
A Formal Theory of Key Conjuring∗

Véronique Cortier
LORIA, Projet Cassis

CNRS & INRIA
cortier@loria.fr

Stéphanie Delaune
LORIA, Projet Cassis

CNRS & INRIA
delaune@lsv.ens-cachan.fr

Graham Steel
School of Informatics

University of Edinburgh
graham.steel@ed.ac.uk

Abstract

Key conjuring is the process by which an attacker ob-
tains an unknown, encrypted key by repeatedly calling a
cryptographic API function with random values in place of
keys. We propose a formalism for detecting computation-
ally feasible key conjuring operations, incorporated into a
Dolev-Yao style model of the security API. We show that
security in the presence of key conjuring operations is de-
cidable for a particular class of APIs, which includes the
key management API of IBM’s Common Cryptographic Ar-
chitecture (CCA).

1 Introduction

Cryptographic security APIs are sets of functions de-
signed to facilitate the secure generation, storage, use
and destruction of cryptographic keys. Security APIs for
tamper-resistant hardware devices typically manage keys by
keeping a secret master key inside the device. This is used
to encrypt all the working keys used for operational func-
tions, so that they can be securely stored outside the device.
One technique used by attackers attempting to breach secu-
rity is to try calling API functions with random values in the
place of encrypted keys, to see if they are allowed to pass, or
whether the device signals an error. This process is known
as key conjuring [1]. Learning the encrypted value of a key
might not seem useful, but several attacks have been pre-
sented that leverage this trick in order to compromise the
security of an API [1, 4, 3].

A promising approach to security API analysis involves
adapting Dolev-Yao style protocol analysis techniques [10],
where details of cryptographic algorithms used are ab-
stracted away and a logical model is constructed, with rules
describing the operations of the intruder and protocol. This

∗This work has been partly supported by the RNTL project POSE, the
ACI Jeunes Chercheurs JC9005, and EPSRC project Automated Analysis
of Security Critical Systems, grant number GR/S98139/01.

can be adapted quite naturally to API analysis by consider-
ing the API to be a set of 2-party protocols, each describ-
ing an exchange between the secure hardware module and
the host machine [12, 14, 8]. However, in previous work,
the key conjuring trick was treated in an ad-hoc fashion, by
adding a number of pre-chosen keys to the intruder’s initial
knowledge [12, 14, 8], or by adding a rule to allow particu-
lar keys to be conjured [11]. This raises doubts about com-
pleteness of the search for attacks, and hence the strength of
any proofs of security.

The aim of the work in this paper is to address this prob-
lem by proposing a formal model that identifies all com-
putationally feasible key conjuring operations, and allows
these to be incorporated into a Dolev-Yao style model for
security analysis of the API. We propose a transformation
that automatically computes all the possible ways of per-
forming key conjuring from the API rules. Our transforma-
tion takes as input a set of formal rules representing the be-
haviour of an API and outputs new formal rules represent-
ing key conjuring. In this manner, we eliminate the need for
the user to generate key conjuring rules by hand. As far as
we are aware, this paper presents the first formal treatment
that allows an exhaustive set of key conjuring rules to be
obtained.

Our second main contribution is to show decidability of
the security of APIs (expressed as a reachability property),
in the presence of key conjuring, for a class of APIs that
includes for example the symmetric key management API
of IBM’s Common Cryptographic Architecture (CCA). In
particular, it requires consideration of the algebraic prop-
erties of the Exclusive Or operation. Our decidability re-
sult holds for an unlimited number of sessions, though we
do bound the number of times key conjuring operations are
used. Indeed, it would not be realistic to allow the intruder
to conjure as many keys as he wishes since it requires a sig-
nificant amount of access to the API. This class is related to
the class proposed in [8], with two main differences. First,
we consider explicit decryption, since it was more appro-
priate for modelling key conjuring, and it reflects better the
implementation. Second, we have to consider key conjuring

rules which introduce fresh nonces. A precise comparison
can be found in Section 6.5.

In the rest of the paper, we first explain the purpose and
operation of security APIs, and define our formalism for
describing them (Section 2). We then propose a transfor-
mation for key conjuring in Section 3. In Section 4, we ex-
plain the security problem we are interested in, and define
a restricted class of APIs, arguing that these restrictions are
quite natural. In Section 5 we show that certain classes of
key conjuring operations are of no use to the intruder, and
need not be considered in a formal model. We then show
(Section 6) that security for our class of APIs is decidable
in the presence of key conjuring operations. The class in-
cludes our motivating example, the key management API
of the IBM 4758 Hardware Security Module, which was
shown to be vulnerable to key conjuring attacks by Bond
in [1]. We conclude, with a discussion of future work, in
Section 7. Due to lack of space, some proofs are omitted
and can be found in [7].

2 Background

In this section, we first explain what a security API is,
before going on to define the concept more formally.

2.1 Security APIs

The purpose of a security application program inter-
face (API) is to allow untrusted code to access sensitive
resources in a secure way. Hardware security modules
(HSMs), for example, have security APIs which control ac-
cess to the cryptoprocessor and memory inside the mod-
ule. This allows the API to manage access to cryptographic
keys. HSMs are deployed in security critical environments
such as the cash machine network, where they are used
to protect customers PINs and other sensitive data. They
typically consist of a cryptoprocessor and a small amount
of memory inside a tamper-proof enclosure. They are de-
signed so that should an intruder open the casing or insert
probes, the memory will auto-erase in a matter of nanosec-
onds. In a typical ATM network application, all encryp-
tion, decryption and verification of PINs takes place inside
the HSM. Many different cryptographic keys will be used
for these operations. IBM’s 4758 CCA1 API [2] partitions
keys into various types, such as data keys, PIN derivation
keys, import keys and export keys. Each type has an as-
sociated public control vector. The HSM stores a master
key in its tamper-proof memory. The keys the HSM uses
for its various operations, called working keys, are stored
outside the HSM encrypted under the master key XORed

1CCA stands for ‘Common Cryptographic Architecture’, while 4758
is the model number of the HSM. See http://www-3.ibm.com/
security/cryptocards/pcicc.shtml

against the appropriate control vector for the key type. For
example, a data key would be encrypted under km⊕data.2

Working keys can then only be used by sending them back
into the HSM under an appropriate API command. Only
particular types of keys will be accepted by the HSM for
particular operations. For example, data keys can be used
to encrypt arbitrary messages, but so-called PIN Derivation
Keys (PDKs, with control vector pin) cannot. This is criti-
cal for security: a customer’s PIN is just his account number
encrypted under a PIN derivation key. In 2001, Bond dis-
covered attacks in which the intruder uses API commands
to change the type of a key, exploiting the algebraic proper-
ties of XOR [1]. The attack allows a PIN derivation key to
be converted into a data key, which can then be used to en-
crypt data. Hence the attack allows the intruder to generate
a PIN for any account number.

Formal work on the CCA first concentrated on rediscov-
ering the attacks on the original version of the API [12, 14],
and then on proving both Bond’s proposed fixes [9], and the
fixes IBM actually implemented [8], to be secure. However,
these works made an informal approximation of the ability
of the intruder to ‘conjure’ keys, a trick used several times
in Bond’s attacks. To explain precisely what key conjuring
is, we first need to define some notation.

2.2 Definitions

We now define our (mostly standard) notation for reason-
ing about APIs, and then define the class of APIs considered
in this paper.

Cryptographic primitives are represented by functional
symbols. More specifically, we consider a signature Σ
which consists of an infinite number of constants including
a special constant 0 and three non constant symbols { }
(encryption), dec (decryption) and ⊕ (XORing) of arity 2.
We also assume an infinite set of variables X . The set of
terms, denoted by T (Σ,X), is defined inductively by

T ::= terms
x variable x

| f(T1, . . . , Tn) function application

where f ranges over the functions of Σ and n matches the
arity of f . For instance, the term {m}k is intended to rep-
resent the message m encrypted with the key k (using sym-
metric encryption) whereas the term m1 ⊕m2 represents
the message m1 XORed with the message m2. The con-
stants may represent control vectors or keys for example.

We rely on a sort system for terms. Terms which respect
this sort-system are said to be well-typed. It includes a set
of base type Base and a set of ciphertext type Cipher. We
have variables and constants of both types. Moreover we

2⊕ represents bitwise XOR.

assume that our function symbols have the following type:

⊕ : Base × Base → Base
{ } : Base × Base → Cipher
dec : Cipher × Base → Base

A pure term t is a well-typed term whose only encryption
symbol (when such a symbol exists) is at its root position.
We say that a term t is headed with f if its root symbol is f .
The set of variables occurring in t is denoted vars(t). We
denote by st(t) the set of subterms of t. This notation is
extended as expected to set of terms. A term is ground if
it has no variable. Substitutions are written σ = {x1 7→
t1, . . . , xn 7→ tn} with dom(σ) = {x1, . . . , xn}. A substi-
tution σ is ground if all of the ti are ground. The application
of a substitution σ to a term t is written tσ.

We equip the signature Σ with an equational theory EAPI

that models the algebraic properties of our operators:

EAPI :=

 {dec(x, y)}y = x x⊕ 0 = x
dec({x}y, y) = x x⊕ x = 0

x⊕ (y ⊕ z) = (x⊕ y)⊕ z x⊕ y = y ⊕ x

It defines an equivalence relation that is closed under
substitutions of terms for variables and under application
of contexts. In particular, we say that two terms t1 and t2
are equal, denoted by t1 =EAPI

t2 if they are equal mod-
ulo the equational theory EAPI. If two terms are equal using
only the equations of the last line (resp. involving ⊕), we
say that they are equal modulo Associativity and Commu-
tativity (AC) (resp. modulo Xor).

In the CCA API, as in many others, symmetric keys are
subject to parity checking. The 4758 uses the DES (and
3DES) algorithm for symmetric key encryption. A (single
length) DES key consists of 64 bits in total, which is divided
into eight groups, each consisting of seven key bits and one
associated parity bit. For an odd parity key, each parity bit
must be set so that the overall parity of its group is odd.
For an even parity key, the parity bits must be set so that all
groups are of even parity. If the groups have mixed parities,
then the key is of undefined parity and considered invalid.
The CCA API checks that all DES keys are of odd parity,
and all control vectors are even, so that a key XORed against
a control vector will give another odd parity key. These par-
ity considerations are important for our analysis of key con-
juring, and are represented in our formalism by occurrences
of the predicate symbols chkEven and chkOdd, each having
a term as argument. Intuitively, chkOdd(t) means that t has
an odd parity. Among the constants in Σ, some have a par-
ity. By default (no explicit parity given to a constant), we
will assume that such a constant has no parity. Moreover,
we have some rules to infer parity from known facts, which

are:

chkEven(x1), chkEven(x2) → chkEven(x1 ⊕ x2)
chkOdd(x1), chkOdd(x2) → chkEven(x1 ⊕ x2)
chkEven(x1), chkOdd(x2) → chkOdd(x1 ⊕ x2)

Intruder capabilities and the protocol behaviour are de-
scribed using rules as defined below.

Definition 1 (API rule) An API rule is a rule of the form
chk1(u1), . . . , chkk(uk), x1, . . . , xn → t, where

• x1, . . . , xn are variables,

• t is a term such that vars(t) ⊆ {x1, . . . , xn},

• u1, . . . , uk are terms of Base type not headed with ⊕,

• chki ∈ {chkOdd, chkEven}, 1 ≤ i ≤ k.

We also assume that the rule only involves pure terms.

The third condition might seem restrictive. However, it
merely requires that we check each component of a sum
rather than the entire sum. For example, if the sum v1 ⊕
· · · ⊕ vk has some expected parity, each vi should also have
some expected parity, and we ask that their parity is checked
separately.

Example 1 The intruder capabilities are represented by
the following set of three API rules:

x, y → {x}y encryption
x, y → dec(x, y) decryption
x, y → x⊕ y xoring

Example 2 Commands may include several parity checks.
In Figure 1, we give the symmetric key management subset
of the IBM 4758 API, written in our notation. The terms
km, imp, exp, kp, data and pin denote constant of Base
type whereas xtype, xk1, . . . denote variables. Note that all
the rules satisfies conditions stated in Definition 1. For in-
stance, Key Import is used to make a new working key for
an HSM. The new key is sent to the target HSM encrypted
under a transport key. The command decrypts the imported
package, and returns the key encrypted under the local mas-
ter key XOR the appropriate control vector.

3 A Formal Theory of Key Conjuring

We first introduce key conjuring informally, giving an
example of a key conjuring attack. This will help to explain
our transformation. We then formally define our transfor-
mation that takes a set of API rules, and extends it with
rules that permit key conjuring.

Key Part Imp. 1 : xk1, xtype → {xk1}km⊕kp⊕xtype

chkOdd(xk1), chkEven(xtype)
Key Part Imp. 2: chkEven(xtype), y, xk2, xtype → {dec(y, km⊕ kp⊕ xtype)⊕ xk2}km⊕kp⊕xtype

chkOdd(dec(y, km⊕ kp⊕ xtype))
chkEven(xk2)

Key Part Imp. 3: chkEven(xtype), y, xk3, xtype → {dec(y, km⊕ kp⊕ xtype)⊕ xk3}km⊕xtype

chkOdd(dec(y, km⊕ kp⊕ xtype))
chkEven(xk3)

Key Import: chkEven(xtype), y, xtype, z → {dec(y, dec(z, km⊕ imp)⊕ xtype)}km⊕xtype

chkOdd(dec(z, km⊕ imp))
chkOdd(dec(y, dec(z, km⊕ imp)⊕ xtype))

Key Export: chkOdd(dec(z, km⊕ exp)), y, xtype, z → {dec(y, km⊕ xtype)}dec(z,km⊕exp)⊕xtype

chkOdd(dec(y, km⊕ xtype))
chkEven(xtype)

Encrypt Data: chkOdd(dec(y, km⊕ data)), x, y → {x}dec(y,km⊕data)

Decrypt Data: chkOdd(dec(y, km⊕ data)), x, y → dec(x, dec(y, km⊕ data))

Translate Key: chkEven(xtype), x, xtype, y1, y2 → {dec(x, dec(y1, km⊕ imp)⊕ xtype)}dec(y2,km⊕exp)⊕xtype

chkOdd(dec(y1, km⊕ imp))
chkOdd(dec(y2, km⊕ exp))

chkOdd(dec(x, dec(y1, km⊕ imp)⊕ xtype))

Figure 1. IBM CCA Symmetric Key Management Transaction Set

3.1 Key Conjuring

As we have seen, key management APIs like the CCA
keep working keys outside the HSM, safely encrypted, so
that they can only be used by sending them back into the
HSM under the terms of the API. What happens when an
intruder wants to use a particular command in an attack,
but does not have access to an appropriate key? For ex-
ample, suppose he has no data keys (terms of the form
{d1}km⊕data), but wants to use the Encipher command. In
an implicit decryption formalism, the command is defined
like this

x, {xkey}km⊕data → {x}xkey
This suggests that the command cannot be used if the

intruder does not have a data key. However, in reality, an
intruder could just guess a 64 bit value and use that in place
of the data key. The HSM will decrypt the guessed value
under km⊕ data, and check the parity of the resulting 64
bit term to see if it is a valid key before, enciphering the
data. Usually, the check will fail and the HSM will refuse to
process the command, but if the intruder guesses randomly,
he can expect that 1 in every 256 guessed values will result
in a valid key. This notion is captured by our formalism, in
which we write the Encipher command like this:

chkOdd(dec(y, km⊕ data)), x, y→ {x}dec(y,km⊕data)

It may seem useless for the intruder to simply guess val-
ues, since the result is a term he knows enciphered un-
der an unknown key, but used cleverly, this technique can
result in serious attacks. For example, Bond’s so called
import-export attack [1], uses key conjuring to convert a
PIN derivation key into an encryption key, allowing an in-
truder to generate the PIN for any given account number.

Description of Bond’s attack. We give Bond’s attack in
Figure 2, written in our formalism, with explicit decryp-
tion and parity checking. We assume that the attacker initial
knowledge contains {pdk}km⊕pin (a PIN key encrypted for
transfer), the control vectors pin, data, imp, exp, kp, and
the constant 0. Moreover, we model the fact that control
vectors are of even parity and secret keys km and pdk are
of odd parity by considering the corresponding facts (e.g.
chkEven(pin)). We will show how the PIN derivation key
pdk can be converted into a data key, which then can be
used to encrypt data. Hence the attack allows a criminal to
generate a PIN for any account number. For this, we show
that the attacker is able to derive {pdk}km⊕data.

Step 1 is a key conjuring step. The attacker is using
the Key Part Import 3 command, using the control vec-
tor imp (for xtype) and the key part 0 (for xk3) but with-
out a term of the form {m}km⊕kp⊕imp. Instead, he re-
peatedly tries random values until some value n1 decrypts
under km⊕ kp⊕ imp to give a valid key, i.e. a term of

1. Key Part Imp. 3 ?, 0, imp
new n1→ {dec(n1, km⊕ kp⊕ imp)}km⊕imp, n1

chkEven(0), chkEven(imp) chkOdd(dec(n1, km⊕ kp⊕ imp))
Let r = dec(n1, km⊕ kp⊕ imp)
2. Key Part Imp. 3 n1, imp⊕ exp, imp → {r ⊕ imp⊕ exp}km⊕imp

chkEven(imp), chkEven(imp⊕ exp)
chkOdd(dec(n1, km⊕ kp⊕ imp))

3. Key Import ?, imp⊕ kp, {r}km⊕imp
new n2→ {dec(n2, r ⊕ imp⊕ kp))}km⊕imp⊕kp, n2

chkOdd(r), chkEven(imp⊕ kp) chkOdd(dec(n2, r ⊕ imp⊕ kp))
Let r′ = dec(n2, r ⊕ imp⊕ kp)
4. Key Import n2, exp⊕ kp, {r ⊕ imp⊕ exp}km⊕imp → {r′}km⊕exp⊕kp

chkEven(exp⊕ kp), chkOdd(r ⊕ imp⊕ exp)
chkOdd(dec(n2, r ⊕ imp⊕ kp))

5. Key Part Imp. 3 {r′}km⊕exp⊕kp, 0, exp → {r′}km⊕exp

chkEven(0), chkEven(exp), chkOdd(r′)

6. Key Part Imp. 3 {r′}km⊕imp⊕kp, pin⊕ data, imp → {r′ ⊕ data⊕ pin}km⊕imp

chkEven(data⊕ pin), chkEven(imp), chkOdd(r′)

7. Key Export {pdk}km⊕pin, pin, {r′}km⊕exp, → {pdk}r′⊕pin

chkOdd(pdk), chkEven(pin)

8. Key Import {pdk}r′⊕imp, data, {r′ ⊕ data⊕ pin}km⊕imp → {pdk}km⊕data

chkOdd(pdk), chkOdd(r′ ⊕ data⊕ pin), chkEven(data)

“?” represents inputs that are replaced by random values by the attacker.

Figure 2. Bond’s Import/Export Attack in our formalism

odd parity. Note that we have written this by labelling
the arrow to show the conjuring of a new term n1, and
the odd parity check is now on the right hand side of
the rule, indicating that the intruder has learnt the fact
chkOdd(dec(n1, km⊕ kp⊕ imp)). In the rest of the attack
we write r in place of dec(n1, km⊕ kp⊕ imp).

Having succeeded in finding a suitable value n1, he uses
the command again with imp⊕ exp as the key part to be
added to the key, in Step 2. This yields two unknown key
encrypting keys, r and r ⊕ imp⊕ exp, with a known differ-
ence.

In Step 3, the intruder uses key conjuring again, this
time with the Key Import command, using random values
in place of {xkey}xkek⊕xtype, and using {r}km⊕imp as the
key encrypting key. Again, we write this as the gener-
ation of a new term n2, and the intruder learns the fact
chkOdd(dec(n2, r ⊕ imp)). In the rest of the attack we
write r′ in place of dec(n2, r ⊕ imp). In Step 4, the intruder
uses the conjured value again to obtain an export version of
the key.

The partial keys obtained by these two operations can
then be completed using Key Part Import 3. The exporter is
completed to give {r′}km⊕exp, in Step 5, whilst the importer
is set to change the type of a key from pin to data, in Step 6.
A PIN derivation key {pdk}km⊕pin can then be turned into a

data key by first exporting it under {r′}km⊕exp using Key Ex-
port in Step 7, and then changing the type by re-importing
it using {r′ ⊕ data⊕ pin}km⊕imp as the importer, in Step 8.
Having obtained a PIN derivation key as a data key, the in-
truder can now encrypt account numbers to obtain customer
PINs.

In 2003, as a result of work by Youn et. al [14], it came
to light that this attack was impossible in practice, as an
undocumented check in the CCA’s implementation prevents
key parts being passed to Key Import. This would mean
steps 3 and 4 of the attack couldn’t be executed. However,
further attacks using key conjuring had been discovered by
then, [3, 4], on both the CCA API and other APIs. Clulow
notes in [4] that key conjuring can be prevented by using
a hash or MAC to test the authenticity of keys, but many
designs do not include such measures, which increase the
key management overhead.

Our example attack shows the potential of key conjur-
ing to mount attacks. It also demonstrates the features of
our formalism which allow us to detect realistic key con-
juring operations. A straightforward ‘explicit decryption’
model is not sufficient for a key conjuring analysis, since
though this allows an attack like Bond’s be discovered, it
doesn’t take into account parity checks. This means that the
model cannot distinguish between feasible and non-feasible

key conjuring steps, leading to false attacks. For example,
for a command like Key Import (see Example 2), an explicit
decryption model without parity checking would allow an
intruder to conjure values for both y and z, which in prac-
tice is highly unlikely: only 1 in every 216 pairs of values
will pass. Our transform ensures that the intruder has to
guess values for at most one parity check.

3.2 Transformation on the API rules

We propose a transformation allowing us to model key
conjuring. This transformation is generic enough to deal
with any API made up of rules satisfying the conditions
given in Definition 1.

We first introduce a set of nonces, denoted by N , a sub-
set of the set of constants that does not contain the special
constant 0. We assume an infinite number of nonces of both
types. A nonce represents a fresh value that has been never
used before. Rules obtained after transformation are called
key conjuring rules and have the following form:

x1, . . . , xn
new n→ t, n

chk1(u1), . . . , chkk(uk) chk′1(v1), [chk′2(n)]

The notation [chk′2(n)] is used to express the fact that
chk′2(n) is optional.

Let Rl → Rr = chk1(u1), . . . , chkk(uk), x1, . . . , xn → t
be an API rule. For each i such that 1 ≤ i ≤ k, since ui is
a term of Base type not headed with ⊕ and which contains
no encryption symbol, we have that ui is either a constant,
a variable or a term of the form dec(z, t). In this last case,
we compute the key conjuring rules associated to Rl → Rr
as follows:

1. Let σ = {z 7→ n}, we consider the new rule

(Rl r {z, chkj(uj)}
new n→ Rr ∪ {z, chkj(uj)})σ

2. Moreover, we have that

t =
p⊕
i=1

yi ⊕
⊕̀
i=1

ci ⊕
q⊕
i=1

dec(zi, ti).

for some variables yi, zi, some constants ci and some
terms ti. For each j such that 1 ≤ j ≤ p, we let
σ = {yj 7→ n} and we consider the new rule

(Rl r {yj , chkj(uj)}
new n→ Rr ∪ {yj , chkj(uj)})σ

Moreover, we push also on the right hand-side the
check performed on yj if such a check exists.

Given an API rule R, we denote by KeyCj(R) the set of
rules obtained after applying the transformation described
above. This notation is extended as expected to sets of API
rules.

Example 3 Consider the rule R, namely Key Part Import 3
described below.

y, xk3, xtype→ {dec(y, km⊕ kp⊕ xtype)⊕ xk3}km⊕xtype

chkEven(xtype)
chkEven(xk3)
chkOdd(dec(y, km⊕ kp⊕ xtype))

The purpose of this rule is to allow a user to add a final
key part xk3 to a partial key y with control vector xtype. Af-
ter applying our transformation, the set KeyCj(R) contains
the two rules described below:

xk3, xtype
new n→ {dec(n, km⊕ kp⊕ xtype)⊕ xk3}km⊕xtype

chkEven(xtype) chkOdd(dec(n, km⊕ kp⊕ xtype))
chkEven(xk3)

y, xk3
new n→ {dec(y, km⊕ kp⊕ n)⊕ xk3}km⊕n

chkEven(xk3) chkOdd(dec(y, km⊕ kp⊕ n))
chkEven(n)

This represents the two ways the intruder can use the
rule for key conjuring. In the first, he conjures a partially
completed key (this is the rule used in step 1 of the Bond
attack in Figure 2). In the second, for a fixed constant y, he
conjures a control vector that will allow y to be decrypted
to form a valid partial key. Note that the conjured control
vector is of even parity, so the intruder learns two parity
facts in this case. Our transform allows this kind of conjur-
ing because it is assumed the intruder can set the parity of
the terms he uses as guesses. The value that is checked for
even parity is under his control. Hence the probability of
success is the same as for the first conjuring variant.

The rules obtained by applying our key conjuring trans-
formation on the IBM CCA Symmetric Key Management
Transaction Set is fully described in Appendix (Figure 3).

Note that our transformation will sometimes produce
rules which the intruder cannot use. This happens when
the fresh nonce appears in a parity check on the left, as in
the first rule for Key Import in Figure 3. The intruder cannot
use this rule, since he does not know any parity information
about the new nonce before the command is used. This cor-
responds to a case where the intruder would have to guess
a value that decrypts to give a valid key, k, such that k also
decrypts some other value to give a valid key. For single
length DES keys, this gives the intruder a 1 in 216 chance of
success, which we consider unrealistic. However, if the in-
truder has extended access to a live HSM running the API,
we believe our transformation could be quite naturally ex-
tended to these more costly operations (see Section 7).

3.3 Intruder rules

We denote by I the three API rules representing the ca-
pabilities of the intruder (see Example 1). We observe that

the intruder does not have to follow any parity checks when
encrypting or decrypting, but that he can also check the par-
ity of terms he produces. Recall that parity is defined only
on terms of Base type. If an intruder makes a new term
by XORing, he can already predict the parity of the out-
come following the rules in Section 2.2. However, when
decrypting, the intruder may learn new parity information
by decrypting a known constant with a random key, or by
decrypting a random constant with a known key. We refer
to this as offline key conjuring. The rules corresponding to
this are described below:

• by decrypting a random constant with a known key

y
new n→ dec(n, y), n with X ∈ {Odd,Even}

chkX(dec(n, y))

Let I+
1 be the set of these two rules.

• decrypting a known constant with a random key

x
new n→ dec(x, n), n, chkX(n) with X,Y ∈ {Odd,Even}

chkY(dec(x, n))

Let I+
2 be the set of these four rules.

In Section 5, we will see that for a certain class of APIs,
the class considered in this paper, the offline key conjuring
rules can be safely ignored. Our final set of intruder rules,
including offline key conjuring, is denoted by I+ = I ∪
I+

1 ∪ I
+
2 .

4 A New Decidable Class

In this section, we define the semantics of our API-rules
and we introduce the class of rules for which we prove our
decidability result.

4.1 Security Problem

The problem we consider is the problem of deciding
whether a particular term, for example a PIN derivation key,
can be learnt by an attacker. The intruder starts with a fixed
set of terms that constitute his initial knowledge. He can
then use the rules of the API and also the key conjuring
variants of the rules in any order to extend his knowledge.

We first need to make sure that parity checks are per-
formed consistently.

Definition 2 (consistent) Let S = {chk1(u1), . . . , chki(ui)}∪
T where u1, . . . , ui are ground terms of Base type and T
is a set of terms. We denote by SatChk(S) the smallest set
which contains S and that is closed by application of the
following rules modulo Xor.

chkEven(x1), chkEven(x2) → chkEven(x1 ⊕ x2)
chkOdd(x1), chkOdd(x2) → chkEven(x1 ⊕ x2)
chkEven(x1), chkOdd(x2) → chkOdd(x1 ⊕ x2)

We say that S is consistent if for any term t, chkOdd(t) and
chkEven(t) are not both in SatChk(S).

A fact is either a term t or a parity check, i.e. chkX(t).
A fact is ground if the term t is ground and it is said pure if
the term t is pure and of Base type inside a parity check.

Example 4 Let S be the following set:

S = {chkEven(a⊕ b), chkEven(b⊕ c), chkOdd(a⊕ c)}

S is not consistent. Indeed, since (a⊕b)⊕(b⊕c) =Xor a⊕c,
we have that chkEven(a ⊕ c) ∈ SatChk(S) and also that
chkOdd(a⊕ c) ∈ SatChk(S).

Definition 3 (one-step deducible, deducible) Let A be a

set of rules of the form Rl
[new n]→ Rr and E be an equational

theory. Let S be a set of pure ground facts that is consis-
tent. The set of facts F is one-step deducible from S if there

exists a rule Rl
[new n]→ Rr ∈ A and a ground substitution θ

such that

• Rlθ ⊆ SatChk(S) (modulo E),

• F = Rrθ (modulo E), and

• n is fresh, i.e. n does not occur in S.

A term u is deducible from S by using the set of rules A
modulo the equational theory E, denoted by S `A,E u
if u ∈ S (modulo E) or there exists some sets of facts
F1, . . . , Fn such that u ∈ Fn and Fi is one-step deducible
from S ∪ F1 ∪ . . . ∪ Fi−1. The sequence F1, . . . , Fn is a
proof that S `A,E u.

Of course, at each step of the proof the set of ground
facts obtained has to be consistent with respect to the par-
ity checking predicates. However, this will be the case by
construction, since the only rules which add parity facts are
the key conjuring ones, which always introduce something
fresh in the parity facts.

Example 5 Let S = {{s}a, a ⊕ b, b}. We have that s is
deducible from S by using the rules I modulo EAPI. Indeed,
we have that S, {a}, {s} is a proof of S `I,EAPI

s.

Example 6 (Bond’s Import/Export attack) Let A be the
rules described in Figure 1, V = {pin, data, exp, imp, kp}.
Let S be a set which contains:

• {pdk}km⊕pin, chkOdd(pdk), chkOdd(km),

• t and chkEven(t) for any t ∈ V.

We have that {pdk}km⊕data is deducible from S by using
the rules in A ∪ KeyCj(A) ∪ I modulo EAPI. The proof
witnessing this fact can be easily extracted from Figure 2.

Note that this attack involves two online key conjuring
steps. Each key conjuring attempt has a 1 in 256 chance of
success, due to the parity checks. Each time the adversary
wants to conjure a key, it requires a significant amount of ac-
cess to the API. We assume in what follows that the use of
these rules by the adversary is limited. This is modelled by
introducing a parameter k that bounds the maximum num-
ber of applications of the key conjuring rules induced by the
protocol. The value of k could be set based on the amount
of time an attacker may have access to a live HSM, based
on physical security measures, auditing procedures in place,
etc. Note however that we do not bound the number of of-
fline key conjuring since it is much easier for an adversary
to try numerous values off-line.

Formally, we write S `A2 ≤k
A1,EAPI

u if u is deducible from S
by using the rules in A1 and at most k instances of the rule
in A2 (modulo EAPI). In this paper we rely on a fixed equa-
tional theory, denoted by EAPI (see Section 2.2) and a fixed
set of intruder rules denoted by I+. Hence our problem is
the following one:

Security Problem

Entries: A finite setA of API rules, a set S of pure ground
facts that is consistent (the initial knowledge of the at-
tacker), a pure ground term s (the secret) and a bound
k ∈ N (number of key conjuring steps).

Question: Is the secret s deducible from S by using the
rules in A ∪ I+ and at most k instances of rules in
KeyCj(A) (modulo EAPI), i.e. does S `KeyCj(A) ≤k

A∪I+,EAPI
s?

4.2 Well-formed API

API-rules as defined in Definition 1 are slightly too gen-
eral for our decidability result. Hence we introduce further
assumptions, that we believe are very reasonable in prac-
tice. Note that these hypotheses are checked on the API
rules before performing the key conjuring transformation.

Definition 4 Let S0 be a set of pure ground fact that is con-
sistent. Let R = Rl

new n→ Rr be a rule and t be a term
of Base type. We say that t is checked in R w.r.t. S0 if
chkX(t) ∈ SatChk(S0 ∪ Rl ∪ Rr).

Definition 5 Let R be a rule. KeyTerm(R) are the sub-
terms of R which appear at a key position. More formally,
KeyTerm(R) = {KeyTerm(t) | t ∈ R or chkX(t) ∈ R}
where KeyTerm(t) is defined as follows:

KeyTerm(t) = {u2 | dec(u1, u2) ∈ st(t) for some u1}
∪ {u2 | {u1}u2 ∈ st(t) for some u1}.

We will restrict our attention to APIs such that a term
which appears at a key position has to be parity checked.

This hypothesis is natural, since it corresponds to the API
designer being consistent about checking the parity of keys
before they are used.

Example 7 Let V = {imp, kp, exp, pin, data}. and S0 be a
set that is consistent and which contains at least chkEven(t)
for any t ∈ V and chkOdd(km). The rules given in Figure 1
are such that each term which appears at a key position is
checked w.r.t. S0.

Definition 6 (dec-property) Let T be a set of terms. We
say that T has the dec-property if

dec(x, v1), dec(x, v2) ∈ st(T) ⇒ v1 = v2.

We say that a rule R has the dec-property if the set of terms
T = {t | t ∈ R or chkX(t) ∈ R} satisfies the dec-property.

In the API we consider, we will assume that all the rules
satisfy the dec-property. This hypothesis is natural, since
it only forbids the API from decrypting the same input un-
der two different keys. Note that the dec-property is clearly
satisfied by the rules given in Figure 1.

Definition 7 (well-formed API rule) Let S0 be a set of
pure ground fact that is consistent. Let R be an API rule.

chk1(u1), . . . , chkk(uk), x1, . . . , xn → t

We say that R is well-formed w.r.t. S0 if:

• for all i such that 1 ≤ i ≤ k, we have that ui ∈ st(t),

• R satisfies the dec-property,

• for all v ∈ KeyTerm(R), v is checked in R w.r.t. S0.

An API rule satisfying only the two first points is said to be
weakly well-formed.

The first point requires that the API only checks the par-
ity of objects that are to be used in generating the output.
Since the form of our rules has only variables on the left,
and all decryption explicitly stated on the right, this is quite
natural. We would not expect an API to check the parity of
a term that is subsequently discarded. For instance, the API
rules given in Figure 1 are well-formed. However, the rules
describing the capabilities of the attacker (see Example 1)
are not well-formed, but only weakly well-formed.

4.3 Decidability

Theorem 1 (Main result) Let P be an instance of the se-
curity problem (as stated at the end of Section 4.1) where

• the set A of API rules is well-formed w.r.t. the set S

• 0 ∈ S,

• the terms in S ∪ {s} do not contain any symbol dec.

We can decide whetherP is a positive or a negative instance
of the security problem.

The remainder of the paper is devoted to the proof of this
result. We proceed in several steps:

1. From I+ to I. In Section 5, we establish some re-
duction results allowing us to get rid of the offline key
conjuring rules. These results are obtained for any set
of API rules as defined in Definition 1, and not only
the well-formed ones introduced in Definition 7.

2. From EAPI to AC. In Section 6.1, we show that we
can get rid of some axioms of the equational theory
by using the fact that EAPI satisfies the finite variant
property introduced in [6]. This can be done safely
by considering some new rules, namely the variants
denoted Var (A), which are obtained from the rules A
we have at the beginning by instantiating them.

3. Controlling the form of the rules. In Section 6.2,
we show that the variants computed at the previ-
ous step satisfy some properties. Given a set A of
(weakly) well-formed API rules, we have that Var (A∪
KeyCj(A)), rules obtained after our both transforma-
tions, are (weakly) well-adapted (see Definition 9).

4. Existence of a pure attack. In Section 6.3, we show that
for a set of weakly well-adapted rules, if there exists an
attack then there is one which only involves pure terms
(see Proposition 5).

5. Bounded the number of subterms headed with dec.
Now, to obtain our decidability result it is sufficient to
bound the number of terms headed with dec in an at-
tack (see Section 6.4). This allows us to consider only
a finite number of terms.

5 Off-line key conjuring is useless

The adversary can perform as many off-line key conjur-
ing as he wishes, since it is very easy for him to try numer-
ous values off-line, until the decryption algorithm yields a
bitstring of the desired parity. We show now that in fact,
off-line key conjuring does not provide any extra possibili-
ties for the adversary to mount an attack. Thus there is no
need to consider these rules.

We first show that the rules of I+
1 are useless as soon as

the adversary knows a fixed constant of each parity.

Proposition 1 LetA be a set of API rules and S be a set of
pure ground facts. We have that

S `KeyCj(A)≤k
A∪I+,EAPI

u ⇔ S′ `KeyCj(A)≤k
A∪I∪I+

2 ,EAPI
u

where S′ = S ∪{c1, c2, chkOdd(c1), chkEven(c2)} and c1,
c2 are constants of Base type that do not appear in A, S
and u.

Then, we show that there is no need to consider rules
of I+

2 if the intruder already knows terms of the form
dec(1, ci) of each parity. Intuitively, the intruder knows an
instance of each of the four rules.

Proposition 2 LetA be a set of API rules and S be a set of
pure ground facts. We have that

S `KeyCj(A)≤k
A∪I∪I+

2 ,EAPI
u ⇔ S′ `KeyCj(A)≤k

A∪I,EAPI
u

where S′ is the set obtained from S by adding

• the constants 1 (Cipher) and c1, c2, c3, c4 (Base),

• chkOdd(dec(1, c1)), chkOdd(c1)

• chkOdd(dec(1, c2)), chkEven(c2)

• chkEven(dec(1, c3)), chkOdd(c3)

• chkEven(dec(1, c4)), chkEven(c4)

and c1, c2, c3, c4 do not appear in A, S and u.

The idea of the proof is to replace each application of a rule

x
new n→ dec(n, x), chkX(dec(x, n)), chkY(n)

in I+
2 by its corresponding instance. In particular, x is al-

ways replaced by the same constant 1. We can show that
we still obtain a proof. Intuitively, if it was not the case, it
would mean that it was important for x to be an encryption
or a decryption. This would be the case only if there was
nested encryption on the right hand side of the rule, which
is not the case for API rules.

6 Decidability for Well-Formed APIs

In the remainder of this section we describe a decision
procedure to deal with any set of well-formed API rules.

6.1 Getting rid of some equations

The goal of this section is to get rid of all the axioms of
the equational theory but associativity and commutativity,
decomposing the theory into a convergent rewriting system

modulo AC equations. The idea is to pre-compute variants
of the rules so that there is no need to apply the full equa-
tional theory anymore.

Let R be a term rewriting system (TRS) and E′ be an
equational theory, we write u→R,E′ v when v can be writ-
ten into v modulo E′. A decomposition of an equational
theory E is a pair (R,E′) such that R is an E′-convergent
system for E, i.e. u =EAPI

v if and only if u↓ = v↓ where u↓
denotes the normalised form of u w.r.t. →R,E′ .

For instance, for the equational theory EAPI, we can show
that (R⊕,AC) is a decomposition of EAPI where

R⊕ =

 dec({x}y, y) → x x⊕ x → 0
{dec(x, y)}y → x x⊕ 0 → 0

x⊕ (x⊕ y) → y

Definition 8 (finite variant property) A decomposition
(R,E′) of a given theory E has the finite variant property
if for every term t, there is a finite set of substitutions Σ(t)
such that

∀σ∃θ ∈ Σ(t),∃τ such that σ↓ =E′ θτ ∧ (tσ)↓ =E′ (tθ)↓τ.

In other words, all possible reductions in an in-
stance of t can be computed in advance. Given a
term t, we denote by Var (t) the set of its variants, i.e.
Var (t) = {(tθ)↓ | θ ∈ Σ(t)}. In [6], the authors give suf-
ficient condition to establish that a given presentation sat-
isfies the finite variant property. Moreover they give an al-
gorithm allowing us to compute the variants associated to a
given term. By using their result, it is easy to establish that
(R⊕,AC) is a decomposition of EAPI which satisfies the fi-
nite variant property. The so-called variants of a rule R are
obtained by performing narrowing withR⊕ modulo AC.

Narrowing. The subterm of t at position p ∈ O(t) is writ-
ten t|p. The term obtained by replacing t|p with u is denoted
t[u]p. We denote by Ō(t) the set of non-variable position
of t. Given a TRS R, we say that a term t narrows to t′

with the substitution σ, at p ∈ Ō(t), by l → r ∈ R if there
exists a renaming l′ → r′ of l → r ∈ R such that σ is
a unifier of t|p and l′ and t′ = (t[r]p)σ. In this case, we
write t σ t

′. We write t
∗
 σ t

′ if there exists a narrow-
ing derivation t = t1 σ1 t2 . . . σn−1 tn = t′ such that
σ = σ1 . . . σn−1. If E′ is a set of equations such that an
E′-unification algorithm exists, we define E′-narrowing as
expected (σ is an E′-unifier of t|p and l). In particular, this
allows us to define AC-narrowing.

Computation of the variants. Let R be an API rule and k
be the number of occurrences of { } , dec and⊕. According
to [6], we have that

Var (R) = {R′ |R ∗
 σR

′ by a derivation of length at most k}

Now the proposition below is an easy consequence of the
fact that EAPI satisfies the finite variant property.

Proposition 3 Let A1, A2 be two sets of rules, S be a set
of ground facts and s be a ground term (in normal form).

S `KeyCj(A1) ≤k
A1∪A2,EAPI

u if and only if S `Var(KeyCj(A1)) ≤k
Var(A1∪A2),AC u

Moreover, we only need to consider instances of the rules
which involve terms in normal form.

Example 8 For instance, consider the following rule R =
x, y → dec(x, y). We have that Var (R) = {R,R′} where
R′ = {z}y, y → z. Note that R′ is a normalised instance of
R. Indeed R′ = Rθ↓ where θ = {x 7→ {z}y}.

6.2 Controlling the form of the rules

We need to control the form of the rules after computa-
tion of the key conjuring transformation and computation
of the variants. We show that the set Var (A ∪ KeyCj(A))
obtained from a set A which only contains (weakly) well-
formed rules w.r.t. S is (weakly) well-adapted w.r.t. S.

Definition 9 (well-adapted) Let S0 be a set of pure ground

fact that is consistent. Let R = Rl
[new n]→ Rr. We say that R

is well-adapted w.r.t. S0 if

1. R is well-typed and vars(Rr) ⊆ vars(Rl) ,

2. a term of type Cipher appearing as a strict subterm
position in R is either a nonce or a variable,

3. for all t ∈ KeyTerm(R), t is checked in R w.r.t. S0,

4. there is at most one term u in a check in Rr not equal
to n and we are in one of the following cases:

• u = dec(y, n⊕ u′),

• u = dec(n, u′), or

• n occurs in Rl and hence the rule R is useless.

A set of rules which satisfies the two first points is said
to be weakly well-adapted.

Proposition 4 Let S0 be a set of pure ground fact that is
consistent. LetA be a set of (weakly) well-formed API rules
w.r.t. S0. LetA′ = Var (A∪KeyCj(A)). We have thatA′ is
a set of (weakly) well-adapted rules w.r.t. S0.

The notion of well-adapted relies on four conditions (see
Definition 9). The conditions 1, 3 and 4 are established by
using the fact that a variant R′ is just a normalised instance
of well-formed API rule R, that is R′ = Rθ↓ for some θ.

Proving condition 2 is more involved. As shown in the ex-
ample below, Condition 2 is not stable by AC-narrowing,
i.e. by computation of the variants, thus we had to first en-
force it.

Example 9 Let R = x → {dec(x, k1)}dec(x,k2). The con-
dition 2 is satisfied by R. Now, consider the rule

R′ = {y}k1 → {y}dec({y}k1 ,k2)

We have that R′ ∈ Var (R). However, R′ does not satisfy the
condition. This problem comes from the fact that there is
a variable of type Cipher which involved in two different
subterms headed with dec. Here we have that x is involved
in dec(x, k1) and also in dec(x, k2). Since k1 6= k2, the
rule R does not satisfy the dec-property and hence is not a
well-formed rule.

6.3 Existence of a pure attack

We show in this section that we can restrict our attention
to proofs which only involve pure terms. The following re-
sult holds for any set of weakly well-adapted rules. The
conditions 3 and 4 of Definition 9 are only used for the last
part of our decision procedure (see Section 6.4).

A position in a term is impure if the subterm at that po-
sition is not of the expected type and form. By convention
the root position is always an impure position. Note that in
a pure term t the only impure position is Λ.

Example 10 Let t = dec(a⊕b, c) where a, b and c are con-
stant of Base type. The position p in t such that t|p = a⊕ b
is impure. Let t = dec({a}b, c) where a, b and c are con-
stant of Base type. The position p in t such that t|p = {a}b
is impure.

We first prove that whenever an impure term occurs in
a deducible term t at a position p, the term t|p is itself de-
ducible.

Lemma 1 Let A be a set of weakly well-adapted rules
and S be a set of pure ground facts that is consistent and
which contains 0. Let u be a ground term deducible from S
and F1, . . . , Fn be a proof that S `A,AC u. Let p be an im-
pure position of u. We have that u|p ∈ S ∪ F1 ∪ . . . ∪ Fn.

We are now ready to state our result which says that only
pure terms need to be considered when checking for de-
ducibility.

Proposition 5 Let A be a set of weakly well-adapted rules
and S be a set of pure ground facts that is consistent
and which contains 0. Let u be a pure ground term. If
S `A,AC u then there is a proof of S `A,AC u which only
involve pure terms.

To establish this result, we assume we are given a
proof P of S `A,AC u, and we show how to compute a proof
P ′ from P which only involves pure terms. The proof P ′

uses exactly the same rule at each step but not the same
instance. In particular any term appearing at an impure po-
sition will be replaced to obtain a pure term. From this, we
easily deduce the following corollary.

Corollary 1 Let A1, A2 be two set of weakly well-adapted
rules and S be a set of pure ground facts that is consistent
and which contains 0. Let u be a pure ground term. If
S `A1 ≤k
A2,AC u then there is a proof witnessing this fact which

only involves pure terms.

6.4 A bound on the number of dec terms

From Corollary 1 we know that if there is an attack,
there is an attack that involves only pure terms. Pure terms
are well-typed and contain at most one encryption symbol.
However, the dec symbols might be arbitrarily nested. Our
goal is to bound the size of an attack by limiting the use of
dec symbols.

A dec-term is a term of the form dec(u, v). Given a
proof F1, . . . , Fn of some deduction fact S `R,AC w, we
say that a dec-term t is legal if it is checked in S, that is
chkX(t) ∈ SatChk(S) or it has been produced by a key-
conjuring rule, that is chkX(t) ∈ Fj for some 1 ≤ j ≤ n.
The term t is said to be illegal otherwise. Let k′ be the
number of legal dec-terms occurring in S. Since there are
at most k applications of the key-conjuring rules and since
each key-conjuring rule introduces at most one term that is
not a name, there are at most k + k′ legal dec-terms occur-
ring as subterm in a proof F1, . . . , Fn. We wish to show
that, besides the legal dec-terms, no decryption symbol can
occur under a key position. This ensures that illegal dec-
terms can only occur as plaintext thus can not be nested.
We first show that illegal dec-term cannot occur in checks.

Lemma 2 (No illegal dec-term in checks) Let A be a set
of well-adapted rules and S be a set of pure ground facts
such that no dec terms occurs in KeyTerm(S). Let w be
a pure ground term deducible from S and F1, . . . , Fn be a
proof that S `A∪Var(I),AC w that involves only pure facts.
We assume that there is no dec-term subterm of w. For any
term t such that chk(t) ∈ SatChk(S ∪ F1 ∪ . . . ∪ Fn), for
any dec(u, v) subterm of t, the dec-term dec(u, v) is legal.

The intuitive idea for proving this lemma is that new checks
can only be introduced by the key-conjuring rules, which
are limited. In addition, when a chkX(t) is introduced, ille-
gal dec-terms cannot occur since the rules are well-adapted.

We then prove that illegal dec-terms cannot occur in key
position or they can be replaced by 0. Let N and N ′ be
two terms. For any term M , we denote by MδN,N ′ the

term M where any occurrence of N in key position is re-
placed by N ′.

Lemma 3 (Replacement of dec-terms in key position)
Let A be a set of well-adapted rules and S be a set
of pure ground facts such that no dec terms occurs in
KeyTerm(S). Let w be a pure ground term deducible
from S and F1, . . . , Fn be a proof that S `A∪Var(I),AC w
that involves only pure facts. We assume that there is no
dec-term subterm of w. Let t be a term such that t ∈ Fj for
some 1 ≤ j ≤ n and let p be some key position of t such
that t|p = dec(u, v) ⊕ t′ (t′ being possibly empty in which
case by convention, t|p = dec(u, v)).

• Either the term dec(u, v) is legal.

• Or F1δ(dec(u,v)⊕t′,0), . . . , Fjδ(dec(u,v)⊕t′,0) is a pure
proof of S `R∪Var(I),AC tδ(dec(u,v)⊕t′,0).

The lemma is proved by induction.

Now, we are able to prove our main result (Theorem 1).
Proof. Let P be an instance of the security problem where
the set A of API rules is well-formed w.r.t. S and 0 ∈ S.
Let S′ be the set of facts obtained from S by adding

• 1 (constant of type Cipher),

• c1, c2, c′1, c′2, c′3, c′4 constants of Base type,

• chkOdd(c1), chkOdd(c′1), chkOdd(c′3),

• chkEven(c2), chkEven(c′2), chkEven(c′4),

• chkOdd(dec(1, c′1)), chkOdd(dec(1, c′2)),

• chkOdd(dec(1, c′3)), chkOdd(dec(1, c′4)).

Note that no dec terms occurs in KeyTerm(S′).
Thanks to Propositions 1 and 2, we easily deduce that

S `KeyCj(A) ≤k
A∪I+, EAPI

u ⇔ S′ `KeyCj(A) ≤k
A∪I, EAPI

u

Proposition 3 gives us

S′ `KeyCj(A) ≤k
A∪I, EAPI

u ⇔ S′ `Var(KeyCj(A)) ≤k
Var(A∪I),AC u

Thanks to the well-formedness of the rules in A, we de-
duce (Proposition 4) that

• the rules in Var (KeyCj(A)) are well-adapted,

• the rules in Var (A) are well-adapted,

• the rules in Var (I) are weakly well-adapted.

Note also that Var (A ∪ I) = Var (A) ∪ Var (I).
Now, we apply Corollary 1 and we deduce that if

S′ `Var(KeyCj(A)) ≤k
Var(A∪I),AC u then there exists a proof witnessing

this fact which involves only pure terms. Lastly, Lemmas 2
and 3 allow us to bound the number of dec-terms which can
appear in such a proof. This allows us to consider only a fi-
nite number of terms: we have a finite number of constants
and nonces which can only be combined to produce pure
terms involving some precise dec-terms. �

Complexity. Our decision procedure works as follows.
We first guess the k legal terms that are produced by key
conjuring rules and then saturate the set S′ with all de-
ducible terms that are pure terms with no illegal dec terms
under key position. Let n by the number of constants oc-
curring in S′ plus k. Illegal dec terms cannot occur nested
thus it is easy to see that there are at most n× 2n illegal dec
terms. These dec terms can be arbitrarily XORed in plain-
text position but cannot occur under key position. Thus we
have to consider at most 22O(n)

terms. Thus our procedure
terminates after at most 22O(n)

steps. Altogether, we can
show that our algorithm is non-deterministic 2-EXPTIME.

6.5 Related work

The class of well-formed API rules is related to the class
proposed in [8]. There it is shown that secrecy preserva-
tion of protocols is decidable for an unbounded number of
sessions for protocols with XOR, provided they can be ex-
pressed with rules in the WFX-class, that is, a set of rules
of the form t1, . . . , tn → tn+1 where each tj is

• either a xor term that is tj =
⊕n

i=1 ui, n ≥ 1 where
each ui is a variable or a constant.

• or tj = {u}v where u and v are xor terms.

This is intuitively related to our notion of well-typed terms
that ensures in particular that at most one encryption sym-
bol can appear in a term. However, there are two main dif-
ferences between the class of well-formed API rules intro-
duced in this paper and the WFX-class.

1. We consider here an equational theory with explicit
decryption. This is necessary for modelling key-
conjuring. Adding the two equations for encryption
and decryption requires a much more careful treatment
when proving that whenever there is an attack, there is
an attack that involves only pure terms.

2. In the work presented here, it is not sufficient to bound
the number of encryption symbols, as in [8]. In-
deed, there are an infinite number of well-typed terms
since the number of nested decryption symbols is not

bounded by typing. Thus we had to show that it is not
necessary to consider nested decryption symbols ex-
cept for a finite number of terms, coming from the ap-
plication of key-conjuring rules (the legal dec terms).

To conclude, the two classes are formally incomparable.
While well-formed API rules enable explicit decryption,
thus potentially more attacks, there are no equality checks
between components of the received messages. For exam-
ple, the following rule

{x}k1 , {x}k2 → k3

belongs to the WFX-class but cannot be expressed as a well-
formed API rule. We would need to extend API rules with
equality checks.

To the best of our knowledge, there exist only two other
decidable classes [5, 13] for secrecy preservation for proto-
cols with XOR, for an unbounded number of sessions. In
both cases, the main difference with our class is that we
make restrictions on the combination of functional symbols
rather than on the occurrences of variables. As a conse-
quence, our class is incomparable to the two existing ones.
In particular, the IBM CCA protocol cannot be modelled in
either of these two other classes.

7 Conclusion

We have presented a formalism for key conjuring, ob-
tained by applying a transformation to a model of a security
API with explicit parity checks. We have shown that the
security problem is decidable for a general class of APIs
(well-formed).

In this paper, we have concentrated on the example of the
IBM CCA API, which uses parity checks to validate DES
keys. However, we believe our approach can be applied in
general to security API analysis, where other functions may
be used to check validity of keys. In particular, our language
for defining API commands, with variables on the left hand
side and all decryption made explicit on the right, seems
more natural than the use of an Alice-Bob style implicit de-
cryption formalism. It would enable the detection of the
so-called ‘trojan key’ attacks of the type described by Clu-
low, [4]. We could also extend our transformation to allow
more computationally expensive key conjuring operations,
by allowing multiple fresh terms to be generated in a single
rule.

We plan to extend our results to a larger class of APIs,
incorporating pairing and further cryptographic primitives,
and to implement our model in an analysis tool. There re-
mains a significant class of known API attacks that has not
been dealt with formally: so-called parallel key search at-
tacks. Formalising key conjuring is an important first step
towards this, since many of these attacks rely on building
up a set of conjured keys.

References

[1] M. Bond. Attacks on cryptoprocessor transaction sets. In
Proceedings of the 3rd International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES’01), vol-
ume 2162 of LNCS, pages 220–234, Paris (France), 2001.
Springer-Verlag.

[2] CCA Basic Services Reference and Guide, Oct. 2006. Avail-
able online.

[3] R. Clayton and M. Bond. Experience using a low-cost FPGA
design to crack DES keys. In Proceedings of the 4th In-
ternational Workshop on Cryptographic Hardware and Em-
bedded System (CHES’02), volume 2523 of LNCS, pages
579–592, Redwood Shores (CA, USA), 2003. Springer.

[4] J. Clulow. On the security of PKCS#11. In Proceedings of
the 5th International Worshop on Cryptographic Hardware
and Embedded Systems (CHES’03), volume 2779 of LNCS,
pages 411–425, Cologne (Germany), 2003. Springer-Verlag.

[5] H. Comon-Lundh and V. Cortier. New decidability results
for fragments of first-order logic and application to cryp-
tographic protocols. In Proceedings of the 14th Interna-
tional Conference on Rewriting Techniques and Applica-
tions (RTA’2003), volume 2706 of LNCS, pages 148–164,
Valencia, Spain, 2003. Springer-Verlag.

[6] H. Comon-Lundh and S. Delaune. The finite variant prop-
erty: How to get rid of some algebraic properties. In Pro-
ceedings of the 16th International Conference on Rewrit-
ing Techniques and Applications (RTA’05), volume 3467 of
LNCS, pages 294–307, Nara (Japan), 2005. Springer.

[7] V. Cortier, S. Delaune, and G. Steel. A formal theory of
key conjuring. Research Report 6134, INRIA, Feb. 2007.
41 pages.

[8] V. Cortier, G. Keighren, and G. Steel. Automatic analysis
of the security of xor-based key management schemes. In
Proceedings of the 13th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’07), LNCS, pages 538–552, Braga (Portugal),
2007. Springer-Verlag.

[9] J. Courant and J.-F. Monin. Defending the bank with a proof
assistant. In Proceedings of Workshop on Issues in the The-
ory of Security (WITS ’06), Vienna (Austria), March 2006.

[10] D. Dolev and A. Yao. On the security of public key proto-
cols. IEEE Transactions in Information Theory, 2(29):198–
208, March 1983.

[11] G. Keighren. Model checking IBM’s common cryptographic
architecture API. Informatics Research Report EDI-INF-
RR-0862, University of Edinburgh, 2006.

[12] G. Steel. Deduction with XOR constraints in security API
modelling. In Proceedings of the 20th International Con-
ference on Automated Deduction (CADE’05), volume 3632
of LNCS, pages 322–336, Tallinn (Estonia), 2005. Springer-
Verlag.

[13] K. N. Verma, H. Seidl, and T. Schwentick. On the com-
plexity of equational Horn clauses. In Proceedings of
the 20th International Conference on Automated Deduction
(CADE’05), volume 3632 of LNCS, pages 337–352, Tallinn
(Estonia), 2005. Springer-Verlag.

[14] P. Youn, B. Adida, M. Bond, J. Clulow, J. Herzog, A. Lin,
R. Rivest, and R. Anderson. Robbing the bank with a theo-
rem prover. Technical Report UCAM-CL-TR-644, Univer-
sity of Cambridge, August 2005.

A Existence of a pure attack

Lemma 1 Let A be a set of weakly well-adapted rules
and S be a set of pure ground facts that is consistent and
which contains 0. Let u be a ground term deducible from S
and F1, . . . , Fn be a proof that S `A,AC u. Let p be an im-
pure position of u. We have that u|p ∈ S ∪ F1 ∪ . . . ∪ Fn.

Proof. The proof is by induction on the number of steps
needed to obtain u. The base case, i.e. u ∈ S, is triv-
ial. For the induction step, we have that there exists a
weakly well-adapted rule Rl

new n→ Rr and a ground sub-
stitution θ such that Rlθ ⊆ SatChk(S ∪ F1 ∪ . . . ∪ Fn−1)
and u ∈ Fn = Rrθ (modulo AC). Let p be an impure posi-
tion in u.

• either p = Λ and in such a case we have that
u|p ∈ S ∪ F1 ∪ . . . ∪ Fn,

• or u|p is a strict subterm of u. Since Rl
new n→ Rr

is a weakly well-adapted rule, u|p must be a sub-
term of xθ for some variable x ∈ Rr. Since
vars(Rr) ⊆ vars(Rl), we have that there exists t ∈ Rl
such that tθ ∈ S ∪ F1 ∪ . . . ∪ Fn−1 and u|p ∈ st(tθ).
Moreover, we can easily check that u|p appears at an
impure position in tθ. By induction hypothesis, we
deduce that u|p ∈ S ∪ F1 ∪ . . . ∪ Fn−1 and thus
u|p ∈ S ∪ F1 ∪ . . . ∪ Fn. �

Proposition 5 Let A be a set of weakly well-adapted rules
and S be a set of pure ground facts that is consistent
and which contains 0. Let u be a pure ground term. If
S `A,AC u then there is a proof of S `A,AC u which only
involve pure terms.

We define the function · over ground terms that re-
places any term at an impure position by 0 (neutral element
of ⊕) or 1 (constant of type Cipher). More formally · is
inductively defined as follows:

u = u if u is a variable or a constant
u1 ⊕ u2 = u1

0 ⊕ u2
0

dec(u1, u2) = dec(u1, u2
0) if u1 ∈ N of type Cipher

dec(u1, u2) = dec(1, u2
0) otherwise

{u1}u2 = {u1
0}u2

0

where · 0 are defined by:

u0 = u if u is a variable or a constant
of base type

u1 ⊕ u2
0 = u1

0 ⊕ u2
0

dec(u1, u2)
0

= dec(u1, u2
0) if u1 ∈ N of type Cipher

dec(u1, u2)
0

= dec(1, u2
0) otherwise

u0 = 0 otherwise

The functions · 0 and · are extended to sets of facts as ex-
pected. Moreover, the function · 0 is also defined on checks
as follows:

chkX(t)
0

= chkX(t0).

Proof. Consider a proof F1, . . . , Fn of S ` u. We show by
induction on n that we can construct setsG1, . . . , Gp which
only involve pure facts such that

• G1, . . . , Gp is a proof of S ` t for any t ∈ S ∪ F1 ∪
. . . ∪ Fn,

• chkX(t)
0
∈ SatChk(S ∪ G1 . . . ∪ Gp) for any

chkX(t) ∈ SatChk(S ∪ F1 ∪ . . . ∪ Fn).

This would conclude the proof since u ∈ Fn and u = u.

The base case u ∈ S is trivial. For the induction step, we
assume that there are sets of pure ground facts G1, . . . Gp
such that

• G1, . . . , Gp is a proof of S ` t for any t ∈ S ∪ F1 ∪
. . . ∪ Fi,

• chkX(t)
0
∈ SatChk(S ∪G1 ∪ . . .∪Gp) for any check

chkX(t) ∈ SatChk(S ∪ F1 ∪ . . . ∪ Fi).

and we show that we can construct a set of pure ground
facts Gp+1 such that

• G1, . . . , Gp+1 is a proof of S ` t for any t ∈ S ∪F1 ∪
. . . ∪ Fi+1,

• chkX(t)
0
∈ SatChk(S ∪ G1 ∪ . . . ∪ Gp+1) for any

chkX(t) ∈ SatChk(S ∪ F1 ∪ . . . ∪ Fi+1).

The set of ground facts Fi+1 is one-step deducible from
S ∪ F1 ∪ . . . Fi, thus there exists a weakly well-adapted
rule Rl

new n→ Rr ∈ A and a ground substitution θ such that
Rlθ ⊆ SatChk(S ∪ F1 ∪ . . . ∪ Fi) and Fi+1 = Rrθ (mod-
ulo AC). Let θ′ be the substitution defined by

• xθ′ = xθ
0

for any x ∈ dom(θ) of type Base,

• xθ′ = xθ when xθ is a constant or a nonce of type
Cipher and 1 otherwise.

We can show that Gp+1 = Rrθ
′ satisfies the required

conditions. �

Key Part Import 2:
xk2, xtype

new n→ {dec(n, km⊕ kp⊕ xtype)⊕ xk2}km⊕kp⊕xtype, n
chkEven(xk2), chkEven(xtype) chkOdd(dec(n, km⊕ kp⊕ xtype))

y, xk2
new n→ {dec(y, km⊕ kp⊕ n)⊕ xk2}km⊕kp⊕n, n

chkEven(xk2) chkEven(n), chkOdd(dec(y, km⊕ kp⊕ n))
Key Part Import 3:

xk3, xtype
new n→ {dec(n, km⊕ kp⊕ xtype)⊕ xk3}km⊕xtype, n

chkEven(xk3), chkEven(xtype) chkOdd(dec(n, km⊕ kp⊕ xtype))

y, xk3
new n→ {dec(y, km⊕ kp⊕ n)⊕ xk3}km⊕n, n

chkEven(xk3) chkEven(n), chkOdd(dec(y, km⊕ kp⊕ n))
Key Import:

y, xtype
new n→ {dec(y, dec(n, km⊕ imp)⊕ xtype)}km⊕xtype, n

chkEven(xtype) chkOdd(dec(n, km⊕ imp))
chkOdd(dec(y, dec(n, km⊕ imp)⊕ xtype))

xtype, z
new n→ {dec(n, dec(z, km⊕ imp)⊕ xtype)}km⊕xtype, n

chkEven(xtype), chkOdd(dec(z, km⊕ imp)) chkOdd(dec(n, dec(z, km⊕ imp)⊕ xtype))

y, z
new n→ {dec(y, dec(z, km⊕ imp)⊕ n)}km⊕n, n

chkOdd(dec(z, km⊕ imp)) chkOdd(dec(y, dec(z, km⊕ imp)⊕ n))
chkEven(n)

Key Export:
y, xtype

new n→ {dec(y, km⊕ xtype)}dec(n,km⊕exp)⊕xtype, n
chkEven(xtype) chkOdd(dec(n, km⊕ exp))

chkOdd(dec(y, km⊕ xtype))

xtype, z
new n→ {dec(n, km⊕ xtype)}dec(z,km⊕exp)⊕xtype, n

chkEven(xtype), chkOdd(dec(z, km⊕ exp)) chkOdd(dec(n, km⊕ xtype))

y, z
new n→ {dec(y, km⊕ n)}dec(z,km⊕exp)⊕n, n

chkOdd(dec(z, km⊕ exp)) chkEven(n)
chkOdd(dec(y, km⊕ n))

Encrypt Data: x
new n→ {x}dec(n,km⊕data), n, chkOdd(dec(n, km⊕ data))

Decrypt Data: x
new n→ dec(x, dec(n, km⊕ data)), n

chkOdd(dec(n, km⊕ data))
Translate Key:

x, xtype, y2
new n→ {dec(x, dec(n, km⊕ imp)⊕ xtype)}dec(y2,km⊕exp)⊕xtype, n

chkOdd(dec(y2, km⊕ exp)), chkEven(xtype) chkOdd(dec(n, km⊕ imp))
chkOdd(dec(x, dec(n, km⊕ imp)⊕ xtype))

x, xtype, y1
new n→ {dec(x, dec(y1, km⊕ imp)⊕ xtype)}dec(n,km⊕exp)⊕xtype, n

chkEven(xtype), chkOdd(dec(y1, km⊕ imp)) chkOdd(dec(n, km⊕ exp))
chkOdd(dec(x, dec(y1, km⊕ imp)⊕ xtype))

chkOdd(dec(y2, km⊕ exp)), xtype, y1, y2
new n→ {dec(n, dec(y1, km⊕ imp)⊕ xtype)}dec(y2,km⊕exp)⊕xtype, n

chkEven(xtype), chkOdd(dec(y1, km⊕ imp)) chkOdd(dec(n, dec(y1, km⊕ imp)⊕ xtype))

x, y1, y2
new n→ {dec(x, dec(y1, km⊕ imp)⊕ n)}dec(y2,km⊕exp)⊕n, n

chkOdd(dec(y2, km⊕ exp)) chkEven(n), chkOdd(dec(x, dec(y1, km⊕ imp)⊕ n))
chkOdd(dec(y1, km⊕ imp))

Note that no key conjuring variant can be obtained from the Key Part Import 1 rule.

Figure 3. Key Conjuring variants of the rules of the IBM CCA Key Management Transaction Set

