateis a set (not a multiset) of events. Nota-
tionally, variants ofH are global states or event sets. The
contentof a global state is its set of messages, written:Cont(H) def= H \ Fields
Similarly, the secrets of a global state are obtained from its
spell events.Se
(H) def= [fSe
(C)jC 2 Hg
A basic fieldX is unusedinH if it is neither a part of a field
in the content nor a secret ofH.unused(H) def= fX 2 Basi
 jX 62 parts(Cont(H)), X 62 Se
(H)g
Inductive Relations. parts(S) is the set of all subfields
of fields in the set of fieldsS, including components of
concatenations and the plaintext of encryptions (but not the
keys).analz(S) is the subset ofparts(S) consisting of only
those subfields that are accessible to an attacker. These in-
clude components of concatenations, and the plaintext of
those encryptions where the inverse key is inanalz(S).



; fNa;Nb;Kg�! 8>><>>: fNa; Nb; Kg z fA;Bg;
A1(A;B; Srv);
B1(B; Srv);
Srv1(Srv)

9>>=>>;(0)� fNa; g z fA;Bg
A1(A;B; Srv) � fNg�! �

A2(A;B; Srv;Na);[N;A; fNa; N;Bgshr(A)℄ � (1)8<: [N;A;X℄;
B1(B;Srv);fNb; g z fA;Bg 9=; ;�! (2)�

B2(B; Srv;A;Nb);[N;B;A;X; fNb; N;Agshr(B)℄ �8<: M;
Srv1(Srv);fK; g z fA;Bg 9=; ;�! (3)�

Srv2(Srv);[N; fNa; Kgshr(A); fNb; Kgshr(B)℄ �f[N;X; fNb; Kgshr(B)℄g ;�! f[N;X℄g (4)

whereM def= [N;B;A; fNa; N;Bgshr(A); fNb; N;Agshr(B)℄
Figure 1. Encoding of part of Otway-Rees pro-
tocol.

More precisely,analz(S) is the smallest superset ofS such
thatX 2 analz(S) andY 2 analz(S) if [X;Y ℄ 2 analz(S),
and X 2 analz(S) if fXgK 2 analz(S) andK�1 2analz(S). Finally, synth(S) is the set of fields constructible
from S by concatenation and encryption using fields and
keys inS. It is defined to be the smallest superset ofS
such that[X;Y ℄ 2 synth(S) if X 2 synth(S) andY 2synth(S), andfXgK 2 synth(S) if X 2 synth(S) andK 2 synth(S). The intruder in our model synthesizes faked
messages from analyzable parts of a set of available fields.
This motivates the definitionfake(S) def= synth(analz(S)).
Ideals and Coideals. An ideal I(S) denotes the set of
fields that have to be protected in order not to reveal any se-
crets inS [THG98]. It is defined as the smallest superset ofS such that[X;Y ℄ 2 I(S) if X 2 I(S) or Y 2 I(S), andfXgK 2 I(S) if X 2 I(S) andK�1 62 I(S). The com-
plement of an ideal, the coideal, is denoted byC(S). This
defines the set of fields that are public with respect to the
basic secretsS, i.e., fields whose release would not compro-
mise any secrets inS. Coideals are interesting because they
are closed under attacker analysis; i.e.fake(C(S)) = C(S)
for all primitive fieldsS.

Protocols. A protocol transition t is of the formPre(t) New(t)�! Post(t), wherePre(t) andPost(t) are set
of events andNew(t) is a set of nonces. Such transitions

specify a possible global state change in a way to be ex-
plained below.

Except for an initialization transition, in whichPre(t) is
empty, a transitiont shows a state change for one role. It
may also produce, in the post, a message or a spell but not
both. A primitive field occurring in post messages or state
memory must occur in the messages or state memory of the
pre or among the nonces. This condition is calledregular-
ity, and it implies that no long-term keys are deliberately
introduced into a post message. There is also a restriction
that secrets in a post spell are all inNew(t). (The freshness
of nonces inNew(t) is implied by the definition of global
state transitions given below.)

A protocol is simply a set of protocol transitions. A pro-
tocol specification is a set of rules, where each rule is a
schema defining a set of transitions using terms with free
variables. More formally, a transitiont is an instanceof a
rule rl iff there exists a ground substitution�, defined on
the variables ofrl , such thatt = �(rl).

Protocol rules for the first three messages of the fa-
miliar Otway-Rees [OR87] (OR) and Needham-Schroeder-
Lowe [NS78, Low96] (NSL) public key protocols can be
found in Figures 1 and 2, respectively. Often, as in the
Needham-Schroeder specification, we omit the state events
for brevity when they are not needed for our purposes.

In both protocols, each session is initiated with a spell to
introduce the session-specific secrets and a corresponding
cabal. In addition, the Otway-Rees protocol introduces a
non-secret nonceN in rule 1.

Global State Transitions. Given a protocolP and a set
of initial knowledgeI (of the spy), theglobal succession
relation transforms a stateH to a new stateH 0. A succes-
sion is eitherhonest, i.e. it corresponds to an action by an
agent following the protocol, or it isfakedby the spy.� H 0 is an honest successor ofH, denoted byhonest(P )(H;H 0), if there exists an applicable tran-

sition t in P such thatH 0 = (Hn(Pre(t) \ States))[Post(t).� H 0 is a fake successor of H, denoted byfake(I)(H;H 0), if there exists a fieldX 2fake(Cont(H) [ I) such thatH 0 = H [ fXg.
In the honest case, a transitiont is applicable in H ifPre(t) � H andNew(t) � unused(H). In the fake case,
the spy is restricted to adding only messages that can be in-
ferred from the content of the current state and the initial
knowledge. In either case, we writeglobal(P; I)(H;H 0).
This relation determines a logical transition system with
the empty set of events as its initial state. The set of
reachable states of this transition system is denoted byrea
hable(P; I).



Because protocol spell books introduce only unused se-
crets, it is easy to show that the spell books of different
spells are disjoint.

Lemma 1 (Disjoint Book) If C;C 0 2 H 2rea
hable(P; I) then eitherC = C 0 or Book(C) andBook(C 0) are disjoint.

Secrecy Policy. A spell is compatible with an initial
knowledge setI that does not mention its associated basic
secrets.
ompatible(I) def= fC j Se
(C) \ parts(I) = ;g

Given the spy’s initial knowledgeI, a global stateH
is calledI-discreetif Cont(H) � C(Se
(C)) for all I-
compatible spellsC 2 H; these states are collected in the
set dis
reet(I). Now, a protocolP is called discreet ifdis
reet(I) is an invariant of the transition relation asso-
ciated withP ; i.e. for all I, rea
hable(P; I) is a subset ofdis
reet(I).
Secrecy Theorem. As in [MR00], the Secrecy Theo-
rem serves to split the secrecy proof for a protocol into a
protocol-independent part and a protocol-dependent part.
The protocol-dependent part is expressed by the occultness
property. It says that if the prior state is discreet, the next
message event generated by the protocol does not compro-
mise a secret.

Some more notation needs to be introduced before defin-
ing occultness. AP -configuration is a tuple (I;H;C)
such thatH 2 rea
hable(P; I), H 2 dis
reet(I), C 2
ompatible(I), andC 2 H. Now, a protocolP is said to
beoccult if for all P -configurations(I;H;C) and for each
applicable transitiont in P ,Cont(Post(t)) � C(Se
(C)).
The protocol-independent part of a secrecy proof is the Se-
crecy Theorem.

Theorem 1 (Secrecy Theorem)A protocolP is discreet iff
it is occult.

This theorem reduces secrecy proofs to proving occultness
of individual rules of the protocol. In the case of the Otway-
Rees protocol in Figure 1, for example, we are reduced to
showing occultness of the rules (1),(2),(3), since occultness
holds trivially for rule (0). (The fourth rule is also easy to
handle.) For rule 1 of the Otway-Rees protocol we have to
prove that for all reachable andI-discreet global statesH,
and for all spellsC inH, compatible withI, it follows from
the applicability conditions� fNa; g z fA;Bg 2 H,

; fNa;Nbg�! ffNa; Nbg z fA;Bgg (0)ffNa; g z fA;Bgg ;�! f[fNa; Agpub(B)℄g (1)� fNb; g z fA;Bg;[fNa; Agpub(B)℄ � ;�! f[fNa; Nb; Bgpub(A)℄g (2)f[fNa; Nb; Bgpub(A)℄g ;�! f[fNbgpub(B)℄g (3)

Figure 2. Encoding of Needham-Schroeder-
Lowe protocol.

� A1(A;B; Srv) 2 H, and� N 2 unused(H)
that [N;A; fNa; N;Bgshr(A)℄ 2 C(Se
(C)). To establish
this, we have to check two cases, depending on whetherC
is the spell in the rule or not. If it is, we note thatshr(A) is
in the coideal; in the other case, there is no secret to protect,
because the Disjoint Book Lemma implies thatNa is not
in Book(C). This case split argument is one of the tasks
that are simplified away using the search procedure we will
present.

It is undecidable whether or not a given protocolP is
occult. Undecidability of protocol security is well known,
and has been proved in several different models. See, for
example, [DLMS99] and its references. A proof for this
particular model works by a simple encoding of the reach-
ability problem of Turing machines such that the encoded
Turing machine reaches its final state iff the protocol is not
occult (see Appendix B). Using Theorem 1 it follows that
it is also undecidable whether or not a given protocol is dis-
creet.

3 Branches

Occultness proofs work by case analysis. In prov-
ing occultness of rule 1 of the Otway-Rees proto-
col in Figure 1, for example, one tries to prove that[N;A; fNa; N;Bgshr(A)℄ 2 C(Se
(C)) . Using the def-
inition of ideals we are reduced to showing thatN 2C(Se
(C)), A 2 C(Se
(C)), and fNa; N;Bgshr(A) 2C(Se
(C)) The second case is shown to be true immedi-
ately, since agent names are not elements of ideals. Fur-
thermore, using the definition of ideals, the third case can
be simplified further to the disjunctionshr(A) 2 Se
(C) or[Na; N;B℄ 2 C(Se
(C)). In general, a fieldM is in the
coideal generated bySe
(C) iff for each nonce or keyZ inparts(M), eitherZ is not inSe
(C) orZ is encrypted with
at least one key inSe
(C).

This observation suggests that, instead of examiningM
itself, we examine the basic secrets occurring in it and the



keys protecting them. Abranch is a pair consisting of a
basic field and a set of keys. The following recursion com-
putes the branches occurring in a fieldM .

Definition 1 bn
h(M) is defined asbn
h(M; ;), wherebn
h(N;Ks) = f(N;Ks)gbn
h(K;Ks) = f(K;Ks)gbn
h(A;Ks) = ;bn
h([M1;M2℄;Ks) = bn
h(M1;Ks) [bn
h(M2;Ks)bn
h(fMgK ;Ks) = bn
h(M;Ks [ fKg)
Thus,bn
h([N;A; fNa; N;Bgshr(A)℄) =f(N; ;); (Na; fshr(A)g); (N; fshr(A)g)g:
It turns out that a fieldM is in C(S) if and only if its
branches satisfy a simple condition. The proof is by induc-
tion on the operator depth ofM .

Proposition 1 LetS be a set of basic fields; then:M 2 C(S) iff for all (Y;Ks) 2 bn
h(M):Y =2 S or K�1s \ S 6= ;.
Definition 2 For a protocol P , a branch b = (Y;Ks),Es a set of events, andNs a set of nonces, the pred-
icate o

(P; b)(Es; Ns) is defined to hold iff for allP -
configurations(I;H;C) such that

1. Es � H,

2. Ns � unused(H), and

3. Y 2 Se
(C)
it is the case thatK�1s \ Se
(C) 6= ;. For a transitiont we
write o

(P; b)(t) instead ofo

(P; b)(Pre(t);New(t)).
The following characterization of protocol occultness is a
straightforward consequence of Proposition 1.

Proposition 2 A protocolP is occult iff

1. for all transitionst 2 P ,

2. for all message fieldsM such thatM 2 Post(t), and

3. for all branchesb 2 bn
h(M)
the predicateo

(P; b)(t) holds.

4 A Search Procedure for Establishing Oc-
cultness

Now, we describe a search procedure for establishingo

(P; b)(t) for a given branchb and a transitiont. This
algorithm proceeds by applying somebasic testswhich
are sufficient for establishing that the occultness predicate
above holds. Whenever these tests fail, aback stepis per-
formed. Such a step explores every possibility of how cer-
tain message fields could have been published on the net-
work.

Lemma 2 (Basic Tests)Let b = (Z;Ks) be a branch,Es a set of events, andNs a set of nonces; then:o

(P; b)(Es; Ns) holds if one of the following is true.

1. Z 2 Ns
2. There exists aK 0s such thatK 0s � Ks and (Z;K 0s) 2bn
h(Cont(Es)); in this case we write(Z;Ks) �2bn
h(Cont(Es)).
3. There exists a spellC 2 Es such thatZ 2 Book(C)

and K�1s \ Se
(C) 6= ;; in this case we writedb(Es; Z;Ks).
Note that we employ the obvious extension ofbn
h(:) to

sets of fields. The operator
�2 says that a branch may have

more keys than necessary, which is not harmful, since one
good key is enough.

Given aP -configuration(I;H;C) such that the require-
ments listed in Definition 2 hold, Lemma 2 is proved as
follows. First, consider the basic testZ 2 Ns. SinceNs � unused(H), it follows that Z =2 Se
(C). Thus,o

(P; b)(Es; Ns) holds. Second, assume(Z;Ks) �2bn
h(Cont(Es)) and letK 0s � Ks be such that(Z;K 0s) 2bn
h(Cont(Es)). SinceEs � H andH is I-dis
reet , it
follows thatCont(Es) � C(Se
(C)). Consequently, using
Lemma 1,K 0s�1\Se
(C) 6= ;, and thusKs�1\Se
(C) 6=;. The third part of Lemma 2 is a consequence of the dis-
joint book lemma (Lemma 1).

Consider, for example, rule 2 of the Otway-Rees proto-
col in Figure 1. This rule, denoted byor2, contains a mes-
sage variableX in its pre. Thus,or2 denotes an infinite
set of transitions, and a uniform proof of the occultness of
this family of transitions starts by introducing a symbolic
constantX 0.(N; ;); (N; fshr(B)g) �2bn
h(Cont(f[N;A;X 0℄; fNb; g z fA;Bgg)) ,

it follows that botho

(OR; (N; ;))(or2)



and o

(OR; (N; fshr(B)g))(or2)
hold. Furthermore, since the predicatedb(f[N;A;X 0℄; fNb; g z fA;Bgg; Nb; fshr(B)g) holds,
it follows thato

(OR; (Nb; fshr(B)g))(or2) holds, too.

The occultness proof of the Otway-Rees protocol uses
only basic tests. In general, however, other rules have to be
taken into consideration. Consider, for example, the case(Na; fpub(A)g) 2 bn
h(fNa; Nb; Bgpub(A)) for proving
rule 2 of the Needham-Schroeder-Lowe protocol in Fig-
ure 2; this rule is denoted bynsl2. None of the basic tests
above establishes thato

(NSL; (Na; fpub(A)g))(nsl2)
holds. The purpose of aback stepis to obtain additional
information for applying the basic tests. For each message
eventM in Es, two possibilities have to be taken into con-
sideration: eitherM has been published by an honest agent
following the protocol rules orM was injected by the in-
truder.

Definition 3 (Search) LetP be a protocol,t be a transition
of P , andb be a branch of the form(Z;Ks); then:main(P; b)(t) def= Z 2 New(t) _sear
h(P; b)(Pre(t))sear
h(P; b)(Es) def= b �2 bn
h(Cont(Es)) _db(Es; Z;Ks) _ ba
k(P; b)(Es)ba
k(P; b)(Es) def= (9M 2 Es : Z 2 parts(M))(honest(P; b)(M) ^ fake(P; b)(M))honest(P; b)(M) def= (8t02P;M2parts(Cont(Post(t0))))(M 2parts(Cont(Pre(t0)))) _ sear
h(P;b)(Pre(t0))fake(P; b)(M) def= (8M1;: : :;Mn : [M1;: : :;Mn℄ =M)_Mi(Z 2 parts(Mi) ^ sear
h(P; b)(fMig))
These predicates determine a search procedure in the
usual way. For example,P1 _ P2 is computed non-
deterministically: if the computation ofP1 (or P2) termi-
nates withtrue, then the computation ofP1_P2 terminates
with true. Using these conventions, Definition 3 gives rise
to a nondeterministic proof procedure for establishing oc-
cultness.

Now we outline the proof of soundness for our pro-
cedure. The proof of the main lemma applies induction
on the number of back steps in deducing that predicatesear
h(P;Z;Ks)(Es) holds. A detailed proof can be found
in the appendix.

Lemma 3 (Main Lemma) LetP be a protocol,b be some
branch, andEs a set of of events; then:

If the predicate sear
h(P; b)(Es) holds, theno

(P; b)(Es; ) holds, too.

Altogether, soundness of the search procedure follows from
the Lemmas 2 and 3, and the secrecy theorem (Theorem 1).

Theorem 2 (Soundness)Let P be a protocol. Ifmain(P; b)(t) holds� for all transitionst 2 P ,� for all message eventsM 2 Post(t), and� for all branchesb 2 bn
h(M),
thenP is discreet.

Our method, however, is not complete. If one of the
proof obligations can not be shown to hold, then one may
not necessarily conclude that the protocol is not discreet.
Moreover, there are occult protocols for which our search
procedure does not terminate; such an example can be found
in Section 5.

Let us return to proving occultness of the rulensl2; for
the branchb = (Na; fpub(A)g) the derivation starts as fol-
lows. main(NSL; b)(nsl2)() sear
h(NSL)(b)(ffNbj g z fA;Bg;[fNa; Agpub(B)℄g)() ba
k(NSL)(b)(ffNbj g z fA;Bg;[fNa; Agpub(B)℄g)() honest(NSL; b)(fNa; Agpub(B)) ^fake(NSL; b)(fNa; Agpub(B))
Since only the first rule of the Needham-Schroeder-Lowe
protocol contains a message of the formfNa; Agpub(B) in
its post , honest(NSL; b)(fNa; Agpub(B))() sear
h(NSL; b)(ffNaj g z fA;Bgg)() true
This reduces totrue because of the disjoint book test. Fur-
thermore, fake(NSL; b)(fNa; Agpub(B))() sear
h(NSL; b)(Na; A)() true
since (Na; fpub(A)g) �2 bn
h([Na; A℄). Consequently,
rulensl2 is occult.

Derivations based on the predicates in Definition 3 can
be visualized as search trees. These search trees have set of



events as nodes, the edges are labeled either with a basic test
or with the name of one of the search steps. A leaf istrue if
one of the basic tests succeeds, andfalse if all the basic tests
fail and if there are no more messages in the set of events of
the parent node. Branching corresponds to a conjunction,
and disjunctions are realized by copying derivation trees.
For the rulensl2 and the branch(Na; fpub(A)g), for ex-
ample, the run ofsear
h is visualized as follows.

fake

backstep

f[Na; A℄g
true

disjointbook

honest

true

ffNa; Nbg z fA;Bg; [fNa; Agpub(B)℄g
ffNa; N 0bg z fA;Bgg �2

In general, the search tree generated by the predicates
in Definition 3 may be infinitely branching whenever there
is an infinite set of protocol transitions. However, the set
of honest transitions is usually generated by a finite set of
rules of the formrl = Pre(rl) �! Post(rl), such that
each transitiont of the protocol is obtained by a substitu-
tion �, i.e. Pre(t) = Pre(rl)�, New(t) = New(rl)�, etc.
The remainder of this section is devoted to lifting the results
above from transitions to rules. In this way, we obtain oc-
cultness proof obligations for rules which possibly contain
variables.

The notion of branches has to be extended to include
message fields containing variablesX by adding the casebn
h(X;Ks) = f(X;Ks)g to Definition 1. Now, the
search algorithm in Definition 3 is lifted to this new case
of field variables in branches.

Definition 4 LetP be a protocol,b be a branch, andrl be
a rule; then:

main 0(P; b)(rl) def= 8>><>>: b �2 bn
h(Cont(Pre(rl)))
if b = (Z; ) andZ is a variable;main(P; b)(rl)
otherwise.

The soundness of this extension follows from the following
fact.

Lemma 4 If main 0(P; b)(Pre(rl);New(rl)) holds for allM 2 Post(rl), for all b 2 bn
h(M), then� for all instancest of rule rl ,� for all message eventsM 0 2 Post(t),� for all branchesb 2 bn
h(M 0)
the predicatemain(P; b)(Pre(t);New(t)) holds.

Let b 2 bn
h(M 0) such thatM 0 2 Post(t). If b 2bn
h(M), then the predicatemain(P; b)(Pre(t);New(t))
holds by the definition ofmain 0(P; b)(Pre(rl);New(rl)).
Otherwise, if b = (Z;Ks) comes from an in-
stantiation � of a field variable, there existsX 2 parts(M) such that (X;K1) 2 bn
h(M)
and (Z;K2) 2 bn
h(X�) with Ks = K1 [ K2.
Now, main 0(P; (X;K1))(Pre(rl);New(rl)) holds,

and consequently(X;K1) �2 bn
h(Cont(Pre(rl))),b �2 bn
h(Cont(Pre(rl�))), and finallymain(P; b)(Pre(t);New(t)) hold. This finishes the
proof of Lemma 4.

Theorem 3 LetP be a protocol.
If main 0(P; b)(Pre(rl);New(rl)) holds� for all rules rl 2 P ,� for all message eventsM 2 Post(rl), and� for all branchesb 2 bn
h(M),
thenP is discreet.

; fNb;Kabg�! ffNb;Kabg z fA;Bgg (0); Na�! f[A;Na℄g (1)�fNb; Kabg z fA;Bg;[A;Na℄ � ;�! f[B;fA;Na;Nbgshr(B)g℄ (2)�fNb; Kabg z fA;Bg;[B; fA;Na; Nbgshr(B)℄� ;�! f[fB;Kab;Na;Nbgshr(A); (3)fA;Kabgshr(B)℄gf[fB;Kab;Na;Nbgshr(A);Xg℄ ;�! f[X; fNbgKab ℄g (4)

Figure 3. Encoding of the Yahalom protocol.

; fNag�! ffNag z fA1; A2gg (0)ffNag z fA1; A2gg ;�! f[A1; A2; � � � ; An;fA1; Nagshr(A)℄g (1)f[A1; A2; � � � ; An;fA1; Nagshr(A)℄g ;�! f[fA1; A2; Nagshr(A1)℄g (2)

Figure 4. A protocol which requires at least n
back steps for proving occultness.

5 Examples

In the previous sections, we have already demonstrated
that the Otway-Rees protocol can be proved to be occult us-
ing only basic tests. Likewise, the occultness proof of the



Needham-Schroeder-Lowe protocol requires at most one
back step for each rule and each branch. Here we give
an overview of the proof of Yahalom’s protocol, which re-
quires up to three back steps for proving occultness. More-
over, we demonstrate the incompleteness of our algorithm
with an example of an occult protocol for which the search
procedure is non-terminating. Then, we give an example of
a protocol that requires at leastn back steps in proving oc-
cultness. Finally, we use a failed proof attempt of the orig-
inal Needham-Schroeder protocol to show that it is indeed
not occult.

Yahalom Protocol. This protocol has been studied exten-
sively by Paulson [Pau97]. An encoding of the Yahalom
protocol (without state events) can be found in Figure 3.
Occultness of the initial rule (1) is obvious. For verifying
occultness of rule (2) we have to consider the two branches(Na; fshr(B)g), (Nb; fshr(B)g) of the single message in
the post.

db

true

�2
(Na; fshr(B)g) :�Msg(A++Na)Cast(fNb; Kabg; fA;Bg)�

true

(Nb; fshr(B)g) :�Msg(A++Na)Cast(fNb; Kabg; fA;Bg)�
In verifying occultness of rule (3) four branches have

to be considered. Occultness for the cases(Nb; fshr(A)g),(Kab; fshr(A)g), and(Kab; fshr(B)g) is established using
the disjoint book test, whereas the branch(Na; fshr(A)g)
needs two back steps.

back

fake

fake
true

back

true true

honest

honest

� fNb; Kabg z fA;Bg;[B; fA;Na; Nbgshr(B)℄ �
� fNb; Kabg z fA;Bg;[A;Na℄ �

� fNb; Kabg z fA;Bg;[A;Na℄ �
�2

�2 �2f[A;Na; Nb℄g
f[fA;Na; Nbgshr(B)℄g

Finally, the branches(X; ;) and (Nb; fKabg) have to
be considered for establishing occultness of the rule (4).
The proof for the(X; ;) branch only needs the basic test

“
�2 bn
h(: : :)” and the following proof for the branch(Nb; fKabg) requires three back steps.

db

true

�2f[B;Kab; Na; Nb℄g
back

honest fake

true

db

true

� fNb; Kabg z fA;Bg;[B; fA;Na; Nbgshr(B)℄ �
back

honest (rl2)

fake

� [fB0; K0ab; N 0a; N 0bgshr(A0);fB;Kab; Na; Nbgshr(A)℄ �honest (rl3)

f[fB;Kab; Na; Nbgshr(A)℄g
� fNb;Kabg z fA;Bg;[B; fA;Na; Nbgshr(B)℄ �

f[fB;Kab; Na; Nbgshr(A); X℄g
fake

Altogether, the Yahalom protocol is occult.

Non terminating procedure. We slightly modify the
Needham-Schroeder-Lowe protocol : the encoding of this
protocol is identical to the one in Figure 2 except for
the post of rule 3. This post is now assumed to be
given byf[fNbgpub(B); fNa; Agpub(B)℄g. The protocol re-
mains occult (the agentA just sends again the first mes-
sagefNa; Agpub(B))) but for the rule 2 and the branch(Na; fpub(A)g), our procedure creates an infinite tree as
visualized below. Consequently, our procedure fails to de-
tect occultness of this protocol.

true

�2

true

�2

backstep

fake

true

db

f[Na; A℄gffNa;g zfA;Bgg honest (rl3)

ffN 0b;g zfA;Bg; [fNa; Agpub(B)℄g

ffNb;g zfA;Bg; [fNa; Agpub(B)℄g

f[fNa; N 0b; Bgpub(A)℄g
honest (rl2)

backstep

fakehonest f[Na; N 0b; B℄g
Arbitrary Number of Backsteps. Occultness of the
Otway-Rees protocol is proved using only basic tests, the
proof of the Needham-Schroeder-Lowe protocol needs at
most one back step for verifying each occultness obliga-
tion, and the Yahalom protocol is proved using at most two
back steps. In general, given a natural numbern, there is
an occult protocol which requires at leastn back steps for



proving occultness. Such a family of protocols is given in
Figure 4. The proof tree for demonstrating occultness of the
rule 2 of this protocol is given as follows; obviously, there
is no deduction requiring fewer back steps.

fNag z fA1; A2g
true

db
db [fA1; Nagshr(A)℄

back

�2
truetrue

db
honest fake[A1; Na℄fNag z fA1; A2g

[A1; A2; � � � ; An; fA1; Nagshr(A)℄
[fA1; Nagshr(A)℄

back
honest

fake

true

fake

back
honest

fake

[A2; � � � ; An; fA1; Nagshr(A)℄
fake

Failed Proof Attempts. Lowe [Low96] showed that the
original description of the Needham-Schroeder [NS78] pro-
tocol was flawed. The encoding of this protocol is identical
to the one in Figure 2 except for the post of rule 2. This
post is now assumed to be given byf[fNa; Nbgpub(A)℄g.
Our search procedure terminates with an incomplete proof
for this modified rule.

back

honest fake

true

false

f[fNa; Nbgpub(A)℄g
� fNb; g z fA;B0g;[fNa; Agpub(B0)℄ � f[Na; Nb℄g

Using this failed proof attempt, we can show that the proto-
col is indeed not occult. The construction starts at the leaf
labelled withfalse. Its parent node contains a cast and is
exactly thePre of one of the rules, sayrl , of the protocol.
Now, we consider a (partial) run of the protocol where all
the rules precedingrl in the protocol description are applied
in the given order. ; fNa;Nbg�! ffNa; Nbg z fA;B0ggffNa; Nbg z fA;B0gg ;�! f[fNa; Agpub(B0)℄g
Next, we simulate an attack by following the branch from
the false leaf up to its root. The parent node of thefalse

leaf is directly connected with the root by an honest edge.� fNb; g z fA;Bg;[fNa; Agpub(B0)℄ � ;�! f[fNa; Nbgpub(A)℄g
Having reached the root of the tree, one applies the rule for
which our algorithm fails.f[fNa; Nbgpub(A)℄g ;�! f[fNbgpub(B)℄g
ThusfNbgpub(B) =2 C(Se
(fNa; Nbg z fA;B0g)), and the
protocol is not occult.

6 Discussion

We have developed an automatic search procedure for
proving the occultness of protocol rules and proved its cor-
rectness. If the procedure terminates withtrue, then the
argument rule is occult. Moreover, occultness of all rules
implies that the protocol is indeed secure. Our procedure
follows the informal reasoning steps in [MR00], mecha-
nizations do not require any user intervention, and there is
a visually appealing graphical representation of occultness
proofs.

We have tested our proof procedure on selected protocols
from the the Clark and Jacob survey [CJ97]. Usually, we
can prove occultness using only a small number of search
space extensions. The Otway-Rees and the Carlson proto-
col, for example, are proved to be secure using only basic
tests, the Needham-Schroeder protocol needs at most one
back step for verifying occultness of each rule and branch,
and the Yahalom protocol needs at most three back steps for
verifying each occultness conditions. We have also given
examples of protocols whose occultness proofs need at leastn back steps for an arbitrary natural number.

Much work remains to be done. In order to deal with
many protocols used in practice, we have to extend our
methods and support protocol features like hashing and
timestamps. The algorithm described here is not a semi-
decision procedure in the sense that occultness is eventu-
ally detected. It may be interesting to investigate subclasses
of protocols which only require a bounded number of back
steps, and for which our algorithm acts as a decision proce-
dure. Also, we do not yet know under what circumstances a
failed proof attempt implies that the protocol is insecure.
An advantage of our method seems to be that it permits
constructing attacks from failed proof attempts. For exam-
ple from the failed proof attempt for the original Needham-
Schroeder protocol in Section 5 we can construct Lowe’s
man-in-the-middle attack. We plan to investigate methods
for constructing such attacks from failed proof attempts.
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A Proof of the Main Lemma

Main Lemma:

If the predicatesear
h(P; (Z;Ks))(Es) holds,
theno

(P;Z;Ks)(Es;�) holds, too.

Proof : Instead of proving thato

(P;Z;Ks)(Es; Ns)
holds, we prove the stronger propertyo

strong(P;Z;Ks)(Es) defined to hold iff for allP -configurations(I;H;C) such that

1. Nonstates(Es) � H and

2. Z 2 Se
(C)
it is the case thatS\Se
(C) 6= ; ,. The setNonstates(Es)
includes all non-state events inEs. Obviously,o

strong(P;Z;Ks)(Es) implieso

(P;Z;Ks)(Es;�).
The proof is by induction on the minimum number of back
steps for deriving thatsear
h(P;Z;Ks)(Es) holds.



Initialization. If the derivation ofsear
h(P;Z;Ks)(Es)
terminates with true and if no back steps has been

used, then either(Z;Ks) �2 bn
h(Cont(Es)) ordb(Es; Z;Ks) holds. Using basic tests one concludes thato

strong(P;Z;Ks)(Es) holds in both cases.

Step. Assume thato

strong(P;Z;Ks)(Es) holds for ev-
ery sear
h(P;Z;Ks)(Es) with a derivation that usesn or
fewer back steps. Furthermore, considerP , Z, Ks, andEs such that the derivation ofsear
h(P;Z;Ks)(Es) termi-
nates withtrue and usesn + 1 back steps, and assume aP -configuration(I;H;C) such thatNonstates(Es) � H
andZ 2 Se
(C).

Consequently, the back step terminates withtrue,
and there exists aM 2 Es and Z 2 parts(M),
such thathonest(P;Z;Ks)(M) ^ fake(P;Z;Ks)(M) =true and the derivation ofhonest(P;Z;Ks)(M) andfake(P;Z;Ks)(M) uses at mostn back steps. Now,M
is in Es, soM is in H. By induction onH there exist two
global statesH1, H2 such thatglobal(P; I)(H1; H2)&Nonstates(H1) � H &M 2 parts(Cont(H2))&M 62 parts(Cont(H1)).
Apply case analysis depending on whether the global exten-
sion is honest or faked.

Casehonest(P )(H1; H2): There exists an applicable tran-
sition t 2 P such thatH2 = Post(t)[ (H1n(Pre(t)\States)); thus,Nonstates(Pre(t)) � H andM 2parts(Cont(Post(t))). Sincehonest(P;Z;Ks)(M)
reduces totrue andM 2 parts(Cont(Post(t))), we
have two cases : eitherM 2 parts(Cont(Pre(t)))
or sear
h(P;Z;Ks)(Pre(t)) holds. In the first
case, we obtain a contradiction immediately:M 2parts(Cont(Pre(t))) andPre(t) 2 H1 impliesM 2parts(Cont(H1)). Thus, sear
h(P;Z;Ks)(Pre(t))
holds, and its derivation uses at mostn back steps.
Thus,o

strong(P;Z;Ks)(Pre(t)) holds. Because of
the factsNonstates(Pre(t)) 2 H andZ 2 Se
(C),
it follows that S \ Se
(C) = ;. Consequently, the
predicateo

strong(P;Z;Ks)(Es) holds.

Casefake(I)(H1; H2): By definition offake, H2 = H1 [fM 0g where M 0 2 fake(Cont(H1) [ I). SinceM 2 parts(Cont(H2)) andM 62 parts(Cont(H1)),
we know thatM 2 parts(fake(Cont(H1) [ I)). It is
easy to verify thatparts(fake(Cont(H) [ I)) =fake(Cont(H) [ I) [ parts(Cont(H) [ I) .

In addition,M 62 parts(I) (unlessZ 2 parts(I), in
which caseZ 62 Book(C) by choice ofC, which

contradicts the hypothesisZ 2 Book(C)) andM 62parts(Cont(H1)), thusM 62 parts(Cont(H) [ I).
Consequently,M must have been synthesized, mean-
ingX 2 fake(Cont(H1) [ I) if M = fXgK or there
existM1;M2 such thatM = M1;M2 andM1;M2 2fake(Cont(H1) [ I)� fake(Cont(H) [ I).
Now, let H 0 = H [ fM1;M2g (respectivelyH 0 =H [ fXg). It is easy to verify that(I;H 0; C) is still aP -configuration, and we getfM1;M2g 2 H 0 (respec-
tively fXg 2 H 0) andZ 2 Se
(C).
Assume (without loss of generality) thatZ 2 parts(M1). By definition of fake(I)(H1; H2),sear
h(P;Z;Ks)(fM1g) (respectivelysear
h(P;Z;Ks)(fXg)) holds and its deriva-
tion uses at mostn back steps. Therefore, the
predicate o

strong(P;Z;Ks)(fM1g) (resp.o

strong(P;Z;Ks)(fXg)) holds. Finally, one
concludes thato

strong(P;Z;Ks)(Es) holds.

B Proof of undecidability of occultness

Undecidability:

It is undecidable wether or not a given protocolP
is occult.

Proof sketch:We encode the reachability problem of Tur-
ing machines in such a way that encoded Turing machine
reaches its final state iff the protocol is not occult.

Let T be a Turing machine,Q the set of states (q0 is the
initial state andqf is the final state),� the tape alphabet (℄
is the blank symbol), its transitions are of the formq1 a1 !q2 a2; D, whereq1; q2 2 Q, a1; a2 2 � andD 2 fL;R; Sg.
The interpretation is : if the machineT is in stateq1 and
its head points toa1 thenT changes to stateq2, replacesa1 with a2 and moves the head right (ifD = R), left (ifD = L) or remains in the current cell (ifD = S).

LetAgent be a set of agent constants such that� [Q � Agent
and such that another special symbolh 2 Agent .

The location of the head is designated by placing anh to
the right of the symbol under the head.

We encode the transitionsq1 a1 ! q2 a2; R by the rules:�[fK; q1; X; a1; h; b; Ygshr(A)℄	 ;!�[fK; q2; X; a2; b; h; Ygshr(A)℄	
for all b 2 ��[fK; q1; X; a1; hgshr(A)℄	 ;!�[fK; q2; X; a2; ℄; hgshr(A)℄	

and the same rules where respectivelyX, X andY , andY
are omitted.



L andS transitions are encoded in the same way.
Each message is of the form[fK; q;Xgshr(A)℄ where q
holds for the current state andX describes the current tape.shr(A) is a private key shared between the server andA
but it could be any shared key between two agents.

The initialization rule is; fK;Ng�! �K zA; [fK; q0; ℄; hgshr(A)℄	
and the “final” rule is�[fK; qf ; Xgshr(A)℄	 ;�! f[K℄g
The final state of the Turing machine is reachable iff this

protocol is not occult. Indeed,K is revealed iff a message
of the form[fK; qf ; Xgshr(A) is sent (whereqf is the final
state of the Turing machine) which corresponds to the fact
thatqf is reached.


