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Abstract—Automatic tools based on symbolic models have been
successful in analyzing security protocols. Such tools are particu-
larly adapted for trace properties (e.g. secrecy or authentication),
while they often fail to analyse equivalence properties.

Equivalence properties can express a variety of security prop-
erties, including in particular privacy properties (vote privacy,
anonymity, untraceability). Several decision procedures have al-
ready been proposed but the resulting tools are rather inefficient.

In this paper, we propose a novel algorithm, based on graph
planning and SAT-solving, which significantly improves the ef-
ficiency of the analysis of equivalence properties. The resulting
implementation, SAT-Equiv, can analyze several sessions where
most tools have to stop after one or two sessions.

I. INTRODUCTION

Formal methods have produced several successful tools for
the automatic analysis of security protocols. Examples of
such tools are ProVerif [1], Avantssar [2], Maude-NPA [3],
Scyther [4], or Tamarin [5]. They have been applied to many
protocols of the literature including e.g. Kerberos and TLS.
However, one type of properties still resists to these tools,
namely privacy properties. Privacy properties incude ballot
privacy (no one should know how I voted), privacy (no one
should know I am here), or unlinkability (no one should be
able to relate two of my transactions). Such properties are
typically expressed as equivalences: an attacker should not be
able to distinguish a session from Alice from one from Bob.

Equivalence properties are harder to analyze than the more
standard authentication or confidentiality properties (expressed
as trace properties). Among the tools mentioned earlier, only
ProVerif, Maude-NPA and Tamarin may handle equivalences.
Tamarin often requires user interaction for equivalence prop-
erties. Maude-NPA [6] often does not terminate when used for
equivalence properties. Since checking equivalence properties
for an unbounded number of sessions is undecidable [7],
ProVerif may of course also fail. This is in particular the case
when the order of the protocol rules matters or when some
step may be executed at most once.

The alternative is to decide equivalence, for a bounded num-
ber of sessions. Several procedures have been proposed [8]–
[10], often with a companion tool: Akiss [10], Spec [9],
Apte [11]. Unfortunately, these tools have a very limited
practical impact because they scale badly. Analyzing one
session typically requires several seconds and the analysis of
two sessions is often unreachable, although the tools Apte and

Akiss have recently improved their efficiency through the use
of Partial Order Reduction (POR) techniques [12], [13]. It
is interesting to note that considering one or two sessions is
not sufficient to explore all standard attack scenarios (where
each participant may engage a session with an honest or a
dishonest agent and may be involved in any role). For example,
in the case of a three-party protocol, with a trusted server, 6
sessions have to be considered to cover all possible scenarios
with two honest agents A, B and a dishonest one C (A talking
to B, A talking to C, and C talking to B, and three additional
sessions where the role of the agents A and B are swapped).
Assuming that dishonest roles do not need to be modelled, this
leads to a scenario with 14 roles in parallel. In practice, an
attack does not require 14 sessions. 3-4 sessions are typically
sufficient. However, it is impossible to predict which scenario
is required for the attack. Moreover, since the problem of
deciding equivalence is actually undecidable, an attack may
require an arbitrary number of sessions. Therefore, the more
sessions we can check, the more confidence we obtain.

Our contribution. In this paper, we propose a different
procedure for deciding equivalence. Instead of designing a
crafted algorithm for equivalence, we use more general verifi-
cation techniques, namely Graph planning [14], [15] and SAT-
solving. The idea of using Graph planning and SAT-solvers for
analyzing protocols has already been explored in [16], yielding
the tool SATMC [17] for trace properties. Moving from trace
to equivalence properties is far from being straightforward as
exemplified by the research effort on equivalence these past
10 years (see e.g. [18] for a survey).

Let us first sketch how SATMC works. The tool focuses
at secrecy and encodes accessibility of a (secret) term into a
SAT formula. For efficiency reasons, the main step of SATMC
actually consists in applying Graph planning techniques in or-
der to compute an over-approximation of reachable messages.
If no secret has been found, the protocol is deemed secure.
Otherwise, actual accessibility of the potentially leaked secret
is encoded into a SAT formula.

In order to benefit from Graph planning and SAT-solvers,
the size of messages has to be bounded and this bound needs to
be practical. In [16], [17], the authors simply assume protocols
to be given with a (finite) format for the messages. Here, we
do not bound a priori the format of the messages. Instead,
we rely on a recent result [19] that shows that if there is



an attack, that is a witness of non equivalence between two
protocols P and Q, then there is a “small” attack, where
messages comply to a certain format (induced by a type).
This result holds for deterministic protocols that use symmetric
keys and pairing. Note that this result only controls the format
of the messages exchanged in P , not in Q (or conversely).
The fact that the messages in Q are a priori unbounded
forbids any direct encoding of (non) equivalence into a SAT
formula. Planning graphs are particularly helpful here: while
computing an over-approximation of the messages reachable
in P , we simultaneously obtained an over-approximation of
the messages that need to be considered in Q for checking
equivalence w.r.t. P . This requires of course to characterize
(non) equivalence as a reachability property, which is made
possible thanks to the protocols’ determinism.

In order to further reduce the traces than need to be
explored, we show that we can restrict ourselves to an attacker
that only decompose messages (and do not compose them),
provided that protocols are flattened, that is all meaningful
composition steps are pre-computed in advance. This flattening
technique has been used in [16] (although we are not aware of
any proof of correction). We formally prove this technique to
be sound, in the more general case of equivalence properties.
Handling equivalence is non trivial since it is not sufficient
to preserve the set of messages that can be computed, it is
also necessary to preserve cases of failure on both processes.
Moreover, we had use one more ingredient to obtain an effi-
cient bound. We significantly reduce the number of constants
that need to be considered to find an attack. Namely, we show
that only two constants are necessary, which is a result of
independent interest.

Implementation. We have implemented our algorithm and
our first experimentations demonstrate the good performance
of our tool. For most protocols, we can easily analyse several
sessions while the three other tools (Akiss, Spec, Apte) typi-
cally fail for more than one session, with the exception of the
variant Apte-por [13], which can handle several sessions, in
some cases. All files related to the tool implementation and
case studies are available at [20], while omitted proofs are
available in the full version of this paper [21].

II. MODEL FOR SECURITY PROTOCOLS

A common framework for modelling security protocols are
process algebra like the applied pi-calculus [22]. We consider
here a variant of the calculus provided in [19] in order to
benefit from its main result, which guarantees a “small attack”
property: when there is an attack, there is a well-typed attack.

A. Syntax

Term algebra: As usual, messages are modelled by terms.
We consider an infinite set of names N , an infinite set of con-
stants Σ0, and two distinct sets of variables X andW . Names
are typically used to represent keys or nonces. Variables in X
refer to unknown parts of messages expected by participants
while variables in W are used to store messages learnt by the

attacker. We consider the following sets of function symbols:

Σc = {enc, 〈 〉} Σd = {dec, proj1, proj2} Σstd = Σc ∪ Σd

The symbol enc and dec both of arity 2 represent encryp-
tion and decryption. Concatenation of messages is modelled
through the symbol 〈 〉 of arity 2, with projection func-
tions proj1 and proj2 of arity 1. We distinguish between
constructor symbols in Σc and destructor symbols in Σd.

We consider several sets of terms. Given a set of A of
atoms (i.e. names, variables, and constants), and a signature
F ∈ {Σc,Σd,Σstd}, we denote by T (F ,A) the set of
terms built from F and A. Constructors terms with atomic
encryptions are represented by the set T0(Σc,A), which is the
subset of T (Σc,A) such that any subterm enc(m, k) of a term
in T0(Σc,A) is such that k ∈ A. Given Σ ⊆ Σ0, we denote by
MΣ the set T0(Σc,Σ∪N ), i.e. the set of messages built using
constants in Σ. The positions of a term are defined as usual.
We denote vars(u) the set of variables that occur in u. The
application of a substitution σ to a term u is written uσ, and
we denote dom(σ) its domain, and img(σ) its image. Two
terms u1 and u2 are unifiable when there exists σ such that
u1σ = u2σ. In this case, we denote mgu their most general
unifier. The composition of two substitutions σ1 and σ2 is
denoted σ1 ◦ σ2.

Example 1: Let kab and kbs be two names in N , and a be
a constant from Σ0. We have that t = enc(〈kab, a〉, kas) is a
message from MΣ0 , whereas enc(a, 〈kas, kas〉) is not (due to
the presence of a compound term in key position).

An attacker can build any term by applying function sym-
bols. His computation is formally modelled by terms, called
recipes. Given Σ ⊆ Σ0, we denote RΣ the set T (Σstd,Σ∪W),
i.e. the set of recipes built using constants in Σ. Note that a
recipe does not contain names, since, intuitively, names are
initially secret.

Example 2: Assume that the attacker has first intercepted
the message t (stored in w1), and then the key kas (stored
in w2). The term R = proj1(dec(w1,w2)) is a recipe that
represents a computation that can be performed by the attacker.
Indeed, he can decrypt the first message with the second one,
and then apply a projection operator.

The decryption of an encryption with the right key yields the
plaintext. Similarly, the left (or right) projection of a concate-
nation yields the left (or right) component. These properties
are reflected in the three following convergent rewrite rules:

dec(enc(x, y), y)→ x, and proji(〈x1, x2〉)→ xi i ∈ {1, 2}.

A term u can be rewritten in v if there is a position p
in u, and a rewriting rule g(t1, . . . , tn) → t such that
u|p = g(t1, . . . , tn)θ for some substitution θ. Moreover, we
assume that t1θ, . . . , tnθ as well as tθ are messages. This
assumption slightly differs from [19]. Here, whenever an inner
decryption/projection fails then the overall evaluation fails.
Intuitively, we model eager evaluation while [19] models
lazy evaluation. Our rewriting system is convergent, and we
denote u↓ the normal form of a given term u.
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Example 3: Let t be the term given in Example 1, we have
that proj1(dec(t, kas))↓ = kab. Indeed, we have that:

proj1(dec(t, kas)) = proj1(dec(enc(〈kab, a〉, kas), kas))
→ proj1(〈kab, a〉)
→ kab

Process algebra: We only consider public channels and
we assume that each process communicates on a dedicated
channel. In practice, an attacker can typically distinguish be-
tween protocol participants thanks to their IP address and even
between protocol sessions thanks to session identifiers. Techni-
cally, this assumption avoids non determinism. Formally, we
assume an infinite set Ch of channels and we consider the
fragment of simple processes without replication built on basic
processes as defined e.g. in [23]. A basic process represents
a party in a protocol, which may sequentially perform actions
such as waiting for a message of a certain form, and outputting
a message. Then, a simple process is a parallel composition
of such basic processes playing on distinct channels.

Definition 1: The set of basic processes on c ∈ Ch is
defined as follows (with u1, u2 ∈ T (Σc,Σ0 ∪N ∪ X )):

P,Q := 0 | in(c, u1).P | out(c, u2).P

A simple process P = {P1, . . . , Pn} is a multiset of basic
processes Pi on pairwise distinct channels ci.

The process 0 does nothing. The process “in(c, u1).P ”
expects a message m of the form u1 on channel c and
then behaves like Pσ where σ is a substitution such that
m = u1σ is a message. The process “out(c, u2).P ” emits u2

on channel c, and then behaves like P . We assume that names
are implicitly freshly generated, and therefore we do need a
specific action to model name generation. The construction
“new” is important in the presence of replication but we do not
consider replication here. For the sake of clarity, we may omit
the null process. We write fv(P ) for the set of free variables
that occur in P , i.e. the set of variables that are not in the
scope of an input.

Definition 2: A protocol is a simple process P that is
ground, i.e. fv(P) = ∅.

Example 4: The Denning Sacco protocol [24] (without
timestamps) is a key distribution protocol using symmetric
encryption and a trusted server. Informally, we have:

1. A→ S : A,B
2. S → A : {B,Kab, {Kab, A}Kbs

}Kas

3. A→ B : {Kab, A}Kbs

where {m}k denotes the symmetric encryption of a mes-
sage m with key k. The agents A and B aim at authenticating
each other and establishing a session key Kab through a trusted
server S. The key Kas (resp. Kbs) is a long term key shared
between A and S (resp. B and S).

To model the Denning Sacco protocol, we introduce several
atomic data: kas, kbs, kab are names, a and b are constants
from Σ0, and c1, c2, and c3 are channel names from Ch. Each

role is modelled by a basic process that is described below.
Below, we denote by 〈x1, x2, x3〉 the term 〈x1, 〈x2, x3〉〉.

PA = out(c1, 〈a, b〉).
in(c1, enc(〈b, xAB , xB〉, kas)).
out(c1, xB)

PS = in(c2, 〈a, b〉).
out(c2, enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas))

PB = in(c3, enc(〈yAB , a〉, kbs))

The protocol is then modelled by the simple ground process
PDS = {PA, PS , PB}. In order to model several sessions of the
same protocol, we simply have to consider several instances
of the basic processes PA, PS , and PB . We will use different
channel names to get a simple process, different names to
model fresh names, and we will rename variables to avoid
clashes. Two sessions of the Denning-Sacco protocol (between
honest participants) are therefore modelled by:

P ′DS = {PA, PS , PB , P ′A, P ′S , P ′B}
where P ′A, P ′B , and P ′S are given below:

P ′A = out(c4, 〈a, b〉).
in(c4, enc(〈b, x′AB , x′B〉, kas)).
out(c4, x

′
B)

P ′S = in(c5, 〈a, b〉).
out(c5, enc(〈b, k′ab, enc(〈k′ab, a〉, kbs)〉, kas))

P ′B = in(c6, enc(〈y′AB , a〉, kbs))

B. Semantics

The operational semantics of a process is defined using a
relation over configurations, i.e. triples (P;φ;σ) where:
• P is a multiset of processes with fv(P) ⊆ dom(σ);
• φ is a frame, i.e. a substitution of the form

{w1 . m1, . . . ,wn . mn}
where w1, . . . ,wn ∈ W , and m1, . . . ,mn ∈MΣ0

;
• σ is a substitution such that dom(σ) ⊆ X , and

img(σ) ⊆MΣ0 .
We often write P instead of (P; ∅; ∅), and P ∪ P instead

of {P} ∪ P . The terms in φ represent the messages that are
sent out and therefore known by the attacker whereas the
substitution σ is used to store parts of the messages received
so far. The operational semantics of a process is induced by
the relation α−→ over configurations defined below:

IN

(in(c, u).P ∪ P; φ; σ)
in(c,R)−−−−→ (P ∪ P; φ; σ ] σ0)

where R ∈ RΣ0 such that Rφ↓ ∈ MΣ0 ,
and Rφ↓ = (uσ)σ0 for σ with dom(σ0) = vars(uσ).

OUT

(out(c, u).P ∪ P; φ; σ)
out(c,w)−−−−−→ (P ∪ P; φ ∪ {w . uσ}; σ)

with w a fresh variable from W , and uσ ∈MΣ0 .

A process may input any term that an attacker can built from
publicly available terms and symbols (rule IN). The second
rule corresponds to the output of a term: the corresponding
term is added to the frame of the current configuration, which
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means that the attacker has now access to it. Note that the
term is outputted provided that it is a message. In case the
evaluation of the term yields an encryption with a non atomic
key, the evaluation fails and there is no output. We do not need
to model internal communications since we assume public
channels: all communications are controlled by the attacker.

The relation tr−→ between configurations (where tr is a
possibly empty sequence of actions) is defined in the usual
way. Given Σ ⊆ Σ0, and a protocol P we define its set of
traces w.r.t. Σ as follows:

traceΣ(P) = {(tr, φ) | (P; ∅; ∅) tr−→ (P ′;φ;σ)
for some configuration (P ′;φ;σ)

and any recipe occurring in tr is in RΣ.}.

Note that, for any (tr, φ) ∈ traceΣ(P), we have that trφ↓
only contains messages in MΣ0

.

Example 5: Consider the following sequence tr:
tr = out(c1,w1).in(c2,w1).out(c2,w2).

in(c1,w2).out(c1,w3).in(c3,w3)

This sequence tr allows one to reach the frame:

φ = {w1 . 〈a, b〉, w2 . enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas),
w3 . enc(〈kab, a〉, kbs) }.

We have that (tr, φ) ∈ traceΣ(PDS). This trace corresponds to
a normal execution of the protocol.

C. Trace equivalence

Trace equivalence can be used to formalise many interesting
security properties, in particular privacy-type properties. We
assume keys to be atomic and encryption to fail for non atomic
keys. We define trace equivalence accordingly, by letting the
attacker observe when an encryption fails. We first define
equivalence on sequences of messages.

Definition 3: A frame φ1 is statically included w.r.t. Σ ⊆
Σ0 in a frame φ2, denoted φ1 vs φ2, when we have that
dom(φ1) = dom(φ2), and:
• for any R ∈ RΣ, Rφ1↓ ∈ MΣ0

implies that Rφ2↓ ∈
MΣ0

;
• for any R1, R2 ∈ RΣ with R1φ1↓, R2φ1↓ ∈ MΣ0

,
R1φ1↓ = R2φ1↓ implies that R1φ2↓ = R2φ2↓.

They are in static equivalence w.r.t. Σ, denoted φ1 ∼s φ2,
when φ1 vs φ2, and φ2 vs φ1 (both w.r.t. Σ).

Example 6: Consider φ1 = φ ∪ {w4 . enc(m1, kab)} and
φ2 = φ ∪ {w4 . enc(m2, k)} where φ has been introduced in
Example 5. The terms m1, m2 are public constants from Σ0,
and k is a name from N . We have that the two frames φ1

and φ2 are statically equivalent (w.r.t. any Σ). Intuitively, at
the end of a normal execution between honest participants, an
attacker can not distinguish whether the key used to encrypt
a message (here the constants m1 and m2) is the session key
that has been established or a fresh key k.

In contrast, the frames φ′1 = φ1 ∪ {w5 . kab} and φ′2 =
φ2 ∪ {w5 . kab} are not in static equivalence. Actually φ′1 is
not statically included in φ′2. Indeed, an attacker can observe

that the 4th message of φ1 can be decrypted by the 5th message,
which is not the case in φ′2. Formally, considering R =
dec(w4,w5), we have Rφ′1↓ ∈ MΣ0 while Rφ′2↓ /∈MΣ0 .

Then, we lift this notion of equivalence from frames to
configurations.

Definition 4: Let Σ ⊆ Σ0. A protocol P is trace included
w.r.t. Σ in a protocol Q, written P vt Q, if for every
(tr, φ) ∈ traceΣ(P), there exists (tr′, ψ) ∈ traceΣ(Q) such
that tr = tr′ and φ vs ψ w.r.t. Σ. The protocols P and Q
are trace equivalent w.r.t. Σ, written P ≈t Q, if P vt Q
and Q vt P (both w.r.t. Σ).

This notion of equivalence (even when Σ = Σ0) does not
coincide in general with the usual notion of trace equivalence
as defined e.g. in [23]. It is actually coarser since we simply
require the resulting frames to be in static inclusion (φ vs ψ)
instead of static equivalence (φ ∼s ψ). However, these two
notions actually coincide (see [10]) for the class of simple
processes that we consider in this paper.

Assume given two protocols P and Q such that P 6vt Q
w.r.t. Σ. A witness of this non-inclusion is a trace tr w.r.t. Σ
for which there exists φ such that (tr, φ) ∈ traceΣ(P) and:
• either there is no ψ such that (tr, ψ) ∈ traceΣ(Q);
• or such ψ exists and φ 6vs ψ w.r.t. Σ.
Note that for a simple process, once the sequence tr is fixed,

the resulting frame reachable through tr is uniquely defined
(when it exists) since simple processes are deterministic.

Example 7: The protocol P ′DS presented in Example 4
models two sessions of the Denning Sacco protocol. Assume
now that we wish to check strong secrecy of the exchanged
key, as received by the agent A. This can be expressed by
checking whether P ′1DS ≈t P ′2DS where:
• P ′1DS is as P ′DS but we add “out(c1, enc(m1, xAB))” at

the end of the process PA, and “out(c4, enc(m1, x
′
AB))”

at the end of P ′A
• P2

DS is as PDS but we add the instruction
“out(c1, enc(m2, k))” at the end of PA, and
“out(c4, enc(m2, k

′))” at the end of P ′A.
The terms m1 and m2 are two public constants from Σ0

whereas k and k′ are names from N .
While the key received by A cannot be learnt by an attacker,

strong secrecy of this key is not guaranteed. Indeed, due to
the lack of freshness, the same key can be sent several times
to A, and this can be observed by an attacker. Formally, the
attack is as follows. Consider the sequence

tr′ = tr · out(c4,w4).in(c4,w2).out(c4,w5).
out(c1,w6).out(c4,w7)

where tr has been defined in Example 5. The attacker simply
replays an old session. The resulting (unique) frames are
• φ′1 = φ ∪ φ′ ∪ {w6 . enc(m1, kab), w7 . enc(m1, kab)},
• φ′2 = φ ∪ φ′ ∪ {w6 . enc(m2, k), w7 . enc(m2, k

′)}
where φ is the frame given in Example 5, and

φ′ = {w4 . 〈a, b〉,w5 . enc(〈kab, a〉, kbs)}.
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We have that (tr′, φ′1) ∈ traceΣ0
(P ′1DS) and (tr′, φ′2) ∈

traceΣ0
(P ′2DS). However, we have that φ′1 6vs φ′2 since w6 =

w7 in φ′1 but not in φ′2. Thus P ′1DS is not trace included
in P ′2DS. To avoid this attack, the messages of the Denning-
Sacco protocol shall include timestamps or nonces.

The goal of the paper is to provide an efficient and practical
procedure for checking trace equivalence.

III. REDUCTION RESULTS

Even when considering finite processes (i.e. processes with-
out replication), the problem of checking trace equivalence is
difficult due to several sources of unboundedness:
• the size of messages which can be forged by an attacker

is unbounded;
• the number of nonces and constants that can be used by

an attacker is unbounded too.
Recently, [19] has established how to reduced the search

space for attacks by bounding the size of messages involved
in a minimal attack. From a theoretical point of view, this also
yields a bound on the number of nonces/constants involved
in such a minimal attack. However, this bound is far from
being practical. In this section, we show that the small attack
property of [19] still holds even if our semantics has slightly
changed (due to eager evaluation) and we further demonstrate
that the number of constants can be significantly reduced since
only three constants need to be considered (and no nonces),
in addition to those explicitly mentioned in the protocol.

A. Bounding the size of messages

As in [19], we consider type-compliant protocols, and we
restrict ourselves to typing systems that preserve the structure
of terms. A typing system is defined as follows.

Definition 5: A typing system is a pair (T0, δ0) where T0

is a set of elements called atomic types with a special atomic
type denoted τ?, and δ0 is a function mapping atomic terms in
Σ0∪N ∪X to types τ generated using the following grammar:

τ, τ1, τ2 = τ0 | 〈τ1, τ2〉 | enc(τ1, τ2) with τ0 ∈ T0.

We further assume the existence of an infinite number of
constants in Σ0 (resp. variables in X , names inN ) of any type,
and the existence of three special constants denoted c〈ω,ω〉, c0

?,
and c1

? of type τ?. The constant c〈ω,ω〉 can not be used in key
position. Then, δ0 is extended to constructor terms as follows:

δ0(f(t1, . . . , tn)) = f(δ0(t1), . . . , δ0(tn)) with f ∈ Σc.

Example 8: Continuing our running Example, we con-
sider the typing system generated from the set TDS =
{τa, τm, τks, τk} of atomic types and the function δDS that
associates the expected type to each constant/name, and the
following types to variables:
• δDS(xAB) = δDS(x′AB) = δDS(yAB) = δDS(y′AB) = τk;
• δDS(xB) = δDS(x′B) = enc(〈τk, τa〉, τks).

A protocol is type-compliant if two unifiable subterms have
the same type. Formally, we use the definition given in [19],
which is similar to the one introduced in [25].

We write St(t) (resp. St(τ)) for the set of (syntactic)
subterms of a term t (resp. type τ ), and ESt(t) the set of
its encrypted subterms, i.e.

ESt(t) = {u ∈ St(t) | u is of the form enc(u1, u2)}.

In the following definition, δP(P ) is the set of δP(t) for
every term t occuring in protocol P .

Definition 6: A protocol P is type-compliant w.r.t. a typing
system (TP , δP) if τ? 6∈ St(δP(P)), and for every t, t′ ∈
ESt(P) we have that:

t and t′ unifiable implies that δP(t) = δP(t′).

Example 9: The protocol P ′1DS (resp. P ′2DS) is type-compliant
w.r.t. the typing system given in Example 8. Indeed, the
encrypted subterms of P ′1DS are:

1) tA = enc(〈b, xAB , xB〉, kas);
2) tB1 = enc(〈yAB , a〉, kbs);
3) tB2 = enc(m1, yAB);
4) tS1 = enc(〈b, kab, enc(〈kab, a〉, kbs)〉, kas);
5) tS2 = enc(〈kab, a〉, kbs)

as well as the renaming of these terms obtained by replac-
ing kab, xAB , yAB , and xB with fresh names/variables of the
same type, namely k′ab, x

′
AB , y′AB , and x′B .

It is easy to check that the type-compliance condition is
satisfied for any pair of terms. For instance, we have that tA
and tS1 are unifiable, and they have indeed the same type:

δDS(tA) = enc(〈τa, τk, enc(〈τk, τa〉, τks)〉, τks) = δDS(tS1).

Consider a protocol P that is type-compliant w.r.t. to a
typing system (TP , δP), an execution P tr−→ (P ′;φ′;σ′) is
well-typed if σ′ is a well-typed substitution, i.e. every variable
of its domain has the same type as its image. We say that
a trace (tr, φ) ∈ traceΣ(P) is well-typed if its underlying
execution (unique due to the class of protocols we consider in
this paper) is well-typed. Given a protocol P , we denote ΣP
the constants from Σ0 that occur in P .

We first show that the small attack property from [19] still
holds: whenever two processes are not in trace equivalence,
then there is a well-typed witness of non equivalence. In
addition, we show that the recipes involved in such a trace
have a simple form: they are built using constructor symbols
on top of destructors.

Definition 7: Let R be a recipe. We say that R is destructor-
only if R ∈ T (Σd,Σ∪W). It is simple if there exist destructor-
only recipes R1, . . . , Rk, and a context C made of constructors
such that R = C[R1, . . . , Rk].

Theorem 1: Let P be a protocol type-compliant w.r.t.
(TP , δP) and Q be another protocol. We have that P 6vt Q
w.r.t. Σ0 if, and only if, there exists a witness tr of this non-
inclusion that only contains simple recipes and such that one
of the following holds:

1) (tr, φ) ∈ traceΣ0(P) for some φ and (tr, φ) is well-
typed w.r.t. (TP , δP);
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2) tr = tr′{c0 7→ c〈ω,ω〉} for some c0 ∈ Σ0 r ΣP , and
(tr′, φ′) ∈ traceΣ0

(P) for some φ′ and (tr′, φ′) is well-
typed w.r.t. (TP , δP).

Since we consider atomic keys, some execution may fail
when a protocol is about to output an encryption with a non
atomic key. In order to detect this kind of behaviours, it is
important to consider slightly ill-typed traces as defined in
Item 2.

Example 10: Continuing our running example, we have
seen that P ′1DS 6vt P ′2DS. The witness tr′ of this non-inclusion
(given in Example 7) only contains simple recipes, and
(tr′, φ′1) ∈ traceΣ0

(P ′1DS) is well-typed w.r.t. (TDS, δDS) (the
typing system given in Example 8).

B. Bounding the number of constants

The previous result implicitly bounds the number of con-
stants used in an attack but the induced bound would be
impractical. We show here that actually, two constants are
sufficient. The proof technique is inspired from [26] and [27]
which respectively reduce the number of nonces and agents
in the context of equivalence properties. A direct application
of the proof technique would however yield two constants of
each type, which represents still a high number of constants.
Instead, we show here that just two constants are enough,
provided they are of special type τ?. To obtain this result,
we slightly relax the notion of well-typedness.

Given a typing system (T0, δ0), we denote by � the smallest
relation on types defined as follows:
• τ? � τ and τ � τ for any type τ (atomic or not);
• f(τ1, τ2) � f(τ ′1, τ

′
2) when τ1 � τ ′1, τ2 � τ ′2, and f ∈ Σc.

Consider a protocol P that is type-compliant w.r.t. to a
typing system (TP , δP), an execution P tr−→ (P ′;φ′;σ′) is
quasi-well-typed if δP(xσ′) � δP(x) for every variable
x ∈ dom(σ′). We say that a trace (tr, φ) ∈ traceΣ(P) is quasi-
well-typed if its underlying execution (unique due to the class
of protocols we consider in this paper) is quasi-well-typed.

If two processes are not in trace equivalence, then there is
a witness of non equivalence that is quasi-well typed and uses
at most two extra constants plus eventually c〈ω,ω〉 to detect
slightly ill-typed traces.

Theorem 2: Let P be a protocol type-compliant w.r.t.
(TP , δP) and Q be another protocol. Let Σ = ΣP ]
{c0
?, c

1
?, c〈ω,ω〉}. We have that P 6vt Q w.r.t. Σ0 if, and only if,

there exists a witness tr of this non-inclusion w.r.t. Σ that only
contains simple recipes, and such that (tr, φ) ∈ traceΣ(P) for
some φ and (tr, φ) is quasi-well-typed w.r.t. (TP , δP).

Intuitively, we can show that non equivalence relies on at
most one disequality, and thanks to our equational theory,
only two constants c0

?, c
1
? are necessary to produce such a

disequality.

IV. FROM STATIC EQUIVALENCE TO PLANNING

The overall objective of this paper is to provide a practi-
cal algorithm for deciding trace equivalence, using planning

graphs and SAT-solving. We start here with the static case and
show how to reduce static equivalence to a planning problem.
Given two frames, we show how to build a planning problem
such that the planning problem has a solution if, and only if,
the two corresponding frames are not in static equivalence.

We consider two frames φ and ψ having same domain. We
denote Σ the constants from Σ0 that occur either in φ or in ψ.

A. Planning problems

We first recall the definition of a planning problem, slightly
simplified from [28]. Intuitively, a planning system defines a
transition system from sets of facts to sets of facts. New facts
may be produced and some old facts may be deleted.

Definition 8: A planning system is tuple
〈Fact, Init,Rule〉 where Fact is a set of variable-free
atomic formulas called facts, Init0 ⊆ Fact is a set of facts
representing the initial state, and Rule is a set of rules of the
form:

Pre −→ Add ;Del

where Pre , Add , Del are finite sets of facts such that Add ∩
Del = ∅, Del ⊆ Pre . We write Pre −→ Add when Del = ∅.

Given a rule r ∈ Rule of the form Pre −→ Add ;Del , we
denote Pre(r) = Pre , Add(r) = Add , and Del(r) = Del .
Moreover, if S ⊆ Fact are such that Pre(r) ⊆ S, then we
say that the rule is applicable in S, denoted S r−→ S′, and the
state S′ = (S r Del) ∪ Add is the state resulting from the
application of r to S. A planning path from S0 ⊆ Fact to
Sn ⊆ Fact is a sequence of rules r1, . . . , rn ∈ Rule such
that there exist states S1, . . . , Sn−1 ⊆ Fact such that:

S0
r1−→ S1

r2−→ . . . Sn−1
rn−→ Sn

A planning problem for a system Θ = 〈Fact, Init,Rule〉
is a pair Π = 〈Θ, Sf 〉 where Sf ⊆ Fact represents the target
facts. A solution to Π = 〈Θ, Sf 〉, called a plan, is a planning
path from Init to a state Sn such that Sf ⊆ Sn.

In this paper, we consider an (infinite) set of facts Fact0
that consists of:
• all atomic formulas of the form att(uP , uQ) with
uP , uQ ∈MΣ;

• all atomic formulas of the form statecP,Q(σP , σQ) where
c ∈ Ch, P,Q are basic processes on channel c, and σP
(resp. σQ) is a grounding substitution for P (resp. Q);

• a special symbol bad.
The rest of this section is dedicated to the reduction of

static equivalence to the (non) existence of a solution of a
planning system. Therefore, we will consider planning systems
with facts that represent the attacker’s knowledge, i.e. those
of the form att(uP , uQ) (plus the symbol bad). Later on, in
Section V, we will additionally consider the facts of the form
statecP,Q(σP , σQ) that model internal states of the agents.

B. Attacker rules

We first describe the planning rules that correspond to the
attacker behaviours. Instead of considering rules on ground
facts, we start by describing a set of abstract rules that we
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instantiated later on, yielding a (concrete) planning system.
The attacker behaviour is modelled by the following set RuleA
of abstract rules:

att(〈x1, x2〉, 〈y1, y2〉) −→ att(x1, y1)
att(〈x1, x2〉, 〈y1, y2〉) −→ att(x2, y2)
att(enc(x1, x2), enc(y1, y2)), att(x2, y2) −→ att(x1, y1)

Note that there is no Del since the attacker never forgets.
Interestingly, the rules only model decomposition There is no
rule to synthesize messages. In general, this would be unsound
but we will show why we can get rid of synthesis rules, thanks
to the flattening technique. This is a key point of our algorithm
to avoid building large terms.

We now explain how to obtain concrete planning rules from
the abstract ones. This step is called concretization. Basically,
we distinguish two kinds of concrete rules: the positive one,
and the negative one. We start in this subsection by defining
the positive one.

Given an abstract attacker rule r ∈ RuleA, we define its
positive concretizations by simply instantiating the abstract
rules such that the resulting terms are messages.

Concrete+(r) = {rσ | σ a substitution grounding for r
such that rσ only involve messages in MΣ}

Let φ and ψ be two frames with dom(φ) = dom(ψ). The
set of facts associated to φ and ψ is defined as the set of
couples of all identical constants and the couples of associated
messages of the two frames.

Fact(φ, ψ) =
{att(a, a) | a ∈ Σ} ∪ {att(wφ,wψ) | w ∈ dom(φ)}

It is easy to show that, applying (concrete) attacker rules to
Fact(φ, ψ), we compute the set of couples (u, v) that can be
reached by applying destructor-only recipes to φ and ψ.

Lemma 1: Let φ, ψ be two frames with dom(φ) =
dom(ψ). Let Θ = 〈Fact0,Fact(φ, ψ),Concrete+(RuleA)〉
and Π = 〈Θ, {att(u, v)}〉 for some u, v ∈ MΣ. We have
that Π has a solution if, and only if, there is a destructor-only
recipe R ∈ RΣ such that Rφ↓ = u, and Rψ↓ = v.

C. Case of failures

To break static equivalence, an attacker may build new
terms but also check for equalities and computation failures.
Therefore, we encode when a computation can be performed
on the right hand side but can not be mimicked on the left.

We say that a fact f = att(u0, v0) (u0, v0 ∈ MΣ) left-
unifies (resp. right-unifies) with att(u, v) if there exists σ
such that uσ = u0 (resp. vσ = v0). Similarly, a sequence of
facts att(u1, v1), . . . , att(uk, vk) left-unifies with a sequence
att(u′1, v

′
1), . . . , att(u′k, v

′
k) if there exists σ such that u′1σ =

u1, . . . , u
′
kσ = uk (and symmetrically for right-unification).

Given an abstract attacker rule r = Pre −→ Add (note that
Del is empty for attacker rule), we define Concrete−(r) as
the set of concrete planning rules that contains:

f1, . . . , fk −→ bad

for any sequence of facts f1, . . . , fk ∈ Fact0 such that
f1, . . . , fk left-unifies with Pre , whereas f1, . . . , fk does not

right-unify with Pre . This is the generic way to compute the
failure rules from abstract attacker rules. In case of the set
of abstract rules RuleA that we consider here, we obtain the
following infinite set of rules, denoted Concrete−(RuleA):

att(〈u1, u2〉, v) −→ bad
for any u1, u2, v ∈MΣ such that v is not a pair

att(enc(u1, u2), v), att(u2, v
′) −→ bad

for any u1, u2, v, v
′ ∈MΣ such that enc(u1, u2) ∈MΣ,

and dec(v, v′)↓ 6∈ MΣ.
In order to capture static inclusion, we have to consider

some additional cases of failure, in particular those corre-
sponding to an equality that holds in one side but not in the
other side. For this, we introduce the set Rtest

fail :

Rtest
fail = {att(u, v1), att(u, v2) −→ bad | v1 6= v2}

However, as exemplified below, due to the absence of rule
to compose terms, this is not sufficient.

Example 11: Let φ = {w . k} and ψ = {w . enc(s, k)}
where s, k ∈ N . We have that φ 6vs ψ. Indeed, consider
R = enc(w,w), we have that Rφ↓ ∈ MΣ whereas Rψ↓ 6∈
MΣ. However, we have no mean to witness this non-inclusion
without relying on synthesis rules (that we do not have).

Therefore, we introduce in addition the ability to check
whether a message is an atom or not (different from the
special constant c〈ω,ω〉). More formally, we consider the set:
Ratom

fail = {att(u, v) −→ bad | u is an atom different
from c〈ω,ω〉 but not v}

Given a set Rule of abstract rules, we denote
Concrete(Rule) = Concrete+(Rule) ∪ Concrete−(Rule).

Two frames are in static inclusion if, and only if, the
corresponding planning system has no solution.

Proposition 1: Let φ and ψ be two frames with dom(φ) =
dom(ψ), and Θ = 〈Fact0,Fact(φ, ψ),R〉 where

R = Concrete(RuleA) ∪Rtest
fail ∪Ratom

fail .
Let Π = 〈Θ, {bad}〉. We have that φ 6vs ψ if, and only if, Π
has a solution.

As we shall see later, in order to obtain an efficient algo-
rithm, we do not enumerate all ground attacker rules. Instead,
they are generated on the fly, only when they are needed.

V. FROM TRACE EQUIVALENCE TO PLANNING

In the previous section, we have shown how to encode
static inclusion into a planning system. We now show how
to encode trace inclusion. We consider a protocol P that is
type-compliant w.r.t. (TP , δP), and another protocol Q. For
simplicity we assume that variables of P and Q are disjoint.
Let Σ = (ΣP ∪ ΣQ) ] {c0

?, c
1
?, c〈ω,ω〉}. Moreover, we assume

that variables occurring in P are given with types.

A. Protocol rules

We first define the abstract rules describing the protocol be-
haviour. Given P and Q two basic processes on channel c, we
write St(P,Q) = statecP,Q(idP , idQ) where idP (resp. idQ) is
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the identity substitution of domain fv(P ) (resp. fv(Q)). Then,
the transformation Rule(P ;Q) from processes to abstract
planning rules is defined as follows: We distinguish several
cases depending on the shape of P .

1) Case P = 0:
Rule(P ;Q) = ∅.

2) Case P = out(c, u).P ′:
Rule(P ;Q) = Rule(P ′;Q′) ∪
{St(P,Q) −→ att(u, v),St(P ′, Q′); St(P,Q)}

when Q = out(c, v).Q′

Rule(P ;Q) = {St(P,Q) −→ att(u, c?0), bad}
otherwise.

3) Case P = in(c, u).P ′:
Rule(P ;Q) = Rule(P ′;Q′) ∪
{St(P,Q), att(u, v) −→ St(P ′, Q′); St(P,Q)}

when Q = in(c, v).Q′

Rule(P ;Q) = {St(P,Q), att(u, x) −→ bad}
otherwise (with x fresh).

Intuitively, abstract rules simply try to mimic each step of P
by a similar step of Q. Clearly, if Q cannot follow P , the two
processes are not in trace equivalence, which is modelled here
by the bad state. It then remains to check whether the bad
state is indeed reachable. Note that, in case P = out(c, u).P ′

whereas Q is not ready to perform an output, bad will be
trigger only if the outputted term is indeed a message.

Example 12: We consider protocols P ′1DS and P ′2DS as given
in Example 7. We focus on the computations of the abstract
protocol rules for the basic process defined on channel c1, i.e.
Rule(P 1

A.out(c1, enc(m1, x
1
AB)), P 2

A.out(c1, enc(m2, x
2
AB)))

where P iA = out(c1, 〈a, b〉).
in(c1, enc(〈b, xiAB , xiB〉, kas)).
out(c1, x

i
B).

out(c1, enc(mi, x
i
AB)) with i ∈ {1, 2}.

We have simply renamed bound variables to ensure disjoint-
ness between the variables of P 1

A and those of P 2
A. Moreover,

for sake of conciseness, below, we write statec1i instead of
statec1

P 1
i ,P

2
i

where P 1
i (resp P 2

i ) with i ∈ {1, 4} represents the
subprocess of P 1

A (resp. P 2
A) starting at the ith action. We write

idX the identity substitution with dom(idX) = X . Since this
basic process is made up of 4 actions, we obtain 4 abstract
protocol rules, among which the following abstract rule r3:

statec13 (id{x1
AB ,x

1
B}, id{x2

B}) −→
att(x1

B , x
2
B), statec14 (id{x1

AB}, ∅);
statec13 (id{x1

AB ,x
1
B}, id{x2

B})

Since both basic processes have the same shape, no absract
rule with bad in conclusion have been computed at this stage.

This transformation is then extended to protocols in a natu-
ral way. Assume w.l.o.g. that both simple processes are made
of n basic processes (we can complete with null processes if
needed). That is, P = {P1, . . . , Pn} and Q = {Q1, . . . , Qn}.
In addition, assume w.l.o.g. that Pi and Qi are basic processes
on channel ci. We define

Rule(P,Q) = Rule(P1, Q1) ∪ . . . ∪ Rule(Pn, Qn).

Given a substitution σ, and statecP,Q(σP , σQ) occurring in
a protocol abstract rule, the application of σ to the abstract
state is defined as follows:

statecP,Q(σP , σQ)σ = statecP,Q(σ ◦ σP , σ ◦ σQ).

B. Flattening

In terms of efficiency, one key step of our algorithm is
to avoid composition rules from the attacker. For this, we
transform protocol rules in order to pre-compute all necessary
composition steps. For example, consider the second step of
the Denning Sacco protocol, presented in Example 4. The
agent A expects a message m of the form {b, xAB , xB}kas

and answers with xB . Either the attacker obtains m as an
existing ciphertext or he builds the ciphertext himself, provided
he knows the key kas. In the later case, we may avoid a
composition step by considering the following (informal) rule:

b, xAB , xB , kas → xB

This rule is clearly useless for this particular example but
illustrates our flattening technique. Note that such rules will
become useful for the analysis of a more complex scenario,
in particular those involving dishonest participants.

We now explain how formally to compute the set of
flattened rules from a given abstract rule r. For this, we start
by explaining how to decompose a fact att(u, v).

Definition 9: Given a term u ∈ T (Σc,Σ∪N ∪X ), we say
that u is decomposable when:
• either u ∈ X and δP(u) is not an atomic type;
• or u 6∈ Σ ∪N ∪ X .
Intuitively, a variable of non atomic type is decomposable

since it may be instantiated by a non atomic term which, in
turns, may have been obtained by composition. Given att(u, v)
with u decomposable, we define split(att(u, v)) as follows:

split(att(u, v)) = (f; {att(x1, y1), att(x2, y2)};σP ;σQ)

where
• δP(u) = f(τ1, τ2) for some τ1, τ2 and some f ∈ Σc;
• x1 (resp. x2) is a fresh variable of type τ1 (resp. τ2) and
σP = mgu(u, f(x1, x2));

• y1, y2 are fresh variables, σQ = mgu(v, f(y1, y2)).

Note that σP exists and is necessarily a well-typed substitu-
tion. By convention, we assume that mgu(u, u′) = ⊥ when u
and u′ are not unifiable.

Let r be an abstract rule of the form Pre −→ Add ;Del
with f = att(u, v) ∈ Pre such that u is decomposable and
split(f) = (f, S, σP , σQ). The decomposition of r w.r.t. f ,
denoted decompo(r, f), is defined as follows:

1)
(
(Pre r f) ∪ S −→ bad

)
σP in case σQ = ⊥;

2)
(
(Pre r f) ∪ S −→ Add ;Del

)
(σP ] σQ) otherwise.

Then, decomposition is applied recursively on each rule.

Flat(r) = Flat({decompo(r, f) | f = att(u, v) ∈ Pre(r)

with u decomposable}) ∪ {r}
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Example 13: Considering the abstract protocol rule r3

given in Example 12, the set Flat(r3) contains (among others):

statec12 (∅, ∅),
att(〈b, x1

AB , x
1
B〉, 〈b, x2

AB , x
2
B〉), att(kas, kas)

−→ statec13 (id{x1
AB ,x

1
B}, id{x2

B}); statec12 (∅, ∅)

statec12 (∅, ∅),
att(b, b), att(x1

AB , x
2
AB), att(x1

B , x
2
B), att(kas, kas)

−→ statec13 (id{x1
AB ,x

1
B}, id{x2

B}); statec12 (∅, ∅)

statec12 (∅, ∅), att(b, b), att(x1
AB , x

2
AB), att(kas, kas)

att(x1
B1, x

2
B1), att(x1

B2, x
2
B2)

−→ statec13 (σ1, σ2); statec12 (∅, ∅)

where
• σ1 = {x1

AB 7→ x1
AB , x

1
B 7→ enc(x1

B1, x
1
B2)};

• σ2 = {x2
B 7→ enc(x2

B1, x
2
B2)}; and

• x1
B1 (resp. x2

B2) is of type 〈τk, τa〉 (resp. τks).

C. Concretization

Given an abstract rule r, we denote vars left(r) the variables
occurring on the left (first parameter) of a predicate occuring
in r, and similarly for vars right(r). More precisely,
• vars left(att(u, v)) = vars(u); and
• vars left(statecP,Q(σP , σQ)) = vars(img(σP )).

We have that vars(r) = vars left(r) ] vars right(r).

Given an abstract protocol rule r, its positive concretization
simply consists in all its instantiations that are well-typed w.r.t.
the left side of the rule.

Concrete+(r) = {rσ | σ a substitution grounding for r
such that rσ only involve messages in MΣ

and δP(xσ) � δP(x) for any x ∈ vars left(r)}

Let KP = (P; σP ; φ) and KQ = (Q; σQ; ψ) be two
configurations with dom(φ) = dom(ψ). The set of facts
associated to KP and KQ is defined as follows:

Fact(KP ,KQ) = Fact(φ, ψ) ∪
{statecP,Q(σP , σQ) | P ∈ P , Q ∈ Q are basic processes

on channel c, σP = σP |fv(P ) and σQ = σQ|fv(Q) }

We denote by Fact(KP ,KQ) ↑ S′ when the set of facts S′

can be obtained from the set of facts Fact(KP ,KQ) by adding
only deducible facts (using destructor recipes only).

Definition 10: Given two sets of facts S and S′ such
that S = Fact(KP ,KQ) with KP = (P;φ;σP ) and
KQ = (Q;ψ;σQ) with dom(φ) = dom(ψ), we write
Fact(KP ,KQ) ↑ S′ when:
• Fact(KP ,KQ) and S′ coincide on states;
• for any att(u, v) ∈ Fact(KP ,KQ), att(u, v) ∈ S′; and
• for any att(u, v) ∈ S′, there exists a destructor-only

recipe R such that Rφ↓ = u, and Rψ↓ = v.
The solutions of the planning system obtained as the positive

concretization of the abstract rules of P and Q exactly
corresponds to the set of (quasi-well-typed) traces of P that
can be mimicked by Q.

Lemma 2: Let P be a protocol type-compliant
w.r.t. (TP , δP), and Q be another protocol. Let Θ be
the following planning system:

〈Fact0,Fact(P,Q),R〉

where R = Concrete+(RuleA ∪ Flat(Rule(P,Q))).

Let (tr, φ) ∈ traceΣ(P ) for some φ and such that:
• tr only contains simple recipes;
• (tr, φ) is well-typed w.r.t. (TP , δP);
• (tr, ψ) ∈ traceΣ(Q) for some ψ.
Then, there exist a planning path r1, . . . , rn of

some length n from Fact(P,Q) to some Sn such that
Fact(K ′P ,K

′
Q) ↑ Sn where K ′P (resp. K ′Q) is the resulting

configuration starting from P (resp. Q) and executing tr.

Conversely, let r1, . . . , rn be a planning path from
Fact(P,Q) to Sn such that bad 6∈ Sn. Then, there exist a
trace tr, and frames φ and ψ such that:
• tr only contains simple recipes;
• (tr, φ) is well-typed w.r.t. (TP , δP);
• (tr, ψ) ∈ traceΣ(Q) for some ψ; and
• Fact(K ′P ,K

′
Q) ↑ Sn where K ′P (resp. K ′Q) is the

resulting configuration starting from P (resp. Q) and
executing tr.

D. Case of failures

Similarly to the static case, we need to make sure that we
can detect when P and Q are not in trace inclusion. For this,
we consider additional rules that express when a step that can
be performed on the left hand side cannot be mimicked on the
right hand side.

Given an abstract protocol rule r = Pre −→ Add ;Del ,
Concrete−(r) is the set of planning rules that contains:

f1, . . . , fk −→ bad

for any sequence of facts f1, . . . , fk ∈ Fact0 such that
f1, . . . , fk left-unify with Pre with substitution σL and u ∈
MΣ for any att(u, v) ∈ AddσL, and such that one of the
following conditions holds:
• f1, . . . , fk does not right-unify with Pre;
• f1, . . . , fk right-unify with Pre with substitution σR but
v 6∈ MΣ for some att(u, v) ∈ AddσR.

Our main technical result states that our encoding in plan-
ning system is sound and complete: two protocols are in
trace inclusion if, and only if, the corresponding planning
system (obtained by considering both positive and negative
concretizations) has a solution.

Theorem 3: Let P a protocol type-compliant w.r.t.
(TP , δP), and Q be another protocol. We consider the
following set R of concrete rules:

R = Concrete(RuleA ∪ flat(Rule(P,Q))) ∪Rtest
fail ∪Ratom

fail

Let Θ = 〈Fact0,Fact(P,Q),R〉 and Π = 〈Θ, {bad}〉. We
have that P 6v Q if, and only if, Π has a solution.
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This reduction to a planning system is a key ingredient of
our result. But of course, it does not immediately yields an
algorithm since the planning system encoding trace inclusion
of a process P w.r.t. a process Q is actually infinite. Indeed,
consider for example the positive concretizations of an abstract
rule in Rule(P;Q). There are finitely many instantiations for
the “left” part, that corresponds to Q thanks to the typing
system. However, the “right” part (corresponding toQ) may be
instantiated arbitrarily. We explain how to design an (efficient)
algorithm in the next section.

VI. ALGORITHM

Our algorithm takes as input a protocol P that is type-
compliant w.r.t. a typing system (TP , δP) and another pro-
tocol Q. We explain here how to check trace inclusion of P
in protocol Q. Then, trace equivalence is obtained by checking
trace inclusion of P in Q and Q in P .

Step 1: Compute the abstract rules of (P;Q). As ex-
plained in Section V-A, we compute the abstract rules
Rule(P;Q) associated to (P;Q), and then their flattened ver-
sion flat(Rule(P;Q)), as described in Section V-B. Together
with the attacker rules (defined in Section IV-B), this yields

RuleA ∪ flat(Rule(P;Q)).

Step 2: Initial state. Thanks to Theorem 2, it is sufficient
to consider at most three extra constants in addition to the
constants of P and Q, that is, it is sufficient to consider Σ =
ΣP ∪ ΣQ ] {c0

?, c
1
?, c〈ω,ω〉}. We then add the initial states of

the protocols. More formally, we start with the initial state

Fact(P,Q).

Step 3: Planning graph algorithm. Given a planning system,
the standard technique for finding a solution to the planning
system is to apply the planning graph algorithm (see [14]),
that we briefly recall here. The algorithm consists in building a
graph (called planning graph), that consists in an alternance of
facts layers and rules layers, linked with four kinds of edges:
Pre , Add and Del edges, that are edges between the fact
layers and the rule layers; and mutex (as in mutual exclusion)
are edges between vertices of the same layers. Mutex edges
indicate when vertices may not be obtained simultaneously.

More precisely, the planning graph algorithm proceeds as
follows. Let i denote the number of layers. Initially, i := 0.

1) The first fact layer is Nf
0 = Fact(P,Q) (the set of initial

facts) and the first rule layer is empty, Nr
0 = ∅.

2) From the fact layer Nf
i , compute the set R of all

concrete rules (either from Concrete+ or Concrete−)
that are applicable from Nf

i without any mutex edge
between facts of their precondition. Since there are a
finite number of abstract protocol rules and since the
facts in Nf

i are ground and finite, the set R of concrete
rules applicable from Nf

i is finite as well.
3) Compute the new mutex edges between the rules. Rules

are in mutex if they either interfere (one deletes a
precondition or an add-effect of the other) or have

competing needs (there is a mutex edge between their
preconditions).

4) Build Nf
i+1 from Nr

i by adding the facts introduced by
the rules in Nr

i . We have that:

Nf
i+1 = ∪ρ∈Nr

i

5) We compute the mutex edges between facts. There is
a mutex edge between two facts f, f ′ if each rule that
adds f is in mutex with each rule that adds f ′.

6) i := i+ 1
7) Check whether Nf

i := Nf
i−1 (same facts and same

mutex). If yes, then stop. Otherwise, go back to Point 2.
When the planning graph algorithm stops, we obtain a

graph, that represents an over-approximation of the states
reachable from the planning system, starting from the initial
state. While we are looking for a solution to an infinite
planning system (finitely described through abstract rules), we
only need to consider a finite number of concrete rules at each
round of the algorithm (Point 2 of the algorithm). Note that
this construction is not a naive saturation that would explore
all possible paths. The mutex edges ensure a not too coarse
over-approximation and provide a mean for considering the
application of a rule to a family of facts instead a single fact.
Step 4: SAT encoding. If bad does not occur in the resulting
planning graph, then trace inclusion is guaranteed since the
planning graph is an over-approximation of the reachable
states. If bad does occur in the planning graph, we can check
whether bad is indeed reachable through SAT solvers. More
precisely, we encode the existence of a solution to the planning
system into a SAT instance, using the same technique as
SATMC (see [16]), and relying on the SAT solver minisat [29].
If bad is reachable, the SAT solver provides us with a solution,
which is translated back to an attack trace. If bad is not
reachable (that is, the SAT solver guarantees that there is no
solution), then trace inclusion is guaranteed.
Conclusion. Thanks to Theorem 3, P 6vt Q if, and only if, the
corresponding planning system R has a solution, that is, bad
is reachable. Therefore our algorithm is correct and complete:
it provides an attack if, and only if, P 6vt Q. Since P ≈t Q
is defined as P vt Q and Q vt P , we can then easily check
whether two processes are in trace equivalence (P ≈t Q ).
Termination. Our procedure is not guaranteed to terminate.
This may be surprising since Theorem 1 ensures that it is
sufficient to consider traces that are well-types w.r.t. (TP , δP).
Then, since the processes are deterministic, a given trace of P
can only be followed by at most one trace in Q, hence a
finite number of traces need to be considered. However, the
planning graph step over-approximates the set of facts that
need to be considered. Therefore, it may consider several
facts of the form att(u, u1), att(u, u2), . . . , att(u, un) with
distinct, uncontrolled, ui. One way to enforce termination
would be to check at each step that the planning graph
only considers reachable facts (applying our SAT encoding).
However, this would considerably slow down our algorithm
while our experiments show that, not only our algorithm
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terminates in practice, but it is also much more efficient than
other existing tools.

VII. CASE STUDIES

In this section, we analyse several protocols of the literature
and compare the results obtained using different tools that
decide equivalence for a bounded number of sessions. The
characteristics of these tools are given in Section VII-A, the
different scenarios including some scenarios with corruption
are described in Section VII-B. The result are described In
Section VII-C and a discussion is provided in Section VII-D.
Our tool as well as the source files to reproduce the bench-
marks are available at [20].

A. Tools

Spec [9], [30] deals with a fixed set of cryptographic primi-
tives, namely symmetric encryption and pairs, and protocols
with no else branch. The procedure is sound and complete
w.r.t. open bisimulation (a notion that is strictly stronger than
trace equivalence [31]) and its termination is proved [9].

Apte decides trace equivalence [8], [11], [32] for a fixed
but richer set of cryptographic primitives (i.e. symmet-
ric/asymmetric encryptions, signature, pair, and hash func-
tions). Processes are also more general: they include private
channels, internal communications, processes that are not
necessarily simple, and possibly with else branches.

Systems we are interested in are highly concurrent and
a naive exploration of all possible interleavings limits the
practical impact of those tools. Recent works [12], [13] have
partially addressed the state space explosion problem due to
naive exploration of all possible interleavings implemented
in this tool. These dedicated partial order reduction (POR)
techniques have been implemented in Apte-por (as an option
of the Apte tool) yielding a significant speed-up.

Akiss implements the procedure described in [10], [33] and
deals with rich user-defined term algebras including symmetric
encryption and pairs. It is able to check an over-approximation
of trace equivalence that actually coincides with trace equiv-
alence for the class of simple processes that we study in this
paper. Its termination has been established for the particular set
of primitives used in this paper [34], and the perfomance of the
tool has been recently improved relying on POR techniques
mentionned above.

Of course, not all the tools consider exactly the same se-
mantics. For example, Akiss considers a true equational theory
while Spec, Akiss, and SAT-equiv consider a rewrite system
(with again subtle differences). We believe nevertheless that
they prove very similar properties and we therefore compare
here their performance.

B. Scenarios with corruption

The scenario we considered so far for the Denning-Sacco
protocol is quite simple. We only consider two sessions involv-
ing honest agents. This scenario involves 6 roles in parallel,
and is denoted DS-6 in the table given in Section VII-C.

In the same spirit, we consider a simpler scenario, denoted
DS-3, that corresponds to only one instance of each role
(between honest agents). Such scenarios are known to be too
simplistic and some attacks may be missed.

To go furhter, we consider scenario where honest agents are
willing to engage communications with a dishonest agent c.
Let us develop this corruption scenario on the Denning-Sacco
protocol. Formally, we consider in addition of the three basic
processes used to model scenario DS-3, a basic process to
model that the agent a may be involved in another session
with a corrupted agent c, and the server S is ready to answer
a request coming from them. Similary, we consider also two
additional basic processes to model the fact that agent b may
be involved in another session where the role A is played by
the corrupted agent c. This scenario is therefore made up of 7
basic processes and is named accordingly DS-7.

To be more complete, we can also consider the cases where
the role of A is played by b, and the role of B is played by a
(scenario DS-10), and then we add again processes to model
sessions with a corrupted agent (scenario DS-12 and DS-14).

We consider the case where the property is encoded on
role B (strong secrecy of the key as received by B). We may
also decide to encode the property on the two instances of the
roles of B (scenario DS-6-bis) or only once (scenario DS-6).

C. Review of symmetric key protocols

Most of the protocols we considered from [24] actually fall
in our class. We sometimes need to include some explicit tags
to ensure type-compliance (this check is performed automat-
ically by our tool). We now report on experimental results.
We ran the different tools on a single Intel 3.1 GHz Xeon
core with 190Go of RAM (shared with the other 19 cores)
and we compare their performances on several protocols. For
SAT-Equiv, we further indicate the number of ground facts and
rules considered when computing the planning graph.

We decide to stop each experiment after 24h, and we
indicate by TO (Time Out) when the tool does not return
an answer within this timeframe, SO when we encounter a
stack overflow, and MO in case the tool used more than 64
Go of Memory. We encountered some bugs that are indicated
by BUG when interacting with Apte (internal errors or wrong
results). We have reported these bugs to the authors.

Some protocols are subject to replay attacks, detected by the
scenario 6-bis mentioned earlier. Even if scenarios that corre-
spond to an attack are less interesting regarding performances
comparison (since most of the tools stop their exploration
once an attack has been found), we report the corresponding
analysis in the last raw of each table, whenever applicable,
that is, whenever there is indeed an attack.

Denning Sacco. The Denning Sacco protocol has been de-
scribed in Example 4. There is a replay attack on DS-6-bis
due to a lack of freshness on the messages that are exchanged.
This attack is similar to the one explained in Example 7.
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DS Spec Akiss Apte Apte-por Sat-Eq
3 12s 0.10s 0.3s 0.03s 0.25s 58
6 MO 15s TO 8s 1s 104
7 101s 13s 2s 132

10 SO 39m 4s 166
12 TO 7s 203
14 10s 234

6-bis 78m 49s 19s 0.07s 2s 122

Wide Mouth Frog. We consider the protocol as described
in [24] but without timestamps as described below:

A→ S : A, {B,Kab}Kas

S → B : {A,Kab}Kbs

Therefore, there is a replay attack on WMF-6-bis due to a lack
of freshness on the messages that are exchanged.

WMF Spec Akiss Apte Apte-por Sat-Eq
3 6s 0.04s 0.06s 0.01s 0.10s 52
6 58m 1.6s 55m 1.5s 1s 96
7 TO 5.3s TO 2s 2s 121
10 8m30s 22m 7s 165
12 SO TO 40s 238
14 118s 312

6-bis 13m 5.7s 0.06s 0.06s 1s 114

Needham-Schroeder. We consider the Needham-Schroeder
protocol based on symmetric encryption as described in [24]
(see below).

A→ S : A,B,Na
S → A : {B,Na,Kab, {A,Kab}Kbs}Kas

A→ B : {A,Kab}Kbs

B → A : {Req,Nb}Kab

A→ B : {Rep,Nb}Kab

NS Spec Akiss Apte Apte-por Sat-Eq
3 63s 4.4s 0.4s 0.03s 2s 100
6 MO TO TO 11m 54s 245
7 TO 153s 342

10 8m 475
12 22m 622
14 77m 838

Yahalom-Lowe. We consider the protocol as described in [24].
However, to ensure type-compliance, we consider a tagged
version of the protocol.

A→ B : A,Na
B → S : {1, A,Na, Nb}Kbs

S → A : {2, B,Kab, Na, Nb}Kas

S → B : {3, A,Kab}Kbs

A→ B : {4, A,B, S,Nb}Kab

YL Spec Akiss Apte Apte-por Sat-Eq
3 11s 3s 12s 0.12s 5s 122
6 MO TO TO 35m 3m 333
7 BUG 19m 549
10 206m 934
12 19h 1391
14 TO

Yahalom-Paulson. We consider the protocol as described
in [24]. To ensure type-compliance, we consider a tagged
version of the protocol.

A→ B : A,Na
B → S : B,Nb, {1, A,Na}Kbs

S → A : Nb, {2, B,Kab, Na}Kas
, {3, A,B,Kab, Nb}Kbs

A→ B : {3, A,B,Kab, Nb}Kbs
, {4, Nb}Kab

YP Spec Akiss Apte Apte-por Sat-Eq
3 23m 7s 111s 0.9s 50s 234
6 MO TO TO BUG 165m 976
7 TO

Otway-Rees. We have also analysed a tagged version of the
Otway-Rees protocol (see [24]).

A→ B : M,A,B, {1, Na,M,A,B}Kas

B → S : M,A,B, {1, Na,M,A,B}Kas,

{2, Nb,M,A,B}Kbs

S → B : M, {3, Na,Kab}Kas, {4, Nb,Kab}Kbs

B → A : M, {3, Na,Kab}Kas

OR Spec Akiss Apte Apte-por Sat-Eq
3 16m 225s BUG 24s 104s 239
6 MO SO SO 46m 660
7 50m 637

10 276m 1033
12 9h40m 1265
14 TO

Simple stateful example. Some protocols are stateful (see [35]
for a detailed discussion). For example, a process may lock
a ressource which cannot be used until it is unlocked. We
consider here a mock protocol that reflects this type of
behaviors. The protocol Pyes(n) with n tokens is described
informally below (1 ≤ i ≤ n), and is made of 3n processes
running in parallel on distinct channels.

1. → {tokai}ki , {tokbi}ki
2. {x}ki → x

3. tokai, tokbi → yes

Here, yes and no are public constants, whereas ki, tokai, and
tokbi are names unknown by the attacker. The protocol Pno(n)
can be defined similarly. Intuitively, Pyes(n) ≈ Pno(n) holds
since rule 2 can be used only once for each key ki. Therefore,
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it is never possible to trigger a rule of type 3. We checked
equivalence using ProVerif and, unsurprinsgly, it found a false
attack. This is due to the fact that ProVerif cannot properly
model “a finite amount of time”.

# tok. Spec Akiss Apte Apte-por Sat-Eq
1 15s 0.02s 0.09s 0.01s 0.16s 49
2 MO 0.37s 240m 0.15s 1s 100
3 18s MO 5s 2s 144
4 SO 9min32s 6s 188

12 TO 155s 540
36 85m 1596
60 6h40m 2652

D. Discussion

For ease of comparison, we decided to run our experiments
using a single core machine since not all the tools are able
to take advantage of more cores. Running these examples
using more cores would have benefited to our tool that reaches
its optimum when it is launched using 4 cores (2 inclusions
have to be checked with constants c0

? and c1
? (resp. c〈ω,ω〉)),

and also to Akiss on which the saturation process is highly
parallelizable.

The obtained results give evidence that our technique is less
sensitive to the number of concurrent sessions analysed. On
the contrary, the other tools that handle messages symbolically
are less sensitive to the size of messages, which explains why
our tool is typically slower on a small number of sessions.
Moreover, on all our secure examples on which no attack
is found, the planning graph is an over-approximation that
appears to be precise enough, and does not require calls to
the SAT solver. For the examples where an attack has been
found (DS-6-bis and WMF-6-bis), the resulting SAT formulas
contain about 750 variables and 4000 clauses.

VIII. CONCLUSION

Our tool SAT-Equiv outperforms all existing tools, even for
the new Apte-por variant of Apte and the recently updated
Akiss tool on which POR techniques have also been integrated.
We also discovered several bugs in Apte-por, which prevented
us from a thorough comparison of the two tools. SAT-Equiv
is sometimes slower for a small number of sessions but in all
cases, SAT-Equiv is the tool that allows to analyze the largest
number of sessions.

One limitation of our tool is the fact that it covers protocols
with symmetric encryption only. This is not an intrinsic
limitation of our approach but rather a current limitation of the
typing result [19], which states that we can limit ourselves to
well-type attack traces. We plan to extend [19] to all standard
primitives and we believe that the extension to SAT-Equiv to
all standard primitives would then follow quite easily.

Note also that our tool is not guaranteed to terminate. We
could enforce termination by checking reachability of the
considered facts while building the planning graph, at the
price of considerably slowing down our tool. Instead, as future
work, we plan to formally prove termination of the planning

graph construction or to identify under which assumptions,
termination can be guaranteed.
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