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Abstract—Electronic voting systems should guarantee (at least)
vote privacy and verifiability. Formally proving these two
properties is challenging. Indeed, vote privacy is typically
expressed as an equivalence property, hard to analyze for
automatic tools, while verifiability requires to count the number
of votes, to guarantee that all honest votes are properly tallied.

We provide a full characterization of E2E-verifiability in
terms of two simple properties, that are shown to be both
sufficient and necessary. In contrast, previous approaches
proposed sufficient conditions only. These two properties can
easily be expressed in a formal tool like ProVerif but remain
hard to prove automatically. Therefore, we provide a generic
election framework, together with a library of lemmas, for the
(automatic) proof of E2E-verifiability. We successfully apply
our framework to several protocols of the literature that
include two complex, industrial-scale voting protocols, namely
Swiss Post and CHVote, designed for the Swiss context.

1. Introduction

It is now a standard practice to analyze security protocols
with formal methods during their design for example with
tools like ProVerif [10] or Tamarin [25]. It is the case
of major protocols like TLS1.3 [9] or Signal [13]. Voting
protocols form a particular class of protocols that combines
several difficulties: complex cryptographic primitives that
yield complex equational theories, a large number of actors
(e.g. server, registrar, voting client, tally authorities) and
therefore a large number of threat scenarios, and non stan-
dard security properties. Thus voting protocols push formal
tools at their limits. Yet, it remains crucial to conduct a
formal analysis to avoid undetected flaws and it is actually
even a legal requirement in Switzerland [14].

Voting systems should guarantee two main security
properties: vote secrecy (no one should know how I voted)
and verifiability (my vote should be properly counted).
Depending on the election context, other properties may be
desired such as coercion-resistance or accountability. Vote
secrecy is expressed as an equivalence property: an attacker
should not distinguish between two scenarios where voters
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switch votes. It often focuses much of the attention since
equivalence properties are typically harder to analyze than
trace properties. In that respect, verifiability seems easier
to prove. However, looking at the literature, it can first be
noticed that it is not easy to define. Several terminologies
have been developed. One is the motto: cast-as-intended,
recorded-as-cast, tally-as-recorded. This intuitively says that
the ballot of a voter should contain their intended vote,
their ballot should be recorded without modification, and
finally, the tally should make sure that it counts all the
ballots. This terminology however fails to capture eligibility:
only legitimate ballots should be counted, otherwise the
system could be subject to ballot stuffing. Another standard
terminology covers this case. It splits verifiability into three
sub-properties:

• individual verifiability: a voter should be able to check
that their ballot is in the ballot box. This sometimes
includes cast-as-intended,

• universal verifiability: the result should correspond to
the ballot box,

• eligibility verifiability: ballots should come from legit-
imate voters

However, these two sets of properties still miss some at-
tacks! As pointed out by Ralf Küesters et al [24], a voting
system should also prevent clash attacks, where two honest
voters are (maliciously) given the same ballot, yielding the
loss of one honest vote.

Hence, it is safer to define verifiability as a global prop-
erty, as done in [16]. Intuitively, a voting system satisfies
E2E-verifiability if the result of the election corresponds to:

• all the votes of honest voters that did verify their votes;
• a subset of the votes of honest voters that did not verify;
• k additional votes, where k is bounded by the number

of dishonest voters.
This approach does not need to assume any structure on
the voting systems like the existence of a board or a clear
tally phase (sometimes invalid ballots are discarded during
the tally, sometimes at an earlier stage). However, such a
property is much more difficult to analyze for tools like
Tamarin or ProVerif since it requires to count the votes.
Therefore, previous works have proposed sufficient condi-
tions, that imply E2E-verifiability and are easier to prove,
either for ProVerif [15], or for Tamarin [6], [7]. Unsurpris-



ingly, these sufficient conditions are close to the notion of
individual, universal, eligibility verifiability, and no-clash.
These approaches however suffer from several drawbacks:

• These sufficient conditions may be too strong. For
example, in [6], they found that Belenios does not
satisfy one of their properties, with no corresponding
attack against E2E-verifiability.

• These conditions are specific to some architecture and
assume e.g. a bulletin board, registrars, and voting cre-
dentials. [15] even needs to define two sets of sufficient
conditions, depending on whether the Registrar or the
Voting Server is honest.

• These conditions are stated on ballots “about to be
counted”. The tally part is typically excluded from the
models and hence not verified.

Our contributions. Our first contribution is to character-
ize E2E-verifiability with two simple injective properties.
The first one says that any honest verified vote should
(injectively) be counted in the result of the election.

inj−verified(id, v) ⇒ inj−counted(v)

The other property controls the other direction and makes
sure that any counted vote come from a legitimate voter
(honest or dishonest). We show that these two properties
not only suffice to prove E2E-verifiability but are also
necessary, yielding a complete characterization of E2E-
verifiability. This result holds for arbitrary protocols and
arbitrary cryptographic primitives. The only assumption is
that the result of the election is the (multi)set of votes, which
covers most elections. Interestingly, these two properties are
directly expressible in ProVerif, hence we chose ProVerif
to build our framework, although a similar approach could
probably be developed for Tamarin, after some preliminary
work like the one performed for handling global states [23].

However, our properties only hold once the tally is over.
Indeed, even if a voter successfully verifies during the voting
phase, their vote is (obviously) not yet counted. Moreover,
the model needs to reflect the fact that all valid ballots are
eventually processed. Most existing models (e.g [6], [7],
[17], [21]) are instead very permissive and let the tally stop
at any time. This, in passing, show that they only check
some partial properties w.r.t. verifiability. Instead, we need
here to faithfully model the fact that ballots are typically
stored in a stack and the tally is over when all ballots have
been processed, yielding an empty stack. Combined with the
verification of injective properties, this may cause all kind
of issues to verification tools, as ProVerif experts may have
already guessed.

To overcome these issues, we use the whole machin-
ery recently introduced in ProVerif [11]: use of counters,
lemmas, axioms, and restrictions. Our second contribution
is a generic and re-usable framework for proving E2E-
verifiability. Namely, we propose a reference model for a
mini-voting scheme, with a library of corresponding lemmas
and axioms. This generic models needs then to be populated
with the behavior of the considered protocol. For example,
the setup process needs to define the public and private data

generated for each voter, possibly introducing new actors.
Similarly, the voting process defines the voter’s behavior
and returns in the end the ballot that should be cast. We
applied our framework to Helios [5] and Belenios [18],
studied in previous approaches aiming at proving verifiabil-
ity [6], [7], [15]. We also cover two complex, industrial-scale
protocols, namely CHVote [22] and SwissPost [2]. These
two protocols involve complex primitives (e.g. oblivious
transfer for CHVote) with ad-hoc encoding as equational
theories, and their architecture differs a lot from Helios and
Belenios. In particular, the server is split into 4 independent
components and there is no public bulletin board. Voters do
not check the presence of their ballots but instead receive
return codes from their voting device, checked against a
code sheet. It is important to note that we did not write any
of these ProVerif models. For our 4 case studies, we filled
our framework (designed once and for all) with the existing
models. We got them from public repositories presenting
security analyses of these protocols and just fit them with
a few adjustments. In particular, because our two properties
cover E2E-verifiability, we needed to more faithfully model
the registration and the tally phase. ProVerif was able to
automatically prove our two injective properties, hence E2E-
verifiability, thanks to our main theorem. No manual work
outside of the framework was required except for one variant
of Belenios that involves a chain of hashes. Due to the
intrinsic complexity of this protocol, a couple of customized
lemma have been added. In all cases, the ProVerif verifica-
tion was fast (around 1 minute or below).

2. ProVerif
We provide an informal introduction of the syntax and

the semantics of the ProVerif tool. A comprehensive de-
scription is available in [10]. An excerpt of the syntax of
ProVerif is displayed in Figure 1.

2.1. Messages
ProVerif relies on a symbolic model in which messages

are represented by terms, formed of symbolic functions and
atomic data. Atomic data represent nonces, keys, or any
constant. Function symbols model cryptographic primitives
such as encryption, signature, or hash function. For exam-
ple, the encryption of the message m with the public key
pk(k) and the random r can be modeled with the term
aenc(pk(k), r,m) where aenc(·, ·, ·) is a symbol of function
modeling any encryption scheme. Relations between terms
are modeled by rewriting rules. For instance, to model that a
participant is able to decrypt a message as soon as he knows
the corresponding private key, we define a destructor symbol
adec(·, ·) to represent the decryption algorithm and the
rewriting rule: adec(k, aenc(pk(k), r,m)) → m. Similarly,
destructor symbols and rewriting rules can be defined to
model the verification algorithms of signatures or ZK proofs.

2.2. Protocols
Protocols are modeled through a process algebra similar

to the applied pi-calculus [4]. Fresh names unknown to



M, N, M1, . . . ,Mk ::= terms
x | n | f(M1, . . . ,Mk)

D::= expressions
M | h(D1, . . . , Dk)

ϕ::= formula
M = N | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

P,Q::= processes
0 nil
out(c,M);P output
in(c, x);P input
P | Q parallel composition
!P replication
new n;P restriction
let x = D in P assignment
if ϕ then P else Q conditional
insert M ;P table insertion
get t(x1, . . . , xk) suchthat ϕ
in P else Q table lookup

event(E(M1, . . . ,Mk));P event

x, x1, . . . , xk are variables, n is an atomic data, f is a constructor
symbol, h is a constructor or destructor symbol, t is a table name,
and E is an event symbol.

Figure 1: Syntax of ProVerif (excerpt).

the attacker are generated with the command new n. Tests
can be evaluated using conditional declarations of the form
let x = v in P : the process P in which x is replaced
by v is executed if v reduces to a term without destructor
symbols when applying rewriting rules. Communications
are modeled using the usual in(c, x) and out(c′, u) com-
mands, modeling respectively, an input on channel c and
the output of message u on channel c′. It is important to
note that an input can be filled with any message known
by the attacker when c is public. Agent states are defined
with table in which processes can insert elements using
the insert command and then test whether there exists
a entry satisfying a formula ϕ using the get command.
If so, the process P in which x1, . . . , xk are instantiated
according to the considered table entry is executed, and Q
otherwise. Finally, P | Q models that two processes are
executed in parallel, and !P represents an arbitrary number
of processes P executed in parallel. ProVerif also contains
a command event(E(u1, . . . , ul)) where E(·) is an event
function symbol and u1, . . . , ul are messages. These events
are annotations whose semantics does not interfere with the
execution of the protocol.

The operational semantics is defined e.g. in [10]. We
note Traces(P ) the set of execution traces of the process
P , i.e. a sequence P → P1 → P2 → . . . → Pn where →
denotes a step in the operational semantics. We note →∗ the
transitive closure of →.

Example 1. We consider the voting protocol Helios [5] as

a running example. In this protocol, when a voter wishes to
vote for v, they authenticate themselves to the server and
submit an encrypted ballot pseudo, aenc(pkE , r, v) using the
public key pkE of the election and a pseudonym pseudo.
The pseudonym is optional in Helios but we consider here
a version with pseudonym as it allows to distinguish between
the id of the voter and their cryptographic data. Voters
can check right before the tally that their ballot belongs to
the (public) final bulletin board. The corresponding process,
associated to a voter id is as follows.

1 let Voter(id,pkE) =
2 in(c_pub,v);
3 get voting_data(=id,(pseudo,c_auth)) in
4 in(cell_voter(id), nb_vote); // Read on cell voter(id)
5 new r_ctxt;
6 let ctxt = aenc(pkE,v,r_ctxt) in
7 event voted(id,v);
8 let b =(pseudo,ctxt) in // Create the ballot
9 out(c_pub, b); out(c_auth, b);

10
11 in(c_pub, is_verif);
12 if is_verif then
13 in(cell_tally(pseudo), =b); // Read and test equality
14 event verified(id,v);
15 out(cell_tally(pseudo), b)
16 else out(cell_voter(id),nb_vote+1). // Increment cell voter(id)

Helios assumes a secure authenticated channel between
the voter and the server. We model this as a channel created
during the registration phase and shared between voter and
server using a table voting_data. Both can read in this
data base to retrieve the corresponding channel. The at-
tacker should be able to read data sent on the authenticated
channel (since it is not assumed to be a private channel),
and thus all the outputs on the private channel are preceded
by an output of the same data on the public channel cpub .

The second part of the voter process models the fact that
the voter may verify that their vote appears on the bulletin
board. More precisely, we model that the voter verifies their
last ballot only, that is, the one that should be counted.
To do so, we use a private channel cellvoter(idvoter) that
is read at the beginning of the process (hence consuming
the channel since communication are synchronous) and is
only released if the voter does not verify, offering them the
possibility to vote again. The content of this channel also
records how many ballots the voter has cast so far relying
on the variable nb vote which is incremented at the end of
each session.

The voting process is annotated with events, whose role
will be explained in the next sections.

2.3. Security properties
ProVerif allows to verify two kinds of properties:

correspondence queries and observational equivalence. In
the e-voting context, queries are used to express verifiability
while observational equivalence is used to model privacy.

Correspondence queries. Given a trace tr = tr1. . . . .trn,
we say that tr executes event(E(u1, . . . , ul)) at time i ∈
{1, . . . , n} if tri identifies a semantics step that executes
event(E(u1, . . . , ul)).
Correspondence queries are formulas of the form:



p∧
k=1

Fk(v1, . . . , vlk) ⇒
m∧
i=1

ni∨
j=1

Ei,j(u
i,j
1 , . . . , ui,j

li,j
)

Such a query is satisfied by a process P if for all
traces tr ∈ Traces(P ), whenever there exists a
substitution σ such that for all k ∈ {1, . . . , p} the
event event(Fk(v1 . . . , vlk))σ is executed in tr, then
for any i, there exist a substitution σ′ and j such
that for all k, Fk(v1 . . . , vlk)σ

′ = Fk(v1 . . . , vlk)σ and
event(Ei,j(u

i,j
1 , . . . , ui,j

li,j
))σ′ is executed in tr. Queries

are extended as expected with test equalities v = v′,
dis-equalities v ̸= v′ and predicates pred(v1, . . . , vp).

Injective correspondence queries. To model finer grained
properties, ProVerif allows to define injective correspon-
dence queries whose purpose is to capture one-to-one re-
lationship between events. For sake of simplicity, we define
here the semantics of the class of injective queries we need
to establish our main result. A comprehensive semantics for
injective queries is available in [10].
Injective correspondence queries are formulas of the form:

inj−F0(v1, . . . , vl0) ∧
p∧

k=1

Fk(v1, . . . , vlk) ⇒

m∨
i=1

(
inj−Ei,0(u

i,0
1 , . . . , ui,0

li,0
) ∧

ni∧
j=1

Ei,j(u
i,j
1 , . . . , ui,j

li,j
)

)
Given a trace tr = tr1. . . . .trn, we note F(tr) the set of
indices α such that tr executes F0(v1, . . . , vl0)σ at time α
for some σ. Similarly, we note E(tr) the set of indices β such
that tr executes Ei,0(u

i,0
1 , . . . , vi,0li,0

)σ at time β for some σ
and i. An injective correspondence query as defined above
is satisfied by a process P if for all trace tr ∈ Traces(P ),
whenever there exists a substitution σ such that for all k ∈
{0, . . . , p} the event event(Fk(v1 . . . , vlk))σ is executed in
tr, then there exists i and a substitution σ′ such that for
all k, Fk(v1 . . . , vlk)σ

′ = Fk(v1 . . . , vlk)σ and for all j,
event(Ei,j(u

i,j
1 , . . . , ui,j

li,j
))σ′ is executed in tr. Moreover,

there exists an injective function f : F(tr) → E(tr) such
that if F0(v1, . . . , vl0)σ is executed in tr at time α then
Ei,0(u

i,0
1 , . . . , ui,j

li,0
)σ′ is executed in tr at time f(α).

Informally, a protocol P satisfies an injective query if it
satisfies the non-injective counterpart, and if there is a one-
to-one mapping between injective events used to satisfy the
query.

Example 2. Let E1(·), E2(·) and F (·) be
three event function symbols of arity 1. Let tr1,
tr2, and tr3 be three traces such that tr1 =
event(E1(n)).event(F (n)).event(E2(m)).event(F (m)),
tr2 = event(E1(n)).event(E2(n)).event(F (n)) and
tr3 = event(E1(n)).event(F (n)).event(F (n)). If we
consider the injective query

ρ = inj−F (x) ⇒ inj−E1(x) ∨ inj−E2(x)

then we have:
• tr1 satisfies ρ. We can define the injective function f

such that f(2) = 1 and f(4) = 3;

• tr2 satisfies ρ. We can define the injective function f1
such that f1(3) = 2 or the injective function f2 such
that f2(3) = 1. We note that, contrary to item 1, the
functions f1 and f2 are not surjective over E(tr2) =
{1, 2}.

• tr3 does not satisfy ρ. There is no injective function
f : {2, 3} → {1}.

Temporal queries. Facts in queries may be annotated with
temporal variables, yielding a temporal fact F@i. Given a
trace tr = tr1. . . . .trn, the temporal fact F@i is executed in
tr w.r.t. a substitution σ if trσ(i) = Fσ. This allows e.g. to
specify when an event should occur before another one.

Example 3. The following query states that the event
verified should occur at most once per voter.

verified(id, x)@i ∧ verified(id, y)@j ⇒ i = j

3. Definition of E2E verifiability

E2E verifiability intuitively guarantees that the result of
the election reflects the votes of the voters. We state this
property using events that record when a voter votes or
verifies and when a vote is counted.

3.1. Events
A voting process is a process that contains several spe-

cial events:
• voted(id, v) represents the fact that voter id believe

they have voted for v. In any voting protocol, the voter
knows for who they have tried to vote for.

• verified(id, v) represents the fact that voter id has voted
for v and successfully performed the verification test,
that is optional in many cases. The event should be
executed at most once for each voter, typically for the
final vote when revoting is allowed.

• counted(v) tells that a vote has been counted for v.
We consider elections where the multiset of votes is
displayed at the end of the election.

• finish tells that the tally procedure is over, no more
counted event will be emitted.

Moreover, we assume that any voter id occurs exactly
once in one of these three events:

• hv(id) means that the honest voter id will vote and
verify their vote.

• hnv(id) means that the honest voter id will vote but not
necessarily verify their vote.

• corrupt(id) records that voter id is corrupted and the
attacker typically has access to their credential.

Our characterization of E2E-verifiability will hold inde-
pendently on how these events are placed but of course, E2E
verifiability will only be meaningful when these events are
properly placed (like in any model). We illustrate this on
our running example.

Example 4. Continuing Example 1, we first note that in
the voter process, the events voted(id, v) and verified(id, v)



occur as expected. The remaining processes representing
Helios are displayed in Figure 2.

The process Voter_registration(id) creates an
authenticated channel and a public pseudonym for any voter
and assigns the voter to corrupt, hv, or hnv, at the attacker’s
will, with corresponding events. As expected, the channel is
given to the adversary when the voter is corrupted. In order
to model that voters in hv will verify, we restrict the analysis
to traces satisfying the property:

finish ∧ hv(id) ⇒ verified(id, x).

This can easily be modeled in ProVerif, using a new feature,
called restriction [11], that allows to discard traces that do
not satisfy the property stated in the restriction.

The public bulletin board is modelled by private chan-
nels cellBB(id). There is one per eligible voter. This allows
each voter to easily find their vote on the board. But we
make sure to let the adversary reads the board and also
writes on it when the server is corrupted.

The Voting Server is modelled as expected. It receives
ballots and publishes them on the public board, that is on
the channel cellBB(id) corresponding to the voter.

The content of the channel cellBB(id) is initialized at
empty at registration and may then change several times
when the voter revotes. At some point, the voter stops and
the last published ballot will be counted. This is modeled by
the process Close_voting_booth() that transfers the
content of cellBB(id) to a new channel cell tally(id). This
process does not release cellBB(id) hence it can no longer
be used.

Finally, the process Tally(skE) decrypts all received
ballots, skiping voters that did not vote.

How to place the event finish? Placing the finish event
is a challenging task. Indeed, this event must ensure that
all the ballots have been counted. In this first example, we
describe a solution when considering a bounded number of
voters. A more general approach for an unbounded number
is presented in Section 5. When the i-th ballot is processed
by the tally process, the constant OK is sent on private
channel cend(i). We then consider the process Finish that
gathers all these confirmations (a finite predefined number)
before executing finish. The process Finish is an example
for two voters.

3.2. Definition
Given two multisets S1 and S2 we denote S1 ⊆m S2

their inclusion and S1 ∪m S2 their union. The subscript m
may be omitted when it is clear from the context that the
relation is applied to multisets.

Given a trace tr of a voting process P , we define the
set of involved voters as Voters = HV ∪ HNV ∪ D where:

• D is the set of corrupted voters, i.e., D = {id |
corrupt(id) ∈ tr} is the set of dishonest voters.

• HV is the set of voters who verify, i.e., HV = {id |
hv(id) ∈ tr and verified(id, v) ∈ tr}. We note Vhv the
corresponding multiset of vote intentions:

Vhv = {v | verified(id, v) ∈ tr and id ∈ HV}

• HNV is the set of voters who do not necessarily verify,
i.e., HNV = {id | hnv(id) ∈ tr}. We note Vhnv the
corresponding multiset of vote intentions:

Vhnv = {v | voted(id, v) ∈ tr and id ∈ HNV}

We note that for honest voters who do not verify, we
consider all the votes that the voter has submitted. We
will say that a system is secure as soon as if a ballot is
counted for these voters then it corresponds to one of the
submitted vote (not necessarily the last one). This definition
is consistent with [7] and [15], [20] when no revote is
permitted. In order to consider at most one vote per voter,
we consider all the voted events associated to a voter.

V id
hnv = {(id, v) | voted(id, v) ∈ tr and id ∈ HNV}

We say that V ⊆id
m V id

hnv if V is a selection of at most one
vote per voter, that is, if there exists a multiset V id such that
V = {v | (id, v) ∈ V id} and V id ⊆m V id

hnv and two elements
(id, v), (id′, v′) of V id have different ids, i.e. id ̸= id′.

The result of the election is the multiset of counted votes:

Result = {v | counted(v) ∈ tr}

Definition 1. A voting process P satisfies E2E-verifiability
if, for any trace tr of P that contains the event finish, there
exist V ′

hnv ⊆id
m V id

hnv and Vd such that |Vd| ≤ |D| and

Result = Vhv ∪m V ′
hnv ∪m Vd

For sake of understandability, this definition deserves
some comments:

1) As stated, E2E verifiability provides strong guarantees
to honest voters who decide to abstain. Indeed, this
definition guarantees that an attacker is not able to
cast a ballot on behalf of such a voter. Any ballot
recorded in the name of an honest voter must have been
intentionnally cast by this voter; this is the purpose of
the multiset V ′

hnv ⊆id
m V id

hnv.
2) When no revote is allowed, we can equivalently write

V ′
hnv ⊆id

m V id
hnv and V ′

hnv ⊆m Vhnv. In this case, we
retrieve the original definition of [15], [20].

3) When revote is allowed and in case the voted event
occurs each time a voter votes, the definition is rather
weak: not only ballots may be dropped for voters who
do not verify but the adversary can actually pick any of
the ballots a voter has voted. This corresponds to the
definition proposed in [7] and the one actually satisfied
in practice. Indeed, in most existing protocols, if Alice
does not verify, the adversary may simply let her vote
normally until the vote of his choice, and then drop all
future ballots.

4) In case voted events occur only when a voter votes for
the last time, then E2E-verifiability captures a stronger
property where voters who do not verify are guaranteed
that their last ballot is either counted or dropped, but
no previous ballots can be counted. Interestingly, our
results hold independently on how voted events are
placed. Hence both properties can be considered using
our simpler, equivalent queries.



1 let Voter_registration(id) =
2 new c_auth;
3 new pseudo; out(c_pub, pseudo);
4 insert voting_data(id,(pseudo,c_auth));
5 in(c_pub, voter_status);
6 if voter_status = 0 then
7 event corrupt(id);
8 out(cell_BB(pseudo),empty) | out(c_pub,c_auth)
9 else if voter_status = 1 then

10 event hv(id);
11 out(cell_BB(pseudo),empty)
12 else if voter_status = 2 then
13 event hnv(id);
14 out(cell_BB(pseudo),empty).
15
16 let Close_voting_booth =
17 in(c_pub, pseudo);
18 in(cell_BB(pseudo),x_ballot);
19 out(cell_tally(pseudo),x_ballot).

1 let Server =
2 get voter_data(id,(pseudo,c_auth)) in
3 in(c_auth, (=pseudo,x_ctxt));
4 in(cell_BB(id), (x_old_psd,x_old_ballot));
5 out(cell_BB(id), (pseudo,x_ctxt)).
6
7 let Tally(sk_EL) =
8 in(c_pub, i);
9 in(cell_tally(i),(x_psd,x_ctxt));

10 if x_ctxt = empty then out(c_end(i), OK)
11 else
12 let x_res = adec(sk_EL,x_ctxt) in
13 out(c_pub, x_res);
14 event counted(x_res);
15 out(c_end(i), OK).
16
17 let Finish =
18 in(c_end(0), =OK);
19 in(c_end(1), =OK);
20 event finish.

Figure 2: ProVerif processes of Example 4

4. Characterization of E2E verifiability
We can equivalently translate E2E verifiability into two

simple injective properties, more amenable to verification.

4.1. Assumptions
The previously mentioned events can actually be placed

arbitrarily, this will not impact our main theorem. Of course,
E2E-verifiability may not hold when the events are not
properly placed, for example if verified is placed before the
voter is done checking their ballot. However, the equiva-
lence between E2E-verifiability and the two properties will
remain. We only need a few assumptions, that we list here.

• We assume the sets HV, HNV and D to be pairwise
disjoint. This should hold in any reasonable model and
can be easily checked in ProVerif.

• We assume that whenever verified(id, v) ∈ tr then
voted(id, v) ∈ tr. This is easy to ensure and check.

• Finally, the verified event should be executed at most
once per voter. Note that the E2E-verifiability property
makes sense only in this case anyway. As seen in Ex-
ample 3, this property can easily be written in ProVerif
using a temporal query.

verified(id, x)@i ∧ verified(id, y)@j ⇒ i = j

A voting process is a process satisfying these 3 properties1.

4.2. ProVerif queries
We can characterize E2E-verifiability by two simple

injective queries that intuitively check the double inclusion
of the two sets Result and Vhv ∪m V ′

hnv ∪m Vd.
query 1

finish ∧ inj−counted(x) ⇒ inj−hv(z) ∧ verified(z, x)

∨ inj−hnv(z) ∧ voted(z, x)

∨ inj−corrupt(z)

1. Note that, as mentioned in Section 5.2.2, in our framework all these
protocol assumptions are automatically checked by ProVerif before starting
the security analysis.

query 2

finish ∧ inj−verified(z, x) ⇒ inj−counted(x)

Intuitively, query 1 ensures that any counted vote comes
from a legitimate voter, honest or dishonest. Conversely,
query 2 makes sure that any verified vote is counted.

Theorem 1. A voting process P is E2E-verifiable if and
only if it satisfies query 1 and query 2.

We prove Theorem 1 by showing that a trace satisfies the
E2E-verifiability property if and only if it satisfies query 1
and query 2. Not only this allows us to conclude but
interestingly, this shows that our result is independent of
the exact execution semantics of a process. In particular, our
result is likely to apply in other contexts like the framework
of Tamarin [25].

We prove separately the two implications in Lemma 1
and Lemma 2.

Lemma 1. If a voting process P is E2E-verifiable then it
satisfies query 1 and query 2.

This direction is rather easy: the definition of E2E-
verifiability allows to construct injective functions that sat-
isfy query 1 and query 2. The proof is given in appendix.

Interestingly, this direction was missing (and false) in
previous approaches [6], [7], [15] that provided only suf-
ficient conditions for E2E-verifiability, that were too strict
in general. As mentioned in introduction, the study of [6]
shows that the Belenios protocol does not satisfy one of their
conditions, while no attack against verifiability is exhibited.
We further comment this false negative in appendix B.

Lemma 2. If a voting process P satisfies query 1 and
query 2 then it is E2E-verifiable.

Proof sketch. This direction requires more care. Instead of
representing Result as a multiset of votes v, we represent it
as a set of pairs x = (v, i) where v is a vote and i is its
occurrence index, i.e. x is the i-th vote for v in the trace
under study. Thus, from query 1, we deduce the existence
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Figure 3: Two injective functions f and g.
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Figure 4: Composition of f and g to compute h.

of an injective function f : Result → Voters. More
precisely, the image of f is Im(f) = HV′ ∪HNV′ ∪D′ with
HV′ ⊆ HV, HNV′ ⊆ HNV, and D′ ⊆ D. If f were surjective
over HV, we could easily conclude but unfortunately, f is
not necessarily surjective over HV. From query 2 and the
assumption that finish∧ hv(id) ⇒ verified(id, v), we deduce
the existence of an injective function g : HV → Result. This
is illustrated in Figure 3.

We use g to transform f into an injective function h :
Result → Voters that is surjective over HV.

We define h by h(x) =
g−1(x) if x ∈ g(HV) (i)
(f ◦ g)n ◦ f(x) if x /∈ g(HV) and f(x) ∈ HV (ii)

where n = min{i > 0 | (f ◦ g)i ◦ f(x) /∈ HV}
f(x) otherwise (iii)

Case (i) makes sure that h is surjective over HV. We need
to show that h is well-defined. Intuitively, to associate a
vote x to a voter, we can simply consider f(x). But in
order to ensure that h is injective, this does not work when
f(x) ∈ HV. Hence we try to escape from HV by composing
f ◦ g. We can prove that we eventually leave HV as HV is
finite and f and g are injective, as illustrated in Figure 4.

We can then prove that h is injective and use h to prove
E2E-verifiability. The full proof is given in appendix.

5. A generic ProVerif voting framework
Thanks to our two verifiability queries, we can check

E2E-verifiability using ProVerif. However, it requires to
overcome different difficulties.

First, the model of the protocol must be accurate enough.
In particular, it requires to faithfully model the tally process,

which was typically abstracted away in most previous analy-
ses. It needs to enforce that the tally phase processes all the
ballots collected in the ballot-box during the voting phase
of the protocol. As an immediate consequence, the model
must precisely describe the voter registration phase too. To
ease the modeling of a protocol, we propose a common
framework which abstracts most of the technical details. The
framework is described in Section 5.1.

Second, because of the accuracy of the model, it ap-
peared that ProVerif fails to automatically prove our two se-
curity properties. Therefore, we extended our initial frame-
work to guide ProVerif proofs. This includes techniques à la
GSVerif [12] and generic lemmas that the framework should
satisfy. These two elements make the ProVerif procedure
precise enough to avoid over-approximations that would lead
to false attacks. They also aim at improving termination.
Details are given is Section 5.2.

5.1. Description of the framework
The framework defines two parts: specific processes and

generic processes. The first one consists of the elements that
describe the protocol under study. They must be defined for
each protocol. The second one is fixed and defines how the
specific elements are put together yielding the main model
that is finally analyzed. For readability, we write in bold
and blue the processes and macros specific to the protocol
and in orange the generic processes. An overview of the
framework is given in Figure 5.

5.1.1. Specific processes and macros
The framework builds upon 12 processes that describe

the protocol under study. We distinguish standard processes
and macros that do not contain input/output commands and
return a term. These are processes defined with the keyword
letfun in the ProVerif syntax.

Setup. In the model, each voter is assigned a natural
number, called voter index, denoted vidx. Given an index,
a process Gen_Voter_Ident describes how to generate
a corresponding public identifier. Typically, it may cor-
respond to the voter index itself for simple protocols or
another public credential (e.g. a public signing key). A
macro gen_voter_data returns the initial knowledge
(prior to the registration) corresponding to a given voter
index. Finally, a process Gen_Voting_Data describes
how a voter receives their voting data. It takes as input,
an election identifier, a voter index, and their corresponding
initial knowledge and inserts in a table voting_data the
voting data received by the voter in order to vote. Note that
the set of candidates V is not part of this data and is instead
defined by a macro is_valid(v) which returns true if
and only if v ∈ V .

Voting Phase. A process Voting describes how a voter
votes. In general, this process should contain the voted
event. Similarly, a process Final_Check describes what
the voter is expected to do after having cast their last ballot.
It typically models what a voter should do to verify their
vote, and thus contain the verified event.
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Figure 5: Overview of the framework.

Bulletin board. Two macros update_gbl and
update_ballot describe how the (public or private)
bulletin board evolves. More precisely, the bulletin board
maintains a global memory cell gbl(eid) as well as one
memory cell cell(ident) for each voter identifier ident
generated by Gen_Voter_Ident. Additionally, we as-
sume a table ballot_box(eid) that contains data (e.g.
ballots) cast for publication onto the bulletin board in
election eid. Each time a valid entry (as defined by the
Boolean macro is_valid_ballot) of this table is pro-
cessed, the macro update_gbl is executed to update
the value of the memory cell gbl(eid). Moreover, af-
ter retrieving a voter identifier ident from the entry us-

ing the macro get_ident_from_ballot, the macro
update_ballot updates the memory cell cell(ident).

Tally. The process Decrypt_Ballot describes how
ballots are decrypted during the tally phase. For the sake of
simplicity, our framework allows to model protocols based
on mixnets for tally only.

Main process. Finally, the main process FinalSystem
defines the scenarios under study. This process builds upon
the System(e id) process provided by the framework to
model an election. For sake of generality, it is possible to
define other protocol specific processes to faithfully model
the peculiarities of each protocol.

Example 5. We illustrate our framework with the He-



lios protocol described in Example 1 and Figure 2. Most
of the macros and processes are very simple to define:
Decrypt_Ballot simply decrypts the ballot as expected,
is_valid_ballot(b) checks that b is not an empty
ballot, update_ballot returns the accepted ballot and
update_gbl returns a dummy constant since there is
no global data to be updated in the protocol. The precise
definitions are given in Appendix C.

The process Gen_Voter_Ident takes as input the
election identifier and a voter index, and outputs the a
freshly generated pseudonym on a framework specific chan-
nel res_GVI(e id, v idx), i.e.
1 let Gen_Voter_Ident(e_id,v_idx) =
2 new pseudo; out(res_GVI(e_id,v_idx),pseudo).

In our toy example, the voter registration is abstracted.
We consider that the authenticated channel used by the
voter to cast a ballot is part of their initial knowl-
edge. Therefore, the macro gen_voter_data generates
the authenticated channel c auth which is forwarded to
the voter by the process Gen_Voting_Data through
the table voting_data. The macro also retrieves the
pseudonym that was generated by Gen_Voter_Ident
from the table public_identifier. Moreover, an
event Link_Idx_Ident(eid, v idx, pseudo) is executed
to store the relationship between the voter index and its
corresponding identifier. This event will be useful to help
ProVerif proofs as explained in Section 5.2.
1 let gen_voter_data(e_id,v_idx) =
2 get public_identifier(=e_id,=v_idx,pseudo) in
3 event Link_Idx_Ident(e_id,v_idx,pseudo);
4 new c_auth;
5 (pseudo,c_auth).
6
7 let Gen_Voting_Data(e_id,v_idx,voter_data) =
8 insert voting_data(e_id,v_idx,voter_data).

Regarding the voting phase, the processes Voting and
Final_Check roughly correspond to the process Voter
described in Example 1. Voting models how the voter
forges a ballot, i.e.:
1 let Voting(e_id,v_idx,nb_vote,v,voting_data) =
2 get election_key(=e_id,_,pkE) in
3 let (pseudo,c_auth) = voting_data in
4 new r_ctxt;
5 let ctxt = aenc(pkE,v,r_ctxt) in
6 event voted(e_id,v_idx,v);
7 let b = (pseudo,ctxt) in
8 out(c_pub, b); out(c_auth, b);
9

10 out(res_voting(e_id,v_idx,nb_vote),b).

This process exactly corresponds to the first part of
the process Voter up to the use of an election iden-
tifier and an output on the framework specific chan-
nel res_voting(e id, v idx, nb vote). We can note that
nb vote is a natural integer used to count how many times
the voter voted. This information is particularly relevant to
model protocols allowing re-votes.

In our model, the voter verifies their last vote only.
The check is thus modeled by the Final_Check process
which defines actions that the voter is expected to do once
their last vote has been cast. In the context of Helios,

this corresponds to the verification step in which the voter
reads onto the bulletin board and checks that their ballot
appears as expected. This process takes as argument the
same elements as the voting process plus the last cast ballot.
1 let Final_Check(e_id,v_idx,v,voting_data,b,...) =
2 let (pseudo,_) = v_data in
3 in(cell_tally(e_id,pseudo), =b);
4 event verified(e_id,v_idx,v);
5 out(cell_tally(e_id,pseudo), b).

Finally, we end the modeling of Helios by defining the
scenarios under study. The process FinalSystem models
multiple elections, each using an encryption key chosen
by the attacker (decryption authorities are supposed com-
promised). It calls the generic process System(e_id)
defined by our framework and may also consider additional
processes. In Helios, the process Server inserts in the table
ballot_box the ballots it received on the authenticated
channels shared with the voters. For more complex proto-
cols, the Server may also model how to establish such an
authenticated channel from the initial data.
1 let Server(e_id) =
2 get registered_voters(=e_id,v_idx,(pseudo,c_auth)) in
3 in(c_auth,(=pseudo,x_ctxt));
4 insert ballot_box(e_id,(pseudo,x_ctxt)).
5
6 let FinalSystem =
7 ! new e_id;
8 in(ch_pub,sk_EL);
9 insert election_key(e_id,sk_EL,pk(sk_EL));

10 System(e_id) | ! Server(e_id)

5.1.2. Generic processes
In order to put together the protocol specific macros

and processes, the framework defines different generic pro-
cesses. Because the understanding of them is not a require-
ment to use the framework, we just present an excerpt of
these processes.

Voter process. The role of a voter is modeled by a Voter
process which mainly builds upon the protocol specific pro-
cesses Voting and Final_Check. The process is very
similar to the one presented in Example 1: it receives from
the attacker the name of the candidate the voter is going
to vote for. Then it executes the Voting process to cast a
ballot and, if it is the last vote, executes the Final_Check
process too. However, the reader can note that these actions
are guarded by a communication on the private channel
cell voter(e id, v idx): an input is executed before exe-
cuting the voting process and an output is executed right
after if the vote is not the last. Based on the semantics of
communications on private channels, this allows to prevent
concurrent voter sessions executions. Hence, it allows to
count (by increasing the variable nb vote) the number of
(re)votes by voters. Concretely, the process is as follows:
1 let Voter(e_id) =
2 in(c_pub,v);
3 if is_valid(v) then
4 get voting_data(e_id,v_idx,v_data) in
5 in(cell_voter(e_id,v_idx),nb_vote);
6 Voting(e_id,v_idx,nb_vote+1,v,v_data) |
7 in(res_voting(e_id,v_idx),res_data);
8 in(c_pub, is_last);



9 if is_last then
10 Final_Check(e_id,v_idx,v,v_data,res_data,nb_vote+1)
11 else
12 out(cell_voter(e_id,v_index),nb_vote+1).

Tally process. In the framework, the tally is closely related
to the generation of the voter identifiers. Indeed, in order
to guarantee that the finish(e id) event is executed once
all the ballots have been tallied, we proceed as follows:
during the setup of the election, the framework counts the
number of voter identifiers that are generated. Then, the tally
executes the event finish(e id) once one (possibly empty)
ballot is tallied for each of them. Technically, it relies on
the use of a private channel cell ident(e id) that contains a
counter which is incremented each time a new identifier is
generated (process Pub_Voter_Ident_Generation).
At some point, this generation of identifiers is stopped (pro-
cess Stop_Pub_Voter_Ident_Generation) and the
current value on the channel is transferred to another private
channel cell tally(e id) whose value will be decremented
by 1 each time a ballot is tallied. Concretely, these two first
processes are as follows:

1 let Pub_Voter_Ident_Generation(e_id) =
2 in(cell_ident(e_id),i);
3 Gen_Voter_Ident(e_id,i+1) |
4 in(res_GVI(e_id,i+1),ident);
5 event Public_identifier(e_id,i+1,ident);
6 insert public_identifier(e_id,i+1,ident);
7 out(cell_ident(e_id),i+1) |
8 out(cell(e_id,ident),empty_ballot).
9

10 let Stop_Pub_Voter_Ident_Generation(e_id) =
11 in(cell_ident(e_id),i);
12 event Nb_identifier(e_id,i);
13 out(cell_tally(e_id),i).

We can note that the voter identifier associated
to each counter value is recorded with the event
Public_identifier(e id, i + 1, ident). Finally, the
number of generated public identifiers is stored in the event
Nb_identifier(e id, i) (see Section 5.2 for usage).

We can now model the tally through the two following
processes: Init_Tally collects the last ballot for each
voter identifier and stores them in specific private channels
read by Tally to compute the tally.

1 let Init_Tally(e_id) =
2 get public_identifier(=e_id,i,ident) in
3 in(cell(e_id,ident), x);
4 out(cell_tally_last_vote(e_id,ident), x).
5
6 let Tally(e_id) =
7 in(cell_tally(e_id),i);
8 event Tally_Read(e_id,i)
9 if i = 0 then event finish(e_id)

10 else
11 get public_identifier_id(=e_id,=i,ident) in
12 in(cell_tally_last_vote(e_id,ident),x);
13 if x = empty_ballot then out(cell_tally(e_id),i-1)
14 else
15 Decrypt_Ballot(e_id,i,ident,x) |
16 in(res_decrypt(e_id,i),v);
17 event Counted(e_id,v);
18 event CountedExtended(e_id,v,i,ident);
19 out(c_pub,v); out(cell_tally(e_id),i-1).

The Tally process is very similar to the pro-
cess described in Figure 2. It relies on the cell

cell tally(e id) to count the number of tallied bal-
lots and execute the finish(e id) event at the right
place. Note that the events Tally Read(e id, i) and
CountedExtended(e id, v, i, ident) are new annotations
that will be useful to help ProVerif proofs. Their usage is
commented in the next section.

5.2. Improving ProVerif accuracy
Unsurprisingly, our first experiments have shown that

ProVerif was not able to prove the security of even simple
protocols when using this complex framework. To overcome
this limitation of the tool, we extended our framework
with well chosen axioms and lemmas. All of them are
protocol independent and can thus be reused to analyze a
new protocol without any modification.

5.2.1. GSVerif-like annotations
The first difficulty for ProVerif lies in the manipulation

of cells and counters. Indeed, some of ProVerif proof strate-
gies lead to dramatic over-approximations in this context. In
2018, Cheval et. al. proposed the tool GSVerif [12] to over-
come these limitations. Based on events, it adds formally
proven correct axioms to improve ProVerif accuracy.

Unfortunately, our framework is too complex and
GSVerif cannot be used to automatically annotate the pro-
cesses and add the relevant axioms. Therefore, we decided
to manually place those events and gather in the ProVerif
library gsverif_library.pvl all the GSVerif-like ax-
ioms that are being used. Interestingly, because of the com-
plexity of our framework, we needed to extend GSVerif
approach by defining new events and related axioms, as
described below.

Counter intervals: Let’s consider a cell (i.e. a channel used
as a cell) that manipulates an increasing counter, but where
steps may be greater than 1, i.e. the counter may increase by
n > 1. This may typically happen when manipulating cells
containing global data and cells containing data specific to
an identifier. In our generic framework, both rely on linked
counters: if the counter associated to the global data always
increases by 1, the one of the specific identifier may increase
by greater steps (it is not updated for each accepted ballot).
In this case, it is important to reflect that intermediate values
cannot appear in the cell. To do so, we define a new event
CounterInterval(c, i, j) executed each time the counter of
the cell c, whose current value is i, is incremented to j (j >
i). We also consider a new event CounterInterval(c, k)
executed each time the value k is read on the cell c. We can
then define the following axioms:
1 axiom c:channel, i,j,k:nat;
2 event(CounterInterval(c,i,j))
3 && event(CounterValue(c,k)) && i < k =⇒ j <= k;
4 event(CounterInterval(c,i,j))
5 && event(CounterValue(c,k)) && k < j =⇒ k <= i.

We can easily convince ourselves of the validity of the
axiom in two steps. First, we can check that we placed
such events only when the underlying channel is a cell in
the sense of GSVerif, hence we know from [12] that the



1 query x:bitstring, i,j:nat;
2 event(E(x,i)) && event(F(x,j)) =⇒ i > j.
3
4 process
5 out(cell, 0) | (
6 ! in(cell, x); new n; event F(n,x);
7 out(cell,x+1) | out(c,n)
8 ) | (
9 ! in(cell, x:nat); in(c, x_n:bitstring);

10 event E(x_n,x); out(cell, x+1))

Figure 6: Toy example to illustrate ProVerif inaccuracy

value of the counter increases strictly. Then, since events
CounterInterval(c, i, j) are placed in case the values of
the counter is skipped from i to j, if the value k of the
counter is such that i < k then we must have j ≤ k. The
same argument holds for the second axiom.
Similarly, we can define the following axiom which states
that the intervals cannot overlap:

1 axiom c:channel, i,j,k,l:nat;
2 event(CounterInterval(c,i,j))
3 && event(CounterInterval(c,k,l))
4 && j <= l =⇒ (j = l && i = k) || j <= k.

Its correctness follows directly from the fact that values
inside an interval are skipped.
Of course, these are excerpts of the axioms that can
be defined following the same approach. A complete
description of them is provided in the GSVerif library
accompanying the framework.

Term freshness: An other source of inaccuracy lies in
the fact that ProVerif is not able to detect that a message
must be fresh enough to be input at some points of the
protocol. Figure 6 presents a minimal process and a simple
query that ProVerif cannot prove satisfied. To overcome this
limitation, we define the following events and axiom: the
event TermFreshlyCreated(c, i, x) is executed when the
message x is created (that contains a nonce) and the current
value of the cell c is i, the event TermReceived(c, j, y) is
executed each time the message y is received and the current
value of the cell c is j. The following axiom is defined:

1 axiom c:channel, i,j:nat, x,y:bitstring;
2 event(TermFreshlyCreated(c,i,x)) && is_subterm(x,y)
3 && event(TermReceived(c,j,y)) =⇒ i < j.

where is subterm(x, y) is a predicate evaluated to true
when x is a subterm of y. These events and axiom are
generic and can be used anywhere in the process to em-
phasize the need of freshness. The correctness of the axiom
follows from the fact that the nonce used in x cannot appear
in a term y before its creation.

Our axioms are only informally justified. As future work,
we plan to characterize more generally in the GSVerif setting
where the corresponding events can be placed and then
prove the axioms to be correct (which typically follows
easily from the characterization). Our axioms could thus be
added in a future version of the tool.

5.2.2. Prove intermediate lemmas
In addition to axioms, ProVerif supports the definition of

lemmas, i.e. queries that will be proved before the analysis
of the main query and then internally used to guide the
analysis. In our framework, we provide several generic
lemmas that should be satisfied by our generic processes
or the protocol under study. These are gathered in a unique
ProVerif library, properties.pvl. We provide here an
overview of these lemmas.

Simple lemmas: First, lemmas are used to emphasize sim-
ple properties such as: the value of the counter in the cell
cell pub id(eid) is a natural number and smaller than the
value recorded in the event Number V oter Id(eid, i). This
is formally defined by the following lemma:
1 lemma e_id:election_id, x:bitstring, i,j:nat;
2 mess(cell_ident(e_id),i) =⇒ is_nat(i);
3 event Nb_identifier(e_id,i))
4 && mess(cell_ident(e_id),j) =⇒ j <= i.

In our framework, different simple events like this one
are defined. For instance, this lemma holds for the cell
cell tally(e id) too.

Assumption lemmas: As presented in Section 4.1, a few
assumptions on the protocol under study must be verified to
apply Theorem 1. They are thus defined as lemmas in our
framework and automatically proved satisfied by ProVerif
before starting the analysis of the main queries.

Moreover, even if our framework has been designed to
be as generic as possible, we found that an extra protocol
assumption was needed to make ProVerif prove: all the
verified events are executed by legitimate voters. Hopefully,
this assumption should be satisfied by any reasonable proto-
col. Concretely, the following lemma is defined and proved
by ProVerif before starting the security analysis:
1 lemma e_id:election_id, ident:voter_ident, v_idx:nat;
2 event(verified(e_id,v_idx,v))
3 =⇒ event(Link_Idx_Ident(e_id,v_idx,ident)).

Induction lemma: Finally, our framework contains lem-
mas which specify useful induction invariants to make
the proof. For instance, regarding the Tally process pre-
sented in Section 5.1, we can explicit the following in-
variant: given an index i1 and its corresponding identifier
ident, if ident has been associated to a voter, v idx,
who is expected to verify, then either the tally process
has not reached the ballot corresponding to ident yet (i.e.
i 1 ≥ i 2), or there is a Counted event which corre-
sponds to the intended vote of the voter. One can note
that the event CountedExtended is used to strengthen
the property. Moreover, the events Link_Idx_Ident and
Public_identifier link the voter index to an index
manipulated by the tally process. Indeed, even if both
are associated to the same public voter identifier ident
these associations are defined at two different steps of the
protocol: Link_Idx_Ident should be executed during
the registration the voter, while Public_identifier
is executed in the process Pub Voter Ident Generation, i.e.
during the initialization of the bulletin board. The framework



does not guarantee that a public voter identifier is bound to
the same (voter) index in both cases.
1 lemma e_id:election_id, i_1,i_2,v_idx:nat, v:vote,
2 ident:voter_ident;
3 event(verified(e_id,v_idx,v)) &&
4 event(Link_Idx_Ident(e_id,v_idx,ident)) &&
5 event(Public_identifier(e_id,i_2,ident)) &&
6 event(Tally_Read(e_id,i_1)) =⇒
7 i_1 >= i_2
8 || (event(CountedExtended(e_id,v,i_2,ident)) &&
9 event(Counted(e_id,v)))

6. Case studies

We apply our framework to prove verifiability of several
voting protocols. The first one is our running example,
Helios, in a simple form. We then study the security of
Belenios, a protocol that inherits a lot of structure from
Helios. To show the applicability of our framework, we
consider two complex protocols, namely the Swiss-Post
voting protocol [2] and the CHVote protocol [22], developed
to comply with the demanding Swiss regulations. We started
from existing ProVerif models, as written by their respective
authors, and showed that they can be directly imported into
our framework in order to prove E2E-verifiability.

In these previous models, only individual verifiability
was proven, with external justifications (on paper). Since
we now prove E2E-verifiability, we had to model the tally
process for each of these protocols (with some abstraction
regarding the cryptographic primitives), yielding a more
complete model. All these protocols could be automati-
cally proved with ProVerif using our framework, without
any modification. Only one variant of Belenios required to
manually write specific lemmas, due to the recursive nature
of this protocol that makes use of chains of hashes.

6.1. Helios
We first studied the Helios protocol as presented in

running example. As a proof of concept, we decided to
propose a simple model. As a consequence, we do not model
the audit mechanism and assume an honest voting device
instead. Thanks to our framework, we prove the security
of Helios as expected: Helios ensures E2E-verifiability as
soon as the server is honest. Otherwise, a malicious server
could impersonate any voter and vote on their behalf which
defeats E2E-verifiability.

6.2. Belenios
Belenios is an improvement of Helios in which voters are

provided with a private signing key used to authenticate the
senders of the ballots and created by a registrar. This new
feature allows to obtain E2E-verifiability when either the
registrar or the server is honest; the trust is shared between
those two agents.

An implicit assumption in this analysis (same for Helios)
is that the voter verifies the presence of their ballot onto the
bulletin board after the election is over. This is what we call
Belenios tally. As suggested in [7], we also explore a more

realistic assumption: voters verify their last ballot during the
voting phase, i.e. just after they cast their vote. We call this
Belenios last. In this context, Belenios (as Helios) fails to
ensure E2E-verifiability. Indeed, if a voter first casts a ballot
b1, then a ballot b2, and checks that b2 is in the ballot box,
a malicious server may re-cast the first ballot b1. We thus
consider a variant of Belenios, called Belenios-hash last,
where ballots are chained: each ballot contains the hash
of a preceding ballot. This solution was suggested in [7]
and has been further simplified by Belenios authors [19]
for efficiency reasons. Interestingly, the first simplification
by Belenios authors was a version with counters, called
Belenios-counter last, that our approach proved to be flawed.

We applied our framework to prove the E2E-verifiability
of the different versions of Belenios. We confirmed the
expected security guarantees and the applicability of our
framework. Only Belenios-hash required to write manually
three main lemmas. The most technical one intuitively says
that whenever two ballots from the same voter appear on the
bulletin board then the hash of the first submitted ballot must
be contained in the second ballot. The need of this lemma
is due to the intrinsic difficulty of the analysis by ProVerif
of a chain of hashes and is orthogonal to our framework.

6.3. Swiss Post protocol

The Swiss Post protocol [2] is developed for more than
5 years and was initially designed by Scytl. It is planned
to be deployed in several cantons in 2023. The protocol
relies on a setup component, whose purpose is to generate
and broadcast the voting material to voters. Its role can
be compared with the role of the registrar in the Belenios
protocol. It assumes four control components (CCR and
CCM) to process ballots during the voting phase. One of
them is honest to ensure verifiability (and vote secrecy).
Their role is similar to the role of the server in Helios or
Belenios protocols2. One challenge of the voting protocols
designed for the Swiss context is that they need to offer a
cast-as-intended mechanism based on return codes. Before
the voting phase, each voter receives a voting sheet with
some authentication material as well as return codes, one
for each voting choice. During the voting phase, a voter
selects their choice(s) for each question, using their voting
device. They then receive a code for each selection and
check that it matches the code on their voting sheet. Only
once they agree with all the received codes, they send their
final confirmation code. This protects against a malicious
voting device that may try to modify their vote. Formally,
E2E-verifiability has to hold even if the voting device is
compromised. Of course, the voting server should not learn
how a voter voted. Hence the return codes are computed by
the four control components so that the vote remains hidden,
involving non trivial cryptographic primitives.

In order to comply with the demanding Swiss regula-
tion [14], ProVerif models have been developed over the

2. The Swiss framework also considers a server. However, because it is
considered untrustworthy, it is omitted in the security analysis.



years to prove both verifiability and privacy. These are com-
plex models (about 500 lines of code), with ad-hoc equa-
tional theories. We imported the last available model [3] in
our framework and proved E2E-verifiability immediately3.

6.4. CHVote

Another protocol, CHVote [22], is designed since 2017
to also comply with the Swiss voting requirements. There-
fore, it also includes a cast-as-intended mechanism with
return codes. In CHVote, the control components jointly
compute the return codes during the voting phase using
oblivious transfer. CHVote has been supported by the Canton
of Geneva during several years but is currently not consid-
ered for deployment for budget reasons. However, in order
to comply with the obligation to provide computational and
symbolic proofs, ProVerif models have been developed [8].
We imported these models in our framework and we again
proved E2E-verifiability immediately.

Our findings are summarized in Table 1. All models are
available as supplementary material and also on [1]. They
could easily be proved in ProVerif using the latest devel-
opment branch improved_scope_lemma4 that is about
to be merged in the branch master 5. For all the voting
protocols, our two queries could automatically be proved by
ProVerif, thanks to our library of lemmas and axioms, with
the exception of Belenios-hash last that required a couple
of manual lemmas, as explained above. The assumptions for
our characterization of E2E-verifiability have been written
once for all in our library of lemmas and are easily proved
by ProVerif, as expected. The benchmark have been obtained
on a laptop Intel quad-core i7, 2.3 GHz, 32Go RAM.

Voter Registrar Server E2E
(setup) (1 CCR/M) Verifiability

Helios (toy ex.) – " 16s

Belenios tally " 24s

Belenios last % 5s

Belenios-counter last % 8s

Belenios-hash last " 62s

Swiss Post " 58s

CHVote " 17s

= honest = dishonest

TABLE 1: Results of the security analyses.

3. In this model, the voting device is dishonest, hence not modeled.
4. https://gitlab.inria.fr/bblanche/proverif/-/tree/improved scope lemma
5. According to personal communications with the developers.

7. Conclusion

We designed a ProVerif framework to analyze the E2E
verifiability of voting protocols based on our characteriza-
tion of verifiability with two simple injective queries. This
framework embeds lemmas to let ProVerif automatically
check that the protocol satisfies the main assumption of
the characterization. Two libraries of generic lemmas and
axioms, designed in the spirit of the GSVerif tool, are
included in the framework to improve ProVerif accuracy.
Finally, this framework has been successfully applied to
several protocols of the literature. It has been filled using
existing ProVerif models of these protocols.

Our characterization holds for counting functions that
are equivalent to the multiset of votes, which already covers
most of the elections. Interestingly, for alternative counting
functions (e.g. Condorcet, Single Transferable Vote, d’Hondt
method), our two queries still imply E2E-verifiability, hence
they can be use to prove E2E-verifiability with ProVerif.
However, the converse implication does not hold: these two
queries may be too strong in general. Writing tight queries
in the general case is left as future work.

We have written our generic framework with the goal
of being as general as possible, hoping that other voting
systems will be cast in our framework in the future, in order
to prove verifiability. It would be interesting to also be able
to prove vote secrecy with the same framework. The tally
phase needs to be reworked to model the fact that ballots are
mixed before been decrypted. Moreover, since vote secrecy
is modeled as an equivalence property, this will certainly
create new challenges for ProVerif proofs.
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Appendix A.
Proof of the main theorem

We provide the detailed proofs of Lemma 1 and
Lemma 2.

Lemma 1. If a voting process P is E2E-verifiable then it
satisfies query 1 and query 2.

Proof. Because P is E2E verifiable, we know that for all
traces tr of P that contains the event finish, there exist
V ′
hnv ⊆id

m V id
hnv and Vd such that |Vd| ≤ |D| and

Result = Vhv ∪ V ′
hnv ∪ Vd

P satisfies query 1:
Let tr a trace of P that contains the event finish. We are
going to define an injective function f : Result → Voters
that satisfies query 1.

First, we define

f |Vhv
:


Vhv → HV
x 7→ id where verified(id, x) ∈ tr

is the event corresponding to x
in the definition of Vhv

Because the events verified(id, ·) are executed at most once
for each voter id, we know that f |Vhv

is a bijective function.
Then, because V ′

hnv ⊆id
m Vhnv we know that there exists

a multiset V id such that V ′
hnv = {v | (id, v) ∈ V id} and

V id ⊆m V id
hnv and for all (id, v), (id′, v′) elements in V id,

we have id ̸= id′. We define

f |V ′
hnv

:

{
V ′
hnv → HNV
x 7→ id where (id, x) ∈ V id

By definition of V id there is no (id, v), (id′, v′) ∈ V id, such
that id = id′. Hence, we immediately conclude that f |V ′

hnv
is

an injective function.
Finally, because |Vd| ≤ |D| there exists an injective

function f |Vd
: Vd → D.

We are now able to conclude that the trace tr satisfies
query 1 using the function f = f |Vhv

∪ f |V ′
hnv

∪ f |Vd
.

Indeed, the multisets HV, HNV, D are disjoint by definition
and thus f is injective by construction.

P satisfies query 2:
Let tr be a trace of P such that tr contains the event finish.
Because P is E2E verifiable, we have that Vhv ⊆m Result.
We thus we immediate deduce that we can define an
injective function g : HV → Result such that for all
verified(id, v) ∈ tr, g(id) = v and counted(v) ∈ tr.
Therefore, tr satisfies query 2.

Lemma 2. If a voting process P satisfies query 1 and
query 2 then it is E2E-verifiable.

Proof. Recall that we see Result as a set of pairs x = (v, i)
where v is the value of the vote and i is its index of
occurrence in Result. We will note value(x) the vote value
v of x.

Recall that we have defined h by h(x) =
g−1(x) if x ∈ g(HV) (i)
(f ◦ g)n ◦ f(x) if x /∈ g(HV) and f(x) ∈ HV (ii)

where n = min{i > 0 | (f ◦ g)i ◦ f(x) /∈ HV}
f(x) otherwise (iii)

Case (i) makes sure that h is surjective over HV.
Justification of (ii). We need to show that n = min{i >

0 | (f ◦ g)i ◦ f(x) /∈ HV} is well-defined.
Assume by contradiction that for all i, (f ◦ g)i ◦ f(x) ∈

HV. Then, since HV is a finite set, there exist i < j such



that (f ◦ g)i ◦ f(x) = (f ◦ g)j ◦ f(x). Because f and g
are injective, we know that (f ◦ g)i is an injective function.
We deduce that f(x) = (f ◦ g)j−i ◦ f(x). Applying once
more that f is injective, we have x = (g ◦ f)j−i(x). Thus
x ∈ g(HV) and has already been considered in case (i),
contradiction. We conclude that n is well-defined.

h is injective. Let now show that h is injective. Assume
by contradiction that this is not the case. Then there exist
x, y ∈ Result, x ̸= y such that h(x) = h(y).

• either x is considered in (i) and y is considered in (ii).
We have h(x) = g−1(x) ∈ HV and h(y) = (f ◦ g)n ◦
f(y) /∈ HV by construction. Hence, contradiction.

• or x is considered in (i) and y is considered in (iii).
Again, h(x) = g−1(x) ∈ HV and h(y) = f(y) /∈ HV,
contradiction.

• or x is considered in (ii) and y is considered in (iii).
We have h(x) = (f ◦ g)n ◦ f(x) and h(y) = f(y) with
y /∈ g(HV). By construction, n > 0. Hence h(x) = f ◦
g◦(f ◦g)n−1◦f(x). Since f is injective, we deduce that
g◦(f ◦g)n−1◦f(x) = y, which contradicts y /∈ g(HV).

• x and y cannot be both considered in (i) nor in (iii)
since g and f are injective.

• the last case is when x and y are considered in (ii),
that is h(x) = (f ◦g)i◦f(x) and h(y) = (f ◦g)j ◦f(y)
and x, y /∈ g(HV). We can assume i < j. Since (f ◦g)i
is injective, we deduce f(x) = (f ◦ g)j−i ◦ f(y) and
thus x = (g◦f)j−i(y). Thus x ∈ g(HV), contradiction.

We can therefore conclude that h is injective.

E2E-verifiability. Let dom1 be the (multi)set of x consid-
ered in case (i) and dom2 be the (multi)set of x considered
in cases (ii) and (iii). By construction, Im(h|dom1) = HV.
Moreover, Im(h|dom2) ⊆ Im(f)\HV. Hence Im(h|dom2) =
HNV′′ ∪ D′′ with HNV′′ ⊆ HNV′ and D′′ ⊆ D′. Hence
Im(h) = HV∪HNV′′∪D′′ with HNV′′ ⊆ HNV and D′′ ⊆ D.

Let R1 = h−1(HV), R2 = h−1(HNV′′), and
Vd = h−1(D′′). We have |Vd| ≤ |D|.

We show first that R1 = Vhv:
⊇ Each v ∈ Vhv (with its occurrence) can be injec-

tively mapped to id ∈ HV such that verified(id, v) ∈ tr.
Thanks to the definitions of g, the multiset of these v is in
correspondence with an equal multiset included in g(HV).
Since g(HV) = h−1(HV). we deduce Vhv ⊆m R1.

⊆ Let v ∈ R1 = h−1(HV). By definition of v, there
exists id ∈ HV such that h(v) = id = g−1(v). By definition
of g, verified(id, value(v)) ∈ tr and thus v ∈ Vhv.

It remains to show that R2 ⊆id
m V id

hnv. We already know
that V id ⊆m V id

hnv. Hence we simply need to show that
R2 ⊆m {v | (id, v) ∈ V id}. Each v ∈ R2 can be injectively
mapped to an id ∈ HNV′′ such that h(v) = id. Let us
show that (id, value(v)) ∈ V id. By definition, h(v) = id =
(f ◦ g)n ◦ f(v) and f(v) ∈ HV. Let us show by induction
on 1 ≤ i ≤ n that value((g ◦ f)i(v)) = value(v)

• case i = 1. By definition of f , we have
verified(f(v), value(v)) ∈ tr. Let v′ = g(f(v)). By

definition of g and since verified(f(v), value(v)) ∈ tr,
we have value(v) = value(v′) hence value(v) =
value((g ◦ f)1(v)).

• Let 1 < i ≤ n. By minimality of n, we have that
(f ◦ g)i−1 ◦ f(v) ∈ HV. (f ◦ g)i−1 ◦ f(v) = f(v′)
where v′ = (g ◦f)i−1(v). By induction hypothesis, we
have value(v′) = value(v).
Since f(v′) ∈ HV, by definition of f ,
verified(f(v′), value(v′)) ∈ tr. Let v′′ = g(f(v′)). By
definition of g and since verified(f(v′), value(v′)) ∈ tr,
we have value(v′′) = value(v′) = value(v). Hence
value((g ◦ f)i(v)) = value(v).

Let ṽ = (g ◦ f)n(v). By definition, h(v) = id = f(ṽ) and
we just showed value(ṽ) = value(v). By definition of f
and since id ∈ HNV, we have voted(f(ṽ), value(ṽ)) ∈ tr,
that is voted(id, value(v)) ∈ tr, hence (id, value(v)) ∈ V id.

This allows us to conclude that R2 ⊆id
m V id

hnv, which
concludes the proof of E2E-verifiability.

Appendix B.
Discussion on the sufficient conditions of [6]

We consider the scenario called (V3,A3) in [6]. Under
this scenario, Belenios does not satisfy the property called
Φ•

res.
Intuitively, A3 is the case where the decryption trustees,

some voters, and the registrar are dishonest. The server is
honest. V3 corresponds to the scenario where voters check
that their ballots belong to the final board, the one that is
tallied. In that case, Belenios does satisfy E2E-verifiability,
as proven in our files (see Belenios-tally). Indeed, voters
who verify are ensured that their ballots are ready to be
tallied, by definition. Moreover, since the server is honest,
at most k votes can be added by the adversary, where k is
the number of corrupted voters.

However, Belenios does not satisfy Φ•
res, hence one

cannot conclude that Belenios satisfies MS•E2F, the property
closest to our notion of E2E-verifiability. The property Φ•

res
is defined as

BBtally(cr, b) ∧ b ̸= ⊥ ∧ BBkey(y) ⇒
(Vote(id, cr, v) ∧ v = open(b, y)) ∨ Corr(id, cr)

This intuitively says that, whenever a ballot b is published
on the bulletin board with credential cr then

• either cr is a credential corresponding to a corrupted
voter

• or there is a (honest) voter id with credential cr that
cast a vote v, where v corresponds to the content of b.

[6] exhibits an attack trace against Φ•
res, where the (dis-

honest) registrar sends a credential cr1 to an honest voter
Alice and also uses this credential to cast a ballot bA
using the password of a dishonest voter. Then we obtain
BBtally(cr1, bA) while cr1 is not corrupted and no honest
voter cast a vote corresponding to bA. Hence Φ•

res is violated.
However, this is not an attack against E2E-verifiability since



the result of the election would then consist of one dishonest
vote, which is fine since the attack assumes at least one
dishonest voter. As noticed by the authors of [6], this
corresponds to a case where Alice would be prevented to
vote since she can no longer use her credential cr1. Such
a denial of service attack can also happen if the adversary
simply stops the communication channel. In any case, Alice
would notice an unexpected behavior if she attempts to vote.

More generally, this inconsistency in the results is due to
the fact the MS•E2F property is not equivalent to our defini-
tion (Definition 1) of E2E-verifiability. Instead of identifying
voters by their id, MS•E2F identifies voters by their cred.
Unfortunately, two different voters may receive the same
credential from a malicious registrar. Hence, identifying
voters based on their credential is ambiguous.

Appendix C.
Casting Helios in our framework

Continuing Example 5, we define the missing macros
and processes.

For sake of generality, the macros update_ballot
and update_gbl take as input the following data: e id is
the election identifier, cur data is the current data associ-
ated to the voter ident, cur gbl data is the current global
data, and b the ballot being processed. Moreover, they take
as input the whole context of the bulletin board, i.e. nb vote
the total number of ballots processed so far, i ident the
number of accepted ballots for the given ident, and i gbl
the total number of ballots accepted when the last ballot
corresponding to ident was processed. All these elements
may be useful to decide whether a ballot is valid and define
how the data is updated.

1 update_ballot(e_id,nb_vote,cur_gbl_data,
2 i_ident,i_gbl,cur_data, b) = b.

1 update_gbl(e_id,nb_vote,cur_gbl_data,
2 i_ident,i_gbl,cur_data, b) = empty.

1 is_valid_ballot(e_id,nb_vote,cur_gbl_data,
2 i_ident,i_gbl,cur_data, b) = b <> empty.

Finally, the macro is_valid(v) always returns true
and the macro get_ident_from_ballot simply re-
turns the index of the voter associated to the ballot.

1 get_ident_from_ballot((ident,ctxt)) = ident.
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