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Abstract. We propose an extension, called £, of the temporal logic

LTL, which enables talking about finitely many register values: the mod-
els are infinite words over tuples of integers (resp. real numbers). The
formulas of £ are flat: on the left of an until, only atomic formulas or
LTL formulas are allowed. We prove, in the spirit of the correspondence
between automata and temporal logics, that the models of a E'p*' formula
are recognized by a piecewise flat counter machine; for each state g, at
most one loop of the machine on ¢ may modify the register values.
Emptiness of (piecewise) flat counter machines is decidable (this follows
from a result in [9]). It follows that satisfiability and model-checking the
negation of a formula are decidable for ,C;'. On the other hand, we show
that inclusion is undecidable for such languages. This shows that validity
and model-checking positive formulas are undecidable.

Keywords: Counter automata, temporal logics, model-checking, verification,
logic in computer science.

1 Introduction

Temporal logics play a central role in the specification and verification of reactive
systems (see e.g. [16]). Temporal logics come in two varieties: linear time and
branching time [13]. We consider here the linear version PLTL. This (propo-
sitional) temporal logic is decidable (actually PSPACE-complete [18]). Model
checking is also PSPACE-complete (linear w.r.t. the model). The set of words
which satisfy a PLTL formula is recognized by a finite Biichi automaton, which
shows the relatively weak expressive power of the logic; here we are interested
in specifying and verifying infinite state systems.

One more general (hence more realistic) class of models would be machines
with finitely many registers (or counters) taking their values in integers or real
numbers and a finite control, of which the simplest example is Minsky machines.
Unfortunately, even the most simple temporal property, reachability, is undecid-
able for 2-counters machines [17]. Several restrictions of this model have been
studied. For instance Petri nets basically consist in removing the ability to test a
counter for zero. Temporal properties of Petri nets have been studied in, e.g.,[15].



Another approach consists in adding hypotheses on the control instead of hy-
potheses on the basic operations only. That is the approach of [9]; a counter
machine is called flat if there is at most one loop on each state. For such ma-
chines, the binary reachability relation between two control states is expressible
in Presburger arithmetic [9], hence decidable. Flat automata are still a significant
subclass of counter automata since, for instance, Alur and Dill’s timed automata
[2] can be encoded in this model [11].

The notion of flatness appears in several places. As we have seen, it appears
to be a crucial hypothesis for counter machines. In [7] the authors study the set
of reachable configurations for an automaton communicating through fifo chan-
nels. They show how to describe such a set of configurations using a Presburger
formula, provided that the control is flat. Similarly, in [1] the authors study au-
tomata communicating through lossy fifo channels and introduce the so-called
SRE which assume a flatness hypothesis on the control. This is not by chance
that a similar hypothesis appears in several places: roughly, if only increments
are allowed, using one loop one may compute addition and using two nested
loops one can compute multiplication; from one loop to two nested loops we
move from decidable to undecidable theories.

More interestingly, flatness appears naturally in PLTL itself: following the
automata approach, the models of a PLTL formula are recognized by a weak
alternating automaton (see e.g. [19]). Weakness means that there is an ordering
on the states such that any state occurring in the image of ¢ by the transition
function is smaller (or equal to) ¢. Hence “weak” is a synonym of “flat” in the
context of alternating automata, though the Biichi automaton accepting the
same language as a weak alternating automaton may contain several loops on
the same state, hence is not itself flat.

This raises the following question: assume that we design a temporal logic
which includes as atomic formulas expressions involving finitely many counters
and that we are able to construct for each formula ¢ an automaton which rec-
ognizes the models of ¢, would the automaton be flat 7 If this were the case, we
could design decision procedures for such a logic, because we do have decision
procedures for flat automata.

That is the purpose of the present paper: we define a flat temporal logic
L, whose atomic formulas include expressions such as > y — 1 for instance
where x,y are integer variables. “flatness” is a restriction in which only atomic
formulas may occur on the left of an “until”. If we drop such a restriction, we
show that we immediately cross the boarder: the logic becomes undecidable. In
[4,6,5] there are similar hypotheses: they design a logic in which it is possible
to consider as a first class object the number of times a given propositional
formula is satisfied. This logic is in general undecidable, but becomes decidable
when on the left (resp. on the right) of an until only propositional formulas are
allowed. Strictly speaking, the results of [4] for instance are incomparable with
ours since neither the logic nor the models we consider are the same. (Roughly,
they consider models which are described by a process algebra, i.e. in which there
is no explicit counter. On the other hand, the integer variables in the logic only



count number of occurrences of a given event). Let us emphasize however that
counting the number of steps which satisfy some proposition is possible in our
logic: it suffices to add one counter and increase it each time the proposition is
satisfied. In this respect, we get some “parametric quantitative reasoning” ([14])
for free; the number of times some transition is fired can be a free variable in
our logic.

We prove that recognizability by a flat automaton is equivalent to definability
in £, . Note that this result goes both ways: unlike PLTL for which only star-free
languages are definable, here, any flat language is definable (and conversely any
definable language is flat). We prove that satisfiability of £, formulas, as well as
model-checking the negation of formulas in £, (against a model described by a
flat automaton) are decidable: this is a consequence of the relationship between
flat formulas and flat automata on one hand and decidability results for flat
automata on the other hand.

L, has however several weaknesses. First, it is not closed by negation. This
cannot be avoided as we show that validity of ¢ € £, as well as model-checking
¢ are undecidable. Phrasing these results in term of automata, though emptiness
is decidable for flat automata, the universality is undecidable.

L, does not contain LTL. However, we can design a logic E; which embeds
both LTL and £, , while keeping the nice decidability properties. Now, instead
of flat automata, each formula of E; can be associated with a piecewise flat au-
tomaton which accepts the models of the formula. Emptiness remains decidable
for such automata, which implies again that satisfiability and model-checking
the negation of a formula are decidable (this includes reachability for instance).

We start in section 2 by definitions and examples of (flat) counter automata.
In section 3 we establish (un)decidability results for flat automata. The flat logic
L, isintroduced in section 4 where we also prove the correspondence with flat
automata. Then we consider in section 5 the decision problems for this logic.
Finally, in section 6 we consider the extension E;‘ which also embeds LTL.

2 Flat counter automata

Our constraints relate the current values (unprimed variables) and the next
values (primed variables) of the counters, in a declarative way.

Definition 1 (Counstraint). An atomic constraint is one of the expressions:
T#HY + ¢, vc, c#r where # € {<,<} and c € Z (resp. ¢ € Q). A constraint
c is either the constant true, the constant false or a conjunction of atomic

constraints. The set of constraints with free variables x1,... ,xg, 2}, ..., T} 1S
written C(x1,... ,xy).
A constraint ¢ in C(z1,...,x;) defines a binary relation R. on D* where

D € {N,Z,Q,...}: the relational symbols <, < are interpreted as the usual
ordering, as well as constant addition. (v,v") € R, iff the valuation in which the
ith component of v is assigned to x; and the ith component of v’ is assigned to
x; satisfies c.



Definition 2 (Counter automaton: syntax). An automaton with k counters
A is a tuple (¥, Q, qo, F, ) where Q is a finite set of states, X is a finite alphabet,
go € @ is the initial state, F' C @ is the set of final states and 6 C @ X
C(x1,...,xE) X ¥ x @ is a transition relation. We write sometimes ¢ C«’;) q

instead of (q,c,a,q") € 4.

A configuration of the automaton is a pair (q,v) with ¢ € Q and v € N
(resp. v € Qﬁ) The automaton may move from a configuration (q,v) to a con-
figuration (q',v") iff there is a transition (q,d,a,q") € 0 such that v,v' = ¢:
the free variables x1, ...,z are interpreted by vy, ... ,vy and the free variables
xy, ..., @ are interpreted by vy, ..., v,. We write (q,v) % (¢',v") when the

automaton A may move from a configuration (q,v) to a configuration (¢',v")
while reading a. a may be dropped if it is not relevant.

Definition 3 (Counter automaton: semantics). Let w be finite (resp. infi-
nite) word of length |w|: w € (X x N*)* (resp. w € (¥ x N*)¥). A run of A on
w s a finite (resp. infinite) word p € Q* of length |w| (resp. p € Q*) such that
p(1) = o and, for every 1 < i < |1 (resp. i > 1), (p(5),v5) — (p(i+1),vi11)
if w(i) = (ai,vi).

A run p is successtul if its last letter belongs to F' (resp. if it contains infinitely
many elements of F'). A word w is accepted by A if there is a successful run of
A on w.

We write L(A) the set of finite words accepted by A and L, (A) the language
of infinite words accepted by A.

Ezample 1. On figure 1 we have depicted a controller for a pay phone. There
are two counters: x is the number of quarters which have been inserted and
y measures the total communication time. We use the classical abbreviations:
x + + stands for 2’ = x+1 and  — — stands for 2’ = x — 1. Also, by convention,
when 2’ (resp. y') is not present in a transition, the constraint 2’ = z (resp.
y' = y) is assumed.

Such an automaton is expected to interact with its environment; messages
are followed either by a question mark, when they are received by the controller,
or by an exclamation mark, when they are sent by the controller. These aspects
are however irrelevant here.

The initial state (which is also the only final state) is ¢;. A possible sequence
of consecutive moves of the automaton is:

0 Lift? 0 quarter? 1 dial? 1
qi, 0 — q2, 0 - (2, 0 — g3, 0
quarter? 2 quarter? 3 connected? 3

- (g3, 0 —— (s, 0 —— (qa, 0/ "

Note that, by choice of the final state, it is not possible to insert quarters forever.

Definition 4. A counter automaton over a single letter alphabet (|X| = 1) is flat
if there is an ordering on the states such that there is a possible move from some
(q,v) to some (¢',v") only if ¢ > ¢'. Moreover, there is at most one transition
from a state to itself.



quarter?, x + + quarter?, x + +

x>0
connected?

y<z
ignal?
y++

quarter!
y <zy++

Fig.1. A pay phone

Ezample 2. Consider the pay phone of figure 1 in which we forget the messages.
The resulting automaton is not flat as there are several loops on a single state
(e.g. ¢q2). It is however possible to replace each loop on a single state with a
single transition, without changing the reachability relation. For instance the
iteration of a loop labeled with = + + can be replaced with a single transition
x' > x. Then the one step loops on g2, ¢3,q4 and gg can be replaced with single
transitions and the automaton becomes flat.

Also, if we remove the transition between ¢g and ¢;, the automaton becomes
flat.

3 (Un)decidability results for flat counter automata

We first recall here the decision results which can be derived from [9]. Then we
prove new undecidability results.

Theorem 1 ([9]). Given two states q1,q2 of a flat counter automaton A, there
is an effectively computable formula of Presburger arithmetic ¢q, 4, (x,n,x') with

2k + 1 free variables such that (g1,v) % (g2,v) iff v,m, V" |= gy g0

m
where — = — -+ — .
A A A
N——————

m



Corollary 1 ([10]). The emptiness of L(A) (resp. L,(A)) is decidable for flat

automata A.

Decidability of the emptiness of L(A) follows directly from theorem 1: it suffices
to decide Im.qq % qr for every final state gy. Concerning L, (A), we need

to decide the infinite iterability of a loop, which is also a consequence of the
particular expression of the reachability relation, with some additional work
[10].

Proposition 1. The class of languages recognized by flat counter automata is
effectively closed by union and intersection (both in the finite and in the infinite
words cases).

Proof sketch: The closure by union is straightforward. The closure by intersec-
tion is a consequence of the closure of C(x1,... ,zx) by conjunction. O

Unfortunately the class of languages recognized by flat automata is not closed
under complement. Actually, we are going to show that the question of whether
a flat automaton accepts all words in (N*)* is undecidable, which gives the non-
closure results thanks to corollary 1.

First, consider the set C'A; of counter automata over a one letter alphabet
such that there is exactly one transition starting from a final state, which is
labeled with true. The reachability of a final state in a Minsky machine reduces
to the emptiness of the language recognized by such a counter automaton. Hence
we have the undecidability result:

Lemma 1. The emptiness problem for L(A) (resp. L,(A)) is undecidable for
Ae CA,.

We may further restrict the class of counter machines, encoding the states
into a counter. Let C Ay be the class of automata in C'A; which only contain two
states ¢i1,qe, such that ¢, is final and there is no transition from ¢y to ¢1. (See
figure 2.)

Fig. 2. An automaton in C A,

If A is an automaton with £+ 1 counters and z is one particular counter then
the projection m,(L(A)) (resp. m,(L,(A))) is the subset of (N*)* (resp. (N*)¥)
of words in L(A) in which the x component has been erased.



Lemma 2. For every automaton A € CA; with k counters x1,... ,xk, there
is an autornaton A" € C Ay with k+ 1 counters ¢, 1, ... ,xx such that L(A) =
7.(L(A")) and there is a flat automaton A" such that L(A") = (NF)* — L(A’)
(resp. Lo(A”) = (N)* — L,(4"))

Proof sketch: First add a counter ¢ which records the state number; without
loss of generality, we may assume that numbering the states is such that @ =
{1, ,qn} and Q5 = {qy,... ,qn} (i-e. states whose number is larger than f
are final). The automaton A’ contains two states: @ and Q. A transition from
state i to state j with a constraint ¢ becomes, when i is not final (for instance),
a constraint @ A c = ¢ Ac’ = j from the initial state to itself, or to the final state

it ¢; € Q.
Let ¢1,...,¢n be the constraints of the transitions on the initial state and
Y1, ..., %, be the constraints of the transitions from the initial to the final state

in A’. Note that, by construction, for every i, ¢; E ¢ > f.
Let g1 V...V g, be a disjunction of constraints which is logically equivalent
to

Such a disjunction of constraints always exist since the negation of an atomic
constraint can always be written as a disjunction of atomic constraints.
Our flat automaton is built as depicted on figure 3. A word which is not

c<f true

() e ()

9r

Fig. 3. The flat automaton in the proof of lemma 2.

accepted either never reaches a final state, i.e. ¢ remains strictly smaller than
f, or else it is not compatible with the transition relation at some point, before
reaching a final state.

(|
Lemma 2 is a little bit confusing; one may get the impression that the comple-
ment of any counter language (over a one letter alphabet) is a recognized by
a flat automaton. This is not true, however; the projection plays an important
role here. On the other hand, we know that the complement of a flat automaton,
cannot be always recognized by a flat automaton: universality would then be
decidable, hence the emptiness for any counter automaton.

From the two previous lemmas we can derive the following:

Theorem 2. The universality is undecidable for flat automata (both in the case
of finite and in the case of infinite words).



4 The flat counter logic £,

We introduce first a logic with counters CLTL, which, unfortunately, is too
expressive. However, the notion of flat automaton which we introduced in the
last section can be easily characterized at the logical level using a restriction of
CLTL, which is similar to the so-called “flat fragment” in [12] for instance.

4.1 A logic with counters

Basically, we consider a temporal logic whose modalities are the same as in
PLTL. The only difference is that, instead of propositional atomic formulas, we
allow arbitrary constraints in C(xq,... ,zg).

More precisely, given a natural number k and a finite set of propositional
variables P, CLTL is the smallest set of formulas such that P belongs to CLTL
for every P € P,C(z1, ... ,xy) isincluded in CLTL and if ¢; and ¢, are formulas
of CLTL, then ¢1 N ¢27 ¢1 \Y (152., _1(151,X¢1,¢1 u¢2 are formulas of CLTL.

We may also use the classical derived operators O (“henceforth”) and ¢
(“eventually”).

Temporal formulas are interpreted over computations which are now infinite
words in 27 x N*. Given an infinite path 7 € (27 x N¥)¥ we write 7 (i) for the
ith letter of 7 and we let 7 be the infinite word in (27 x N¢ x N¥)“ defined by:

(w(i) = (a,v) and 7(i + 1) = (b,w)) implies 7(i) = (a,v,w)

This little technicality is necessary because the constraints may express relations
between two successive values of the counters and not only constraints on a given
value of the counters.

Now, a path 7 satisfies ¢ iff 7,0 = ¢ and:

— 7,i |= true and 7,1 [~ false
— 7,1 = P where P € P if and only if 7(i) = (a,v) and P € a

-7 l=¢(vr,. .. ok, ... 2)) where ¢ € C(ay,... ,xp) it T(i) = (a,v, w)
and v, w |= ¢ (with the usual definition of satisfaction in Presburger arith-
metic).

- T EXeiff Ti+ 1= ¢,
- %,Z |: ¢1 /\¢2 lff%,l |: ¢1 and %,Z |: (152.,

i = ¢1 Uy iff there is an index j > ¢ such that 7,j = ¢o and for all
keli,jl, T, k= ér.

Ezrample 3. CLTL allows to express properties such as: “x is never greater than
100” or “each time x is larger than 100, an alarm is raised” or “ultimately, the
register x remains stable” :

O(z < 100), O(z < 100) V (z < 100U alarm > 1) o0(x" = x)

Unfortunately, CLTL is too expressive:



Theorem 3. Satisfiability is undecidable for CLTL. Model checking (of a flat
automaton) is also undecidable in this logic.

Proof sketch: We reduce the halting problem of a counter machine. Roughly, we
use an auxiliary variable ¢ ranging over the states of the machine and encode
the computations of the machine by the formula:

c=qo N /\(c

i

i = \/ [Gq“q, (x, ") A = ql) | U { \/ €= qf}

G
9 7 4qj

4.2 The flat fragment of the logic

L, is defined by a syntactic restriction of the formulas, which, roughly, restricts
the left members of “until” to be conjunctions of atomic formulas, thus prevent-
ing the construction of theorem 3. For simplicity, we assume here that P = §;
propositional variables will be re-introduced in section 6 and, anyway, they can
be encoded by integer variables.

Definition 5. An elementary formula is a Boolean combination of constraints
mn C(Qﬁl, ce. ,xk).
The set L, of flat formulas, is the smallest subset of CLTL such that:

— elementary formulas are flat

— if o1, @2 are flat, then ¢1 A ¢o, ¢1 V @2, X@1 are flat.

— if &1 is a constraint in C(z1, ... ,xx) and ¢o is flat, then ¢ Uds is flat
— if ¢ is a constraint in C(x1,...,xk), then —(true U—¢) (i.e. O¢p) is flat

The last condition is ad-hoc: it corresponds to the encoding of final states,
as we will see.

Let us emphasize that £, is not closed by negation. This is unavoidable as
we will see in the next section. On the other hand, we could add the weak until,
as both ¢ and ¢ Uy are in £, when ¢ is a constraint.

Ezample 4. The formulas given in example 3 are all flat.

One of the main interest of £, is the correspondence with flat automata:

Theorem 4. For every formula ¢ of L, , there is a flat automaton which accepts
the models of ¢.

Conversely, for every flat automaton A, there is a formula ¢ of L, whose
models are the words accepted by A.



Proof sketch: From logic to automata we use the closure properties of flat au-
tomata by union and intersection (theorem 1) and the standard constructions
for U, X and O. For instance consider ¢ Uy. By hypothesis, ¢ belongs to
C(z1,...,x,). We construct the automaton for ¢ U by adding in front of the
automaton for ¢ a state on which there is a loop guarded by ¢

From the automata to the logic, we proceed by induction on the ordering
on states. From minimal states ¢ there is at most one departing transition, say
labeled with ¢, and whose target is ¢ itself. Then, if ¢ is final, the corresponding
formula will be O¢ (false otherwise). For the induction step, if ¢1,... ,¢, are
the successors of ¢ and ¢ is the constraint of the loop on ¢, we get roughly the
formula ¢ U((p1 A Xg, ) V ... (00 A Xy, )). O

5 Satisfiability and model-checking in £,

Thanks to theorem 4 we can decide satisfiability and model checking of the
negation of a formula of £, :

Theorem 5. Given a formula ¢ € L, and a flat automaton A, the following
questions are decidable:

— Is ¢ satisfiable ?
— Does A satisfy —¢ 7 (In other words, is there a word accepted by A which is
a model of ¢ ?)

Proof. Thanks to theorem 4, for every formula ¢ € £, , there is an automaton
Ay which accepts the models of ¢. Then satisfiability reduces to the emptiness
of L(Ay) and A = —¢ reduces to L(A) N L(Ag) = 0. Now, thanks to theorems
1 and 1, both questions are decidable. O

Ezample 5. Negation of formulas in £, include for instance reachability formu-
las Og (adding here a new counter whose value is 0, except when reaching ¢) or
safety formulas O—¢ where ¢ is a constraint. Actually, considering the formulas
in example 3, the negations of the first two formulas also belong to £, because
the negation of constraints s > ¢ are atomic constraints and the negation of ¢ Uc’'
isin £, when ¢, are both of the form s > ¢. Only the negation of ¢Oz' = z
is not a £, formula.

It is also possible to reduce in polynomial time Presburger arithmetic sat-
isfiability to £, satisfiability, hence, in principle, £, is at least as hard as
Presburger arithmetic (between 2-DEXPTIME and 3-DEXPTIME).

Now, deciding A = ¢ for ¢ € L, is equivalent to the decision of inclusion of
flat automata, which is undecidable:

Theorem 6. The validity problem and the model checking on a flat automaton
are undecidable for a formula ¢ € L, .

Sketch of the proof: This follows from theorems 4 and 2. O



6 L',;,": a decidable extension of £, and LTL

The logic £, is not fully satisfactory in many respects. In particular, the re-
strictions on the left member of an U disallow arbitrary LTL formulas. On the
other hand, theorem 3 shows that we cannot simply drop the restriction. At
least, we have to consider positive Boolean combinations of PLTL formulas and
L, formulas. We can still go a little further, as we will see.

Informally, E; extends £, by allowing any conjunction of a PLTL formula
and a constraint where only constraints were allowed.

Definition 6 (Syntax of E;‘). We assume given a finite set of propositional
variables P and a positive integer k.

Given a constraint ¢, PLTLy is the smallest set of temporal formulas con-
taining @ NPy N ... APy A=Q1 A ... AN =Q,, for every propositional variables
P,...,P,,Q1,...,Q,, and which is closed by N,V, U,X,d. A basic formula
is a formula ¢ € PLTLy for some ¢ € C(x1,. .. ,2k).

C; is the smallest set of formulas such that:

— every basic formula is in E;,

—if o1, ¢p arein L, then 1 A d2, ¢1 V ¢, X are in LF
— if ¢1 is a basic formula and ¢o € C;’, then ¢1 Upy € E;‘
— if ¢1 is a basic formula, then O¢y € C;’.

Note that, in PLTL, negation can be pushed to the propositional variables
level if we include O in the syntax. That is why PLTL formulas are basic formulas
in the above definition: it is sufficient to choose ¢ = true. Constraints are also
basic formulas, hence E; is an extension of both £, and PLTL.

On the other hand C;," is a fragment of the logic CLTL which was defined in
section 4.1, from which we borrow the the semantics.

Ezample 6. We may record the elapsed time in a LTL formula using an auxilliary
counter; for instance:

z=0A((pA (@ =2+ 1) UQAZ =2+ 1)) U(RV x> )

is an E;formuleh x recording the elapsed time. We could consider e.g. a second
phase in R in which the time spent for each action is larger (or smaller), or even
record something different, as, e.g., distance or available resources... However, it
is not, allowed to replace one of the two occurrences of x 4+ 1 with = + 2: on the
left of an until the constraint has to be the same everywhere.

Here, we have to extend the notion of a flat automaton, corresponding to the
extension of the syntax of formulas.

Definition 7. A piecewise flat automaton is a counter automaton on an alpha-
bet ¥ = 2% such that there is a partition Q1 ¥ ... ¥ Q,, of the set of states Q
and an ordering on {Q1,...,Qn} such that:

— for every i, there is a constraint ¢; € C(xy, ... ,xk)



— for every transition ¢ = ¢’ of the automaton, if ¢ € Q and ¢’ € Q', then
Q>Q

— for every transition ¢ —= ¢' such that q,q' € Qi, there is a conjunction 1

of proprositional variables and negations of propositional variables such that

c=¢; NP

Ezample 7. Consider the pay phone example of figure 1. With each event, we
associate a propositional variable. Then the behavior between two lift events (i.e.
a “session”) is described by a piecewise flat automaton. Actually, more complex
actions could be described within the same class of models, for instance using
more coins types, calling services...

Proposition 2. The class of languages accepted by piecewise flat automata is
closed under union and intersection.

Sketch of the proof: It is almost the same as the closure of flat languages. We
use the closure of C(x1,... ,2,) by conjunction and, for intersection, a product
construction which is similar to the Biichi automata intersection construction. O

Theorem 7. The models of an E; formula are recognized by a piecewise flat
automaton.

Sketch of the proof: As before, we proceed by induction on the formula. Thanks
to proposition 2, we only have to show the construction for X and U. The
construction for U is actually complicated. An example is depicted on figure 4.
Let Ay, be the automaton accepting the models of ¢1, @5 its set of states, and

Ay uos

Fig. 4. The piecewise flat automaton for ¢1 Uepo

Ay, be the automaton accepting the models of ¢, and Q1 its set of states.



The idea is the following: while we do not reach a point where ¢, is satisfied,
at each move, the automaton launches a copy of A4, on the rest of the word.
This is shown on an example on figure 4. Hence the set states of the automaton
Agy ug, is the union of {S C 291 | ¢ € S} and 291 x @, if qo is the initial state
of A¢1 .

The initial state of Ag, ¢, 18 the singleton {go}, the final states are the
pairs (S, q) where S C Q} and ¢ € Qfﬁ respectively the final states of Ay, and
Ay, . Transitions are computed as follows: a state S C @ is considered as the
conjunction for all states in S;if S,5' C Q1, o € S’, f is a mapping from S to S’,
then there is a transition from S to S’ which is labeled /\ Cq.f(q) Where cg (q) 18

qeS

the constraint of one of the transitions from ¢ to f(g) in Ag,. This corresponds
to the case where we did not hit yet a position at which ¢, is satisfied. We may
also move from a state S to a state (S’,¢') if ¢’ € Q2 and S’ C @, under the same
conditions as above, except that we do not require ¢o € S’ and move instead
from the initial state of Ay, to ¢' (see figure 4): this corresponds to the guess
that we are going to satisfy ¢2 at the current position. Finally, we also have
transitions from (.S, q) to (S’,¢') which corresponds basically to the intersection
of copies of Ay, and one copy of Ayg,.

The construction would be similar if we defined an alternating version of the
automata and then transform it into a non-deterministic one: the exponential
blow-up is unavoidable for the states of the formula ¢;.

One important remark is that we still get a piecewise flat automaton here,
which would not be the case if we allowed arbitrary E; formulas on the left of
an until. Indeed, the powerset construction for A4, introduces transitions which
are labeled with arbitrary conjunctions of constraints occurring in ¢;. It remains
piecewise flat only because all these constraints are identical. [J.

Theorem 8. Emptiness is decidable for piecewise flat automata.

Sketch of the proof: We only have to check the reachability for the projection
automaton, where we forget the letters of Y. Then all states in the same Q);
collapse into a single state and we are back to corollary 1. O

Theorem 9. Satisfiability and model checking of =¢ on A are decidable for
o€ Ej an A a piecewise flat automaton.

Sketch of the proof: This follows from theorems 8 and 7 and proposition 2. O

Finally, let us remark that we can also consider the conjunction of Ej for-
mulas with arbitrary constraints in the additive theory of our domain D (N, Z,
Q4+, Ry). It is not difficult to see directly how satisfiability and model-checking
can be decided, but there is one elegant way to do it:

Proposition 3. For every formula ¢ in Presburger arithmetic, whose free vari-
ables are x1, ... ,xy, there is a flat automaton Ay with k+m counters such that,



if E is the set of last letters of finite words accepted by Ay, then
{veN vE¢}={veN TweN" (vw) € E}

Then we can build a piecewise flat counter automaton which accepts the
models of both the E; formula and the first-order constraint.

In other words, the proposition says that we can encode Presburger arith-
metic in E;‘, which shows that we can perform some general parametric quanti-
tative reasoning.

7 Conclusion

The symbolic representation of states played a crucial role in increasing the
efficiency of model-checkers [8]. It is even more crucial for infinite states systems.
We believe that constraints, i.e. logical formulas interpreted in a given domain,
are an adequate symbolic representation in this case. The main advantage w.r.t.
other representations is its declarativeness and the easy combination with logical
formalisms.

In this paper, we provided with an example of application: we can design a
temporal logic which combines the representation of infinite sets of configura-
tions using constraints and the usual temporal properties. We have also shown
a device (automaton) accepting the set of models, hence allowing to decide e.g.
the satisfiability.

This generalizes the results on LTL satisfiability and model-checking: it is
now possible to consider counters in a restricted way. Unlike in the previous
works, we put the restrictions on the control of the automaton (flatness), which
has a logical counterpart.

There is still one important weakness of our results: we do not know anything
about their possible usefulness in practice. In principle, the complexity of the
algorithms are prohibitive. However, the main source of complexity is the number
of counters, which can be low (2 or 3) in many examples.

As we noticed at the end of the previous section, it is possible to express some
parametric quantitative properties, as defined in [3, 14] using additional counters
and the logic [Z;’. For instance, ¢ U<, can be translated using an additional
counter y into: y = 0A ((¢ Ay =y + 1) U(y <2 Av)). We want to investigate
this application: which fragments of the PLTL logic of [3] are (easily) expressible
in E; ? For these fragments, we can check quantitative properties not only on
finite automata, but also on piecewise flat automata with counters.

Another possible further investigation would be to consider the branching
time temporal logic instead of PLTL.
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