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at: on the left of an until, only atomic formulas orLTL formulas are allowed. We prove, in the spirit of the correspondencebetween automata and temporal logics, that the models of a L+p formulaare recognized by a piecewise 
at counter machine; for each state q, atmost one loop of the machine on q may modify the register values.Emptiness of (piecewise) 
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Another approach consists in adding hypotheses on the control instead of hy-potheses on the basic operations only. That is the approach of [9]; a countermachine is called 
at if there is at most one loop on each state. For such ma-chines, the binary reachability relation between two control states is expressiblein Presburger arithmetic [9], hence decidable. Flat automata are still a signi�cantsubclass of counter automata since, for instance, Alur and Dill's timed automata[2] can be encoded in this model [11].The notion of 
atness appears in several places. As we have seen, it appearsto be a crucial hypothesis for counter machines. In [7] the authors study the setof reachable con�gurations for an automaton communicating through �fo chan-nels. They show how to describe such a set of con�gurations using a Presburgerformula, provided that the control is 
at. Similarly, in [1] the authors study au-tomata communicating through lossy �fo channels and introduce the so-calledSRE which assume a 
atness hypothesis on the control. This is not by chancethat a similar hypothesis appears in several places: roughly, if only incrementsare allowed, using one loop one may compute addition and using two nestedloops one can compute multiplication; from one loop to two nested loops wemove from decidable to undecidable theories.More interestingly, 
atness appears naturally in PLTL itself: following theautomata approach, the models of a PLTL formula are recognized by a weakalternating automaton (see e.g. [19]). Weakness means that there is an orderingon the states such that any state occurring in the image of q by the transitionfunction is smaller (or equal to) q. Hence \weak" is a synonym of \
at" in thecontext of alternating automata, though the B�uchi automaton accepting thesame language as a weak alternating automaton may contain several loops onthe same state, hence is not itself 
at.This raises the following question: assume that we design a temporal logicwhich includes as atomic formulas expressions involving �nitely many countersand that we are able to construct for each formula � an automaton which rec-ognizes the models of �, would the automaton be 
at ? If this were the case, wecould design decision procedures for such a logic, because we do have decisionprocedures for 
at automata.That is the purpose of the present paper: we de�ne a 
at temporal logicLp whose atomic formulas include expressions such as x � y � 1 for instancewhere x; y are integer variables. \
atness" is a restriction in which only atomicformulas may occur on the left of an \until". If we drop such a restriction, weshow that we immediately cross the boarder: the logic becomes undecidable. In[4, 6, 5] there are similar hypotheses: they design a logic in which it is possibleto consider as a �rst class object the number of times a given propositionalformula is satis�ed. This logic is in general undecidable, but becomes decidablewhen on the left (resp. on the right) of an until only propositional formulas areallowed. Strictly speaking, the results of [4] for instance are incomparable withours since neither the logic nor the models we consider are the same. (Roughly,they consider models which are described by a process algebra, i.e. in which thereis no explicit counter. On the other hand, the integer variables in the logic only



count number of occurrences of a given event). Let us emphasize however thatcounting the number of steps which satisfy some proposition is possible in ourlogic: it su�ces to add one counter and increase it each time the proposition issatis�ed. In this respect, we get some \parametric quantitative reasoning" ([14])for free; the number of times some transition is �red can be a free variable inour logic.We prove that recognizability by a 
at automaton is equivalent to de�nabilityin Lp . Note that this result goes both ways: unlike PLTL for which only star-freelanguages are de�nable, here, any 
at language is de�nable (and conversely anyde�nable language is 
at). We prove that satis�ability of Lp formulas, as well asmodel-checking the negation of formulas in Lp (against a model described by a
at automaton) are decidable: this is a consequence of the relationship between
at formulas and 
at automata on one hand and decidability results for 
atautomata on the other hand.Lp has however several weaknesses. First, it is not closed by negation. Thiscannot be avoided as we show that validity of � 2 Lp as well as model-checking� are undecidable. Phrasing these results in term of automata, though emptinessis decidable for 
at automata, the universality is undecidable.Lp does not contain LTL. However, we can design a logic L+p which embedsboth LTL and Lp , while keeping the nice decidability properties. Now, insteadof 
at automata, each formula of L+p can be associated with a piecewise 
at au-tomaton which accepts the models of the formula. Emptiness remains decidablefor such automata, which implies again that satis�ability and model-checkingthe negation of a formula are decidable (this includes reachability for instance).We start in section 2 by de�nitions and examples of (
at) counter automata.In section 3 we establish (un)decidability results for 
at automata. The 
at logicLp is introduced in section 4 where we also prove the correspondence with 
atautomata. Then we consider in section 5 the decision problems for this logic.Finally, in section 6 we consider the extension L+p which also embeds LTL.2 Flat counter automataOur constraints relate the current values (unprimed variables) and the nextvalues (primed variables) of the counters, in a declarative way.De�nition 1 (Constraint). An atomic constraint is one of the expressions:x#y + c, x#c, c#x where # 2 f�; <g and c 2 Z (resp. c 2 Q). A constraintc is either the constant true, the constant false or a conjunction of atomicconstraints. The set of constraints with free variables x1; : : : ; xk; x01; : : : ; x0k iswritten C(x1; : : : ; xk).A constraint c in C(x1; : : : ; xk) de�nes a binary relation Rc on Dk whereD 2 fN;Z;Q; : : : g: the relational symbols �; < are interpreted as the usualordering, as well as constant addition. (v; v0) 2 Rc i� the valuation in which theith component of v is assigned to xi and the ith component of v0 is assigned tox0i satis�es c.



De�nition 2 (Counter automaton: syntax). An automaton with k countersA is a tuple (�;Q; q0; F; �) where Q is a �nite set of states, � is a �nite alphabet,q0 2 Q is the initial state, F � Q is the set of �nal states and � � Q �C(x1; : : : ; xk) � � � Q is a transition relation. We write sometimes q c;a��!A q0instead of (q; c; a; q0) 2 �.A con�guration of the automaton is a pair (q; v) with q 2 Q and v 2 Nk(resp. v 2 Qk+). The automaton may move from a con�guration (q; v) to a con-�guration (q0; v0) i� there is a transition (q; �; a; q0) 2 � such that v; v0 j= �:the free variables x1; : : : ; xk are interpreted by v1; : : : ; vk and the free variablesx01; : : : ; x0k are interpreted by v01; : : : ; v0k. We write (q; v) a�!A (q0; v0) when theautomaton A may move from a con�guration (q; v) to a con�guration (q0; v0)while reading a. a may be dropped if it is not relevant.De�nition 3 (Counter automaton: semantics). Let w be �nite (resp. in�-nite) word of length jwj: w 2 (� � Nk )� (resp. w 2 (� � Nk )!). A run of A onw is a �nite (resp. in�nite) word � 2 Q� of length jwj (resp. � 2 Q!) such that�(1) = q0 and, for every 1 � i � jwj�1 (resp. i � 1), (�(i); vi) �!A (�(i+1); vi+1)if w(i) = (ai; vi).A run � is successful if its last letter belongs to F (resp. if it contains in�nitelymany elements of F ). A word w is accepted by A if there is a successful run ofA on w.We write L(A) the set of �nite words accepted by A and L!(A) the languageof in�nite words accepted by A.Example 1. On �gure 1 we have depicted a controller for a pay phone. Thereare two counters: x is the number of quarters which have been inserted andy measures the total communication time. We use the classical abbreviations:x++ stands for x0 = x+1 and x�� stands for x0 = x�1. Also, by convention,when x0 (resp. y0) is not present in a transition, the constraint x0 = x (resp.y0 = y) is assumed.Such an automaton is expected to interact with its environment; messagesare followed either by a question mark, when they are received by the controller,or by an exclamation mark, when they are sent by the controller. These aspectsare however irrelevant here.The initial state (which is also the only �nal state) is q1. A possible sequenceof consecutive moves of the automaton is:q1;�00� lift?���! q2;�00� quarter?������! q2;� 10� dial?���! q3;�10�quarter?������! q3;�20� quarter?������! q3;� 30� connected?�������! q4;�30� : : :Note that, by choice of the �nal state, it is not possible to insert quarters forever.De�nition 4. A counter automaton over a single letter alphabet (j�j = 1) is 
atif there is an ordering on the states such that there is a possible move from some(q; v) to some (q0; v0) only if q � q0. Moreover, there is at most one transitionfrom a state to itself.
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x = y = 0lift? quarter?, x++dial? quarter?, x++connected?x > 0 y � xsignal?y ++y � xbusy?hang?quarter!y0 � x; y ++
x = yx0 = y0 = 0

Fig. 1. A pay phoneExample 2. Consider the pay phone of �gure 1 in which we forget the messages.The resulting automaton is not 
at as there are several loops on a single state(e.g. q2). It is however possible to replace each loop on a single state with asingle transition, without changing the reachability relation. For instance theiteration of a loop labeled with x + + can be replaced with a single transitionx0 > x. Then the one step loops on q2; q3; q4 and q6 can be replaced with singletransitions and the automaton becomes 
at.Also, if we remove the transition between q6 and q1, the automaton becomes
at.3 (Un)decidability results for 
at counter automataWe �rst recall here the decision results which can be derived from [9]. Then weprove new undecidability results.Theorem 1 ([9]). Given two states q1; q2 of a 
at counter automaton A, thereis an e�ectively computable formula of Presburger arithmetic �q1;q2(x; n;x0) with2k + 1 free variables such that (q1; v) m�!A (q2; v) i� v;m; v0 j= �q1;q2 .where m�!A = �!A � � � �!A| {z }m .



Corollary 1 ([10]). The emptiness of L(A) (resp. L!(A)) is decidable for 
atautomata A.Decidability of the emptiness of L(A) follows directly from theorem 1: it su�cesto decide 9m:q0 m�!A qf for every �nal state qf . Concerning L!(A), we needto decide the in�nite iterability of a loop, which is also a consequence of theparticular expression of the reachability relation, with some additional work[10].Proposition 1. The class of languages recognized by 
at counter automata ise�ectively closed by union and intersection (both in the �nite and in the in�nitewords cases).Proof sketch: The closure by union is straightforward. The closure by intersec-tion is a consequence of the closure of C(x1; : : : ; xk) by conjunction. �Unfortunately the class of languages recognized by 
at automata is not closedunder complement. Actually, we are going to show that the question of whethera 
at automaton accepts all words in (Nk )� is undecidable, which gives the non-closure results thanks to corollary 1.First, consider the set CA1 of counter automata over a one letter alphabetsuch that there is exactly one transition starting from a �nal state, which islabeled with true. The reachability of a �nal state in a Minsky machine reducesto the emptiness of the language recognized by such a counter automaton. Hencewe have the undecidability result:Lemma 1. The emptiness problem for L(A) (resp. L!(A)) is undecidable forA 2 CA1.We may further restrict the class of counter machines, encoding the statesinto a counter. Let CA2 be the class of automata in CA1 which only contain twostates q1; q2, such that q2 is �nal and there is no transition from q2 to q1. (See�gure 2.) -���� ��������� - II � � --- -
Fig. 2. An automaton in CA2If A is an automaton with k+1 counters and x is one particular counter thenthe projection �x(L(A)) (resp. �x(L!(A))) is the subset of (Nk )� (resp. (Nk)!)of words in L(A) in which the x component has been erased.



Lemma 2. For every automaton A 2 CA1 with k counters x1; : : : ; xk, thereis an automaton A0 2 CA2 with k + 1 counters c; x1; : : : ; xk such that L(A) =�c(L(A0)) and there is a 
at automaton A00 such that L(A00) = (Nk )� � L(A0)(resp. L!(A00) = (Nk )! � L!(A0))Proof sketch: First add a counter c which records the state number; withoutloss of generality, we may assume that numbering the states is such that Q =fq1; : : : ; qng and Qf = fqf ; : : : ; qng (i.e. states whose number is larger than fare �nal). The automaton A0 contains two states: Q and Qf . A transition fromstate i to state j with a constraint � becomes, when i is not �nal (for instance),a constraint �^ c = i^ c0 = j from the initial state to itself, or to the �nal stateif qj 2 Qf .Let �1; : : : ; �n be the constraints of the transitions on the initial state and 1; : : : ;  m be the constraints of the transitions from the initial to the �nal statein A0. Note that, by construction, for every i,  i j= c0 � f .Let g1 _ : : : _ gr be a disjunction of constraints which is logically equivalentto :(( n_i=1 �i) _ ( m_i=1 i))Such a disjunction of constraints always exist since the negation of an atomicconstraint can always be written as a disjunction of atomic constraints.Our 
at automaton is built as depicted on �gure 3. A word which is not-�������� ���������c < f -g1-gr -true
Fig. 3. The 
at automaton in the proof of lemma 2.accepted either never reaches a �nal state, i.e. c remains strictly smaller thanf , or else it is not compatible with the transition relation at some point, beforereaching a �nal state.�Lemma 2 is a little bit confusing; one may get the impression that the comple-ment of any counter language (over a one letter alphabet) is a recognized bya 
at automaton. This is not true, however; the projection plays an importantrole here. On the other hand, we know that the complement of a 
at automaton,cannot be always recognized by a 
at automaton: universality would then bedecidable, hence the emptiness for any counter automaton.From the two previous lemmas we can derive the following:Theorem 2. The universality is undecidable for 
at automata (both in the caseof �nite and in the case of in�nite words).



4 The 
at counter logic LpWe introduce �rst a logic with counters CLTL, which, unfortunately, is tooexpressive. However, the notion of 
at automaton which we introduced in thelast section can be easily characterized at the logical level using a restriction ofCLTL, which is similar to the so-called \
at fragment" in [12] for instance.4.1 A logic with countersBasically, we consider a temporal logic whose modalities are the same as inPLTL. The only di�erence is that, instead of propositional atomic formulas, weallow arbitrary constraints in C(x1; : : : ; xk).More precisely, given a natural number k and a �nite set of propositionalvariables P , CLTL is the smallest set of formulas such that P belongs to CLTLfor every P 2 P , C(x1; : : : ; xk) is included in CLTL and if �1 and �2 are formulasof CLTL, then �1 ^ �2; �1 _ �2;:�1;X�1; �1 U�2 are formulas of CLTL.We may also use the classical derived operators � (\henceforth") and �(\eventually").Temporal formulas are interpreted over computations which are now in�nitewords in 2P � Nk . Given an in�nite path � 2 (2P � Nk )!, we write �(i) for theith letter of � and we let e� be the in�nite word in (2P � Nk � Nk )! de�ned by:(�(i) = (a;v) and �(i+ 1) = (b;w)) implies e�(i) = (a; v; w)This little technicality is necessary because the constraints may express relationsbetween two successive values of the counters and not only constraints on a givenvalue of the counters.Now, a path � satis�es � i� e�; 0 j= � and:{ e�; i j= true and e�; i 6j= false{ e�; i j= P where P 2 P if and only if �(i) = (a;v) and P 2 a{ e�; i j= �(x1; : : : ; xk ; x01; : : : ; x0k) where � 2 C(x1; : : : ; xk) i� e�(i) = (a;v;w)and v;w j= � (with the usual de�nition of satisfaction in Presburger arith-metic).{ e�; i j= X� i� e�; i+ 1 j= �,{ e�; i j= �1 ^ �2 i� e�; i j= �1 and e�; i j= �2, ...{ e�; i j= �1 U�2 i� there is an index j � i such that e�; j j= �2 and for allk 2 [i; j[, e�; k j= �1.Example 3. CLTL allows to express properties such as: \x is never greater than100" or \each time x is larger than 100, an alarm is raised" or \ultimately, theregister x remains stable" :�(x � 100); �(x � 100) _ (x � 100 U alarm � 1) ��(x0 = x)Unfortunately, CLTL is too expressive:



Theorem 3. Satis�ability is undecidable for CLTL. Model checking (of a 
atautomaton) is also undecidable in this logic.Proof sketch: We reduce the halting problem of a counter machine. Roughly, weuse an auxiliary variable c ranging over the states of the machine and encodethe computations of the machine by the formula:c = q0 ^0BB@2664 î (c = qi ) _qi G�! qj [Gqi;qj (x;x0) ^ c0 = qj ])3775 U 24 _qf2F c = qf351CCA�4.2 The 
at fragment of the logicLp is de�ned by a syntactic restriction of the formulas, which, roughly, restrictsthe left members of \until" to be conjunctions of atomic formulas, thus prevent-ing the construction of theorem 3. For simplicity, we assume here that P = ;;propositional variables will be re-introduced in section 6 and, anyway, they canbe encoded by integer variables.De�nition 5. An elementary formula is a Boolean combination of constraintsin C(x1; : : : ; xk).The set Lp of 
at formulas, is the smallest subset of CLTL such that:{ elementary formulas are 
at{ if �1; �2 are 
at, then �1 ^ �2; �1 _ �2, X�1 are 
at.{ if �1 is a constraint in C(x1; : : : ; xk) and �2 is 
at, then �1 U�2 is 
at{ if � is a constraint in C(x1; : : : ; xk), then :(true U:�) (i.e. ��) is 
atThe last condition is ad-hoc: it corresponds to the encoding of �nal states,as we will see.Let us emphasize that Lp is not closed by negation. This is unavoidable aswe will see in the next section. On the other hand, we could add the weak until,as both �� and � U are in Lp when � is a constraint.Example 4. The formulas given in example 3 are all 
at.One of the main interest of Lp is the correspondence with 
at automata:Theorem 4. For every formula � of Lp , there is a 
at automaton which acceptsthe models of �.Conversely, for every 
at automaton A, there is a formula � of Lp whosemodels are the words accepted by A.



Proof sketch: From logic to automata we use the closure properties of 
at au-tomata by union and intersection (theorem 1) and the standard constructionsfor U , X and �. For instance consider � U . By hypothesis, � belongs toC(x1; : : : ; xk). We construct the automaton for � U by adding in front of theautomaton for  a state on which there is a loop guarded by �From the automata to the logic, we proceed by induction on the orderingon states. From minimal states q there is at most one departing transition, saylabeled with �, and whose target is q itself. Then, if q is �nal, the correspondingformula will be �� (false otherwise). For the induction step, if q1; : : : ; qn arethe successors of q and � is the constraint of the loop on q, we get roughly theformula � U((�1 ^X�q1 ) _ : : : (�n ^X�qn)). �5 Satis�ability and model-checking in LpThanks to theorem 4 we can decide satis�ability and model checking of thenegation of a formula of Lp :Theorem 5. Given a formula � 2 Lp and a 
at automaton A, the followingquestions are decidable:{ Is � satis�able ?{ Does A satisfy :� ? (In other words, is there a word accepted by A which isa model of � ?)Proof: Thanks to theorem 4, for every formula � 2 Lp , there is an automatonA� which accepts the models of �. Then satis�ability reduces to the emptinessof L(A�) and A j= :� reduces to L(A) \ L(A�) = ;. Now, thanks to theorems1 and 1, both questions are decidable. �Example 5. Negation of formulas in Lp include for instance reachability formu-las �q (adding here a new counter whose value is 0, except when reaching q) orsafety formulas �:� where � is a constraint. Actually, considering the formulasin example 3, the negations of the �rst two formulas also belong to Lp becausethe negation of constraints s � t are atomic constraints and the negation of c Uc0is in Lp when c; c0 are both of the form s � t. Only the negation of ��x0 = xis not a Lp formula.It is also possible to reduce in polynomial time Presburger arithmetic sat-is�ability to Lp satis�ability, hence, in principle, Lp is at least as hard asPresburger arithmetic (between 2-DEXPTIME and 3-DEXPTIME).Now, deciding A j= � for � 2 Lp is equivalent to the decision of inclusion of
at automata, which is undecidable:Theorem 6. The validity problem and the model checking on a 
at automatonare undecidable for a formula � 2 Lp .Sketch of the proof: This follows from theorems 4 and 2. �



6 L+p : a decidable extension of Lp and LTLThe logic Lp is not fully satisfactory in many respects. In particular, the re-strictions on the left member of an U disallow arbitrary LTL formulas. On theother hand, theorem 3 shows that we cannot simply drop the restriction. Atleast, we have to consider positive Boolean combinations of PLTL formulas andLp formulas. We can still go a little further, as we will see.Informally, L+p extends Lp by allowing any conjunction of a PLTL formulaand a constraint where only constraints were allowed.De�nition 6 (Syntax of L+p ). We assume given a �nite set of propositionalvariables P and a positive integer k.Given a constraint �, PLTL� is the smallest set of temporal formulas con-taining � ^ P1 ^ : : : ^ Pn ^ :Q1 ^ : : : ^ :Qm for every propositional variablesP1; : : : ; Pn; Q1; : : : ; Qm and which is closed by ^;_; U ;X;�. A basic formulais a formula  2 PLTL� for some � 2 C(x1; : : : ; xk).L+p is the smallest set of formulas such that:{ every basic formula is in L+p ,{ if �1; �2 are in L+p , then �1 ^ �2, �1 _ �2, X�1 are in L+p{ if �1 is a basic formula and �2 2 L+p , then �1 U�2 2 L+p{ if �1 is a basic formula, then ��1 2 L+p .Note that, in PLTL, negation can be pushed to the propositional variableslevel if we include � in the syntax. That is why PLTL formulas are basic formulasin the above de�nition: it is su�cient to choose � = true. Constraints are alsobasic formulas, hence L+p is an extension of both Lp and PLTL.On the other hand L+p is a fragment of the logic CLTL which was de�ned insection 4.1, from which we borrow the the semantics.Example 6. We may record the elapsed time in a LTL formula using an auxilliarycounter; for instance:x = 0 ^ ((p ^ (x0 = x+ 1)) U(Q ^ x0 = x+ 1)) U(R _ x > �)is an L+p formula, x recording the elapsed time. We could consider e.g. a secondphase in R in which the time spent for each action is larger (or smaller), or evenrecord something di�erent, as, e.g., distance or available resources... However, itis not allowed to replace one of the two occurrences of x+ 1 with x+ 2: on theleft of an until the constraint has to be the same everywhere.Here, we have to extend the notion of a 
at automaton, corresponding to theextension of the syntax of formulas.De�nition 7. A piecewise 
at automaton is a counter automaton on an alpha-bet � = 2P such that there is a partition Q1 ] : : : ] Qm of the set of states Qand an ordering on fQ1; : : : ; Qng such that:{ for every i, there is a constraint �i 2 C(x1; : : : ; xk)



{ for every transition q c;a��! q0 of the automaton, if q 2 Q and q0 2 Q0, thenQ � Q0{ for every transition q c;a��! q0 such that q; q0 2 Qi, there is a conjunction  of proprositional variables and negations of propositional variables such thatc = �i ^  Example 7. Consider the pay phone example of �gure 1. With each event, weassociate a propositional variable. Then the behavior between two lift events (i.e.a \session") is described by a piecewise 
at automaton. Actually, more complexactions could be described within the same class of models, for instance usingmore coins types, calling services...Proposition 2. The class of languages accepted by piecewise 
at automata isclosed under union and intersection.Sketch of the proof: It is almost the same as the closure of 
at languages. Weuse the closure of C(x1; : : : ; xn) by conjunction and, for intersection, a productconstruction which is similar to the B�uchi automata intersection construction. �Theorem 7. The models of an L+p formula are recognized by a piecewise 
atautomaton.Sketch of the proof: As before, we proceed by induction on the formula. Thanksto proposition 2, we only have to show the construction for X and U . Theconstruction for U is actually complicated. An example is depicted on �gure 4.Let A�1 be the automaton accepting the models of �1, Q1 its set of states, and-����-�����-��1 2A�1-����-- ����3 4�� -A�2
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at automaton for �1 U�2A�2 be the automaton accepting the models of �2 and Q2 its set of states.



The idea is the following: while we do not reach a point where �2 is satis�ed,at each move, the automaton launches a copy of A�1 on the rest of the word.This is shown on an example on �gure 4. Hence the set states of the automatonA�1 U�2 is the union of fS � 2Q1 ; j q0 2 Sg and 2Q1�Q2, if q0 is the initial stateof A�1 .The initial state of A�1 U�2 is the singleton fq0g, the �nal states are thepairs (S; q) where S � Q1f and q 2 Q2f , respectively the �nal states of A�1 andA�2 . Transitions are computed as follows: a state S � Q1 is considered as theconjunction for all states in S; if S; S0 � Q1, q0 2 S0, f is a mapping from S to S0,then there is a transition from S to S0 which is labeled q̂2S cq;f(q) where cq;f(q) isthe constraint of one of the transitions from q to f(q) in A�1 . This correspondsto the case where we did not hit yet a position at which �2 is satis�ed. We mayalso move from a state S to a state (S0; q0) if q0 2 Q2 and S0 � Q, under the sameconditions as above, except that we do not require q0 2 S0 and move insteadfrom the initial state of A�2 to q0 (see �gure 4): this corresponds to the guessthat we are going to satisfy �2 at the current position. Finally, we also havetransitions from (S; q) to (S0; q0) which corresponds basically to the intersectionof copies of A�1 and one copy of A�2 .The construction would be similar if we de�ned an alternating version of theautomata and then transform it into a non-deterministic one: the exponentialblow-up is unavoidable for the states of the formula �1.One important remark is that we still get a piecewise 
at automaton here,which would not be the case if we allowed arbitrary L+p formulas on the left ofan until. Indeed, the powerset construction for A�1 introduces transitions whichare labeled with arbitrary conjunctions of constraints occurring in �1. It remainspiecewise 
at only because all these constraints are identical. �.Theorem 8. Emptiness is decidable for piecewise 
at automata.Sketch of the proof: We only have to check the reachability for the projectionautomaton, where we forget the letters of �. Then all states in the same Qicollapse into a single state and we are back to corollary 1. �Theorem 9. Satis�ability and model checking of :� on A are decidable for� 2 L+p an A a piecewise 
at automaton.Sketch of the proof: This follows from theorems 8 and 7 and proposition 2. �Finally, let us remark that we can also consider the conjunction of L+p for-mulas with arbitrary constraints in the additive theory of our domain D (N, Z,Q+ , R+ ). It is not di�cult to see directly how satis�ability and model-checkingcan be decided, but there is one elegant way to do it:Proposition 3. For every formula � in Presburger arithmetic, whose free vari-ables are x1; : : : ; xk, there is a 
at automaton A� with k+m counters such that,



if E is the set of last letters of �nite words accepted by A�, thenfv 2 Nk ; v j= �g = fv 2 Nk ; 9w 2 Nm ; (v; w) 2 EgThen we can build a piecewise 
at counter automaton which accepts themodels of both the L+p formula and the �rst-order constraint.In other words, the proposition says that we can encode Presburger arith-metic in L+p , which shows that we can perform some general parametric quanti-tative reasoning.7 ConclusionThe symbolic representation of states played a crucial role in increasing thee�ciency of model-checkers [8]. It is even more crucial for in�nite states systems.We believe that constraints, i.e. logical formulas interpreted in a given domain,are an adequate symbolic representation in this case. The main advantage w.r.t.other representations is its declarativeness and the easy combination with logicalformalisms.In this paper, we provided with an example of application: we can design atemporal logic which combines the representation of in�nite sets of con�gura-tions using constraints and the usual temporal properties. We have also showna device (automaton) accepting the set of models, hence allowing to decide e.g.the satis�ability.This generalizes the results on LTL satis�ability and model-checking: it isnow possible to consider counters in a restricted way. Unlike in the previousworks, we put the restrictions on the control of the automaton (
atness), whichhas a logical counterpart.There is still one important weakness of our results: we do not know anythingabout their possible usefulness in practice. In principle, the complexity of thealgorithms are prohibitive. However, the main source of complexity is the numberof counters, which can be low (2 or 3) in many examples.As we noticed at the end of the previous section, it is possible to express someparametric quantitative properties, as de�ned in [3, 14] using additional countersand the logic L+p . For instance, � U�x can be translated using an additionalcounter y into: y = 0 ^ ((� ^ y0 = y + 1) U(y � x ^  )). We want to investigatethis application: which fragments of the PLTL logic of [3] are (easily) expressiblein L+p ? For these fragments, we can check quantitative properties not only on�nite automata, but also on piecewise 
at automata with counters.Another possible further investigation would be to consider the branchingtime temporal logic instead of PLTL.References1. P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-
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