
A Generic Security API for Symmetric Key

Management on Cryptographic Devices

Véronique Cortiera, Graham Steelb

aCNRS, Loria, UMR 7503, Vandœuvre-lès-Nancy, F-54500 France cortier@loria.fr
bINRIA Project ProSecCo, 23 Avenue d’Italie, 75013 Paris, France

Abstract

We present the design of a new symmetric key management API for cryptographic
devices intended to implement security protocols in distributed systems. Our API has a
formal security policy expressed in terms of invariants under various threat scenarios, and
proofs of security in the symbolic model. This sets it apart from previous APIs such as
RSA PKCS#11, which are under-specified, lack a clear secuity policy and are often subject
to attacks.

Our design is based on the principle of explicitness: the security policy for a key must
be given at creation time, and this policy is then included in any ciphertext containing
the key. The policy is expressed in terms of a position in a hierarchy of keys and a set
of agents. Our API also contains novel features such as the possibility of insisting on a
freshness check before accepting an encrypted key for import. To show the applicability
of our design, we give an algorithm for automatically instantiating the API commands for
a given key management protocol. We demonstrate the algorithm on a set of symmetric
key establishment protocols from the Clark-Jacob suite. We show that in the restricted
mode of operation where freshness checks are required, some protocols from the test suite
cannot be implemented: precisely those now known to be susceptible to replay attacks.

This paper is an extended version of a paper published at the ESORICS conference
in September 2009. It contains proofs of more fine-grained security properties than the
original paper (for the same API), in particular in the case where some but not all long-term
keys on a particular token are lost to the attacker. Since the original paper was submitted,
another key management API with a security proof has appeared in the literature due to
Cachin and Chandran [4]. This present paper contains a comparison of the two designs
and their security properties, as well as a more detailed comparison to other API designs.

Keywords: Security APIs, key management, PKCS#11, cryptographic devices
2000 MSC: 94A60

1. Introduction

Distributed systems designed to operate in insecure environments are increasingly mak-
ing use of tamper-resistant cryptographic devices such as smartcards and hardware security
modules (HSMs) to implement the endpoints of their protocols. These devices must offer

Preprint submitted to Information and Computation July 18, 2013

an application program interface (API) to their host machines that allows the management
and use of the keys. Since the host machine might in the worst case be executing mali-
cious code, this interface must not only allow access to cryptographic functionality, but
also enforce a policy, i.e. no matter what sequence of commands are called, some security
properties, such as the secrecy of sensitive keys, continue to hold.

The ability of these APIs to enforce their policies has been the subject of formal and
informal analysis in recent years. Open standards such as RSA PKCS#11 [20] and propri-
etary solutions such as IBM’s Common Cryptographic Architecture [6] have been shown
to have flaws which may lead to serious attacks [2, 3, 8, 9, 12, 17]. The situation is exac-
erbated by the fact that these APIs lack a clearly specified security policy, as highlighted
in disputes over what does and does not constitute an attack [14]. All this leaves the
application developer in a very difficult position.

The first contribution of this paper is the design of a new API for key management on
cryptographic devices. Novel features of our proposal include an explicit tagging scheme
for encryptions which makes it possible to enforce a security policy, and an option to
require freshness checks on imported keys. Our scheme explicitly identifies agents for which
cryptographic material is supposed to be used. This is used in the policy: for example,
our API will encrypt data only if the agents that are granted access to the encryption
key are all also granted access to the data. Our design follows the well-known principle of
explicitness. A novel feature is the transportation of the security policy in all encrypted
messages.

The second contribution is the definition of a formal threat model and security policy
for the API, together with proofs of security. Our specifications are based on invariants.
Given different threat scenarios in terms of compromised agents and keys, stronger or
weaker invariants are shown to hold. Our proofs are in an abstract model of cryptography
similar to those used in protocol analysis.

The third contribution is an algorithm showing how to use our API to implement
a symmetric key management protocol, which we demonstrate on all the protocols of a
relevant class in the Clark-Jacob library, to show the applicability of our design.

Related Work. Flaws in key management APIs were first found by Longley and Rigby [17]
and then by Bond and Anderson [2] and Clulow [8]. The use of formal methods by Cortier,
Keighren and Steel [9], Delaune, Kremer and Steel [12] and Bortolozzo, Centenaro, Focardi
and Steel [3] lead to the discovery of another wave of vulnerabilities. There have been fewer
results on proving APIs to be secure. Courant gave a proof, partially mechanised in Coq, of
the security of a variant of the IBM CCA API [11]. Cortier, Keighren and Steel showed the
security of another variant of the CCA [9]. Both these proofs assume a bounded number
of fresh keys. Fröschle and Steel showed how to use abstractions to prove security for an
unbounded number of fresh keys, but this was for a very limited fragment of PKCS#11 [13].
Our proofs in this paper are for unbounded fresh keys and for a much richer API. Since the
original version of this paper was published at ESORICS in September 2009 [10], another
proposal for a key management interface was published by Cachin and Chandran [4]. We
give a detailed comparison between our design and theirs in section 2.

2

Paper Outline. In section 2 we present our API informally and compare it to other designs.
We give our formal model and a formal definition of the API in section 3. In section 4,
we explain our formal modelling of the threat scenario and give the security properties
for which proofs appear in Appendix A. We demonstrate our algorithm for instantiating
the API for a symmetric-key protocol in section 5, giving results on the Clark-Jacob suite.
Finally we give conclusions and further work in section 6.

2. Informal Presentation of the Generic API

In this section, we present the ideas behind our API design and compare it to other
proposals. Formal definitions will follow in the next section.

Handles. We assume a tamper resistant device (TRD) with a limited (but for the moment
unspecified) amount of memory, capable of symmetric key cryptography. The device is to
be deployed to facilitate the execution of symmetric key distribution protocols, and the
subsequent use of the session keys established by these protocols. A user should never have
direct access to the stored secret values but should use the API commands to instruct the
TRD to encrypt and decrypt for him, referring to the secrets by their handles, which are
like pointers or names and are a standard feature of APIs like PKCS#11 [20]. The value
of a handle in general reveals nothing about the value it refers to.

Attributes. Every object (key, nonce) stored on the device has two attributes or pieces of
metadata stored along with it: the first is its level, which may be 0 (public value), 1 (secret
non-key value), 2 (secret session key) or 3 (secret long term key). By session key we mean
a key intended for encrypting and decrypting data: these keys are called data keys in IBM’s
CCA API [6] and encrypt and decrypt keys in PKCS#11 [20]. By long term key we mean
a key intended primarily for encrypting and decrypting other keys. Such keys are called
key encryption keys or KEKs in the CCA and wrap and unwrap keys in PKCS#11.

The second attribute is a set of agents who have access to the object. These attributes
correspond to the (informal) specification given in the NIST standard FIPS 140-2 [15,
§4.7], but note they could quite easily be extended without requiring fundamental changes
to our API or proofs: one could extend the key hierarchy with some higher level keys to
accommodate protocols requiring more levels such as Kerberos [18], or associate a group or
process identifier to an object instead of a set of agents. The important point is that these
attributes provide an ordering, which is what we will use to define and enforce a security
policy. The encryption command will only allow keys (objects of level 2 or 3) to encrypt
objects of a strictly lower level. Furthermore, if the encryption key is associated with a
set of users S then all the objects encrypted must be associated to sets S ′ such that S is
a subset of S ′. In other words, if a secret object is associated to a group of users S ′, then
it should not be made available to any users outside that set by encrypting it under a key
they have access to.

3

Tagging scheme. The encryption command takes two parameters: a handle for the encryp-
tion key, and a list of objects to be encrypted. It then builds an encryption containing
explicit tags identifying the objects and their associated attributes. This tagging scheme
allows the objects to be treated correctly on decryption: public objects can be returned to
the calling program, whereas encrypted keys will be stored on the device along with their
correct metadata.

Freshness checks. An unusual feature of our API is the ability to make freshness checks
on imported keys. If the API is running in its restricted mode, where freshness checks
are required, then every time the decryption command is called on an encrypted packet
that contains a session key, the command will only succeed if a nonce is also contained in
the encrypted package. Furthermore, this nonce must have been generated by the TRD
undertaking the decryption, and must not have been used for a previous freshness test.
This is of course not the only way to guarantee freshness, but it turns out that this simple
test gives us robust security properties under compromised keys (see section 4), as well
as allowing us to implement all the symmetric key management protocols from the Clark-
Jacob protocol suite that use nonces (as opposed to timestamps) for freshness and are not
susceptible to replay attacks (see section 5).

Initialisation. Our API does not contain explicit initialisation commands for loading long-
term keys. We assume that this can be performed in a secure environment by some kind
of personalisation process, as it is referred to in industry.

2.1. Comparison with Existing APIs

The most widely used API for TRDs is the RSA standard PKCS#11, also known as
‘Cryptoki’ [20]. PKCS#11-based APIs have been shown to be vulnerable to a variety of
attacks whereby sensitive keys are compromised [3, 8, 12]. Our API has several features
designed specifically to counter these kinds of threats. Firstly, we insist on an encryption
scheme whereby data from the host machine and secret data from inside the TRD are
tagged differently when encrypted to avoid confusion. PKCS#11 does not do this, and
this confusion is exploited by many of the known attacks, e.g. by using the decryption
function of the API to reveal an encrypted key in clear. Secondly we insist that keys are
stored with specific roles, either as session keys or long term keys, and these roles cannot
be changed. Allowing the roles of keys to change (signified by their attributes encrypt,
decrypt, wrap and unwrap in PKCS#11) is another major source of vulnerabilities in the
Cryptoki API. We store the identities of agents for whom a key is intended to be used inside
the TRD, and include these identities as tags in our encryption scheme. PKCS#11 makes
no such provision: it supports only two user profiles, a normal user and a security officer
who cannot use keys but can e.g. reset the login PIN. Finally, we note that PKCS#11
makes no provision for freshness checks: this would all have to be carried out in client code
running on the possibly insecure host machine.

IBM’s CCA API [6] was designed for a previous generation of TRDs that had limited
memory and yet needed to use many different keys. These ‘working keys’ were stored on

4

the host machine encrypted under a ‘master key’ unique to the device. To identify different
types of working keys, different ‘control vectors’ were XORed against the master key before
encrypting or decrypting the working key. This use of XOR was found to be problematic in
the attacks found by Bond [2]. Nonetheless fragments of the API have been shown secure
by Cortier, Keighren and Steel [9]. However, this design again contains no support (within
the TRD) for multiple users, and no freshness tests.

A recent article by Cachin and Chandran of IBM research, published since the first
version of our paper was submitted, proposes a new API for the next generation of IBM
products [4]. This API is designed for a rather different scenario from ours: a single TRD
is assumed, with a large memory (e.g. a central key server for an organisation). Multiple
users are explicitly supported: each stored key has associated access control rules for each
user. Instead of requiring keys to be given a type, keys are assigned a type based on
history. For example, when a key is used for the first time for wrapping, it becomes a key
of wrap/unwrap type, and can no longer be used for any other operation such as encryption
or decryption. Furthermore, dependencies between keys created by e.g. wrapping one key
under another are explicitly tracked with tables of ancestors and dependents. These tables
are used to enforce a security policy. For example, if key k has been read by user a, then
a can only wrap key k′ under k if he also has rights to read key k′, since the wrapping
operation will reveal the key to him.

Cachin and Chandran’s API does not include provision for making freshness checks,
but in their restricted scenario where keys are not to be shared between devices, these do
not seem necessary. Their security properties are weaker than ours in one sense, in that
they do not allow key corruption, but stronger in another, in that their proofs are in the
cryptographic style where the attacker is an arbitrary polynomial time probabilistic Turing
machine, whereas ours is restricted to a certain set of operation in the abstract model.
However, their assumptions on the encryption and decryption algorithms are standard
(indistinguishability under adaptive chosen ciphertext attack, or IND-CCA2) and it seems
likely that though there is not yet a ‘soundness’ result suitable for symbolic models of key
management APIs, showing that proofs in the symbolic model correspond to proofs in the
cryptographic model, such a proof under standard assumptions could be made for our API
(cryptographically awkward constructs such as key cycles are avoided by the hierarchy on
key types). The Cachin and Chandran API also includes some operations not present in
our API, for example encryption and decryption (but not wrapping and unwrapping) using
asymmetric keys. We feel these could easily be added to our design if necessary.

The essential differences between the designs are in the key usage policy, and stem from
the different scenarios in which the interfaces are expected to be deployed: we expect mem-
ory on our devices such as smartcards, SIM cards, USB keys etc. to be relatively restricted,
hence we cannot store history of operations as Cachin and Chandran do. Furthermore,
we expect the same keys to be stored on several different devices with no shared memory,
hence we cannot rely on an up-to-date log. This constrains us to demand that the usage
policies for the keys, given by the key level and the set of agents, are given at key creation
time and are immutable. Cachin and Chandran assume a single server with a relatively
large secure memory which is the only place where keys will reside, hence they can base

5

their security on the usage history of a key offering more flexibility. It seems clear that a
complete solution will require some limited resource devices and some larger servers, hence
combining our ideas would be an interesting future project. We comment further on this
in section 6.

3. Formal Model and description of the API

We present our formal model in the first two subsections. We then formally describe
the behavior of our API within our model. The reader keen to see the description of the
API with no interest in formal models may however go directly to Section 3.3 and skip the
formal definitions provided in Figure 1.

3.1. Syntax

Messages are represented using a term algebra. We assume a finite set of agents Agent
and countably infinite sets of nonces Nonce, keys Key, and other atoms Text. We also
assume a countably infinite set of variables Var, among which we distinguish a set VarKey
of variables of sort key and a set VarNonce of sort nonce.

Keyv ::= Key | VarKey

Noncev ::= Nonce | VarNonce

Msg ::= Agent | Text | Var | {Msg}Keyv | 〈Msg, Msg〉
Handle ::= hα

a (Nonce, Msg, i, S)

where i ∈ {0, 1, 2, 3}, S ⊆ Agent, a ∈ Agent, α ∈ {r, g}. The set Keyv denotes both keys and
key variables. Similarly, the set Noncev denotes both nonces and nonce variables. Terms
of sort Msg are built from Keyv, Noncev, Text and Agent using encryption and pairing.
The term {m}k represents the message m encrypted by the key k while the term 〈m1, m2〉
represents the concatenation of the two messages m1 and m2. We may write t1, t2, . . . , tn
instead of 〈t1, 〈t2, 〈. . . , tn〉 . . .〉〉. A substitution θ = {x1 7→ t1, . . . , xn 7→ tn} is a function
that replaces variables by terms. The application of a substitution θ to a term t is denoted
by tθ. The positions of term t are defined as usual and t|p denotes the term at position
p in t. For example, the set of positions of the term t = {〈N1, N2〉}K is {ε, 1, 1.1, 1.2, 2}
where ε denotes the root position and t|1.2 = N2.

The API does not give direct access to secret messages but provides the user with a
handle that can be used later to indicate to the API to use a specific message. A handle
hα

a (n, m, i, S) represents a reference for a message m of security level i stored on the TRD
belonging to a (each TRD is associated with a single user). Note that in practice, a handle
is typically a pointer to a key and its attributes. Here, we use a composed term to represent
handles in order to make explicit the memory contents pointed to by the handle. The nonce
n is a special kind of nonce that we will call a ‘handle nonce’ that appears only in the first
argument of h terms, and serves in the model to avoid confusion between different handles
that refer to the same data. The set S represents the set of users that are allowed to access
to m. By convention, the special constant All will indicate public data.

6

The label α distinguishes the handles corresponding to values m generated by the API
(α = g) from values m received by the API (α = r). This distinction allows the API to
check for freshness. The values stored inside the TRD will typically be nonces or keys.
However, in order to reflect the inability of an TRD to check whether an arbitrary bitstring
is a key or not, we a priori allow any message to be stored inside the TRD. As explained
in Section 2, the security level i can take four values:

• 0: public data (e.g. a public nonce used for freshness purpose)

• 1: secret data that are not used for encryption (typically nonces)

• 2: session keys

• 3: long term keys

Note that the security level represents the intended level of security. The goal of the API
is to ensure that (typically) secret data are not revealed. In particular, public data should
be accessible to anyone. In what follows, we may write m, 0 instead of m, 0, All, to indicate
that m is of level 0 and accessible to all users.

Terms of sort Msg are called messages while terms of sort Handle are called handles.
We denote by {x1 7→ t1, . . . , xk 7→ tk} the substitution σ that replaces the variable xi with
the term ti. σ is well-sorted if ti is of the same sort as xi. The domain of σ, denoted by
dom(σ) is the set {x1, . . . , xk}. The application of a substitution σ to a term t is denoted
by tσ. In what follows, we only consider well-sorted substitution.

We consider the set P = {Pa | a ∈ Agent ∪ {int}} of predicates. Pa with a ∈ Agent
represents the knowledge of an agent a. The predicate Pint is a special predicate that
represents the knowledge of the attacker.

3.2. Model

Our model is a state-based transition system.
A rule that describes a possible evolution of the system is an expression of the form

Pi1(u1), . . . , Pik(uk)
N1,...,Np
=⇒ Pj1(v1), . . . , Pjl

(vl)

where the ui, vi are messages or handles possibly with variables, the Ni are variables and
i1, . . . , ik, j1, . . . , jl belong to Agent ∪ {int}. Such a rule represents the fact that when
the API ip are given up then the API jp output vp. Examples of API rules are given in
Section 3.4.

An important example of rules is the following set ATTACKER of rules that represents
the ability of an attacker to pair and project and to encrypt and decrypt when he knows
the key.

7

Pint(x), Pint(y) ⇒ Pint(〈x, y〉) Concatenation
Pint(〈x, y〉) ⇒ Pint(x) Projection
Pint(〈x, y〉) ⇒ Pint(y) Projection

Pint(x), Pint(y) ⇒ Pint({x}y) Encryption
Pint({x}y), Pint(y) ⇒ Pint(x) Decryption

(INTRUDER)

A state of our execution model is the current knowledge of the attacker and the users.
It is formally represented by a family {Sb | b ∈ Agent ∪ {int}} where int is a special index
representing the attacker. The Sb are sets of messages and handles. Given a family S of
sets and an index b ∈ Agent ∪ {int}, we denote by Sb the set Sb of S indexed by b. The
global state of the system evolves following the rules. Given a set of rules R, we say that
a state S is accessible in one step from a state S ′, denoted by S ⇒R S ′ if there exists a

rule of the form Pa1(u1), . . . , Pak
(uk)

N1,...,Np
=⇒ Pb1(v1), . . . , Pbl

(vl) of R and a substitution θ
such that

• uiθ ∈ Sai
for any 1 ≤ i ≤ k;

• Njθ are fresh nonces (that do not appear in S);

• S ′ is the smallest family such that Sb ⊆ S ′b for any b ∈ Agent ∪ {int} and viθ ∈ S ′bi

for any 1 ≤ i ≤ l.

⇒∗
R denotes the reflexive and transitive closure of ⇒R. We may omit R when the set

of rules is clear from the context. Note that the arrow ⇒ is used here in two different
contexts with different meanings: between two states, S ⇒ S ′ denotes a transition, while
in the intruder and protocol rules, it is part of the syntax to describe the rules.

Interestingly, we retrieve the usual deducibility notion (i.e. what an attacker can com-
pute from a set of messages) by saying that a term m is deducible from a set of terms
S, which is denoted by S ` m, whenever there exists S ′ such that S ⇒∗

ATTACKER S ′ and
m ∈ S ′int where S is defined by Sa = ∅ for any a ∈ Agent and Sint = S.

3.3. Formal Definition of the API

Our generic API is fully specified by the family of rules given in Figure 1 using the
language of our formal model defined in section 3.2. The set of all the rules is denoted by
API. We explain the three kinds of commands of our API with informal pseudocode.

Secure and Public Generate. The API allows a user (e.g. an agent acting in a protocol)
to generate a new secret nonce or key of security level i ∈ {1, 2} for a group S ⊆ Agent of
agents. The level and group are given as inputs to the command. Concretely, it generates
both a nonce or a key K and a handle, it returns only the handle to the user and binds the
handle to the newly generated object K, the key metadata i and S, and to the Boolean
flag g that indicates that the data K has been generated locally.

Additionally, the API allows the user to generate a public value of security level 0, in
which case it returns both a handle to the object and the value itself.

8

N,K⇒ Pa(h
g
a(N, K, i, S)) i ∈ {1, 2} (Secure Generate)

N,K⇒ Pa(K), Pa(h
g
a(N, K, 0, All)) (Public Generate)

where N ∈ Noncev and K ∈ Noncev if i = 1, K ∈ Keyv otherwise.

Pa(h
α
a (N, K, i0, S0)), Pa(m1), . . . , Pa(mp)⇒ Pa({m′

1, . . . ,m
′
p}K) (Encrypt)

where

• α ∈ {r, g}, p ∈ N, a ∈ S0 ⊆ Agent, i0 ∈ {2, 3}, N ∈ Noncev, K ∈ VarKey;

• m′
j = mj, 0, All if mj ∈ Var is a variable.

• m′
j = Kj, ij, Sj with ij < i0 and S0 ⊆ Sj if mj ∈ Handle is a handle of the form

h
αj
a (Nj, Kj, ij, Sj) with Nj ∈ Noncev and Kj ∈ VarKey.

Pa(h
α
a (N, K, i0, S0)), Pa({m1, . . . ,mp}K),

⋃
j∈L

Pa(m
′
j)

N1,...,Np⇒
⋃
j /∈L

Pa(m
′
j)

(Decrypt)

where

• L ⊆ {1, . . . , p}, α ∈ {r, g}, p ∈ N, a ∈ S0 ⊆ Agent, i0 ∈ {2, 3}, K ∈ VarKey,
N, N1, . . . , Np ∈ VarNonce;

• for any j ∈ L, m′
j = hg

a(Nj, Xj, 0, All) if mj is of the form Xj, 0, All and m′
j =

hg
a(Nj, Xj, ij, Sj) if mj is of the form ij, Sj, Xj with ij ≥ 1 and Xj ∈ Var, Nj ∈

Noncev.

• for any j /∈ L, m′
j = Xj if mj is of the form Xj, 0, All (data of security level 0

are given to the user), Xj ∈ Var and m′
j = hr

a(Nj, Kj, ij, Sj) if mj is of the form
Kj, ij, Sj with Nj ∈ Noncev, Kj ∈ VarKey, ij ≥ 1, ij < i0 and S0 ⊆ Sj.

Note that the rules are parametrized by sets S, S0, S1, . . . , Sn which can be any subset
of Agent.

Figure 1: Formal Description of API rules

Given a random generation function RGenerate, and input i, S, the algorithm functions as
follows (if i = 0 then S is automatically set to All)

1. K ← RGenerate, N ← RGenerate

2. store N 7→ (K, i, S, TRUE)

3. if i = 0 return N, K else return N
9

The idea of storing a public value securely on the TRD is that this will allow the API
to ensure it is only used once to guarantee freshness of session keys. This is particularly
important when implementing protocols where a fresh session key received inside an en-
crypted packet should be accepted only if the packet also contains a (fresh) nonce sent at
a previous step of the protocol. We will see these freshness tests indeed allow to securely
implement protocols in section 4.3, offering a protection against replay attacks.

Encrypt. The encryption command allows the user to encrypt a mixture of public data,
level 1 data (i.e. nonces or other secrets), and level 2 data (session keys). This the user
does by first supplying the handle for the encryption key, and then for all the objects
to be encrypted m1 , . . .mn , the user supplies either the handle or (in the case of level 0
data) the value itself. All encrypted data must be of a strictly lower security level than
the encryption key used, meaning that session keys (level 2) can only be encrypted under
long-term keys (level 3). Additionally, for every object stored on the TRD that will be
included in the encrypted payload, the set S of agents associated with that object must
be a superset of the set of agents associated with the encryption key. The rationale is that
by encrypting the data under a key associated with a list of agents S ′, we are effectively
making that data available to those agents, so we should only make data available to agents
who are supposed to have access to it. In the encrypted packet created by the API, each
piece of data to be encrypted is tagged with both its security level, and with the list of
agents allowed access to it. The API then returns the encrypted value.

Given input N and plaintexts m1, . . . ,mn, the algorithm functions as follows

1. (K, i, S,) ← N % the API retrieves the data associated to N

2. For each mj, case mj of
(K ′, i′, S ′,) ← mj: % mj refers to some data stored on the TRD

if (i′ < i) and (S ⊆ S ′) then m′
j ← (K ′, i′, S ′) else break

m′
j ← (mj, 0, All) otherwise

3. return encrypt(K; m′
1, . . . ,m

′
n) % the m′

j are encrypted with K.

Decrypt. On receiving a ciphertext, a user can call the decrypt function to have it deci-
phered. The user supplies the encrypted packet and the handle for the decryption key. The
API works through the packet. For each decrypted object m1 , . . . ,mn , the API examines
the tags first and makes the same checks as are made for encryption: the level i must be
strictly lower than the security level of the key, and the set S must be a superset of the
set S ′ associated with the decryption key. It may seem redundant to repeat the checks
which were made on encryption, but it is vital to limit the loss of security in the event
of a key becoming compromised. For each object the API returns either a handle to the
object which is now stored on the TRD (when the object is level 1 or 2), or the value of
the object itself (when it is of level 0).

There is one further detail to the decryption rule. The user can give a set of indexes
L and corresponding handles for each index. These handles should point to objects of
security level 1 or 0 and are to be used as test values. Note that the test handles must
have the g superscript, i.e. they must point to values generated on the device receiving the

10

keys. The set L is treated as the empty set when not provided by the user. The decryption
command will then only succeed if all of these tests are passed, i.e. values identical to
those pointed to by the test handles are found in the ciphertext. This testing behaviour is
vital for avoiding replay attacks, as we will show in section 4.3.

Given input N , L and ciphertext C, the algorithm functions as follows. Note that the
abort instruction breaks out of the whole algorithm, not just the current step, and returns
a single identical error message in all cases.

1. (K, i, S,) ← N % the API retrieves the data associated to N

2. if (i > 1) m1, . . . ,mn ← decrypt(K; C) else abort

3. For each mj case mj of
(X, 0, All) and (j, N ′) ∈ L: % the public value X has to be checked for equality

(a) (K ′, i′′, S ′′, B) ← N ′

(b) if i′′ 6= 0 or S ′′ 6= All or B 6= TRUE or X 6= K ′

abort
(c) m′

j ← ∅
(X, 0, All): m′

j ← X % the public value X is simply decrypted
(X, i′, S ′) and (j, N ′) ∈ L: % the private value X has to be checked for equality

(a) (K ′, i′′, S ′′, B) ← N ′

(b) if i′′ 6= i′ or S ′′ 6= S ′ or B 6= TRUE or X 6= K ′

abort
(c) m′

j ← ∅
(X, i′, S ′,): % the private value X has to be decrypted and stored on the TRD

if (i′ < i) and (S ⊆ S ′) then

(a) N ′ ← RGenerate
(b) store N ′ 7→ (X, i′, S ′, FALSE)
(c) m′

j ← N ′

else break
4. return (m′

1, . . . ,m
′
j)

Note that our API never performs explicit nested encryption nor decryption in a single
command. However, our API does allow a message to be sent that contains nested encryp-
tion. This occurs, for example, when the Encrypt command is called on a public message
(of level 0) that is already a ciphertext.

3.4. Using the API

We now show how the API’s commands can be used to implement a simple protocol
from the literature, the Carlsen’s Secret Key Initiator Protocol [5, Figure 2]

1. A → B : A,Na
2. B → S : A,Na,B ,Nb
3. S → B : {Kab ,Nb ,A}Kbs

, {Na ,B ,Kab}Kas

4. B → A : {Na ,B ,Kab}Kas , {Na}Kab
,N ′

b

5. A → B : {N ′
b}Kab

11

The aim of the protocol is to establish a fresh session key Kab (that is, of security level
2) for agents A and B using a key server S. In the first message, A sends her name and a
fresh nonce to B. In message 2, B forwards these values together with his own fresh nonce
to the server S. The server generates Kab and encrypts it first for B, under B ’s long term
key Kbs, in a packet together with his nonce and A’s name, and then for A, under her long
term key Kas, together with her nonce and B ’s name. The server sends both packets to
B. In message 4, B forwards to A her encrypted packet, A’s nonce Na encrypted under
the session key Kab, and a further fresh nonce N ′

b. In message 5, A returns this nonce
encrypted under Kab. Now both A and B should accept Kab as the session key.

To implement this protocol using our API, A should initially have a handle
hr

A(N ′
Kas

, Kas, 3, {A, S}) to the key Kas of level 3. We will therefore assume that any
initial state S is such that hr

A(N ′
Kas

, Kas, 3, {A, S}) ∈ SA.
The agent A can execute its first protocol rule by using the following API command:

N,Na⇒ PA(Na), PA(hg
A(N, Na, 0, All)) (Public Generate)

where N, Na are nonce variables. A runs this command with no input and obtains both
a fresh (public) nonce Na and a handle hg

A(N, Na, 0, All) for it. N is a fresh value that
allows to distinguish between several handles pointing to the same value Na. Intuitively,
it corresponds to the fact that the API has to generate a fresh new handle.

A’s second step in the protocol (rule 5) can also be performed using the API’s com-
mands. Upon receiving a message of the form {Na, A,Kab}Kas , {Na}Kab

, N ′
b, A can split it

into three parts x1, x2 and x3. Intuitively, x1 should correspond to {Na, b, Kab}Kas , the part
x2 should correspond to {Na}Kab

and x3 should correspond to N ′
b. Then A can decrypt x1

using the following decryption command (with L = {1}, that is the first component should
be checked):

PA(hr
A(N ′

Kas
, Kas, 3, {A, S})), PA({Na, 0, y, 0, x, 2, {A, B, S}}Kas),

PA(hg
A(N, Na, 0, All))

N ′
⇒ PA(y), PA(hr

A(N ′, x, 2, {A, B, S}))
(Decrypt)

where N, Na, N
′
kas, Kas, x, y are variables. Recall that m, 0 is a notational convention for

m, 0, All. By applying this command to the entries hr
A(N ′

Kas
, Kas, 3, {A, S}) (the handle

referring to Kas), x1 (the first component of the received message), and hg
A(N, Na, 0, All)

(the handle referring to Na), A can check that y is equal to B and receives a handle
hr

A(N ′, x, 2, {A, B, S}) referring to some value x that should correspond to the inside key
Kab. Then A can decrypt x2 using the following decryption command (with again L = {1},
that is the first component should be checked):

PA(hr
A(N ′, Kab, 2, {A, B, S})), PA({Na, 0}Kab

), PA(hg
A(N, Na, 0, All))⇒ (Decrypt)

where N, Na, N
′, Kab are variables. Note that this rule has no right-hand side: the agent

does not get anything by applying this command, it is instead used as a validity check.

12

Indeed, if the command succeeds applied to the entries hr
A(N ′, x, 2, {A, B, S}) (the handle

that should correspond to Kab), x2 (the second component of the received message), and
hg

A(N, Na, 0, All) (the handle referring to Na), then the agent A knows that the second
component x2 indeed corresponds to {Na}Kab

. Then A can build her message for B by
using the following encryption command.

PA(hr
A(N ′, Kab, 2, {A, B, S})), PA(x3)⇒ PA({x3, 0}Kab

) (Encrypt)

where N ′, Kab are variables.
The steps of principles B and S can similarly be implemented by our API.

4. Security of the API

Recall that our API is designed to be used on a device which may sometimes be con-
nected to a corrupted host machine, and sometimes to a ‘clean’ machine. When all ma-
chines involved in a run of a protocol are ‘clean’ the formal threat model reduces to the
so-called Dolev-Yao model: all network traffic goes through the attacker, but computa-
tions on honest users’ machines remain secure. In this case, our API merely implements
the protocol, and does not provide extra security. We are interested in what guarantees
our API offers when one or more of the machines involved in a protocol run are under the
control of an attacker. We will state and prove security properties for a certain group of
users H, called by convention honest agents. These are agents whose host machine may
be controlled by the attacker, but whose TRD is intact. Other users not in H are called
compromised. The attacker not only controls the host machine but also can read the con-
tents of the TRD of compromised users (i.e. he has defeated the tamper-resistance, see
Figure 2). H is assumed to be a fixed set in the remainder of the paper.

If the attacker controls a host machine then all the public data on the machine (level 0
terms in our model) are assumed to be lost. We want to show that secret terms (level ≥ 1)
on honest users’ TRDs remain secret. We do this by means of three security invariants. In
the first (called Sec below), we show that secret terms which are stored along with a set
of users S that is a subset of H remain secret from the attacker. In the second we assume
that an honest user may lose some, but not all, of his secret terms (perhaps by a side
channel attack on specific keys, for example). In this case we show that other keys stay
secure unless they are of strictly lower security level and are stored for a set of users larger
than or equal to the lost keys (SecDegree). Finally, we assume the attacker is able to
obtain some short term keys (level 2) and secret nonces (level 1), and show that provided
the honest users refresh their TRDs in a way we will define, newly established session keys
will be secure (SecFresh).

Intuitively, all these properties hold because of the tagging scheme used in the encryp-
tion and the ordering on this scheme enforced by the encryption and decryption rules. This
ensures that even if a key is compromised, the damage the attacker can do is limited. He
cannot, for example, re-import a compromised key via the decrypt command and give it
a higher level l or a smaller set S, since to do so would require prior knowledge of another

13

Agent
Compromised

Agent
Compromised

Network

Attacker
control

TRD

TRDTRD

TRD

TRD

TRD

Honest
Agent

Honest
Agent

Honest
Agent

Honest
Agent

Figure 2: Threat model. The attacker controls the network, all machines, and has obtained access to the
memory of some compromised agents’ TRDs

key that is itself already higher in the hierarchy described by the levels l and the sets of
agents S. Thus he is limited to the discovery of keys which are lower in the hierarchy than
the compromised key. Note that a more refined ordering could be used to limit further the
consequences of key compromise, but we leave this for future work.

We first give a precise formal model of the threat scenario. The attacker has access to
the machines of all users and to the long term secrets (i.e. the contents of the TRD) of
the compromised users. The only trusted secure parts are the secure storage components
(TRDs) of the honest users, managed by the API. This can be easily modeled by adding
the following set CONTROL of rules

Pa(x) ⇒ Pint(x)
Pint(x) ⇒ Pa(x)

Pb(h
α
b (x, y, i, S)) ⇒ Pint(y)

(CONTROL)

for any a, b ∈ Agent such that b /∈ H, i ∈ {1, 2, 3}, α ∈ {r, g} and S ⊆ Agent. The
first and second rules model the fact that even honest agents may plug their TRD in to
possibly compromised machines. Thus the attacker may learn anything an agent knows
(first rule), even for the honest ones, and may try to communicate with any honest API
(second rule). Intuitively, agents shall not store sensitive information on their computer
as sensitive information should be stored on TRD. Of course, the attacker is not given
access to the content of the TRD of honest agents. In contrast, the last rule indicates the
fact that the attacker is given any value that may be stored in a TRD of a compromised
agent. Given a state S of our execution model and by abuse of notation, we write t ∈ S
(resp. S ` t) instead of t ∈

⋃
b∈Agent∪{int} Sb (resp.

⋃
b∈Agent∪{int} Sb ` t). The fact that the

attacker has access to the local states of users, even honest ones, models the fact that the
attacker may have corrupted honest users’ machines. Of course, this does not give him
access to the keys stored in the TRD.

14

4.1. Security for honest users

When the API is initialized, keys of level 3 are generated and distributed between the
secure components managed by APIs and users are given handles to these keys. These
keys are initially unknown to the attacker. Thus we say that a state S is initial if Sint ⊆
Agent ∪ Nonce ∪ Key is a set of atomic messages (that is only constant terms, typically
nonces, keys, or agent names) and if for any a ∈ Agent, the set Sa only contains handles
of the form hα

a (n, k, i, S) with n ∈ Nonce, k ∈ Nonce ∪ Key and such that

• n, k do not appear in Sint,

• hα
a (n, k, i, S) ∈ Sa, hα′

b (n′, k, i′, S ′) ∈ Sb, a, b ∈ H imply i = i′ and S = S ′: honest
tokens are consistently set up.

The security of the API can be expressed as follows: given a state S of the system,
secret data of honest users should not be known to the attacker. Secret data of honest
users are values k for which there are handles of the form hα

a (n, k, i, S) where S is a subset
of honest users. This is reflected by the following formula:

∀a ∈ H,∀x, y ∈ Msg,∀i ∈ {1, 2, 3},∀α ∈ {r, g},∀S ⊆ H S ` hα
a (x, y, i, S)⇒ S 6` y (Sec)

The formula Sec states that whenever the system contains a handle hα
a (x, y, i, S) for a

value y and a set S of honest agents, then y is guaranteed to be secret.
We can show that our generic API satisfies the security property Sec as the API is

correctly initialized. This is an important feature since it guarantees confidentiality of
sensitive data for our API even if the attacker has control of all honest users’ machines.

Theorem 1. Let S0 be an initial state. Then for any state S, accessible from S0, that is
S0 ⇒∗

API∪ATTACKER∪CONTROL S, we have that S satisfies property Sec.

Proof: (sketch) We first start by adding more power to the attacker, providing him an
immediate access to any value m stored on a compromised device and providing him access
to any value m for which there exists a handle hα

a (n, m, i, S) where some participant of S is
compromised, even if a is honest, meaning that the value m is stored on a non-compromised
TRD. Formally, we write S `∗ t if⋃

b∈Agent∪{int}

Sb ∪ {m | hα
a (n, m, i, S) ∈ S, S 6⊆ H, a ∈ Agent}

∪ {m | hα
a (n, m, i, S) ∈ S, a /∈ H} ` t (Definition of `∗)

We then consider a stronger version of property Sec.

∀a ∈ H,∀x, y ∈ Msg,∀i ∈ {1, 2, 3},∀α ∈ {r, g},∀S ⊆ H

S `∗ hα
a (x, y, i, S)⇒ S 6`∗ y and y ∈ Key ∪ Nonce (Sec*)

15

Intuitively, the property Sec* ensures in addition to Sec that values stored for honest
agents are always of type Nonce or Key, and are non-deducible, even for the stronger
version of deducibility `∗.

We show in Appendix A that Sec* is invariant under applications of the rules of API∪
ATTACKER ∪ CONTROL. Our proof requires proving that the three following properties
are also invariant:

∀u, k ∈ Msg,S `∗ {u}k ⇒ S `∗ k or

∃n ∈ Msg,∃S ⊆ H,∃i ∈ {0, 1, 2, 3},∃a ∈ H,∃α ∈ {r, g}, s.t. S `∗ hα
a (n, k, i, S)

∃m1, . . . ,mp ∈ Msg,∃i1, . . . , ip ∈ {0, 1, 2, 3},
∃S1. . . . , Sp, s.t. u = i1, S1, m1, . . . , ip, Sp, mp, and ∀j, S ⊆ Sj, and

∀ij ≥ 1, mj ∈ Key ∪ Nonce and

∃nj ∈ Nonce,∃b ∈ H,∃α′ ∈ {r, g},S `∗ hα′

b (nj, mj, ij, Sj) (Enc)

Intuitively, property Enc ensures that any encrypted message {u}k sent over the network
is either built by the attacker (i.e. the attacker knows k), or corresponds to the output of
an API, with the corresponding handles for each value.

∀k,m1, . . . ,mp ∈ Msg,∀i1, . . . , ip ∈ {0, 1, 2, 3},∀j
[(ij = 0 or Sj 6⊆ H) and S `∗ {i1, S1, m1, . . . , ip, Sp, mp}k]⇒ S `∗ mj (Enc0)

Intuitively, property Enc0 ensures that for any encrypted message, any underlying plain-
text value that is indicated as security level 0 or accessible to a dishonest agent is indeed
a public value.

∀n, n′, m ∈ Msg,∀i, i′ ∈ {0, 1, 2, 3},∀α, α′ ∈ {r, g},∀a, b ∈ H

S `∗ hα
a (n, k, i, S) and S `∗ hα′

b (n′, k, i′, S ′)⇒ i = i′ and S = S ′ (SecDegree)

Intuitively, property SecDegree ensures that honest tokens agree on security levels and
sets of agents being granted access to common values. This last property is not needed for
proving Sec but will be needed in the next section.

Theorem 1 then easily follows since any initial state satisfies the four properties Sec*,
Enc, Enc0, and SecDegree and property Sec is an immediate consequence of prop-
erty Sec*.

4.2. Security of the API under compromised handles

We have seen in the previous section that our API protects any data for which there
is an honest handle hα

a (n, k, i, S) with S ⊆ H. Imagine that some secret data is leaked to
the attacker by some out of model means, possibly using a brute force attack, a physical
side-channel attack or some other means. So, the attacker knows both hα

a (n, k, i, S) and

16

k. Then the attacker can learn any data of security level strictly smaller than the security
level i of k, stored by the API of a, for which he has a handle hα′

a (n′, k′, j, S ′) with j < i,
S ⊆ S ′. Indeed, the attacker can use the encryption command of the API

Encrypt hα
a (n, k, i, S) hα′

a (n′, k′, j, S ′)

and obtain the cyphertext {j, S ′, k′}k thus k′. Note that this attack requires the attacker
to control the API of a and only allows handles of strictly lower security level to be
compromised, for values that are granted to sets of participants that include all agents
having a granted access to the lost key k.

We show in this section that, even when some keys are lost, all other keys are still
protected, except those that are of strictly lower level for larger sets of participants.

Let K be a set of keys (or nonces) that represent the values learned by the attacker
(e.g. by brute force attacks) and let S be a state of the system. We define the security
degree of K in S to be the set SecDegree(K,S) of security degrees of keys in K as they
appear in handles of honest tokens.

SecDegree(K,S) = {(i, S) | ∃n ∈ Msg,∃a ∈ H,∃k ∈ K, ∃α ∈ {r, g} hα
a (n, k, i, S) ∈ S}

Note that if a key k appears with a certain level (i, S) in a state S then when the system
evolves, the key k still appears with level (i, S) since keys are never removed from a TRD.
We say that a security degree (i1, S1) is strictly smaller than (i2, S2), denoted by (i1, S1) <
(i2, S2), if i1 < i2 and S2 ⊆ S1. By abuse of notation, we write (i1, S1) < SecDegree(K,S)
if there exists (i2, S2) ∈ SecDegree(K,S) such that (i1, S1) < (i2, S2). We have seen that
knowing the keys of K, the attacker can easily learn any key of strictly smaller degree than
keys in K. We can show that the confidentiality of any other key is still preserved by our
generic API.

Theorem 2. Let S0 be an initial state. Let S1 be any state accessible from S0, that
is S0 ⇒∗

API∪ATTACKER∪CONTROL S1. Let K be any set of keys and nonces and let S ′1 be
the state S1 in which the intruder learns all keys in K, that is S ′1,a = S1,a for any
a ∈ Agent and S ′1,int = S1,int ∪ K. Then, for any state S accessible from S ′1, that is
S ′1 ⇒∗

API∪ATTACKER∪CONTROL S, we have that the following property SecW is satisfied by S:

∀a ∈ H,∀x, y ∈ Msg,∀i ∈ {1, 2, 3},∀α ∈ {r, g},∀S ⊆ H

S ` hα
a (x, y, i, S) and (i, S) 6< SecDegree(K,S1)⇒ S 6` y or y ∈ K (SecW)

Theorem 1 states that, even if some keys are lost (here the set of keys K), then keys
that are not strictly smaller than a lost key remain protected, that is, they cannot be
learned by an attacker. In other words, the key hierarchy ensures a certain independence
between keys.

17

Proof: (sketch) As for the proof of Theorem 1, we first give more power to the intruder,
providing him access to any value m stored on a dishonest device and to any value m for
which there exists a handle hα

a (n, m, i, S) where some participant of S is dishonest or where
(i, S) < SecDegree(K,S1), even if a is honest, meaning that the value m is stored on a
non-compromised TRD.

Formally, we write S `W t if⋃
b∈Agent∪{int}

Sb ∪ {m | hα
a (n, m, i, S) ∈ S, S 6⊆ H, a ∈ Agent}

∪ {m | hα
a (n, m, i, S) ∈ S, a /∈ H}

∪ {m | hα
a (n, m, i, S) ∈ S, (i, S) < SecDegree(K,S1)} ` t (Def: `W)

We prove that a stronger invariant is preserved by our API. We consider the three
following properties:

∀a ∈ H,∀x, y ∈ Msg,∀i ∈ {1, 2, 3},∀α ∈ {r, g},∀S ⊆ H

S `W hα
a (x, y, i, S) and (i, S) 6< SecDegree(K,S1)⇒ y ∈ K or

S 6`W y and y ∈ Key ∪ Nonce (SecW*)

∀u, k ∈ Msg,S `W {u}k ⇒ S `W k or

∃n ∈ Msg,∃S ⊆ H,∃i ∈ {0, 1, 2, 3},∃a ∈ H,∃α ∈ {r, g}, s.t. S `W hα
a (n, k, i, S)

∃m1, . . . ,mp ∈ Msg,∃i1, . . . , ip ∈ {0, 1, 2, 3},
∃S1. . . . , Sp, s.t. u = i1, S1, m1, . . . , ip, Sp, mp, and ∀j, S ⊆ Sj, and

∀ij ≥ 1, mj ∈ Key ∪ Nonce and

∃nj ∈ Nonce,∃b ∈ H,∃α′ ∈ {r, g},S `W hα′

b (nj, mj, ij, Sj) (EncW)

∀k,m1, . . . ,mp ∈ Msg,∀i1, . . . , ip ∈ {0, 1, 2, 3},∀j s.t. ij = 0 or Sj 6⊆ H

S `W {i1, S1, m1, . . . , ip, Sp, mp}k ⇒ S `W mj (Enc0W)

We show in Appendix B (by a careful inspection of the rules) that properties SecW*,
EncW and Enc0W are invariant under application of the rules of API ∪ ATTACKER ∪
CONTROL. We also show in Appendix B that S ′1 satisfies the three properties SecW*,
EncW and Enc0W.

Theorem 2 then easily follows since property SecW is an immediate consequence of
property Sec*.

18

4.3. Security of the API with periodic erasure

We have seen in the previous section that our API still preserves some security when
keys are lost. This situation is not completely satisfactory since some groups of agents are
definitively not protected.

Thus we assume that (honest) agents periodically erase from the API any handle that
corresponds to a datum of a security level strictly lower than 3. Since data of security level
2 are typically session keys and data of security level 1 are typically nonces, it makes sense
to refresh them periodically. Formally, we say that a state S is refreshed if Sint ⊆ Msg is
any set of messages and if for any a ∈ H, the set Sa only contains handles of the form
hα

a (n, k, 3, S) with n ∈ Nonce, k ∈ Nonce ∪ Key and such that k only (possibly) appears
in S in key position1 whenever S ⊆ H. Note that we do not make any assumption on
the states of compromised agents (besides that honest keys of level 3 only appear in key
position).

This is however still not sufficient to guarantee the security of the API in case the
attacker is able to learn old keys. Indeed, assume that an attacker knows a cyphertext
{j, S ′, k′}k where k is a long-term (honest) key (of security level 3) such that he also knows
k′ (possibly using brute force attacks) of security level 2. For every (honest) agent a that
has access to k using some handle of the form hr

a(n, k, 3, S), the attacker can register k′

using the decryption command of the API of a.

Decrypt hr
a(n, k, 3, S) {j, S ′, k′}k

The attacker then learns hα
a (n′, k′, 2, S ′), a fresh handle that refers to k′, which allows him

to mount the previous attack, again allowing the attacker to learn any data of security
level 1 stored by the TRD of a. This corresponds to a classical replay attack. Intuitively,
since our API can be used to implement a protocol subject to replay, it suffers from replay
attack as well.

To prevent such replay attacks, we reinforce the security of the API by restricting the
use of decryption rules: the API should allow decryption with keys of level 3 only if at
least one component is checked for freshness. In particular, our restricted API will not
allow the implementation of protocols subject to this form of replay attack. Formally this
corresponds to considering only decryption rules of the form

Pa(h
α
a (Xn, Xk, i0, S0)), Pa({m1, . . . ,mp}Xk

),
⋃
j∈L

Pa(m
′
j)

N1,...,Np⇒
⋃
j /∈L

Pa(m
′
j)

where L must not be the empty set whenever i0 = 3 (and all the other conditions of the
decryption rule of Figure 1 are fulfilled). Let APIr be the set of rules obtained from API
by removing the decryption rules where L is empty when i0 = 3.

Our restricted API preserves secrecy of its confidential values, even when the attacker

1That is, whenever k occurs at position p in a message t of S, then p = p′.2 and t|p′ = {t′}k.

19

is able to learn old keys and to control honest APIs, provided honest agents have refreshed
the data in their TRDs.

Theorem 3. Let S0 be a refreshed state. Then for any state S, accessible from S0, that is
S0 ⇒∗

APIr∪ATTACKER∪CONTROL S, we have that S satisfies property Sec.

Proof (sketch): Let S0 be a refreshed state. We define Fresh to be the set of fresh values,
that is the set of nonces and keys that do not occur in S0. As for the proof of Theorem 1,
we first re-enforce the properties that are invariant under APIr ∪ATTACKER∪CONTROL.
We consider the three following properties.

∀a ∈ H,∀x, y ∈ Msg,∀i ∈ {1, 2, 3},∀S ⊆ H,∀α ∈ {r, g}, S `∗ hα
a (x, y, i, S) ⇒

S 6`∗ y and y ∈ Key ∪ Nonce and in case i 6= 3 then y ∈ Fresh (SecFresh*)

∀n, k, m1, . . . ,mp ∈ Msg,∀i, i1, . . . , ip ∈ {0, 1, 2, 3},∀α ∈ {r, g},∀a ∈ H,∀j
ij ≥ 1, Sj ⊆ H,∀S ⊆ H,S `∗ {i1, S1, m1, . . . , ip, Sp, mp}k,S `∗ hα

a (n, k, i, S)⇒
(mj ∈ Key ∪ Nonce and ∃nj ∈ Nonce, b ∈ H,∃α′ ∈ {r, g},S `∗ hα′

b (nj, mj, ij, Sj))

or {i1, S1, m1, . . . , ip, Sp, mp}k ∈ S0 (Enc’)

∀k,m1, . . . ,mp ∈ Msg,∀i1, . . . , ip ∈ {0, 1, 2, 3},∀j s.t. ij = 0 or Sj 6⊆ H

S `∗ {i1, S1, m1, . . . , ip, Sp, mp}k ⇒
S `∗ mj or {i1, S1, m1, . . . , ip, Sp, mp}k ∈ S0 (Enc0’)

We show in Appendix C (by a careful inspection of the rules) that these three properties
are invariant under application of the rules of APIr ∪ATTACKER∪CONTROL. Theorem 3
then easily follows since any refreshed state satisfies the three properties SecFresh*, Enc’
and Enc0’ and property Sec is an immediate consequence of property SecFresh*.

Note that our freshness condition does not require agents to erase their data after
each session. Intuitively, refreshment should occur only when a leak from an honest user
is suspected or when keys have been stored and used for a sufficient time to allowing
brute force attacks. Thus refreshment could occur every hour, day, week, month or year
depending on application-specific factors.

5. Using the Generic API to Implement a Protocol

In this section we show how our generic API can be used to implement symmetric key
protocols, including in particular symmetric key distribution protocols from the venerable
Clark-Jacob survey [7].

20

To deduce the API commands, we first require the protocol to be specified in a manner
following e.g. [21], that is each protocol step is given as a rule

A : u
new N−−−−→ v

A is the agent who plays the role. The u, v are terms in our algebra from section 3,
where agent names, keys and nonces are given as variables. The set N of nonce and key
variables represents freshly generated data. In addition we require the terms in the protocol
to be tagged with their type (agent, nonce, key or message), and nonces and session keys
must be tagged with the name of the agent which generated them, their level (0 for a nonce
sent in the clear, 1 for a nonce only ever sent encrypted, 2 for a session key) and the set
of participants expected to share secrets. Everything generated by the participants during
the protocol (i.e. keys and nonces) will be assumed to be shared between all participants.
We will not attempt to deduce whether a nonce is kept secret from the server, or secret
from Bob, etc. Tagged nonces in a protocol will be written n(A,NA,L, Set), where A is the
agent, NA the name for the nonce, L the level and Set the set. Similarly, we have tagged
keys k(S, KA, L, Set), agent names a(A) and message variables m(X). This tagging can be
easily guessed by a user reading the protocol but could also be found automatically (for
example, by trying several possible taggings).

Given a tagged term t, un(t) denotes its untagged version obtained from t by removing
all the tags. For example, un(n(A,NA,L, Set)) = NA. Moreover, given a term t, we denote
by t the term obtained from t by replacing each subterm {u}v of t by the variable X{u}v .
The function · is a one-to-one mapping.

5.1. Algorithm

We give a simple algorithm for constructing API commands for a given protocol below
in informal pseudocode. The algorithm relies on a global store H of handles that each
participant in the protocol will expect to have when a protocol step is executed. This store
has an initial state. For example, for the three-party key exchange protocols, the initial
state is

hr
a (NKas , kas , 3 , {a, s}) % A handle for kas

hr
b (NKbs , kbs , 3 , {b, s}) % B handle for kbs

hg
s (N ′

Kas , kas , 3 , {a, s}) % S handle for kas

hg
s (N ′

Kbs , kbs , 3 , {b, s}) % S handle for kbs

Note that where we give agent names a, b, and s as ground terms these should be
interpreted as parameters - it is up to the implementer to equip the TRD with the handles
and API for the roles of a, b or s as appropriate. This “personalisation phase”, where the
long term keys are loaded onto the smartcard in a secure environment, is common practice
in the use of such devices.

21

To implement the protocol, for each rule u
new N−−−−→ v played by agent A, we synthesize

in turn:

1. zero or more Decryption Commands, followed by

2. zero or more Generate commands, followed by

3. zero or more Encryption Commands

Decryption

For each encyption {m1, . . . ,mp}Xk occurring in u:

1. Retrieve hα
A(N, Xk, j, Set) from store H. If none exists then the algorithm fails. The

protocol is actually not executable since the agent does not have the decryption key
(and encrypted packets for forwarding must be marked as message variables).

2. Set L = []. For all mi such that mi = n(A, X, I, Set) and hg
A(N ′, X, I, Set) is in the

handle store and set L := L ∪ {i}. If no such mi exists, and j = 3 then output the
warning “missing freshness test”. We have seen that tests ensure a higher level of
security.

3. Add a decryption command of the form

PA(hα
A(N, Xk, j, Set)), PA({un(m1), . . . , un(mp)}Xk

), L
N1,...,Np⇒

⋃
j 6=i

PA(m′
i)

where the m′
i are defined from the un(mi) as in section 3.3.

Generate

For each n(A,X , 0 , Set) ∈ N :

1. Add a generate command

N,X⇒ PA(X), PA(hg
A(N, X,L, Set))

2. Add hg
A(N, X, 0, Set) to the handle store H.

For each n(A,X , i , Set) ∈ N , i ∈ {1, 2}:

1. Add a generate command

N,X⇒ PA(hg
A(N, X, i, Set))

2. Add hg
A(N, X, i, Set) to the handle store H.

22

Encryption

For each encryption {m1, . . . ,mp}Xk occurring in v:

1. Retrieve hα
A(N, Xk, i, Set) from the handle store H. If no such handle exists, fail.

2. Add an encryption command of the form

PA(hα
A(N, Xk, i, S)), PA(m′

1), . . . , PA(m′
k)⇒ PA({un(m1), . . . , un(mk)}Xk

)

where m′
i is

• h if mi = n(A, Y, 1, S) is a level 1 nonce with a handle h = hα
A(N ′, Y, 1, S) ∈ H

• h if mi = k(A, X, 2, S) is a key with a handle h = hα
A(n′, Y, 2, S) ∈ H

• un(mi) if mi is an agent name, a nonce of level 0, a message variable or a
cyphertext.

• The algorithm fails otherwise, that is, in case mi is of level security 1 or 2 with
no corresponding handle in the store (or if mi is of higher security level). This
corresponds to a case where the agents is enable to build the message thus the
protocol is not executable.

We consider encrypted terms to be terms of level 0. In this way we can treat nested
encryptions by recursively generating encryption commands, treating the innermost
encryption first.

5.2. Example

Consider the role of A in the Carlsen’s Secret Key Initiator Protocol [5, Figure 2]. Using
our algorithm, we retrieve the API commands presented in example 3.4.

5.3. Results

A Prolog implementation has been tested on all the protocols in section 6.3 of the Clark-
Jacob survey, excepting those where freshness is assured by timestamps. The Prolog source
and the results are given in Appendix D and available via http 2. We summarise the results
in Table 1. The results illustrate how the properties we are able to guarantee by the use of
our API translate to the properties of the protocols that can be implemented. Needham-
Schroeder Symmetric Key can be implemented by API but not APIr (the restricted mode of
our API, described in Section 4.3), and indeed is subject to a replay attack. The amended
version can be implemented by APIr, and has no known attack. The Otway-Rees protocol
has a known type attack, which would be avoided by the tagged encryption scheme used by
our API since in particular agent identities are included in every encryption. The Yahalom
protocol cannot be implemented by APIr. The missing test is reported for the final message
to B. At first sight this would seem to indicate inadequate functionality in our API, since

2http://www.lsv.ens-cachan.fr/∼steel/GenericAPI/

23

B is supposedly assured of the freshness of the session key by the fact that A has used it to
encrypt B’s nonce in a separate packet. However, this missing test can in fact be exploited
by a malicious party playing A’s role in the protocol to force B to accept an old key [19].
Carlsen’s protocol has no known attack. Woo-Lam has a known parallel session attack,
but this exploits a type flaw which our encryption scheme would prevent.

Note that there are secure protocols that could not be implemented by our API in its
current form. These include for example protocols which use a nonce as a secret value in
an initial exchange but then reveal it later (our API requires the security level of data to
be fixed), or protocols that use a more subtle notion of freshness. However, the explicitness
forced by our API is a well-known good design principle for protocols [1].

Protocol (section in Clark-Jacob) API APIr

Needham-Schroeder SK (6.3.1) + -
NSSK amended version (6.3.4) + +
Otway-Rees (6.3.3) + +
Yahalom (6.3.6) + -
Carlsen (6.3.7) + +
Woo-Lam Mutual Auth (6.3.11) + +

Table 1: Implementation of some protocols. API is the original API (see section 2), and APIr is the
restricted API where we insist on at least one test for every new session key (see section 4.3). A +
indicates an implementation of the protocol was found by our algorithm in section 5. A - indicates the
algorithm reported a missing test.

6. Conclusions

We have presented a generic API for key management on tamper-resistant devices. We
have shown how it can be used to implement a variety of symmetric key protocols. We
have given a formal security policy that the API will preserve under a variety of given
threat scenarios, no matter what calls the attacker makes to the API. In particular, in a
scenario where an attacker may learn old secret values such as nonces and session keys, our
API can be run in a restricted mode where checks are made for freshness before accepting
a new key. In this mode, fewer protocols can be implemented, but we exclude protocols
susceptible to replay attacks.

Although our API is limited to symmetric key cryptography and a particular notion of
freshness checking which may not accommodate all correct protocols, we believe we have
established that it is possible to construct a secure API with a satisfactory level of gener-
ality by examining the protocols it is supposed to implement. Extensions to asymmetric
cryptography, time-based notions of freshness and explicit revocation are all ongoing work.
In particular, this last extension will allow us to relax our assumptions on simultaneous
‘refreshing’ of devices to regain security after some keys are lost. Note also that all our
proofs are in the so-called ‘symbolic model’, where encryption is treated as a black box

24

function on terms. We intend to investigate the extension of our results to more precise
computational models of security.

As we mentioned in the introduction, most previous work on analysis of security APIs
has resulted in the discovery of flaws in existing schemes. Some positive results include the
verification of various fixes of the IBM CCA for a particular security property (the secrecy
of PINs) [9, 11, 22, 16]. Note that all of these results, including the work by Courant
and Monin in Coq, are for a bounded model, where the attacker has just one session key
(called a data key in the CCA) and one long-term key (Key-encrypting key). Work by the
second author includes the verification of the secrecy of sensitive keys for a small subset
of PKCS#11 in an unbounded model [13]. The resulting API is for one user only and
provides no security if a single long-term key is lost. Ours is the first API to propose a
general scheme for bringing nonce-based freshness checks within the ‘trust boundary’ of
the tamper-resistant device. Other than our own design, the most sophisticated API with
a security proof is the Cachin-Chandran API [4], which as we saw in section 2, provides a
solution for a different scenario to our API: security is based on a history of operations, and
so requires a single central log. Furthermore, the API requires that there is only one single
copy of each key in existence, and all keys are known to the single server, thus avoiding
problems of key freshness. While this is suitable for a central key management server,
where the keys may be used e.g. to encrypt data for storage or to sign documents, our API
seems more suitable for distributed tokens, where there may be several copies of each key
on several different devices, and so the security policy for each key has to be fixed. Indeed
this difference between fixing the policy and allowing the policy to evolve over time seems
to be a rather fundamental distinction based on the scenario in which the API is to be
applied. An open challenge is to combine these designs to accommodate a system with
one or more central key servers and a number of distributed tokens, where the servers offer
more functionality than the distributed devices based on their greater storage resources.
Such a design would fit more closely the architecture of real-world embedded systems that
either of the two APIs alone. We plan to tackle this in future work.

Acknowledgments

The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement number 258865 (ERC ProSecure project) and from the Direction
Générale de l’Armement. Work partially carried out while the second author was at LSV,
CNRS & INRIA & ENS de Cachan.

References

[1] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols.
IEEE Transactions on Software Engineering, 22(1), January 1996.

25

[2] M. Bond. Attacks on cryptoprocessor transaction sets. In Proceedings of the 3rd In-
ternational Workshop on Cryptographic Hardware and Embedded Systems (CHES’01),
volume 2162 of LNCS, pages 220–234, Paris, France, 2001. Springer.

[3] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and fixing
PKCS#11 security tokens. In Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS’10), pages 260–269, Chicago, Illinois, USA, Oct.
2010. ACM Press.

[4] C. Cachin and N. Chandran. A secure cryptographic token interface. In Computer
Security Foundations (CSF-22), pages 141–153, Long Island, New York, 2009. IEEE
Computer Society Press.

[5] U. Carlsen. Optimal privacy and authentication on a portable communications system.
SIGOPS Oper. Syst. Rev., 28(3):16–23, 1994.

[6] CCA Basic Services Reference and Guide, Oct. 2006. Available online at www.ibm.

com/security/cryptocards/pdfs/bs327.pdf.

[7] J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0.
Available via http://www.cs.york.ac.uk/jac/papers/drareview.ps.gz, 1997.

[8] J. Clulow. On the security of PKCS#11. In Proceedings of the 5th International
Worshop on Cryptographic Hardware and Embedded Systems (CHES’03), volume 2779
of LNCS, pages 411–425, Cologne, Germany, 2003. Springer.

[9] V. Cortier, G. Keighren, and G. Steel. Automatic analysis of the security of XOR-
based key management schemes. In Proceedings of the 13th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’07),
volume 4424 of LNCS, pages 538–552, Braga, Portugal, 2007. Springer.

[10] V. Cortier and G. Steel. A generic security API for symmetric key management
on cryptographic devices. In M. Backes and P. Ning, editors, Proceedings of the 14th
European Symposium on Research in Computer Security (ESORICS’09), volume 5789
of Lecture Notes in Computer Science, pages 605–620, Saint Malo, France, Sept. 2009.
Springer.

[11] J. Courant and J.-F. Monin. Defending the bank with a proof assistant. In Proceedings
of the 6th International Workshop on Issues in the Theory of Security (WITS’06),
pages 87 – 98, Vienna, Austria, March 2006.

[12] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In Proceedings of
the 21st IEEE Computer Security Foundations Symposium (CSF’08), pages 331–344,
Pittsburgh, PA, USA, June 2008. IEEE Computer Society Press.

26

[13] S. Fröschle and G. Steel. Analysing PKCS#11 key management APIs with unbounded
fresh data. In Proceedings of ARSPA-WITS ’09, volume 5511 of Lecture Notes in
Computer Science, pages 92–106. Springer, 2009.

[14] IBM Comment on “A Chosen Key Difference Attack on Control Vectors”, Jan. 2001.
Available from http://www.cl.cam.ac.uk/~mkb23/research.html, 7 pages.

[15] Information Technology Laboratory. Federal information processing standards pub-
lication 140-2: Security requirements for cryptographic modules. Technical re-
port, National Institute of Standards and Technology (NIST), 2001. Available from
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf, 69 pages.

[16] R. Küsters and T. Truderung. Reducing Protocol Analysis with XOR to the XOR-free
Case in the Horn Theory Based Approach. In Proceedings of the 15th ACM Conference
on Computer and Communications Security (CCS 2008), pages 129–138. ACM Press,
2008.

[17] D. Longley and S. Rigby. An automatic search for security flaws in key management
schemes. Computers and Security, 11(1):75–89, March 1992.

[18] B. Neuman and T. Ts’o. Kerberos: an authentication service for computer networks.
IEEE Communications Magazine, 32(9):33–38, September 1994.

[19] A. Perrig and D. Song. Looking for diamonds in the desert. In Proc. of the 13th
Computer Security Foundations Workshop (CSFW’00), pages 64–76. IEEE Computer
Society Press, 2000.

[20] RSA Security Inc., v2.20. PKCS #11: Cryptographic Token Interface Standard., June
2004.

[21] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of ses-
sions is NP-complete. In Proc. of the 14th Computer Security Foundations Workshop
(CSFW’01), pages 174–190. IEEE Computer Society Press, 2001.

[22] R. Zunino. Defending the bank with a static analysis. In Nordsec, 2006. Available
from http://www.di.unipi.it/∼zunino/papers/, 12 pages.

Appendix A. Proof of Theorem 1

We first note that the intruder’s power does not really increase when he learns handles
or an indecipherable cyphertext.

Lemma 1. Let S and S ′ be set of terms such that S ′ = S ∪ {{m}k} ∪Hdls where k is not
deducible (i.e. S 6`∗ k) and Hdls ⊆ Handle is a set of handles such that either handles are
associated to honest agents or point to an already known value. Formally, we assume

Hdls ⊆ {h(n, u, i, S) | S ⊆ H} ∪ {h(n, u, i, S) | S 6⊆ H and S `∗ u}.

27

Let u ∈ Agent ∪ Nonce ∪ Key ∪ Handle be an atomic value. Then

S ′ `∗ u implies S `∗ u or u ∈ Hdls. (A.1)

Moreover, Let v ∈ Msg and w ∈ Key. Then

S ′ `∗ {v}w and S ′ 6`∗ w iff S `∗ {v}w or {v}w = {m}k. (A.2)

The proof mainly relies on the fact that keys are atomic.
We are now ready to show that properties Sec*, Enc, SecDegree, and Enc0 are

invariant under application of the rules of the API. Let S be a state satisfying Sec*, Enc,
SecDegree, and Enc0 and consider a state S ′ such that S →API∪ATTACKER∪CONTROL S ′.
Let us show that S ′ satisfies Sec*, Enc, SecDegree, and Enc0

Let us first notice that properties Sec*, Enc, SecDegree, and Enc0 are clearly
invariant under application of the rules of ATTACKER ∪ CONTROL. Indeed, if
S →ATTACKER∪CONTROL S ′ then for any term u, we have S ′ `∗ u if and only if S `∗ u.
For the last rule of CONTROL, this is due to the fact that whenever hα

b (n, k, i, S) ∈ S with
b /∈ H then S `∗ hα

b (n, k, i, S).
Thus we now assume S →API S ′ and we consider three cases depending on the rule that

has been applied.
Secure and Public Generation rule. a ∈ S ⊆ Agent

N,K⇒ Pa(h
g
a(N, K, i, S)) and i ∈ {1, 2}

N,K⇒ Pa(K), Pa(h
g
a(N, K, 0, All))

S ′ = S ∪ {hg
a(n, k, i, S)} and i ∈ {1, 2} or S ′ = S ∪ {k, hg

a(n, k, 0, All)}, where n is a fresh
nonce and k is a fresh key. Using the fact that only fresh values are added, we easily
check that S satisfies properties Sec*, Enc, SecDegree, and Enc0 implies S ′ satisfies
properties Sec*, Enc, SecDegree, and Enc0.

Encryption rule.

Pa(h
α
a (Xn, Xk, i0, S0)), Pa(m1), . . . , Pa(mp)⇒ Pa({m′

1, . . . ,m
′
p}Xk

)

We have mjθ ∈ S, hα
a (Xn, Xk, i0, S0)θ ∈ S and S ′ = S ∪ {({m′

1, . . . ,m
′
p}Xk

)θ} where the
mj and m′

j = m′′
j , ij, Sj are defined as in rule Encrypt. Let m′

j = m′′
j , ij, Sj. If a /∈ H then

S `∗ m′
iθ and S `∗ Xkθ. Thus S ′ `∗ u if and only if S `∗ u for any term or handle u. We

deduce that S satisfies properties Sec*, Enc, SecDegree, and Enc0 implies S ′ satisfies
properties Sec*, Enc, SecDegree, and Enc0 in the case a /∈ H.

We now assume a ∈ H. We distinguish between two possible cases:

• Case 1: S `∗ Xkθ. In that case, since S `∗ hα
a (Xn, Xk, i0, S0)θ, property Sec*

ensures that S0 6⊆ H. We deduce that for any 1 ≤ ij ≤ 3, we have Sj 6⊆ H thus
mjθ = hα

a (nj, kj, ij, Sj) and S `∗ kj. For any ij = 0, we have mjθ ∈ S. Thus
in both cases, we deduce that S `∗ m′

jθ for any 1 ≤ j ≤ p. This implies that

28

S `∗ ({m′
1, . . . ,m

′
p}Xk

)θ thus the set of terms deducible from S is identical to the set
of terms deducible from S ′. We can therefore deduce that S satisfies properties Sec*,
Enc, SecDegree, and Enc0 implies S ′ satisfies properties Sec*, Enc, SecDegree,
and Enc0.

• Case 2: S 6`∗ Xkθ. Thus it must be the case that S0 ⊆ H (otherwise S `∗
hα

a (Xn, Xk, i0, S0)θ implies S `∗ Xkθ). Moreover, applying Lemma 1 (Equation A.1),
we get that S ′ `∗ u iff S `∗ u for any u ∈ Agent ∪ Nonce ∪ Key ∪ Handle (*).

Property Sec*: Assume S ′ `∗ hα
a (n1, k1, l1, E1) with l1 ∈ {1, 2, 3}, a ∈ H, E1 ⊆ H.

Then (*) implies S `∗ hα
a (n1, k1, l1, E1). Thus Property Sec* implies S 6`∗ k1 and

k1 ∈ Nonce ∪ Key. Thus applying (*) again, we get S ′ 6`∗ k1. We conclude that S ′
satisfies Property Sec*.

Property Enc: Assume S ′ `∗ {u}k for some u, k ∈ Msg and assume S ′ 6`∗ k. If
S `∗ {u}k, we conclude using the fact that S satisfies Property Enc. Otherwise, we
must have {u}k = {m′

1, . . . ,m
′
p}Xk

θ. Thus S ′ satisfies Property Enc.

Property Enc0: Assume S ′ `∗ {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k and ij = 0 or Sj 6⊆ H.

If S `∗ {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k, we can easily conclude since S satisfies Prop-

erty Enc0. If S ′ `∗ k then we of course have S ′ `∗ uj. Otherwise, by Lemma 1
(Equation A.2), we must have {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k = ({m′

1, . . . ,m
′
p}Xk

)θ. Thus
Sj = S ′

j and mjθ = uj ∈ S if ij = 0 or mjθ = h(nj, uj, ij, Sj) with Sj 6⊆ H. In both
cases, we deduce S ′ `∗ uj and S ′ satisfies Property Enc0.

Property SecDegree clearly holds since no handle is added to the state.

Decryption rule.

Pa(h
α
a (Xn, Xk, i0, S0)), Pa({m1, . . . ,mp}Xk

),
⋃
j∈L

Pa(m
′
j)

N1,...,Nk⇒
⋃
j /∈L

Pa(m
′
j)

If a /∈ H then S `∗ miθ and S `∗ Xkθ. Moreover, for any m′
jθ of the form h(nj, uj, ij, Sj)

with corresponding mjθ = uj, ij, Sj, we have a ∈ S0 ⊆ Sj thus Sj 6⊆ H Property Enc0
ensures that S `∗ uj. Thus applying Lemma 1, S ′ `∗ u if and only if S `∗ u for any term
u and for any handle u except if u = m′

iθ for some i and if u is a handle. We deduce
that S satisfies properties Enc, SecDegree, and Enc0 implies S ′ satisfies properties Enc,
SecDegree, and Enc0. Moreover, S `∗ Xkθ implies S0 6⊆ H since S satisfies Sec*. Thus
for any mjθ of the form ij, Sj, uj we must have Sj 6⊆ H. Thus S ′ satisfies Sec* even for the
handles introduced by the decryption rule. We deduce S ′ satisfies properties Sec*, Enc,
SecDegree, and Enc0.

We now assume a ∈ H. We have {m1, . . . ,mk}Xk
θ ∈ S, hα

a (Xn, Xk, i0, S0)θ ∈ S,
m′

jθ ∈ S for any j ∈ L and S ′ = S ∪ {m′
jθ | j /∈ L} where the mi and m′

i are defined
as in rule Encrypt. Let mj = m′′

j , ij, Sj. For any j such that ij = 0, Property Enc0
ensures that S `∗ m′

jθ. For any j such that ij ≥ 1, then m′
jθ is a fresh handle of the form

h(nk, uj, ij, Sj). Either Sj 6⊆ H and Property Enc0 ensures that S `∗ uj or Sj ⊆ H. Thus

29

we can deduce from Lemma 1 (Equation A.1) that for any u ∈ Agent∪Nonce∪Key∪Handle,
we have S ′ `∗ u iff S `∗ u or u = m′

jθ for some j such that ij ≥ 1 (**).

Property Sec*: Assume S ′ `∗ hα′

b (n1, k1, l1, E1) with l1 ∈ {1, 2, 3}, a ∈ H, E1 ⊆ H.
Then (**) implies S `∗ hα′

b (n1, k1, l1, E1) or hα′

b (n1, k1, l1, E1) = m′
jθ for some j such that

ij ≥ 1. In the first case (S `∗ hα′

b (n1, k1, l1, E1)), Property Sec* ensures S 6`∗ k1 and k1 ∈
Nonce ∪ Key thus (**) implies S ′ 6`∗ k1. In the second case (hα′

b (n1, k1, l1, E1) = m′
jθ) then

mjθ = k1. Thus we must have S0 ⊆ H (since S0 ⊆ E1 by construction of the decryption
rule). Property Sec* on S ensures that S 6`∗ Xkθ. Property Enc on S ensures that there
exists n′ ∈ Nonce, α′′ ∈ {r, g}, c ∈ H such that S `∗ hα′′

c (n′, k1, l1, E1). Property Sec* on
S ensures that S 6`∗ k1 and k1 ∈ Nonce ∪ Key thus (**) implies S ′ 6`∗ k1. In both cases we
conclude that S ′ satisfies Property Sec*.

Property Enc: Assume S ′ `∗ {u}k and S ′ 6`∗ k for some u, k ∈ Msg. We have S 6`∗ k.
By Lemma 1 and (**), we must have S `∗ {u}k. Thus Property Enc on S implies that
Property Enc holds for S ′.

Property Enc0: Assume S ′ `∗ {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k and i′j = 0 or Sj 6⊆ H. If

S `∗ {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k, we can easily conclude since S satisfies Property Enc0.

Otherwise, by Lemma 1 (Equation A.2), we must have S ′ `∗ k thus S ′ `∗ uj.
Property SecDegree: Assume S ′ `∗ hα

a (n, k, i, S) and S ′ `∗ hα′

b (n′, k, i′, S ′). If S 6`∗
hα

a (n, k, i, S) then hα
a (n, k, i, S) is one of the m′

jθ, j /∈ L thus mjθ = i, S, k and since
S satisfies Enc, there exists a1, α1, n1 such that S `∗ hα1

a1
(n1, k, i, S). Similarly, if S 6`∗

hα′

b (n′, k, i′, S ′) then hα′

b (n′, k, i′, S ′) is one of the m′
jθ, j /∈ L thus mjθ = i′, S ′, k and since

S satisfies Enc, there exists b1, α
′
1, n

′
1 such that S `∗ h

α′
1

b1
(n′1, k, i′, S ′). In any case, since S

satisfies SecDegree, we deduce that S ′ satisfies SecDegree.

Appendix B. Proof of Theorem 2

Let S0 be an initial state. Let S1 be any state accessible from S0, that is
S0 ⇒∗

API∪ATTACKER∪CONTROL S1. Let K be any set of keys and nonces and let S ′1 be the
state S1 in which the intruder learns all keys in K, that is S ′1,a = S1,a for any a ∈ Agent
and S ′1,int = S1,int ∪K.

Let us first show that S ′1 satisfies the three properties SecW*, EncW and Enc0W.
By Theorem 1, we know that S1 satisfies Sec*, Enc and Enc0. Thus we can easily deduce
that S ′1 satisfies EncW and Enc0W. Let us show that S ′1 also satisfies SecW*. We show
by induction on the length of the deduction proof (or more precisely, on the number of
applications of a decryption rule) that for any y ∈ Key ∪ Nonce, S ′1 `W y implies

S1 `∗ y or y ∈ K or ∃hα
a (n, y, i, S), a ∈ H, (i, S) < SecDegree(K,S1),S1 `∗ hα

a (n, y, i, S)

We consider a minimal deduction proof of S ′1 `W y.

• Base case: if y ∈
⋃

b∈Agent∪{int} S ′1,b∪{m | hα
a (n, m, i, S) ∈ S ′1, S 6⊆ H, a ∈ Agent}∪{m |

hα
a (n, m, i, S) ∈ S ′1, a /∈ H} ∪ {m | hα

a (n, m, i, S) ∈ S ′1, (i, S) < SecDegree(K,S1)} ` t

30

then S1 `∗ y or y ∈ K or ∃hα
a (n, y, i, S), a ∈ H, (i, S) < SecDegree(K,S1),S1 `∗

hα
a (n, y, i, S).

• Induction. Assume that S ′1 `W {u}k, S ′1 `W k and y is now deducible from u apply-
ing projections. By minimality of the proof, we must have S1 `∗ {u}k. Moreover,
by induction hypothesis, we have that S1 `∗ k or k ∈ K or ∃hα

a (n, y, i, S), (i, S) <
SecDegree(K,S1),S1 `∗ hα

a (n, y, i, S). If S1 `∗ k then we deduce that S1 `∗ y.
Otherwise S1 6`∗ k then by property Enc on S1, we know that there exists a
handle of the form hα

a (n, k, i, S), a ∈ H such that S1 `∗ hα
a (n, k, i, S). By

inducton hypothesis and since S ′1 `W k and S1 6`∗ k , we have k ∈ K or
∃hα

a (n, y, i, S), (i, S) < SecDegree(K,S1),S1 `∗ hα
a (n, y, i, S). Thus in both cases, we

have (i, S) ∈ SecDegree(K,S1) or (i, S) < SecDegree(K,S1). Moreover, still by prop-
erty Enc, there exist m1, . . . ,mp ∈ Msg, i1, . . . , ip ∈ {0, 1, 2, 3} S1. . . . , Sp, S ⊆ Sj

such that u = i1, S1, m1, . . . , ip, Sp, mp and y is one of the m)j, say mj0 . Either
ij0 = 0 and S1 `∗ y by Enc0. Or ij0 ≥ 1 and we must have that there ex-
ist nj0 ∈ Nonce, b ∈ H, α′ ∈ {r, g} such that S1 `∗ hα′

b (nj0 , y, ij0 , Sj0), that is
(ij0 , Sj0) < SecDegree(K,S1).

Let us conclude that S ′1 satisfies SecW*. Assume S ′1 `W hα
a (x, y, i, S) and (i, S) 6<

SecDegree(K,S1) with S ⊆ H, a ∈ H. Assume that S ′1 `W y and let us show y ∈ K. We
have S1 `W hα

a (x, y, i, S) thus property Sec* ensures y ∈ Key ∪ Nonce and S1 6`W y. We
have just proved that S ′1 `W y implies S1 `∗ y or y ∈ K or there exists S1 `∗ hα′

a′ (n, y, i′, S ′)
such that (i′, S ′) < SecDegree(K,S1). In this last case, Property SecDegree on S1 ensures
i = i′ and S = S ′, contradiction. Thus we must have y ∈ K.

We now show that properties SecW*, EncW and Enc0W are invariant under appli-
cation of the rules of the API. Let S be a state satisfying SecW*, EncW and Enc0W
and consider a state S ′ such that S →API∪ATTACKER∪CONTROL S ′. Let us show that S ′
satisfies SecW*, EncW and Enc0W

Let us first notice that properties SecW*, EncW and Enc0W are clearly invariant
under application of the rules of ATTACKER∪CONTROL. Indeed, if S →ATTACKER∪CONTROL

S ′ then for any term u, we have S ′ `W u if and only if S `W u. For the last rule of
CONTROL, this is due to the fact that whenever hα

b (n, k, i, S) ∈ S with b /∈ H then
S `W hα

b (n, k, i, S).
Thus we now assume S →API S ′ and we consider three cases depending on the rule that

has been applied.
Secure and Public Generation rule. a ∈ S ⊆ Agent

N,K⇒ Pa(h
g
a(N, K, i, S)) and i ∈ {1, 2}

N,K⇒ Pa(K), Pa(h
g
a(N, K, 0, All))

S ′ = S ∪ {hg
a(n, k, i, S)} and i ∈ {1, 2} or S ′ = S ∪ {k, hg

a(n, k, 0, All)} where n is a fresh
nonce and k is a fresh key. Using that only fresh values are added, we easily check that
S satisfies properties SecW*, EncW and Enc0W implies S ′ satisfies properties SecW*,

31

EncW and Enc0W.

Encryption rule.

Pa(h
α
a (Xn, Xk, i0, S0)), Pa(m1), . . . , Pa(mp)⇒ Pa({m′

1, . . . ,m
′
p}Xk

)

We have mjθ ∈ S, hα
a (Xn, Xk, i0, S0)θ ∈ S and S ′ = S∪{({m′

1, . . . ,m
′
p}Xk

)θ} where the mj

and m′
j are defined as in rule Encrypt. Let m′

j = m′′
j , ij, Sj. If a /∈ H then S `W m′

iθ and
S `W Xkθ. Thus S ′ `W u if and only if S `W u for any term or handle u. We deduce that
S satisfies properties SecW*, EncW and Enc0W implies S ′ satisfies properties SecW*,
EncW and Enc0W in the case a /∈ H.

We now assume a ∈ H. We distinguish between two cases.

• Either S `W Xkθ. In that case, since S `W hα
a (Xn, Xk, i0, S0)θ, property SecW*

ensures that S0 6⊆ H or Xkθ ∈ K or (i0, S0) < SecDegree(K,S1). We deduce that
for any 1 ≤ ij ≤ 3, we have Sj 6⊆ H or (ij, Sj) < SecDegree(K,S1). Thus mjθ =
hα

a (nj, kj, ij, Sj) and S `W kj. For any ij = 0, we have mjθ ∈ S. Thus in both
cases, we deduce that S `W m′

jθ for any 1 ≤ j ≤ p. This implies that S `W

({m′
1, . . . ,m

′
p}Xk

)θ thus the set of terms deducible from S is identical to the set of
terms deducible from S ′. We can therefore deduce that S satisfies properties SecW*,
EncW and Enc0W implies S ′ satisfies properties SecW*, EncW and Enc0W.

• Or S 6`W Xkθ. Thus it must be the case that S0 ⊆ H and (i0, S0) 6< SecDegree(K,S1)
(otherwise S `W hα

a (Xn, Xk, i0, S0)θ implies S `W Xkθ). Moreover, applying
Lemma 1 Equation A.1 (extended to the deduction relation `W), we get that S ′ `W u
iff S `W u for any u ∈ Agent ∪ Nonce ∪ Key ∪ Handle (*).

Property SecW*: Assume S ′ `W hα
a (n1, k1, l1, E1) with l1 ∈ {1, 2, 3}, a ∈ H, E1 ⊆

H, k1 /∈ K, and (l1, E1) 6< SecDegree(K,S1). Then (*) implies S `W hα
a (n1, k1, l1, E1).

Thus Property SecW* implies S 6`W k1 and k1 ∈ Nonce ∪ Key. Thus applying (*)
again, we get S ′ 6`W k1. We conclude that S ′ satisfies Property SecW*.

Property EncW: Assume S ′ `W {u}k for some u, k ∈ Msg and assume S ′ 6`W

k. If S `W {u}k, we conclude using the fact that S satisfies Property EncW.
Otherwise, we must have {u}k = {m′

1, . . . ,m
′
p}Xk

θ. Thus in both cases S ′ satisfies
Property EncW.

Property Enc0W: Assume S ′ `W {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k and ij = 0 or Sj 6⊆ H.

If S `W {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k, we can easily conclude since S satisfies Prop-

erty Enc0W. If S ′ `W k then we of course have S ′ `W uj. Otherwise, by Lemma 1
Equation A.2, we must have {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k = ({m′

1, . . . ,m
′
p}Xk

)θ. Thus
Sj = S ′

j and mjθ = uj ∈ S if ij = 0 or mjθ = h(nj, uj, ij, Sj) with Sj 6⊆ H. In both
cases, we deduce S ′ `W uj and S ′ satisfies Property Enc0W.

Decryption rule.

Pa(h
α
a (Xn, Xk, i0, S0)), Pa({m1, . . . ,mp}Xk

),
⋃
j∈L

Pa(m
′
j)

N1,...,Nk⇒
⋃
j /∈L

Pa(m
′
j)

32

If a /∈ H then S `W miθ and S `W Xkθ. Moreover, for any m′
jθ of the form

h(nj, uj, ij, Sj) with corresponding mjθ = uj, ij, Sj, we have a ∈ S0 ⊆ Sj thus Sj 6⊆ H
Property Enc0W ensures that S `W uj. Thus applying Lemma 1 (extended to `W),
Thus S ′ `W u if and only if S `W u for any term u and for any handle u except if u is
a handle and one of the m′

iθ. We deduce that S satisfies properties EncW and Enc0W
implies S ′ satisfies properties EncW and Enc0W. Moreover, S `W Xkθ implies S0 6⊆ H
or (i0, S0) < SecDegree(K,S1) or Xkθ ∈ K since S satisfies SecW*. Thus for any mjθ
of the form ij, Sj, uj we must have Sj 6⊆ H or (ij, Sj) < SecDegree(K,S1). Thus S ′ satis-
fies SecW* even for the handles introduced by the decryption rule. We deduce S ′ satisfies
properties SecW*, EncW and Enc0W.

We now assume a ∈ H. We have {m1, . . . ,mk}Xk
θ ∈ S, hα

a (Xn, Xk, i0, S0)θ ∈ S,
m′

jθ ∈ S for any j ∈ L and S ′a = Sa ∪ {m′
jθ | j /∈ L} where the mi and m′

i are defined
as in rule Encrypt. Let mj = m′′

j , ij, Sj. For any j such that ij = 0, Property Enc0W
ensures that S `W m′

jθ. For any j such that ij ≥ 1, then m′
jθ is a fresh handle of

the form h(nk, uj, ij, Sj). Either Sj 6⊆ H and Property Enc0W ensures that S `W uj

or Sj ⊆ H. Thus we can deduce from Lemma 1 (extended to `W) that for any u ∈
Agent ∪ Nonce ∪ Key ∪ Handle, we have S ′ `W u iff S `W u or u = m′

jθ for some j such
that ij ≥ 1 (**).

Property SecW*: Assume S ′ `W hα′

b (n1, k1, l1, E1) with l1 ∈ {1, 2, 3}, a ∈ H,
E1 ⊆ H, k1 /∈ K, (l1, E1) 6< SecDegree(K,S1). Then (**) implies S `W hα′

b (n1, k1, l1, E1)
or hα′

b (n1, k1, l1, E1) = m′
jθ for some j such that ij ≥ 1. In the first case (S `W

hα′

b (n1, k1, l1, E1)), Property SecW* ensures S 6`W k1 and k1 ∈ Nonce ∪ Key thus (**)
implies S ′ 6`W k1. In the second case (hα′

b (n1, k1, l1, E1) = m′
jθ) then mjθ = k1. Thus

we must have S0 ⊆ H (since S0 ⊆ E1 by construction of the decryption rule) and
(i0, S0) 6< SecDegree(K,S1) (since (l1, E1) 6< SecDegree(K,S1)). If Xkθ ∈ K we would
have (l1, E1) < (i0, S0) ∈ SecDegree(K,S1). Thus Property SecW* on S ensures that
S 6`W Xkθ. Property EncW on S ensures that there exists n′ ∈ Nonce, α′′ ∈ {r, g},
c ∈ H such that S `W hα′′

c (n′, k1, l1, E1). Property SecW* on S ensures that S 6`W k1 and
k1 ∈ Nonce ∪ Key thus (**) implies S ′ 6`W k1. In both cases we conclude that S ′ satisfies
Property SecW*.

Property EncW: Assume S ′ `W {u}k and S ′ 6`W k for some u, k ∈ Msg. We have
S 6`W k. By Lemma 1 and (**), we must have S `W {u}k. Thus Property EncW on S
implies that Property EncW holds for S ′.

Property Enc0W: Assume S ′ `W {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k and i′j = 0 or S ′

j 6⊆ H. If
S `W {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k, we can easily conclude since S satisfies Property Enc0W.

Otherwise, by Lemma 1 Equation A.2, we must have S ′ `W k thus S ′ `W uj.

Appendix C. Proof of Theorem 3

Let S be a state satisfying SecFresh*, Enc’ and Enc0’ and consider a state S ′ such
that S →API∪ATTACKER∪CONTROL S ′. Let us show that S ′ satisfies SecFresh*, Enc’ and
Enc0’

33

Let us first notice that properties SecFresh*, Enc’ and Enc0’ are clearly invariant
under application of the rules of ATTACKER∪CONTROL. Indeed, if S →ATTACKER∪CONTROL

S ′ then for any term u, we have S ′ `∗ u if and only if S `∗ u. For the last rule of CONTROL,
this is due to the fact that whenever hα

b (n, k, i, S) ∈ S with b /∈ H then S `∗ hα
b (n, k, i, S).

Thus we now assume S →APIr S ′ and we consider three cases depending on the rule
that has been applied.

Secure and Public Generation rules. a ∈ S ⊆ Agent

N,K⇒ Pa(h
g
a(N, K, i, S)) and i ∈ {1, 2}

N,K⇒ Pa(K), Pa(h
g
a(N, K, 0, All))

S ′ = S ∪ {hg
a(n, k, i, S)} and i ∈ {1, 2} or S ′ = S ∪ {k, hg

a(n, k, 0, All)}, where n is a
fresh nonce and k is a fresh key. Using the fact that only fresh values are added, we
easily check that S satisfies properties SecFresh*, Enc’ and Enc0’ implies S ′ satisfies
properties SecFresh*, Enc’ and Enc0’.

Encryption rule.

Pa(h
α
a (Xn, Xk, i0, S0)), Pa(m1), . . . , Pa(mp)⇒ Pa({m′

1, . . . ,m
′
p}Xk

)

We have mjθ ∈ S, hα
a (Xn, Xk, i0, S0)θ ∈ S and S ′ = S∪{({m′

1, . . . ,m
′
p}Xk

)θ} where the mj

and m′
j are defined as in rule Encrypt. Let m′

j = m′′
j , ij, Sj. If a /∈ H then S `∗ m′

iθ and
S `∗ Xkθ. Thus S ′ `∗ u if and only if S `∗ u for any term or handle u. We deduce that S
satisfies properties SecFresh*, Enc’ and Enc0’ implies S ′ satisfies properties SecFresh*,
Enc’ and Enc0’ in the case a /∈ H.

We now assume a ∈ H. We distinguish between two cases.

• Either S `∗ Xkθ. In that case, since S `∗ hα
a (Xn, Xk, i0, S0)θ, property SecFresh*

ensures that S0 6⊆ H. We deduce that for any 1 ≤ ij ≤ 3, we have Sj 6⊆ H thus
mjθ = hα

a (nj, kj, ij, Sj) and S `∗ kj. For any ij = 0, we have mjθ ∈ S. Thus
in both cases, we deduce that S `∗ m′

jθ for any 1 ≤ j ≤ p. This implies that
S `∗ ({m′

1, . . . ,m
′
p}Xk

)θ thus the set of terms deducible from S is identical to the set
of terms deducible from S ′. We deduce that S satisfies properties SecFresh*, Enc’
and Enc0’ implies S ′ satisfies properties SecFresh*, Enc’ and Enc0’.

• Or S 6`∗ Xkθ. Thus it must be the case that S0 ⊆ H (otherwise S `∗
hα

a (Xn, Xk, i0, S0)θ implies S `∗ Xkθ). Moreover, applying Lemma 1 (Equation A.1),
we get that S ′ `∗ u iff S `∗ u for any u ∈ Agent ∪ Nonce ∪ Key ∪ Handle (*).

Property SecFresh*: Assume S ′ `∗ hα
a (n1, k1, l1, E1) with l1 ∈ {1, 2, 3}, a ∈ H and

E1 ⊆ H. Then (*) implies S `∗ hα
a (n1, k1, l1, E1). Thus Property SecFresh* implies

S 6`∗ k1 and k1 ∈ Nonce∪Key and moreover k1 ∈ Fresh in case l3 6= 3. Thus applying
(*) again, we get S ′ 6`∗ k1. We conclude that S ′ satisfies Property SecFresh*.

Property Enc’: Assume S ′ `∗ {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k and S ′ `∗ hα

a (n, k, i, S) with
a ∈ H, S, Sj ⊆ H and ij ≥ 1. If S `∗ {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k, we conclude using

34

Lemma 1 and the fact that S satisfies Property Enc’. Otherwise, by Lemma 1 (
(Equation A.2)), we must have {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k = {m′

1, . . . ,m
′
p}Xk

θ. Thus
Sj = S ′

j and mjθ = hα
a (nj, uj, ij, Sj) ∈ S. Thus S ′ `∗ hα

a (nj, uj, ij, Sj) thus S ′ satisfies
Property Enc’.

Property Enc0’: Assume S ′ `∗ {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k and ij = 0 or S ′

j 6⊆ H.
If S `∗ {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k, we can easily conclude since S satisfies Prop-

erty Enc0’. If S ′ `∗ k then we of course have S ′ `∗ uj. Otherwise, by Lemma 1
(Equation A.2), we must have {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k = ({m′

1, . . . ,m
′
p}Xk

)θ. Thus
Sj = S ′

j and mjθ = uj ∈ S if ij = 0 or mjθ = h(nj, uj, ij, Sj) with Sj 6⊆ H. In both
cases, we deduce S ′ `∗ uj and S ′ satisfies Property Enc0’.

Decryption rule.

Pa(h
α
a (Xn, Xk, i0, S0)), Pa({m1, . . . ,mp}Xk

),
⋃
j∈L

Pa(m
′
j)

N1,...,Nk⇒
⋃
j /∈L

Pa(m
′
j)

We have {m1, . . . ,mp}Xk
θ ∈ S, hα

a (Xn, Xk, i0, S0)θ ∈ S, m′
jθ ∈ S for any j ∈ L and

S ′ = S ∪ {m′
jθ | j /∈ L} where the mi and m′

i are defined as in rule Encrypt. Let
mj = m′′

j , ij, Sj. Since the decryption rule belongs to APIr, we must have that if i0 = 3
then L is not empty.

If a /∈ H then S `∗ miθ and S `∗ Xkθ. Moreover, for any m′
jθ of the form h(nj, uj, ij, Sj)

with corresponding mjθ = uj, ij, Sj, we have a ∈ S0 ⊆ Sj thus Sj 6⊆ H Property Enc0
ensures that S `∗ uj. Thus applying Lemma 1, S ′ `∗ u if and only if S `∗ u for any
term u and for any handle u except if u is a handle and one of the m′

iθ. We deduce
that S satisfies properties Enc and Enc0 implies S ′ satisfies properties Enc and Enc0.
Moreover, S `∗ Xkθ implies S0 6⊆ H since S satisfies Sec*. Thus for any mjθ of the form
ij, Sj, uj we must have Sj 6⊆ H. Thus S ′ satisfies Sec* even for the handles introduced by
the decryption rule. We deduce S ′ satisfies properties Sec*, Enc and Enc0.

We now assume a ∈ H.
Assume first that S0 ⊆ H. If i0 6= 3 then Property SecFresh* ensures that k ∈ Fresh,

which ensures that {m1, . . . ,mp}Xk
θ /∈ S0. If i0 = 3, then L is not empty. Let j0 ∈ L,

we have mj0 = ij0 , Sj0 , wj0 . There exists nj0 such that hg
a(nj0 , wj0 , ij0 , Sj0) ∈ S. Then

Property SecFresh* ensures that wj0 ∈ Fresh, which ensures that {m1, . . . ,mp}Xk
θ /∈ S0.

In both cases, if S0 ⊆ H we can conclude that {m1, . . . ,mp}Xk
θ /∈ S0.

Moreover, for any j such that ij = 0, Property Enc0’ ensures that S `∗ m′
jθ. For any

j such that ij ≥ 1, then m′
jθ is a fresh handle of the form h(nk, uj, ij, Sj). Either Sj 6⊆ H

and Property Enc0 ensures that S `∗ uj or Sj ⊆ H. Thus we can deduce from Lemma 1
(Equation A.1) that for any u ∈ Agent ∪ Nonce ∪ Key ∪ Handle, we have S ′ `∗ u iff S `∗ u
or u = m′

jθ for some j such that ij ≥ 1 (**).
Assume now that S0 6⊆ H. Then S `∗ Xkθ thus for any 1 ≤ i ≤ p, S `∗ mi. In

particular, for any j such that ij = 0, S `∗ m′
jθ. Thus we deduce that property (**) also

holds.

35

Property SecFresh*: Assume S ′ `∗ hα′

b (n1, k1, l1, E1) with l1 ∈ {1, 2, 3}, b ∈ H, E1 ⊆
H. Then (**) implies S `∗ hα′

b (n1, k1, l1, E1) or hα′

b (n1, k1, l1, E1) = m′
jθ for some j such

that ij ≥ 1. In the first case (S `∗ hα′

b (n1, k1, l1, E1)), Property SecFresh* ensures S 6`∗ k1

and k1 ∈ Nonce ∪ Key and k1 ∈ Fresh is l1 6= 3. Thus (**) implies S ′ 6`∗ k1. In the second
case (hα′

b (n1, k1, l1, E1) = m′
jθ) then mjθ = k1 and S0 ⊆ E1 ⊆ H thus {m1, . . . ,mp}Xk

θ /∈
S0. Property Enc’ then ensures that there exists n′ ∈ Nonce, c ∈ H such that S `∗
hα′′

c (n′, k1, l1, E1). Property SecFresh* on S ensures that S 6`∗ k1 and k1 ∈ Nonce ∪ Key
and k1 ∈ Fresh is l1 6= 3. Thus (**) implies S ′ 6`∗ k1. In both cases we conclude that S ′
satisfies Property SecFresh*.

Property Enc’: Assume S ′ `∗ {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k and S ′ `∗ hα′

b (n, k, i, S) with
b ∈ H, S, S ′

j ⊆ H and ij ≥ 1. Property SecFresh* on S ′ ensures that S ′ 6`∗ k.
Thus by Lemma 1 (Equation A.2), we must have S `∗ {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k. More-

over, (**) implies that either S `∗ hα′

b (n, k, i, S) or hα′

b (n, k, i, S) = m′
jθ for some

l /∈ L. In the first case, we conclude using the fact that S satisfies Property Enc’ thus
{i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k ∈ S0 or uj ∈ Nonce ∪ Key and there exists nj ∈ Nonce and

c ∈ H such that S `∗ hα′′
c (nj, uj, i

′
j, S

′
j), which implies S ′ `∗ hα′′

c (nj, uj, i
′
j, S

′
j) thus S ′

satisfies Property Enc’. In the second case, we must have i 6= 3 and S0 ⊆ S ⊆ H thus
{m1, . . . ,mp}Xk

θ /∈ S0. We have {m1, . . . ,mk}Xk
θ ∈ S and hα

a (Xn, Xk, i0, S0)θ ∈ S. Since
S enjoys Property Enc’, we deduce that there exists nl ∈ Nonce and c ∈ H such that
S `∗ hα′′

c (nl, k, il, Sl), that is S `∗ hα′′
c (nl, k, i, S). Since S `∗ {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k and

i 6= 3, Property SecFresh* ensures that k ∈ Fresh thus {i′1, S ′
1, u1, . . . , i

′
p, S

′
p, up}k /∈ S0.

Property Enc’ on S thus ensures that uj ∈ Nonce ∪ Key and that there exists n′j ∈ Nonce

and d ∈ H such that S `∗ hα′′′

d (n′j, uj, i
′
j, S

′
j). We can deduce that S `∗ hα′′′

d (n′j, uj, i
′
j, S

′
j)

thus S ′ satisfies Property Enc’.
Property Enc0’: Assume S ′ `∗ {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k and i′j = 0 or S ′

j 6⊆ H. If
S `∗ {i′1, S ′

1, u1, . . . , i
′
p, S

′
p, up}k, we can easily conclude since S satisfies Property Enc0’.

Otherwise, by Lemma 1 (Equation A.2), we must have S ′ `∗ k thus S ′ `∗ uj.

Appendix D. Prolog Implementation

%% Demonstrates the genera t ion o f appropr ia te API ru l e s from a pro toco l .

%% I d e n t i t i e s o f p a r t i c i p an t s
pa r t i c i p an t (a l i c e) .
p a r t i c i p an t (bob) .
p a r t i c i p an t (s e r v e r) .

% pro t o c o l s t e p /4 s p e c i f i e s the p ro toco l . Usua l ly loaded from a second f i l e ,
% but g iven here in the l i s t i n g f o r i l l u s t r a t i v e purposes
% Carlsson s e c r e t key i n i t i a t o r

%A−>B: A, Na
%B−>S : A, Na, B, Nb
%S−>B: {Kab , Nb , A}Kbs , {Na, B, Kab}Kas
%B−>A: {Na, B, Kab}Kas , {Na}Kab , N’ b
%A−>B: {N’ b}Kab

p r o t o c o l s t e p (a l i c e ,
[] ,

36

[nonce (a l i c e , na , 0 , [a l i c e , bob , s e r v e r])] ,
[agent (a l i c e) , nonce (a l i c e , na , 0 , [a l i c e , bob , s e r v e r])]) .

p r o t o c o l s t e p (bob ,
[agent (a l i c e) , nonce (a l i c e , na , 0 , [a l i c e , bob , s e r v e r])] ,
[nonce (bob , nb , 0 , [a l i c e , bob , s e r v e r])] ,
[agent (a l i c e) , nonce (a l i c e , na , 0 , [a l i c e , bob , s e r v e r]) ,
agent (bob) , nonce (bob , nb , 0 , [a l i c e , bob , s e r v e r])]) .

p r o t o c o l s t e p (se rver ,
[agent (a l i c e) , nonce (a l i c e , na , 0 , [a l i c e , bob , s e r v e r]) , agent (bob) ,
nonce (bob , nb , 0 , [a l i c e , bob , s e r v e r])] ,

[key (se rver , kab , 2 , [a l i c e , bob , s e r v e r])] ,
[enc ([key (se rver , kab , 2 , [a l i c e , bob , s e r v e r]) ,
nonce (bob , nb , 0 , [a l i c e , bob , s e r v e r]) , agent (a l i c e)] , kbs) ,
enc ([nonce (a l i c e , na , 0 , [a l i c e , bob , s e r v e r]) , agent (bob) ,
key (se rver , kab , 2 , [a l i c e , bob , s e r v e r])] , kas)]) .

p r o t o c o l s t e p (bob ,
[enc ([key (se rver , kab , 2 , [a l i c e , bob , s e r v e r]) ,
nonce (bob , nb , 0 , [a l i c e , bob , s e r v e r]) , agent (a l i c e)] , kbs) ,
pakcet] ,

[nonce (bob , nbb , 0 , [a l i c e , bob , s e r v e r])] ,
[packet , enc ([nonce (a l i c e , na , 0 , [a l i c e , bob , s e r v e r])] , kab) ,
nonce (bob , nbb , 0 , [a l i c e , bob , s e r v e r])]) .

p r o t o c o l s t e p (a l i c e ,
[enc ([nonce (a l i c e , na , 0 , [a l i c e , bob , s e r v e r]) , agent (bob) ,
key (se rver , kab , 2 , [a l i c e , bob , s e r v e r])] , kas) ,
enc ([nonce (a l i c e , na , 0 , [a l i c e , bob , s e r v e r])] , kab) ,
nonce (bob , nbb , 0 , [a l i c e , bob , s e r v e r])] ,

[] ,
[enc ([nonce (bob , nbb , 0 , [a l i c e , bob , s e r v e r])] , kab)]) .

p r o t o c o l s t e p (bob ,
[enc ([nonce (bob , nbb , 0 , [a l i c e , bob , s e r v e r])] , kab)] ,
[] ,
[]) .

%% i n i t i a l hand les

handle (h(a l i c e , kas , 3 , [a l i c e , s e r v e r])) .
handle (h(bob , kbs , 3 , [bob , s e r v e r])) .
handle (h(se rve r , kas , 3 , [a l i c e , s e r v e r])) .
handle (h(se rve r , kbs , 3 , [bob , s e r v e r])) .

%% for s i c s t u s pro log
:− dynamic command/4 .
% handle s t o r e
:− dynamic handle /1 .

%% for Gnu pro log
%dynamic (command/4) . e t c

%% pred i ca t e to ge t a new name fo r a handle

new handle name (Agent ,Name,Name) :−
\+ handle (h(Agent ,Name, ,)) .

new handle name (Agent ,Name,Name) :−
new handle name (Agent , prime (Name) , prime (Name)) .

%%% the a lgor i thm

go (Pro toco l) :−

37

go ,
print commands .

go :−
f indal l (, (

p r o t o c o l s t e p (Played by ,LHS,MID,RHS) ,
t r e a t s t e p (Played by ,LHS,MID,RHS)) ,) .

print commands :−
f indal l (, (

command(Played by ,Commands1 ,Commands2 ,Commands3) ,
format (”˜n˜n

Command f o r ˜w ˜n˜n
Generate ˜w ˜n˜n
Decrypt ˜w ˜n˜n
Encrypt ˜w ˜n˜n” ,

[Played by ,Commands1 ,Commands2 ,Commands3])) ,) .

t r e a t s t e p (Played by ,LHS,MID,RHS) :−

g e n e r a t e r u l e s (Played by ,MID,Commands1) ,
d e c r yp t r u l e s (Played by ,LHS,Commands2) , % t e s t s inc luded here
en c r yp t r u l e s (Played by ,RHS,Commands3) ,
assert (command(Played by ,Commands1 ,Commands2 ,Commands3)) , ! .

%% Determine generate r u l e s
g e n e r a t e r u l e s (, [] , []) .

g e n e r a t e r u l e s (Agent , [nonce (Agent ,Name, Level , Set) | Rest] ,
[gen (h(Agent ,Name, Level , Set)) |OtherCommands]) :−

assert (handle (h(Agent ,Name, Level , Set))) ,
g e n e r a t e r u l e s (Agent , Rest , OtherCommands) .

g e n e r a t e r u l e s (Agent , [key (Agent ,Name, Level , Set) | Rest] ,
[gen (h(Agent ,Name, Level , Set)) |OtherCommands]) :−

assert (handle (h(Agent ,Name, Level , Set))) ,
g e n e r a t e r u l e s (Agent , Rest , OtherCommands) .

%% Determine decryp t ion ru l e s
de c r yp t r u l e s (, [] , []) .

d e c r yp t r u l e s (Agent , [enc (Lis t , Key) | Rest] , [decrypt ([enc (Li s t , Key) ,
h (Agent , Key , Level , Set) , Test] ,RHS) |Commands]) :−

handle (h(Agent , Key , Level , Set)) ,
t r e a t enc ryp t ed t e rms (Agent , L i s t ,RHS) ,
d e r i v e t e s t s (Agent , L i s t , Test) ,
d e c r yp t r u l e s (Agent , Rest ,Commands) .

d e c r yp t r u l e s (Agent , [| Rest] ,Commands) :−
de c r yp t r u l e s (Agent , Rest ,Commands) .

%% t r e a t the encrypted terms tha t are decrypted
t r ea t enc ryp t ed t e rms (, [] , []) :− ! .

t r e a t enc ryp t ed t e rms (Agent , [agent (Name) | Rest] , [agent (Name) |RHS]) :−
t r ea t enc ryp t ed t e rms (Agent , Rest ,RHS) .

%forwarding o f encrypted packe t s .

t r ea t enc ryp t ed t e rms (Agent , [packet | Rest] , [packet |RHS]) :−
t r ea t enc ryp t ed t e rms (Agent , Rest ,RHS) .

%% nonce l e v e l 0 returned

38

t r ea t enc ryp t ed t e rms (Agent , [nonce (Agent2 ,Name, 0 , S) | Rest] ,
[nonce (Agent2 ,Name, 0 , S) |LHS]) :−

t r ea t enc ryp t ed t e rms (Agent , Rest ,LHS) .

%%%% nonce l e v e l 1 − ge t a new handle f o r i t

t r ea t enc ryp t ed t e rms (Agent , [nonce (Agent2 ,Name, 1 , Set) | Rest] ,
[h (Agent ,Name2 , 1 , Set) |LHS]) :−

new handle name (Agent ,Name, Name2) ,
assert (handle (h(Agent ,Name2 , 1 , Set))) ,
t r e a t enc ryp t ed t e rms (Agent , Rest ,LHS) .

%%%% key l e v e l 2 − ge t a new handle f o r i t

t r ea t enc ryp t ed t e rms (Agent , [key (Agent2 ,Name, 2 , Set) | Rest] ,
[h (Agent ,Name2 , 2 , Set) |LHS]) :−

new handle name (Agent ,Name, Name2) ,
assert (handle (h(Agent ,Name2 , 2 , Set))) ,
t r e a t enc ryp t ed t e rms (Agent , Rest ,LHS) .

%% Fina l l y the r u l e s f o r encrypt ion

en c r yp t r u l e s (Agent , [] , []) .

%% only an enc term i s o f i n t e r e s t

en c r yp t r u l e s (Agent , [enc (Lis t , Key) | Rest] ,
[encrypt ([h (Agent , Key ,L , Set) , Terms] ,
[enc (Li s t , Key)]) | Rules1]) :−

handle (h(Agent , Key ,L , Set)) ,
% check fo r nes ted encryp t ions

en c r yp t r u l e s (Agent , L i s t , Rules2) ,
t r e a t p l a i n t e x t s (Agent , L i s t , Terms) ,
e n c r yp t r u l e s (Agent , Rest , Rules3) ,
append (Rules3 , Rules2 , Rules1) .

%% other s t u f f (t h i s can a l s o t r i g g e r e d i f the encrypt ion
%% i s with a key we don ’ t have ,
%% i . e . we forward a s e c r e t packet

en c r yp t r u l e s (A, [| Rest] ,RHS) :−
en c r yp t r u l e s (A, Rest ,RHS) .

%%%%%% t r e a t the t h in g s t ha t must be encrypted

t r e a t p l a i n t e x t s (Agent , [] , []) .

% agent name

t r e a t p l a i n t e x t s (Agent , [agent (Name) | Rest] , [agent (Name) |RHS]) :−
t r e a t p l a i n t e x t s (Agent , Rest ,RHS) .

% a nested encrypt ion (i t w i l l have i t s own ru l e)

t r e a t p l a i n t e x t s (Agent , [enc (,) | Rest] , [n e s t ed enc rypt i on |RHS]) :−
t r e a t p l a i n t e x t s (Agent , Rest ,RHS) .

% one of my nonces , 0 or 1

t r e a t p l a i n t e x t s (Agent , [nonce (Agent ,Name, L , Set) | Rest] ,
[h (Agent ,Name, L , Set) |RHS]) :−

handle (h(Agent ,Name, L , Set)) ,

39

t r e a t p l a i n t e x t s (Agent , Rest ,RHS) .

%% someone e l s e s nonce l e v e l 0 (i . e . p u b l i c term)

t r e a t p l a i n t e x t s (Agent , [nonce (Agent2 ,Name, 0 , Set) | Rest] ,
[nonce (Agent2 ,Name, 0 , Set) |RHS]) :−

Agent2 \== Agent ,
t r e a t p l a i n t e x t s (Agent , Rest ,RHS) .

% key

t r e a t p l a i n t e x t s (Agent , [key (Agent ,Name, L , Set) | Rest] ,
[h (Agent ,Name, L , Set) |RHS]) :−

handle (h(Agent ,Name, L , Set)) ,
t r e a t p l a i n t e x t s (Agent , Rest ,RHS) .

%% der i v e t e s t s i f necessary , o therwi se re turn the empty l i s t
%% i f we f i nd something o f l e v e l 2 , we requ i r e
%% a t e s t on something we generated o f l e v e l 1

d e r i v e t e s t s (Agent , L i s t , Tests) :−
d e r i v e t e s t s (Agent , L i s t , Tests , L i s t) .

d e r i v e t e s t s (, [] , [] ,) .

d e r i v e t e s t s (Agent , [key (Agent2 , Name , 2 , Se t) | Rest] , [t e s t (Handle)] , L i s t) :−
f i n d t e s t n on c e (Agent , Handle , L i s t) .

d e r i v e t e s t s (Agent , [| Rest] , Test , L i s t) :−
d e r i v e t e s t s (Agent , Rest , Test , L i s t) .

f i n d t e s t n on c e (, warning (m i s s i n g t e s t) , []) .

f i n d t e s t n on c e (Agent , h (Agent ,Name, L , Set) , [nonce (Agent ,Name, L , Set) |]) .

f i n d t e s t n on c e (Agent , Handle , [| L i s t]) :−
f i n d t e s t n on c e (Agent , Handle , L i s t) .

40

