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Abstract—Coercion-resistance is a security property of elec-
tronic voting, often considered as a must-have for high-stake
elections. The JCJ voting scheme, proposed in 2005 by Juels,
Catalano and Jakobsson, is still the reference paradigm when
designing a coercion-resistant protocol. We highlight a weakness
in JCJ that is also present in all the systems following its general
structure. This comes from the procedure that precedes the tally,
where the trustees remove the ballots that should not be counted.
This phase leaks more information than necessary, leading to
potential threats for the coerced voters. Fixing this leads to
the notion of cleansing-hiding, that we apply to form a variant
of JCJ that we call CHide. One reason for the problem not
being seen before is the fact that the associated formal definition
of coercion-resistance was too weak. We therefore propose a
definition that takes into account more behaviors such as revoting
or the addition of fake ballots by authorities. We then prove that
CHide is coercion-resistant for this definition.

Index Terms—E-voting, coercion-resistance.

I. INTRODUCTION

Internet voting allows to take part in an election without
being physically present at a polling station. It can be used
for many reasons, such as providing people with low mobility
or expatriates with a way to vote beside postal voting, or as
a necessary alternative during a pandemic. As of today, elec-
tronic voting has been used for politically-binding elections
in several countries (e.g. Australia, Switzerland, Estonia, to
name but a few). For such high-stakes contexts, coercion may
be an important threat. It occurs when an attacker forces a
voter to vote in a specific way, using a threat or a reward.
This phenomenon is known to exist in real-world elections,
with traditional voting at polling stations. However, compared
to a paper-based solution, an electronic voting solution which
is not designed to tackle coercion could allow the attacker to
coerce a larger number of voters, or to gain a more convincing
evidence that the coerced voters actually obeyed. Also, since
Internet voting is a remote voting process, this introduces new
attacks compared to polling station voting. For instance, the
coercer can ask the voter to give all the voting materials that
they received. The classical verifiability mechanisms will then
provide a proof to the coercer that the voter did not cheat.

The JCJ protocol. A seminal protocol which aims to counter
coercion was proposed in 2005 by Juels, Catalano and Jakob-
sson [23]. They also provide a formalization of the notion,
allowing to give security arguments. This is now called the
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JCJ protocol and remains the reference for the research on
coercion-resistance in electronic voting. The key idea of JCJ
is that voters can give fake voting material (a fake credential)
to the coercer, and pretend that it is genuine. The coercer,
who votes with the provided credential, has no way to detect
whether the credential is valid or not. In order to guarantee
that, during the voting phase, ballots are accepted in the ballot
box regardless of their credentials; those which use an invalid
or a duplicate one are removed later, during a cleansing phase.
The output of this cleansing phase is a set of ballots that is
tallied in the usual way. The main security feature is that,
given a credential and all the publicly available information,
the coercer is unable to tell whether the credential is real or
fake. At the same time, for the legitimate voters, verifiability
is preserved. Hence JCJ aims at offering coercion-resistance
in a context where voters:

• are not fully controlled by the coercer and may cast their
true vote at some point, when they are not under coercion;

• may access to a tool (e.g. a free online website) that gen-
erates randoms fake credentials of the expected format;

• did receive their valid credential at an earlier step, outside
the control of the attacker.

For coercion-resistance, the cleansing phase is critical. In
JCJ, some information is leaked, namely the number of ballots
sent to the public board and to the tallying procedure, before
and after the cleansing phase. It is known that the difference ∆
between those two can reveal some information to the coercer.
Therefore it is important to ensure some “noise”, coming
from revotes or dummy ballots, that would mask the action
of a voter resisting a coercer. Still, depending on its exact
definition, the cleansing phase could leak more than just ∆.
For instance, in [31], the authors present a protocol where
the coercer can deduce the number of ballots which pretend
to be from each voter, and exploit this additional information
(which is not available in the original JCJ). To mitigate this
leakage, they propose that the authorities add a random number
of dummy ballots for each voter, which mitigates the leakage.

A weakness in JCJ. We have discovered that even in the
original JCJ protocol, the cleansing step leaks more than
the difference ∆ between the sizes of its input and output.
First, the ballots with the same credentials (i.e. revotes) are
handled, keeping only one ballot per credential. Second, the
ballots that use an invalid credential are removed. The size
of the intermediate ballot box is leaked; moreover, anyone
can observe the distribution of the number of revotes. Those



pieces of information can be analyzed by the coercer and help
to determine if a coerced voter obeyed or not. In particular,
we provide a few examples where this leakage allows the
coercer to fully break coercion-resistance, even if dummy
ballots are used. Admittedly, our examples are rather extreme
scenarios, that are unlikely to happen. Therefore, we explore
more realistic scenarios where major revoting may occur,
for example due to a technical incident where voters are
encouraged to revote. Another case is when a discredit of a
candidate happens during the voting phase, inducing voters to
flip their votes. In such cases, coercion-resistance is not fully
broken but the coercer gains some non-negligible advantage
due to the extra leakage of JCJ: using their a priori knowledge
about the behavior of the honest voters, the coercer can use
bayesian inference to decide whether it is more likely that the
voter obeyed or not. In order to measure the loss of coercion-
resistance, we follow the approach of Kuesters et al [25] and
show that JCJ guarantees a lower level of coercion resistance
than a more ideal protocol which only leaks ∆. All the variants
and improvements on JCJ that we know of are also affected
by this vulnerability. Note that our attacks assume that the
coercer knows a precise description of the expected behavior
of honest voters, which includes the probability of revoting.
In practice, a reasonably good approximation can be obtained
thanks to social media or exit polls.

A cleansing-hiding protocol. We propose a modification of
JCJ, called CHide, that is not subject to this weakness. The
key modification is the introduction of a cleansing hiding
procedure, that replaces the original cleansing phase. More
precisely, while JCJ uses plaintext equivalence tests (PET) as
the main cryptographic tool, CHide relies on more complex
MPC building blocks. Instead of PETs that return a bit telling
whether two ciphertexts represent the same cleartext, we use
a primitive Eq that returns an encrypted version of this bit, in
order to hide which ballots are removed and for which reason
(being a revote or having a fake credential). Then, a few logical
gates primitives (e.g. Or, And, etc.) must be operated on these
encrypted bits to obtain an encrypted validity bit. Finally, we
use a Conditional Set Zero primitive that conditionally sets
the ballots to (fixed) invalid ones, depending on their encrypted
validity bit. Thanks to its cleansing hiding procedure, CHide
only reveals the minimal information, namely the number ∆
of ballots that have been removed. Of course, each step comes
with a zero-knowledge proof that the expected operations have
been performed, so that anyone can check that the result of
the election is correct.

A stronger notion of coercion-resistance. One of the proba-
ble reasons why the leakage in JCJ was not noticed before is
because their definition of coercion-resistance was too weak.
A flaw was already noted in [18], which shows that the
definition could not be realized. The fix proposed in [18]
repairs this but still does not consider the cases where voters
may revote and hence misses the situation where JCJ leaks too
much information. These definitions also model the addition of
ballots with fake credentials in a contrived way in the sense

that each fake ballot must be cast by a voter that sacrifices
their vote.

We propose a more generic definition of coercion-resistance
that accounts for revoting as well as the addition of fake
ballots by authorities. We prove that CHide is coercion-
resistant according to this definition, and that JCJ is not, thus
showing that we indeed capture the weakness of the leakage
during the cleansing phase. We also prove that CHide ensures
vote privacy (under weaker assumptions than for coercion-
resistance) as well as universal verifiability.

Summary of the contributions.
• We discover a vulnerability in the JCJ scheme, which

shows that it is not perfectly coercion-resistant.
• We formally measure the loss of coercion-resistance in

JCJ in two realistic scenarios.
• We propose CHide, a cleansing-hiding variant of JCJ, that

is not subject to this problem.
• We propose a new definition of coercion-resistance,

which properly takes revoting and dummy ballots into
account.

• We prove that CHide is coercion-resistant for this def-
inition, while JCJ is not, thus showing the definition is
precise enough to capture the leakage during cleansing.

We provide the detailed specification of CHide and the full
proofs in a companion report [13].

Related work. To provide coercion-resistance, many authors
used the core idea of JCJ, that is the fake credential paradigm.
Civitas [11] is one of the most notable examples. It is widely
considered as an important step towards a practical version
of JCJ. Among other things, it introduces the notion of ballot
blocks, that mitigates the quadratic cost of the cleansing phase
of JCJ. This reduces somehow its coercion-resistance, which
can be captured with our approach.

Other attempts were made to improve the efficiency of
JCJ. In [31], Spycher et al. claim a linear time cleansing,
but this comes with a deterioration of the coercion-resistance,
as explained above. Later on, the same authors proposed
other schemes with a clear trade-off between efficiency and
coercion-resistance, thanks to anonymity sets [32]. Other
improvements include [3], where Araújo et al. propose a
way to perform the cleansing phase in linear time, and [10],
where Clark and Hengartner introduce the idea of over-the-
shoulder coercion-resistance. Both schemes suffer from the
same cleansing leakage as JCJ, as we further discuss in
Section VI.

Apart from the fake credential paradigm, a natural approach
is to use deniable revoting, where the coerced voter first
complies with the coercer but revotes later. The ballot cast
under coercion is invalidated by the subsequent revote, in
a way that the coercer cannot detect. The Estonian voting
system [28] completely relies on revoting to mitigate coercion,
and examples of recent academic proposals based on revoting
are VoteAgain by Lueks et al. [27] and the scheme of Locher
et al. [26]. This approach assumes a weaker adversary which
can no longer submit ballots past a certain point.
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All these schemes (including JCJ) do not address the so-
called Italian attacks. The latter exist independently of the
use of electronic voting and are based on the information
given by the tally. They can occur when the ballots are
complex enough, so that voters can “sign” them using a
specific pattern on the low-stake parts of the answer. When
using electronic voting, the typical way to prevent such attacks
is tally hiding, i.e. to decrypt only the winners of the election,
without decrypting the individual ballots. The challenge is
then to preserve verifiability. Therefore tally-hiding usually
relies on homomorphic encryption, or more generally on
multiparty computation (MPC) techniques [6], [12], [20], [24].
Designing a tally-hiding scheme is out of scope of this paper
but interestingly, CHide could be easily coupled with such
tally-hiding schemes, right after the cleansing phase.

Regarding formal definition of coercion-resistance, we al-
ready mentioned the recent work of Haines and Smyth [18]
that attempts to survey and unify the various definitions of the
literature, starting with the one of JCJ where the adversary
must distinguish between a real and an ideal game modeling
the protocol. Another approach to define coercion-resistance is
given by Küsters et al. in [25]. The authors define δ-coercion-
resistance with two conditions: first, the coerced voter must
have a strategy to meet their objective with overwhelming
probability (i.e. they can actually vote for the desired candi-
date); second, the adversary cannot distinguish the case when
the voter uses their evasion strategy from the case where the
voter forwards all received messages to the adversary, with an
advantage greater than δ. Our definition of coercion-resistance
can be seen as an instance of [25] where we compare the δ-
coercion-resistance of the real protocol with the δ′-coercion-
resistance of the ideal one, requiring them to be equal up to
negligible difference. While [25] provides a very general and
abstract definition, we instead consider a fixed objective for the
coerced voter (voting for a given candidate), a fixed evasion
strategy (the one considered in JCJ) and a formal framework
to model the trust assumptions on how messages are delivered.
This part is left unspecified in [25] and needs to be shaped
for each protocol.

II. UNVEILING A SHORTCOMING IN JCJ

We provide a high level description of the JCJ protocol
and show why coercion-resistance is undermined in case of
revoting.

A. Overview of JCJ

The JCJ voting system consists of the following phases.
Setup. The Election Trustees jointly generate the election

public key pkT , that is sent to the public board. Then, the
Registrars jointly compute one credential c for each voter.
Each credential is sent privately to the voter, possibly with
designated zero-knowledge proofs to guarantee voters that
their credential is valid [22]. The Registrars send to the
public board the list R = {Enc(c1, pkT ), . . . ,Enc(cn, pkT )}
of encrypted credentials, in some random order.

Voter
c, ν

Public board

pkT ,Enc(c1, pkT ), . . . ,Enc(cn, pkT )

...
b = (Enc(ν, pkT ),Enc(c, pkT ), π)

...
anonymous

channel

b

Fig. 1: Voting phase in JCJ.

Voting. To cast a ballot, a voter encrypts their vote ν
with the election public key pkT . They also encrypt their
credential c and prove knowledge of ν and c. They prove
that the encryptions are valid and linked, yielding a proof
π. The resulting ballot b = (Enc(ν, pkT ),Enc(c, pkT ), π) is
sent anonymously to the bulletin board. The voting phase is
depicted in Figure 1.

Tallying. The tally phase consists of four steps.
1. Ballots with duplicated credentials are detected using

Plaintext Equivalence Tests [21] (PET). At most one
ballot (typically, the last) is kept per credential.

2. The trustees mix the remaining ballots.
3. PETs are used again to remove ballots with invalid

credential, i.e. whose credential is not encrypted in R.
4. Finally, each remaining ballot is decrypted so that the

result can be computed.
Each step includes a zero-knowledge proof that the correct
operations are performed. Remark that the PETs originally
used in JCJ were not verifiable when all the participants are
corrupted, as stated in [29] which also proposes a fix.

Evading coercion: The JCJ voting system provides an
evasion strategy that a voter under coercion must follow to
safely disobey a coercer. If Alice is under coercion, she
provides her coercer with a random (and fake) credential c′.
At any moment, Alice can use her real credential c to cast
her vote. Ballots containing c′ will be removed at Step 3 of
the tally phase. Thanks to the mixnet, the coercer is unable to
learn that their ballot has been suppressed.

B. Leakage in case of revoting

For a verifiable voting system, it seems unavoidable to leak
the number of received ballots in the public board. The number
of valid ballots is also leaked unless more sophisticated tally
methods are used such as tally-hiding schemes [12], [20], [24].

However, JCJ leaks much more information when revoting
is allowed, namely:

• nb, the total number of received ballots;
• nv , the total number of valid (and counted) ballots;
• nr, the total number of revotes;
• the complete distribution of revotes, per (encrypted) cre-

dential (hence, for all k, the number of credentials used
to revote k times).

This can be exploited by a coercer to detect when a
coerced voter disobeys. Indeed, there is no reason to assume
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that revoting is independent from the choice of candidate.
On the contrary, revoting is often due to voters changing
their mind between candidates, for instance due to some late
announcements in the press.

An attack against coercion-resistance: We consider an
extreme case, with two candidates A and B. Suppose that
voters voting for A do not revote while those voting for B
always revote, exactly once, and suppose that the coercer
knows this. We denote rA (resp. rB) the number of votes
for A (resp. B). Due to the considered revoting behaviors, the
number of revotes nr corresponds to the number of votes for
B sent by the honest voters.

Assume now that Alice wants to vote for B but is instructed
by her coercer to vote for A (or abstain).

• If Alice obeys, the coercer will observe rB = nr.
• If Alice disobeys and casts one ballot for B, the coercer

will observe that rB = nr + 1.
Hence the coercer will detect that Alice has disobeyed, which
breaks coercion-resistance.

One could argue that Alice should follow a different evasion
strategy and cast one ballot if she votes for A and two if she
votes for B. This does not work either. Indeed, assume now
that Alice wants to vote for A, but is instructed to vote for B.

• If she obeys, she gives her real credential c to her coercer.
The latter then casts exactly one ballot for B using c.

• Otherwise, she provides a fake credential c′, that the
coercer uses to vote for B. Alice then votes for A using c.

In the first case, rB = nr + 1, while in the second case,
rB = nr. Once again, the coercer is able to detect that Alice
disobeyed and coercion-resistance is broken.

C. Discussion

1) The information available to the adversaries: To suc-
ceed in the above scenario, the adversary must know that the
honest voters who revote always vote for B while the others
always vote for A. In what follows, we consider less extreme
scenarios when voters do not have such a deterministic revot-
ing behavior but we still assume that the coercer knows the
probability that the voters vote for A (or B) when they revote
or when they do not. Such an information can be learned for
instance thanks to a poll where the voters tell what was their
final choice and whether they revoted. We leave as future work
the quantitative evaluation of the leakage when the adversary
only knows some approximation of the distribution.

2) Considering other evasion strategies: One possibility
to correct JCJ’s flaw is to define other evasion strategies in
case of revoting. Indeed, if Alice wants to vote, JCJ’s evasion
strategy instructs her to do so exactly once. Consequently, if
it is usual for everyone to revote several times, the leakage in
JCJ allows the coercer to detect that a single person voted once
without revoting, and thus that Alice disobeyed. However, it
seems very hard to instruct voters to use revoting, according
to a certain distribution, when they are under coercion. As
illustrated in Section II-B, the natural way to proceed does not
work. This is made even harder by the fact that the strategy

may evolve depending on new events that could change the
revoting distribution for the honest voters.

Hence we propose another option (see Section IV) that
consists in reinforcing JCJ in case of revoting, such that there
is no leakage besides the total number of ballots and the
number of valid ballots. For our proposed protocol, we prove
coercion-resistance with the original evasion strategy of JCJ.
We acknowledge that the latter is not perfect; in particular, it
does not allow a voter under coercion to change their mind
and revote. However, modeling a wide variety of behaviors for
the coerced voter is too complex and is out of the scope of
this article.

3) More noise is needed: A known issue of JCJ is that fake
ballots should be randomly added, in order to hide to a coercer
that their ballot has been removed. Indeed, if it is usual that
absolutely no ballot with a fake credential is removed at Step
3 of the tally, then a coercer, who observes that exactly one
ballot is removed, would suspect that the coerced voter has
disobeyed.

Hence, it is necessary that an unpredictable number of
ballots is removed during the tally. In JCJ, this “noise”
comes from honest voters sending dummy ballots, but this
source alone may not be sufficient. A natural approach is
to have the authorities add a random number of dummies.
For instance, [31] uses this to mitigate a leakage during the
tally. The number of fake ballots to add should however be
carefully calibrated. Indeed, the more fake ballots are added,
the better coercion-resistance is improved. However. adding
fake ballots induces an important computation overhead at
the tally phase. In a context where revoting is a well spread
behavior, it could be judicious to rely on revoting, at least
partially, as an additional source of noise. This is not possible
in JCJ where a dummy can be distinguished from a revote,
but becomes a possibility if our solution from Section IV is
used.

III. THE IMPACT ON COERCION-RESISTANCE

In Section II, we explained the leakage of the JCJ pro-
tocol and we illustrate, in an extreme scenario, how this
can be exploited to completely break coercion-resistance. In
this section, we estimate the impact of the leakage in more
realistic scenarios. For this purpose, we use the framework
of [25] which allows to quantify the coercion level of a voting
protocol. The generic assumptions that we make are given in
Section III-A; the two scenarios that we consider are detailed
in Section III-B and Section III-C.

A. Quantifying coercion-resistance

We consider nV voters, among which one is under coercion.
The others are supposed honest and independent. They choose
a voting option among C + 1 possibilities, which includes
abstention. We suppose that the choices follow a probability
distribution (P0, . . . , PC), where P0 is the probability to
abstain. Let α be the voting option corresponding to the
intention of the coerced voter, and β be the one that is the
instruction of the coercer. The coerced voter either disobeys,

4



gives a fake credential and votes with option α (the evasion
strategy does not imply any revote), or obeys and gives their
real credential which the coercer uses to vote with option β.
The coercer must decide whether the voter obeyed or not,
given only the result.

The ideal result is RIdeal = −→res = (res0, · · · , resC), the
number of voters who opted for each option. In JCJ, however,
the real result RReal is −→res, as well as, for all k, the number
of voters who revoted k times. In addition, both results
should also include the number of invalid ballots. However,
to focus on the leakage of JCJ, we assume that a large and
unpredictable number of ballots with a fake credential are cast,
so that the adversary cannot gain information by observing the
number of invalid ballots. This approximation is necessary
to use the framework of [25], which does not model the
possibility to cast a ballot with an invalid credential in the
ideal setting.

We now instantiate [25] in our scenario. To simplify the
analysis, we assume that a voter revotes at most once, so
that RReal = (−→res, nR), where nR is the total number of
revotes. We also assume that all the parties are honest except
for the coercer, and that the cryptography is perfect, so that
the coercer does not learn any other information than the
result. With these assumptions, we define the real and ideal
games, where the behavior of the coerced voter is decided
at random. The coercer wins the real (resp. ideal) game if
they correctly guess the behavior of the coerced voter given
the real (resp. ideal) result. For g ∈ {Real, Ideal} and for a
pair (α, β), we denote W g

α,β the event when the coercer wins
the game, and δgα,β = 2|Pr(W g

α,β) − 1/2|. Furthermore, we
consider the worst case for the voter, and analyze the quantity
δg = maxα,β δ

g
α,β . We call δReal (resp. δIdeal) the coercion

level of the real (resp. ideal) game. Intuitively, it measures
how much better the adversary’s strategy is compared to a
random guess, in a scale from 0 to 1.

We denote by Pr(Rg|α) (resp. Pr(Rg|β)) the probability
that the result Rg is obtained, assuming the voter votes for α
(resp. obeys the coercer and votes for β). According to [25],
the best strategy for the coercer is to assume that the voter
obeyed if and only if Pr(Rg|β) ≥ Pr(Rg|α). This gives a
close formula for the coercion level which can be written as

δg = max
(α,β)

∑
Rg∈Mα,β

Pr(Rg|β)− Pr(Rg|α), (1)

where Mα,β is the set of all possible results Rg such that
Pr(Rg|β) ≥ Pr(Rg|α). In [13], we explain in more details how
this formula can be computed. In the remainder of this section,
we compare δReal and δIdeal in two scenarios, where external
events provoke many revotes. In these scenarios, we assume
that there are two candidates A and B, no blank vote, but
the possibility to abstain or to revote once. Also, we consider
revoting to be rare. Changing a vote once casted is something
that is typically not allowed in classical paper-based elections.
So, in a context where electronic voting is recent, voters will
not be using this possibility. Even in a country such as Estonia,
where revoting is available for internet voters since 2005, a

recent study revealed a revoting rate of about 2% [15]. We
sum-up the assumptions as follows.

• The honest voters behave independently from each other;
• The honest voters may revote at most once;
• The honest voters would usually not revote, unless a

specific event encourages them to do so;
• The adversary knows the vote (and revote) distribution;
• The cryptography is perfect, so that we can focus on the

information leaked by the protocol;
• There is a large and unpredictable number of ballots sent

with a fake credential, so that the adversary does not
learn any information by observing the number of ballots
removed because of an invalid credential;

• We focus on a situation where there are only two can-
didates and where the adversary tries to coerce a single
candidate.

B. The technical incident scenario

Although we consider natural revoting to be rare, many
revotes can occur if an announcement is made about a techni-
cal incident, and encourages to revote to be on the safe side.
In this case, many voters could be inclined to revote with the
same voting option, which would seem harmless if they are not
aware of the weaknesses of JCJ. Note that the coercer could
be the source of such an announcement, and spread fake news
about the necessity to revote.

In Fig. 2, we consider the situation in which a proportion of
voters (that already voted) revote for the same voting option.

We plot the coercion level in both the real and ideal settings
when the proportion x of revotes ranges from 0 to 1. When
x = 0, both coercion levels are the same since there is no
revote. However, when x = 1, there is no coercion-resistance
in JCJ because the coerced voter would be the only one to
cast a ballot without revoting. Note that the ideal coercion
level remains constant since the overall probability to choose
each voting option is unaffected by x.

C. A discredit in the press

In this scenario, we assume that during the period of the
voting phase, the candidate A is discredited by an announce-
ment in the press. As a consequence, some of the voters who
initially voted for A will change their mind and revote for B.

Note that such discredits have happened in the past. For
instance, Dominique Strauss-Kahn, a former IMF managing
director, was highly expected to become the next French
president in 2012. However, due to an accusation of sexual
assault, his political party chose to support another candidate.
This occurred before the time of the election, and no electronic
voting was involved. But we can mention the 2022 Tory
leadership election for the succession of Boris Johnson: the
members could vote by Internet, and revote was initially
authorized (before a security concern forced the organizers
to forbid it). The duration was more than a month, which is
more than enough for a discredit event to occur (even though
it did not occur).
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Fig. 2: Coercion levels as a function of the revote, with
20 voters, 2 candidates, 30% abstention and a 50%-50%
distribution of votes between the candidates.

First, we fix a small number of voters, so that the effect
is more visible, and we study the influence of the other
parameters.

In Fig. 3, we plot the real and ideal coercion levels as the
proportion x of voters who change their mind from A to B
ranges from 0 to 1. When x = 0, there is no difference since
there is no revote. When x = 1, there is no difference either
since nobody votes for A anymore, so that there is no coercion-
resistance in both the real and ideal games. However, a non-
negligible difference can be observed for the intermediate
values of x.

In Fig. 4, we plot the real and ideal coercion levels with a
fixed value of x = 0.3 (i.e. 30% of the voters who voted for
A revote for B) and we let the initial proportion p in favor
of A vary from 0 to 1. When p = 0, everyone votes for B so
that there is no coercion-resistance. When p is large, we get
close to the scenario presented in Section II-B, so that there is
no coercion-resistance in the real game while the ideal game
still offers some coercion-resistance.

In Fig. 5, we plot the real and ideal coercion levels with
fixed x = 0.3 and p = 0.7 and we let the abstention
rate P0 range between 0 and 1. When P0 = 0, there is
no coercion-resistance because forced-abstention attacks are
trivial; similarly, there is no coercion-resistance when P0 = 1.
However, a non-negligible difference can be observed for the
intermediate values.

Finally, in Fig. 6, we plot the real and ideal coercion levels
with fixed x = 0.3, p = 0.7 and P0 = 0.3, for a number of
uncoerced honest voters equals to 16, 32, 64, 128, 256, 512 and
1024. This shows that the difference between both coercion
levels remains non-negligible even when the number of voters
is large. An asymptotic analysis (see e.g. [14], which also uses
the quantitative framework of [25]) reveals that the coercion
level decreases in 1/

√
nV , so the level of coercion is small

anyway.
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Fig. 3: Coercion levels as a function of the impact for 20 vot-
ers, 2 candidates, 30% abstention and a 70%-30% distribution
between the candidates.

IV. CHIDE: A CLEANSING-HIDING PROTOCOL

We propose a modification of JCJ that provides full
coercion-resistance. During the tally phase, the trustees per-
form the same tasks of cleansing, mixing and decrypting
than in JCJ, but in a hidden way, so that the coercer (or
anyone) does not learn how many ballots were deleted because
they correspond to revotes or to invalid credentials. For this
purpose, we propose a novel cleansing algorithm based on
MPC primitives.

Interestingly, some alternatives to the JCJ protocol were
already presented in the literature with the purpose of reducing
the leaked information. For instance, Caveat coercitor [17]
proposes a protocol in which the PETs do not reveal the total
number of revotes for each credential, since the process is
stopped as soon as one match is found. However, this approach
is not designed in order to completely remove the leakage:
even if we stop as soon as a match is found, how fast we stop
still gives some information about how many matches there
is.

A. Cryptographic primitives

The security of the following primitives relies on the De-
cisional Diffie-Hellman (DDH) assumption and the Random
Oracle Model.

ElGamal encryption. We use the exponential ElGamal en-
cryption scheme on elliptic curves, which is convenient for
its efficiency and its homomorphic property. Let g be a
public generator and pk the public key, i.e. a group element,
the discrete logarithm of which is the corresponding secret
key. One encrypts m by choosing a random exponent r and
computing Enc(m, pk) = (gr, gm pkr). In general, recovering
m from gm is hard so that exponential ElGamal requires m
to be in a small list of valid messages, so that decryption
is feasible. An important special case is when m is a bit,
because this is the kind of input used by the MPC primitives
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Fig. 4: Coercion levels as a function of the proportion in favor
of A for 20 voters, 2 candidates and 30% abstention.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

abstention rate

co
er

ci
on

le
ve

l

Real
Ideal

Fig. 5: Coercion levels as a function of the abstention for 20
voters, 2 candidates, 21% revotes and a distribution of 70%-
30% between the candidates.
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Fig. 6: Coercion levels as a function of the number of voters
with 30% abstention, 21% revotes and a distribution of 70%-
30% between the candidates.

we mention below. For a generic message m, we call bit-wise
encryption of m the list of the encryptions of the bits of m.

Zero Knowledge Proofs. We use Non-Interactive Zero
Knowledge Proofs (ZKP) based on the Fiat-Shamir trans-
formation, mostly for proving relations involving discrete
logarithms, à la Chaum-Pedersen.

Distributed key generation / threshold decryption. A DKG
is a protocol which allows the participants to generate an
ElGamal public key pk in such a way that each participant gets
a share of the secret key. The protocol also generates a public
commitment to each participant’s share. A threshold t is set,
such that a collusion of t or less participants can not deduce
any information about the secret key, or about the cleartext
of any ciphertext. If t + 1 or more participants collaborate,

they can combine their shares to recover the secret key. They
can also run a threshold decryption protocol which allows to
jointly decrypt any ciphertext without recovering the secret key
nor revealing anything about their shares. The result comes
with a ZKP of correct decryption that anyone can verify. An
UC-secure instantiation is given in [35]; a more popular DKG
protocol is described in [16].

Verifiable decryption mixnets. A decryption mixnet is an
MPC protocol where the participants take a list of ciphertexts
and reveal the corresponding plaintexts, in an order that is
unrelated to the initial order, so that it is not possible to tell
which one comes from which ciphertext. We will assume that
the output plaintexts are sorted in the lexicographic order.
The result comes with a corresponding ZKP, for correctness.
An UC-secure instantiation is given in [34]; a more popular
protocol is described in [36], that is the basis of the Verificatum
library [33].

Logical operations on encrypted bits. We use MPC proto-
cols that allow the owners of the shares to jointly perform
logical operations on encrypted bits, based on their thresh-
old decryption protocol. This is done without revealing the
cleartexts to anyone, and in a verifiable manner. The main
building block we use is the CGate protocol [30], that allows
to conditionally set an encrypted value X to (an encryption
of) 0, given an encrypted bit Y . In other words, if x and y are
the corresponding plaintexts with y ∈ {0, 1}, CGate(X,Y )
is a random encryption of xy. By combining this with the
homomorphic property of the ElGamal encryption, one can
derive a protocol for all the logical operations on bits (e.g.
negation, disjunction).

More precisely, we use the And (conjunction) and the
Eq (equality test) protocols. The latter is extended to bit-
wise encrypted data, by computing the conjunction of all the
equality tests on encrypted bits. See [13] for more details about
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these MPC protocols.
Sorting encrypted data. Using the above logical operations,

it is straightforward to design a comparison test Lt and a
conditional swap CSwap. Therefore, it is possible to sort
encrypted data, without revealing anything about the data (the
conditional swap uses reencryptions, so that it is not possible
to determine whether the data were swapped or not). For this
purpose, we need a data-oblivious sorting algorithm, that is an
algorithm whose control flow does not depend on the result of
the comparisons. Since popular fast sorting algorithms, such as
Quicksort, Mergesort or Heapsort, do not have this property,
we use OddEvenMergeSort by Batcher [5], which has a quasi-
linear complexity.

B. Description of the CHide protocol

Participants. The CHide protocol is similar to JCJ, and the
list of participants is the same. We recall the trust assumptions
on them, and note that they are the same as in JCJ. For
simplicity, we assume that there is a single honest registrar.
The literature following the JCJ approach contains techniques
to have several registrars and appropriate trust assumptions on
them [11]; this is orthogonal to the present discussion.

• The public board is an append-only list of data where
all the participants can write. At any time, the content
of the board can be read by anyone, and the view is the
same. The board is assumed to be honest; see [19] for a
possible realization of this.

• The auditors check the consistency of the board, includ-
ing the validity of all the ZKPs. We assume that there
is at least one honest auditor that reveals any detected
problem.

• The registrar sends their voting material to the legitimate
voters. It is assumed that the registrar is honest.

• The nT election trustees hold the key shares and perform
the cleansing and the tally. It is assumed that at most t
dishonest trustees can collaborate, where t < nT is the
threshold used in the DKG.

• There are nV voters. Some of them may be dishonest and
collude with the attacker. Honest voters may be subject
to a coercion attempt by the attacker.

Setup phase. During this phase, a security parameter λ is
chosen. The election trustees jointly run the DKG protocol,
yielding a public key pk for this security level, and a secret
share for each trustee. The DKG also produces public data that
is sent to the public board for verifiabilty. We denote Setup
the corresponding protocol.

Registration phase. For 1 ≤ i ≤ nV , the registrar gen-
erates λ encryptions Ri = (Ri,1, . . . , Ri,λ) of random bits
(ci,1, . . . , ci,λ). These are called credentials. The registrar
sends them to the board as a roster R = (Ri)1≤i≤nV

. The
registrar shuffles the list of credentials and sends one of them
to each voter. Just as in JCJ, we consider that the registration
is perfect; but it can be augmented with DVZKPs [22] to allow
the voter to verify the validity of their credential with respect
to the public roster.

This simplified registration protocol assumes a single honest
registrar. For several registrars, the (encrypted) bits of the
credentials can be jointly generated, and the credentials can
be sent to the voters without revealing them to the registrars,
as long as one of them is honest [11]. The registrars can also
jointly prove that the credentials are indeed encrypted bit by
bit, and thus that the public roster is well-formed (see e.g. [8]).

Voting phase. In order to cast a vote for the option ν
(encoded as a group element), a voter computes C1 =
Enc(ν, pk) and C2 = (Enc(c1, pk), . . . ,Enc(cλ, pk)), where
c = (c1, . . . , cλ) is their credential. The neutral element 1 (the
encoding g0 of the zero bit) should not represent any voting
option as it will be used to encode invalid ballots. The voter
also produces a ZKP π1 that proves the knowledge of ν and
cj for all j. To ensure a strong Fiat-Shamir transformation [7],
the computation of the challenge from the commitment of
the Σ-protocol must include all public informations in the
hash, such as g, pk, C1 and C2. Finally, a ZKP π2 that ν
is a valid voting option and that c1, . . . , cλ are bits must be
added to prevent forced-abstention attacks which use write-
ins. The ballot (C1, C2, π1, π2) = Votepk(c, ν) is sent to
the public board, using an anonymous channel. The voters
check that their ballot is present on the board; this defines the
verification step Check. The auditors verify that the ZKPs are
valid and that there is no other ballot on the board with the
same (C1, C2); this defines the verification isVal.

Cleansing and tallying phase. Just as in JCJ, the election
trustees keep only one ballot per valid credential and remove
all the other ones. However, they do so in an oblivious way,
by replacing the voting option of an invalid ballot by an
encryption of 0, which represents an invalid voting option. For
this purpose, the trustees first compute an encrypted validity
boolean for each ballot. Using the toolbox from [12], we
could simply propose an MPC variant of JCJ, with a quadratic
number of comparisons, as in JCJ. We instead propose a quasi
linear approach, which relies on sorting.

The idea is to create a list of pairs of encrypted data
(Vi,Ki)1≤i≤nb+nV

, both for ballots posted to the board and
credentials from the roster. For ballots, Vi contains the voting
option (the C1 part), and Ki = (K⊥

i ,K⊤
i ) is formed of the

encrypted order of appearance on the public board (i.e., K⊥
i

is a bitwise-encrypted integer between 0 and nB − 1), and
from the encrypted credential (i.e., K⊤

i is the C2 part). This
step can be performed by anyone using a fixed randomness
for K⊥

i (e.g. using the random 0) and is publicly verifiable.
For entries coming from the roster, Vi is the encryption of an
invalid option, and Ki = (K⊥

i ,K⊤
i ) contains the encrypted

integer nB in the first part, and the credential in the second
part. Again, this step is performed using a fixed randomness
for Vi and K⊥

i .
Then the talliers use the toolbox from [12] to sort this list

in MPC, in quasi linear time. They use the following order:
• first sort according to K⊤

i in increasing order. The effect
is to group the ballots by credentials;

• for equal K⊤
i (i.e. for equal credentials), sort in increasing

order of K⊥
i . The effect is to position the entry coming
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TABLE I: Asymptotic cost of the CHide protocol in terms
of computations and communications, nB is the size of the
board, nV is the number of voters, λ is the security parameter
and nT is the number of talliers.

# exponentations O((nB + nV ) log(nB + nV )2(lognB + λ)nT )
Data exchanged O(λ(nB + nV ) log(nB + nV )2(lognB + λ)nT )

from the roster at the end of the group and the valid ballot
(if there is one) just before it.

After this step, an entry is valid iff 1) its K⊤
i part is the same

as the one from its successor in the sorted list; and 2) the K⊥
i

part of its successor encodes nB . These tests can be efficiently
implemented with the MPC toolbox and we need only a linear
number of such tests, yielding an overall procedure in quasi
linear time.

The Ptally protocol is more precisely presented as follows.
A more detailed description is available in [13].

1. Discard all the ballots marked as invalid by the audit
procedure. Let (Ci

1, C
i
2)

nB
i=1 be the remaining ballots,

without the ZKPs. We denote m = ⌈log nB⌉+ 1.
2. For all 1 ≤ k ≤ nB , set Vk = Ck

1 and Kk = Uk−1||Ck
2 ,

where Uk−1 is a bit-wise encryption of k−1 over m bits
(least significant bit first), using the null randomness.

3. For all nB + 1 ≤ k ≤ nB + nV , set Kk = UnB
||Rk−nB

and Vk is the encryption of 0, using the null randomness.
4. Sort the (Vk,Kk) using the keys Kk, in increasing order.

This produces a result (V ′
k,K

′
k)

nB+nV

k=1 and a transcript
ΠSort.

5. For all 1 ≤ k < nB + nV , compute Dk =
Eq(K ′⊤

k ,K
′⊤
k+1), where K ′⊤

k refers to the λ most sig-
nificant bits of K ′

k. This produces the transcript ΠEq
k,1.

6. For all 1 ≤ k < nB + nV , compute Fk =
Eq(K ′⊥

k+1, UnB
), where K ′⊥

k+1 refers to the m least
significant bits of K ′

k+1. This produces the transcript
ΠEq

k,2.
7. For all 1 ≤ k < nB + nV , replace V ′

k by
CGate(V ′

k,And(Dk, Fk)).
8. Apply the decryption mixnet protocol on the

(V ′
k)

nB+nV −1
k=1 . This produces the result of the election

as well as a verification transcript ΠMixnet.
Each step produces a transcript, published on the board, and

verified by the auditors.

Evading coercion. We provide the same evasion strategy
as in JCJ, which consists of giving a fake credential to the
coercer and to vote (once, if the voter wants to) with the real
credential.

Assumptions on the communication channels. As in the
original JCJ protocol, the communications between the voters
and the registrars must be untapable, and the communication
between the voters and the public board must be anonymous.

C. Complexity and efficiency considerations

On the tallier side, CHide has a quasi-linear complexity in
nB + nV , both in terms of computational cost and in term of

TABLE II: Estimated number of exponentiations and volume
of communication in JCJ and CHide, with λ = 128.

# voters # exp. estimated CPU time data exchanged
any JCJ CHide JCJ CHide JCJ CHide

(Vote) 27 1.4k 5.4ms 0.28s 1.1kB 58kB
10 JCJ CHide JCJ CHide JCJ CHide

(Tally) 4.26k 4.1M 0.43s 6.8min 170kB 65MB
100 JCJ CHide JCJ CHide JCJ CHide

(Tally) 380k 120M 38s 3.3h 16.0MB 1, 9GB
1000 JCJ CHide JCJ CHide JCJ CHide

(Tally) 37.5M 2.4G 1.0h 2.8d 1.59GB 39GB
10000 JCJ CHide JCJ CHide JCJ CHide
(Tally) 3.75G 41G 4, 3d 48d 158GB 668GB
100000 JCJ CHide JCJ CHide JCJ CHide
(Tally) 375G 658G 1.2y 2.1y 15.8TB 10.6TB

1000000 JCJ CHide JCJ CHide JCJ CHide
(Tally) 37.5T 9.4T 120y 30y 1.58PB 152TB

communications. Due to the fact that the encrypted credentials
require λ ciphertexts instead of a single one, a factor λ occurs
multiplicatively in these complexities. We give the precise
asymptotic complexities in Table I. In this table, for the
computational cost, we count the number of exponentiations,
which is the dominant part, and for the communications, we
give the total volume of the messages exchanged (in bits,
hence the additional λ factor for the communications, to take
into account the bit-size of the group elements and of the
exponents). Note that, in our case, this value is the same as
the size of the transcript that an external verifier would need
to download in order to verify the result.

For the voters, forming a ballot has a complexity of O(λ)
exponentiations for the encryptions and the zero-knowledge
proofs, due, again, to the credential that is encrypted bit by
bit.

Let us now consider the practical cost for non-asymptotic
parameters. For this purpose, we fix a number of nT = 3
talliers with a threshold t = 2, a security parameter of
λ = 128 and a number of nC = 2 voting options. We
can estimate the running times, based on an approximation
of 5,000 exponentiations per second on the client side, and
10,000 per second on the server side. For the voters, the time
for preparing the ballot remains in the realm of the second,
which is satisfactory. For the talliers, as expected from the
complexity, the time grows a bit faster than linearly with the
number of voters, and we estimate that for an election of 1000
voters, the tally would require 2.8 days of computation on a
single core, and can easily be parallelized on a few dozens of
cores to turn this into a couple of hours. The amount of data
to be exchanged would be around 39 GB. Assuming a 100
Mbit/s connection between the trustees, this would take about
one hour. Furthermore, the CHide MPC protocol has only few
strong synchronization points, so that communications and
computations can be done in parallel. In Table II, we give
estimates of the number of exponentiations and of the total
volume exchanged for both JCJ and CHide, for various number
of voters. This allows to check the quasi-linear cost of CHide.

Table II also illustrates how CHide compares to JCJ. This
confirms that the bit-wise encryption of the credential induces
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a heavy cost for CHide, that is balanced for large elections
by the fact that JCJ has a quadratic compexity. The cross-over
point is between 100,000 and 1,000,000 voters, according to
our estimates. For such very large elections, while the cost is
high, this is not out of reach since the computations are highly
parallelizable and hence could be conducted within one day
on a large cluster.

Of course, CHide remains slower than the variants of JCJ
that have a linear complexity, like [2]. However, these other
schemes also suffer from some leakage similar to JCJ’s. We
discuss these in Section VI.

Finally, we mention that a recent work by Arahna et al. [1]
proposes a variant of CHide that improves its efficiency.

V. DEFINING COERCION-RESISTANCE

We guess that one of the reasons why the flaw was not
discovered in the original proposition of the JCJ protocol is
that the definition of coercion-resistance itself was flawed,
in the sense that no scheme can be proved secure w.r.t. this
definition. We then introduce our own definition, that is used
to analyse the security of CHide.

A. Voting system

A voting system is a tuple of eight algorithms or protocols
PSetup, register, Vote, Check, isVal, Fakecred,
Ptally, Verify such that:

• PSetup(λ, nT , t) is a protocol run by nT authorities for
the security parameter λ and the threshold t. It computes
the public key pk, as well as the secret and public shares
(si, hi) for each authority, using a DKG.

• register(λ, pk, nV ) generates a private credential ci
for each voter ∈ [1, nV ]. It also returns some public infor-
mation R that contains the public part of the credentials,
and any necessary transcript for proving their validity.

• The algorithm Votepk(c, ν) takes as input the public key
of the election pk, a credential c, and a vote ν, and returns
a ballot. The public key is often omitted for simplicity.

• The algorithm Check(BB , pk,b, c, ν) takes the bulletin
board BB , the public key, a ballot b, a private credential
c and a voting option ν. It is run by the voters to check
that their ballot has been added to the public board.

• The algorithm isVal(pk,b,BB) takes as input the
public key, a ballot and the ballot box. It outputs a bit
which states whether the ballot is valid w.r.t. BB .

• Fakecred(c) takes a credential and returns a fake one
c̃.

• Ptally(BB ,R, pk, {hi, si}, t) is a protocol run by the
authorities that possess the secret shares {si} with public
commitments {hi}. It takes as input a list of ballots BB ,
the public roster R, the public key pk, the threshold t
and returns the result X of the election together with a
proof Π.

• Verify(BB ,Π, res) takes as input a ballot box BB , a
transcript Π and a result res. It outputs a bit which states
whether the result is valid with respect to BB .

B. The original definition of JCJ

The intuition of the JCJ definition of coercion-resistance
is that an adversary must not guess whether a coerced voter
obeyed or evaded coercion. When the voter obeys (b = 1
in the definition), they give their real credential and abstain
from doing any other action. Note that a coercer may ask the
voter to cast some specific vote or to perform some specific
computations, but this is not considered in the definition as
the adversary might as well do it themself, with the given
credential. When the voter evades (b = 0 in the definition),
they give a fake credential and cast a single vote for the desired
voting option (or abstain, depending on their personal choice).

This yields the game RealCRJCJ presented in Algorithm 1.
Voting choices are represented as integers between 1 and
nC , and ϕ represents the choice to abstain. During this
game, the adversary selects the set of corrupted voters. It
is given the corresponding private credentials as well as all
the public information R (i.e. the encrypted credentials in
the JCJ protocol). It then chooses (j, α), where j denotes the
voter under coercion and α their desired voting option. The
evasion strategy is modeled in lines 11 and 13: when the voter
disobeys, they create a fake credential and cast a vote for α (or
abstain if α = ϕ). Otherwise, they give their real credential.

Honest voters vote according to a distribution which de-
pends on the number of options nC and returns a value that
may be:

• any valid vote ν ∈ [1, nC ];
• ϕ, which represents abstention;
• λ, which represents casting a vote with a fake credential.

We extend the Vote function to votes equal to λ as follows.

Votepk(c, λ) = Votepk(c̃, ν),

where c̃ = Fakecred(c) and ν is sampled from [1, nC ].

It is worth noting that the advantage of an adversary in
game RealCRJCJ will always be non negligible since one can
compare the result of the tally with the expected result, given
the distribution D of the voting intentions. For example, if
the adversary wants to cast a vote for a very unpopular
candidate, they may observe cases where the latter does not get
a single vote in the result, which is a clear indication that the
coerced voter disobeyed. Hence, the JCJ definition compares
the advantage of an adversary in game RealCRJCJ with the one
in an ideal game IdealCRJCJ, where there is no other information
than what is unavoidably leaked, that is, the result. The game
IdealCRJCJ is presented in Algorithm 2. Compared to the original
definition, we present a slightly modified version that reasons
on the clear votes only. This simplifies the understanding by
focusing on the information given to the adversary. All our
claims and remarks hold on the original definition as well.

Definition 1 (adapted from [23]). A voting system is JCJ-
coercion resistant if for all PPT adversary A, for all parame-
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Algorithm 1: RealCRJCJ
Require: A, λ, nT , t, nV , nA, nC ,D

1 BB ←− ∅
2 pk, (si, hi)

nT
i=1 ←− SetupA(λ, nT , t)

3 A←− A()
4 {ci; i ∈ [1, nV ]},R←− register(λ, pk, nV )
5 (j, α)←− A({ci; i ∈ V },R)
6 if |A| ≠ nA ∨ j ̸∈ [1, nV ]\A ∨ α ̸∈ [1, nC ]

⋃
{ϕ} then

7 Return 0

8 b
$←− {0, 1}

9 c̃←− cj
10 if b == 0 then
11 c̃←− Fakecred(cj)
12 if α ̸= ϕ then
13 BB ←− BB

⋃
{Votepk(cj , α)}

14 for i ∈ [1, nV ]\(A
⋃
{j}) do

15 νi ←− DnC
()

16 if νi ̸= ϕ then
17 BB ←− BB

⋃
{Votepk(ci, νi)}

18 BB ←− BB
⋃
A(c̃,BB)

19

20

21 X,Π←− PA
tally(BB ,R, pk, {hi, si}, t)

22 b′ ←− A()
23 Return 1 if b′ == b else 0

Algorithm 2: IdealCRJCJ
Require: A, λ, nV , nA, nC ,D

1 D ←− ∅
2

3 A←− A(λ)
4

5 (j, α)←− A()
6 if |A| ≠ nA ∨ j ̸∈ [1, nV ]\A ∨ α ̸∈ [1, nC ]

⋃
{ϕ} then

7 Return 0

8 b
$←− {0, 1}

9

10 if b == 0 ∧ α ̸= ϕ then
11 D ←− D

⋃
{α}

12

13

14 for i ∈ [1, nV ]\(A
⋃
{j}) do

15 νi ←− DnC
()

16 if νi ̸∈ {ϕ, λ} then
17 D ←− D

⋃
{νi}

18 (νi)i∈A, β ←− A()
19 if b == 1 ∧ β ∈ [1, nC ] then
20 D ←− D

⋃
{β}

21 X ←− result(D
⋃
{νi | i ∈ A, νi ∈ [1, nC ]})

22 b′ ←− A(X)
23 Return 1 if b′ == b else 0

Fig. 7: JCJ definition of coercion resistance. λ is the security parameter, nT the number of talliers, t the threshold, nV the
number of voters, nA the number of corrupted voters, nC the number of voting options and D the distribution of votes.

ters nT , t, nV , nA, nC , and for all distributions D, there exists
a PPT adversary B and a negligible function µ such that

|Pr(IdealCRJCJ(B, λ, nV , nA, nC ,D) = 1)

− Pr(RealCRJCJ(A, λ, nT , t, nV , nA, nC ,D) = 1)| ≤ µ(λ) .

As noted in [18], this definition cannot be realized by
a scheme which uses a public board. Indeed, in the real
game, the adversary observes the length nB of the board
which corresponds to the total number of ballots cast by non-
corrupted voters. Then the adversary learns the result and
in particular its size nv , that is the number of valid ballots
counted. Hence the total number ∆ = nB − nv of ballots
discarded can be deduced, which is not available in the ideal
game IdealCRJCJ. The value of ∆ can be compared with its
expected number, according to the distribution D. Since there
is an additional ballot discarded (the one of the coercer) when
the voter evades coercion, the adversary has a non-negligible
advantage in the real game. For instance, if D is such that no
voters cast a ballot with an invalid credential, either nB = nv ,
which means that the adversary’s ballot has been counted, or
nB = nv + 1, meaning that the adversary’s ballot has been
discarded and that the voter has disobeyed. Of course, the
same issue applies to the JCJ definition as stated in [23].

The authors of [18] proposed a patch to the issue they
discovered: the length of the board should be given to the
adversary in the ideal game as well. Intuitively, this cor-
responds to simply rewriting line 18 of Algorithm 2 as
(νi)i∈V , α ←− A(|D|). However, this still does not allow to
detect the leakage of the JCJ protocol during the tally. Indeed,
the distribution D fails to model several aspects:

• First, the addition of a ballot with an invalid credential
only happens when a honest voter sacrifices their own
vote. This is unlikely in practice, and does not model
ballots sent by non-eligible voters (for instance, by the
authorities).

• Second, revoting is not considered in D, which explains
why the leakage of the JCJ protocol was not detected.

A final remark about the definition of JCJ concerns its
underlying trust assumptions. For clarity, we recall them here.
First of all, it is assumed that all the registrars are honest and
that the adversary is inactive during the registration phase (or,
alternatively, the registration is untapable). Second, the ad-
versary can only corrupt a minority of decryption authorities.
Also, ballots are cast through anonymous channels. Finally,
the bulletin board is honest.
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C. The quantitative definition of KTV

Apart from the definition of JCJ, there are other definitions
in the literature (see [18] for a survey). The most prominent
one is the quantitative definition of [25] (KTV), where the
notion of δ-coercion-resistance comes with two conditions:
first, the coerced voter must have a strategy to meet their ob-
jective with overwhelming probability; second, the adversary
cannot decide, with an advantage greater than δ, whether the
voter used this strategy or forwarded all received messages
(including their credential).

The KTV definition is abstract. To use it, it is necessary
to model the voting protocol, its participants and the evasion
strategy. In addition, it does not say much about how ballots
sent with an invalid credential should be handled since the
honest participants are assumed to vote following a fixed
distribution of valid voting options. Finally, it does not tell
if a specific δ is acceptable or not. Our definition can be seen
as an instance of KTV, where δ is shown to be minimal, that
is, not greater than that of an ideal protocol.

D. Our definition of coercion-resistance

If we compare the advantage of the adversary in the real
game with its advantage in the ideal one, we need to cover
a large family of vote distributions. Otherwise, we may miss
security flaws. In particular, we need to cover cases explicitly
planned by the protocol such as revote and addition of ballots
with fake credentials.

Therefore, given a set S of unique identifiers and the number
nC of voting options (excluding abstention), we consider a
distribution B(S, nC) of sequences of pairs of the form (j, ν)
where ν ∈ [1, nc] represents a vote and j represents either a
valid voter (when j ∈ S) or a fake voter, with a fake credential.
Typically, if A is the set of corrupted voters, S = [1, nV ]\A.
To avoid collisions with identifiers which may be in A, we
consider that any i ̸∈ S holds a negative value. The distribution
B captures the abstention of a voter i with the absence of a
couple of the form (i, ∗). It models both revoting and the
addition of fake ballots, typically by authorities:

• revoting is reflected in B by the fact that a voter may
appear several times in the same sequence;

• fake ballots are modeled by pairs (j, ν) where j /∈ S.
They may be added by authorities or voters. Note that B
also models the case of a revote with a fake credential.

For example, in the sequence (1, 1), (2, 1), (1, 2), (−1, 2),
(1, 1) with nV = 3, we have three voters V1, V2 and V3. V1

first votes 1, V2 votes 1, then V1 revotes for 2, then a fake
vote for 2 is added, then V1 changes back her vote to 1. V3

simply chooses to abstain.
Our RealCR game, given in Algorithm 3, is similar to

RealCRJCJ. Votes are drawn according to B([1, nV ]\A,nC),
yielding a sequence B. It typically contains pairs (i, ν) with
i < 0, which corresponds to the addition of ballots with
fake credentials. For such a pair, we therefore generate a fake
credential at lines 11-12. Just as in the definition of JCJ, the
adversary must guess a bit b. If b = 1, the coerced voter j

obeys, hence any vote from j is removed from B and the real
credential is provided to the adversary. If b = 0, the voter
follows the evasion strategy, namely they cast one vote for β
(if β ̸= ϕ) and provides a fake credential. Hence the votes
from j in B are replaced by a single vote for β (if β ̸= ϕ).
Then ballots are added according to B. They correspond either
to real or fake votes (or revotes). Compared to the original JCJ
definition, we also slightly improve the power of the adversary
by letting them observe the board after each vote and add
ballots if they want to, which better reflects the reality.

Again, the advantage of the adversary in the real game is
compared with its advantage in an ideal game IdealCR, where
the adversary can only observe the number of ballots and the
result (see Algorithm 4). We assume a function cleanse that
removes votes from invalid voters j /∈ [1, nV ] and that takes
care of revotes according to the policy (typically, the last vote
is kept). The function result, given a set of valid votes,
returns the result of the election.

Definition 2. A voting system is coercion resistant if for all
PPT adversary A, for all parameters nT , t, nV , nA, nC , and
for all distribution B, there exists a PPT adversary B and a
negligible function µ such that

|Pr(IdealCR(B, λ, nV , nA, nC ,B) = 1)

− Pr(RealCR(A, λ, nT , t, nV , nA, nC ,B) = 1)| ≤ µ(λ) .

The main difference between our definition and the original
one is that we consider a larger family of distributions, which
allows to analyze a protocol in the context of revotes and fake
ballots.

Another difference is that the adversary shall not gain any
advantage for any distribution B, while the JCJ definition
defines coercion-resistance with respect to a particular dis-
tribution. This is preferable since a protocol should be as
secure as the ideal one, whatever the considered distribution.
It is counter-intuitive to design a cryptographic protocol that
resists only for particular distributions. Of course, it makes
sense to analyze the exact advantage in the ideal game
for a particular distribution, and devise whether voters are
reasonably protected in that case of not. But the cryptographic
protocol itself should be as solid as the ideal one nevertheless.

E. CHide is coercion-resistant

Thanks to our cleansing procedure, we show that CHide
achieves coercion-resistance. This is stated in Theorem 1,
proven in [13]. In this theorem, we suppose secure DKG and
Mixnet protocols in the SUC security framework [9]. Simply
speaking, it is a Universally Composable security framework
which is suitable for MPC protocols. Examples of UC-secure
DKG and decryption mixnet can be found in [34], [35].

We mention that we also prove privacy and verifiability
using a similar approach (full proofs in [13]).

Theorem 1. Under the DDH assumption, assuming SUC-
secure DKG and Mixnet protocols and in the Programmable
Random Oracle Model, CHide is coercion-resistant.
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Algorithm 3: RealCR

Require: A, λ, nT , t, nV , nA, nC ,B
1 BB ←− ∅
2 pk, (si, hi)

nT
i=1 ←− PA

Setup(λ, nT , t) (* run the DKG *)
3 {ci; i ∈ [1, nV ]},R←− register(λ, pk, nV )
4 A←− A(R) (* corrupt voters *)
5 (j, α)←− A({ci; i ∈ A})
6 (* coerce a voter j who has the intention α *)
7 if |A| ≠ nA ∨ j ̸∈ [1, nV ]\A ∨ α ̸∈ [1, nC ]

⋃
{ϕ} then

8 Return 0

9 B ←− B([1, nV ]\A,nC)
10 (* samples a sequence of pairs (i, νi) with

i ∈ ([1, nV ]\A)
⋃
{n ∈ Z | n < 0} and νi ∈ [1, nC ] *)

11 for (i, ∗) ∈ B, i /∈ [1, nV ] do
12 ci ←− Fakecred()
13 (* this captures ballots sent with invalid creds *)

14 b
$←− {0, 1}

15 c̃←− cj
16 if b == 1 then
17 Remove all (j, ∗) ∈ B

18 else
19 Remove all (j, ∗) ∈ B but the last, which is replaced

by (j, α) if α ̸= ϕ and removed otherwise
20 c̃←− Fakecred(cj)

21 A(c̃) (* A learns c̃ *)
22 for (i, νi) ∈ B (in this order) do
23 M ←− A(BB) (* cast ballots *)
24 BB ←− BB

⋃
{m ∈M | isVal(pk,m,BB) = 1}

25 BB ← BB
⋃
{Votepk(ci, νi)}

26 M ←− A(BB ,"last honest ballot sent")
27 BB ←− BB

⋃
{m ∈M | isVal(pk,m,BB) = 1}

28 X,Π← PA
tally(BB ,R, pk, {hi, si}, t)

29 b′ ←− A()
30 Return 1 if b′ == b else 0

Algorithm 4: IdealCR

Require: A, λ, nV , nA, nC ,B
1

2

3

4 A←− A(λ) (* corrupt voters *)
5 (j, α)←− A()
6 (* coerce a voter j who has the intention α *)
7 if |A| ≠ nA ∨ j ̸∈ [1, nV ]\A ∨α ̸∈ [1, nC ]

⋃
{ϕ} then

8 Return 0

9 B ←− B([1, nV ]\A,nC)
10 (* samples a sequence of pairs (i, νi) with

i ∈ ([1, nV ]\A)
⋃
{n ∈ Z | n < 0} and νi ∈ [1, nC ] *)

11

12

13

14 b
$←− {0, 1}

15

16 if b == 1 then
17 Remove all (j, ∗) ∈ B

18 else
19 Remove all (j, ∗) ∈ B but the last, which is

replaced by (j, α) if α ̸= ϕ and removed
20 otherwise

21

22 (νi)i∈A, β ←− A(|B|)
23 if (b == 1) ∧ (β ∈ [1, nC ]) then
24 B ←− B

⋃
{(j, β)}

25 B ←− B
⋃
{(i, νi) | i ∈ A, νi ∈ [1, nC ]}

26

27

28 X ←− result(cleanse(B))
29 b′ ←− A(X)
30 Return 1 if b′ == b else 0

Fig. 8: Definition of coercion-resistance. λ is the security parameter, nT the number of talliers, t the threshold, nV the number
of voters, nA the number of corrupted voters, nC the number of voting options and B the distribution.

We can check that JCJ is not coercion-resistant according to
our definition. This is due to the leakage during the cleansing
phase, as explained in Section II-B.

Proposition 1. The JCJ protocol is not coercion-resistant.

VI. LEAKAGE OF JCJ VARIANTS

The JCJ scheme is not the only one affected by our finding.
In fact, the whole JCJ family suffers from a similar leakage.
In this section, we explain how the other JCJ-like schemes are
affected, and whether an MPC version of their protocol can be
used to address the leakage while preserving their efficiency.

We start with the scheme presented by Araújo, Foulle and
Traoré (AFT) in [3]. Its main feature is that it has a linear time
complexity for the cleansing and tallying phases. While they

use different cryptographic primitives from JCJ, their scheme
has a similar structure: voters are given credentials to vote
with, and can provide a fake credential to a coercer. Assuming
that the cryptography is perfect, we can analyze their leakage
and compare it with that of JCJ.

During the tally, both the number of duplicates and the
number of ballots with an invalid credential are revealed.
However, it is possible to deduce, by observing the board,
how many revotes each ballot has. This is because each ballot
is attached with a public (and deterministic) commitment of
the credential, so that anyone can detect that two ballots use
the same credential. In JCJ, this information is only available
during the tally, when it is no longer possible for the adversary
to submit a ballot (also, the ballots are shuffled beforehand).
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Hence, the AFT suffers from the same leakage as in JCJ, but
it might be easier to exploit since the adversary can use this
information to cast their ballots in some specific way.

By contrast with the JCJ protocol, it is not easy to adapt
the AFT scheme in MPC while preserving its time complexity.
Indeed, one of the key feature is that anyone can detect that
two ballots use the same credential, so that the duplicated
credentials can be removed in linear time thanks to a hash
map. In MPC, we cannot think of a way to adapt this strategy
while preserving the linear time complexity: the most natural
way would take a quadratic complexity, and a more advanced
strategy, based on sorting, would achieve a complexity similar
to that of CHide. Note that the above remarks about the
leakage and the difficulty to adapt the scheme in MPC are
also valid for the subsequent schemes such as [4] and [2].

A similar situation is encountered when analyzing the
proposal of Spycher et al. [31]. First, the revotes are taken care
of during a phase which also relies on detecting the duplicated
values from a list of cleartexts. Second, the invalid credentials
are eliminated thanks to PETs; however, this only requires
one PET per ballot because each ballot indicates to which
encrypted credential it must be compared with. Just as for the
AFT protocol, this scheme leaks the same information as JCJ
(namely the number of revotes per credential), but also leaks
how many ballots pretend to be from each credential. As ac-
knowledged by the authors, this extra information deteriorates
the coercion-resistance of the scheme when compared to that
of JCJ. Note that adapting this solution in MPC would also
be difficult: first, we have the same difficulty as when trying
to adapt the solution of AFT; second, we do not see how to
eliminate the invalid credentials in linear time without leaking
the number of ballots attached to each credential.

Finally, another interesting example is Civitas [11], a
scheme considered as an implementation of JCJ. Among the
few differences that could have an impact, we concentrate
on the leakage during the cleansing and tallying phases.
Interestingly, Civitas actually leaks more information than JCJ.
First, it provides the same leakage as the AFT protocol: the
number of revotes for each ballot can be directly deduced
from the board. Furthermore, in order to reduce the quadratic
number of PETs, Civitas proposes to group voters by blocks:
each credential is publicly assigned to one block, and the
voter indicates their block in clear when casting their ballot.
Compared to JCJ, the adversary still learns how many revotes
each ballot has and how many invalid ballots there is, but also
has access to this information block by block. Similarly to the
AFT scheme, it is difficult to adapt Civitas’ approach in MPC
without leaking any side-channel information. Indeed, if we
group the voters by blocks, then the number of ballots that
each block has is a side-channel information (if the coerced
voter evades coercion, the corresponding block has one extra
ballot). Hence, using this approach would either require to
cast a large number of dummies for each block (which would
undermine the efficiency), or to use an advanced MPC strategy
to hide how many ballots each block has. Once again, we

cannot think of a way to achieve this in linear time.

While JCJ does not satisfy our definition of coercion-
resistance, it does provide a certain level of security. We could
identify the exact nature of the leakage in JCJ and propose
an alternative (weaker) definition of coercion-resistance that
is achieved by JCJ. Beyond giving a concrete description of
the leakage, this would show that there are several shades
of coercion-resistance depending on the leakage which is
considered acceptable. More generally, for any variant of JCJ
in the literature, if the leakage during the cleansing is different
from the one in JCJ, our definition of coercion-resistance could
(in principle) be adapted to capture this. Still, CHide shows
that a better notion of coercion-resistance can be achieved.
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