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Abstra
t. We 
onsider arbitrary 
ryptographi
 proto
ols and se
urityproperties. We show that it is always suÆ
ient to 
onsider a boundednumber of agents b (a
tually b = 2 in most of the 
ases): if there is anatta
k involving n agents, then there is an atta
k involving at most bagents.
1 Introdu
tionThe task of automati
ally verifying 
ryptographi
 proto
ols has now been un-dertaken by several resear
h groups, be
ause of its relevan
e to se
ure internettransa
tions. Let us 
ite for instan
e (this is far from being exhaustive): CAPSL[13℄, CASRUL/Data
 [19℄, 
asper/FDR [26℄.Though 
ryptographi
 proto
ols are often des
ribed in a 
on
ise way (seee.g. [7℄), the veri�
ation problem is diÆ
ult for two reasons:1. The number of agents potentially using the proto
ol is unbounded, as wellas the number of proto
ol sessions.2. The size of messages whi
h 
an be forged by an intruder is also unbounded.And, in fa
t, even for simple properties su
h as se
re
y and for sub
lasses ofproto
ols, the veri�
ation problem is unde
idable (see e.g. [15, 14, 9, 2℄).The veri�
ation tools have either to assume stronger properties on the pro-to
ols (e.g. [20, 10, 27, 2℄) or to 
onsider a bounded number of sessions (hen
e abounded number of agents) only [3, 25, 16, 22℄, in whi
h 
ase the se
urity prob-lem be
omes 
o-NP-
omplete [25℄. Yet another solution is to 
onsider an upperapproximation of the set of exe
ution sequen
es, in su
h a way that, when noatta
k is found on this upper approximation, then there is no atta
k on theproto
ol. This is typi
ally the approa
h of [6, 5℄.In this paper, we 
onsider a simple redu
tion, whi
h works for any proto
olsand se
urity properties typi
ally 
onsidered for automated veri�
ation. We showthat it is always suÆ
ient to 
onsider a bounded number of agents b (a
tuallyb = 2; we will dis
uss this point later): if there is an atta
k involving n agents,then there is an atta
k involving at most b agents. Su
h a result is useful forautomati
 tools: we may forget the universal quanti�
ations on agents ids and?? Partially supported by INRIA proje
t SECSI and RNTL proje
t EVA.




onsider �nitely many (4 most of the time) instan
es of the proto
ol roles, with-out loosing information. This proves a
tually that the instan
iation te
hniquesin [19℄ are 
omplete. This also provides 
ompleteness results for abstra
tion usedin [6, 23℄. Of 
ourse, the veri�
ation problem will remain unde
idable, be
ausewe 
annot faithfully give a bound on the number of sessions. Still, approximationte
hniques su
h as [5, 6℄ 
an be simpli�ed and when 
onsidering a bounded num-ber of sessions we may assume w.l.o.g. that only these b agents are involved. Thisredu
tion result also provides with a de
ision result for 
ryptographi
 proto
olsagainst a passive intruder.
Our result extends and 
lari�es a side result of [18℄. Indeed, J. Heather andS. S
hneider 
how that one may 
onsider only four agents (three honest, onedishonest) using impli
itly that an agent may talk to herself. We prove a
tuallythat in J. Heather and S. S
hneider 
ase, only two agents are suÆ
ient. Inaddition, our redu
tion result holds for more general se
urity properties andalso holds when an agent is disallowed to speak with herself.
The proof of our result is not diÆ
ult, on
e the proto
ol and its properties areexpressed as Horn 
lauses: given an atta
k against a se
urity property, we simplyproje
t every honest identity on one single honest identity and every dishonestidentity on one single dishonest identity. A
tually, the result 
an be stated fora 
lass of Horn 
lauses, whi
h en
ompasses proto
ols des
riptions. Everybodyhas her (his) favorite model. We do not argue that the Horn 
lause model isbetter than others. It is simply more 
onvenient for our proof and we 
laim thatmost other models 
an be redu
ed to this one, hen
e our redu
tion also appliesto other models of 
ryptographi
 proto
ols. In order to support this 
laim, weprovide (in [11℄) with a redu
tion of the Millen-Rue� model [21℄ to Horn 
lauses.We hope that this will provide with enough eviden
e that the redu
tion resultworks for other models as well. (It is not possible to show in detail all redu
tionsfrom other models to Horn 
lauses).
Our paper is organized as follows. We introdu
e our model in se
tion 2. Amore detailed de�nition 
an be found in [11℄. In se
tion 3.1 we prove that, if thereis an atta
k involving n agents, then there is an atta
k involving at most 2 agents,besides the 
onstant agents whi
h might be used in the proto
ol des
ription. Inother words, we show that we have to 
onsider only instan
es of the roles in atwo-element sets. This result assumes however that the same agent may playdi�erent roles in a given proto
ol session: \an agent may talk to herself". Mostof the models do not dis
ard this ability. However, it may be 
onsidered as morerealisti
 that an agent 
annot play several roles in the same session. Some models[24, 20℄ expli
itly disallow this possibility. That is why we 
onsider in se
tion 3.2models in whi
h an agent 
annot talk with herself. We prove in this 
ase that, ifthere is an atta
k involving n agents, then there is an atta
k involving at mostk + 1 agents where k is the number of roles in the proto
ol.



2 The modelWe de�ne a tra
e model by means of Horn 
lauses, in whi
h terms are messages.A similar representation 
an also be found in [5℄ for instan
e. The importantfeature is that we only use Horn 
lauses, whi
h 
ontain at least one positiveliteral. Hen
e there is a least Herbrand model H, whi
h is the intended tra
esemanti
s: the possible tra
es are the member of TH, the interpretation of theunary predi
ate T in H.Clauses 
ome in two parts: the �rst part is proto
ol independent and these
ond part is proto
ol spe
i�
. It is a bit lengthy to des
ribe the two parts indetails: we will only show here examples and the less standard 
onstru
tions.The reader is referred to [11℄ for more details.2.1 Messages and tra
esThe set of messages is the set of (ground) terms built over a set of fun
tionsymbols F and basi
 sorts: Num;Agent;Ha;Da;Message;Event;Tra
e. F 
ontainsthe following fun
tion symbols:0 : ! Num ni : Agentki ;Num! Messages : Num! Num st : Agent;Num;Message! Eventh : ! Ha ?: ! Tra
ed : ! Da [ ; ℄ � : Event;Num;Tra
e! Tra
esh : Ha! Ha srv i ! Agentsd : Da! DaTerms of sort Agent are 
alled agents. All other symbols, in
luding the 
lassi
al
ryptographi
 primitives for building keys, en
ryption and pairs take messages asarguments and return a message. This set of 
ryptographi
 primitives is denotedby: Fmsg = f< ; >; f g ; pub( ); prv( ); shr( )g:In addition, we may have e.g. hash fun
tion symbols.We also assume that every agent is a message and every message is an event;we have the subsort relations Agent � Message � Event, Ha � Agent and Da �Agent. Let us 
omment a little bit:{ Num is only used for internal representations of session numbers, non
es...It is important to provide with one representation sin
e we will 
onsiderHerbrand models. However, su
h a representation is irrelevant in what fol-lows. In parti
ular, neither the intruder nor the agents have a

ess to thisrepresentation.{ There are two non-standard sorts Da;Ha. The terms of these sorts are re-spe
tively skd(d) and skh(h) and are intended to represent 
ompromised andhonest agents respe
tively. Again, this is for internal representation only. Of
ourse, this distin
tion is never used in the proto
ol des
ription. It is howeverne
essary in the proto
ol property de�nition: typi
ally, we want to state thata se
ret shared by honest agents remains unknown to the intruder, hen
e weneed a way to express that an agent is honest.



{ srv i are intended to be server names.{ ni is a 
olle
tion of fun
tion symbols, whi
h are used to represent non
es(randomly generated data): ni is intended to take as arguments some agentids (who generates the non
e and who are supposed to re
eive the non
e)and a session number. i is intended to be the proto
ol step. Note that wemay also 
onsider a single symbol n with an additionnal argument i. Thenni( ) is simply a notation for n(i; ).{ st is intended to represent the lo
al state of an agent. Events will 
onsist ofeither sending a message or in
reasing a lo
al memory. Tra
es are sequen
esof pairs of an event and a session number.{ We do not assume any a priori typing of messages (there is no a priori wayto distinguish between a non
e and a pair for instan
e), though any su
hpoli
y 
ould be spe
i�ed at the proto
ol des
ription level.By abuse of notation, we will sometimes write e.g. 2 instead of s(s(0)),< x; y; z >instead of < x;< y; z >>, or fx; ygz instead of f< x; y >gz.We will sometimes use unary predi
ate symbols instead of sort names in orderto expli
itly state the sort of a variable. For instan
e, we may write Agent(x),expressing that x is of sort Agent (other authors use the notation x : Agent).Su
h unary predi
ate symbols 
an only be used with variable arguments.
2.2 Proto
ol independent 
lausesWe sket
h here and in the following se
tion how to design a set of Horn 
lausesde�ning valid tra
es. We also show in [11℄ that this is a reasonable de�nitionsin
e other models 
an be redu
ed to this one.

Agent(x) ) I(x; t) The intruder knows all agents ids.Da(x) ) I(prv(x); t) The intruder knows all keys of 
om-promised agents.I(x; t) ) I(pub(x); t) The intruder knows all publi
 keys.I(x; t); I(y; t) ) I(fxgy; t) The intruder 
an en
rypt a knownmessage with a known key.I(fxgshr(y); t); I(shr(y); t) ) I(x; t) The intruder 
an retrieve the 
lear textof a message en
rypted with a knownsymmetri
 key.T ([x; s℄ � t) ) I(x; [x; s℄ � t) All messages sent through the networkare available to the intruder.I(x; t) ) I(x; y � t) The intruder remembers a messagewhatever is added to the tra
e.Fig. 1. Some of the 
lauses de�ning I



We use a binary predi
ate symbol I to des
ribe the intruder knowledge. Itakes two arguments: a message m and a tra
e t; I(m; t) means that message mis known to the intruder after exe
uting t. Some typi
al 
lauses de�ning I aredisplayed on �gure 1. There are other 
lauses for e.g. (un)pairing.Proto
ol independent 
lauses will also 
ontain the de�nition of some auxiliarypredi
ates, whi
h will be des
ribed when needed as well as the 
lause T (?),whi
h states that the empty tra
e is a tra
e. How to 
ontinue a tra
e is proto
ol-dependent.
2.3 Proto
ol dependent 
lausesWe sket
h here how to de�ne the set of valid tra
es T on the Yahalom proto
ol.In this se
tion, a; b will stand for variables of sort Agent, x; y; z for variables ofsort Message, s, t and e for variables of sort respe
tively Num, Tra
e and Event.A! B : A;NaB ! S : B; fA;Na; Nbgshr(B)S ! A : fB;Kab; Na; Nbgshr(A); fA;Kabgshr(B)A! B : fA;Kabgshr(B); fNbgKabWe �rst state that, at any point, we may start a new session of the proto
olassigning roles to any of the agents. This is expressed by:Fresh(t; s); T (t)) T ( [st(a; 1; < a; b; srv >); s℄�[st(b; 1; < b; srv >); s℄�[st(srv ; 1; srv); s℄ � t)Fresh is an auxiliary predi
ate (de�ned in �gure 2), whi
h holds when the numbers is larger than any number o

urring in t. Then the tra
e t 
an be extendeda

ordingly.Now, if a has started session s, and if she has not already sent the �rstmessage of this session, she 
an do it, hen
e extending the tra
e, and moving tostage 2 for this session: T (t);In([st(a; 1; < a; b; srv >); s℄; t);NotPlayed(a; 2; s; t)

9=;) T ( [< a; n1(a; s) >; s℄�[st(a; 2; < a; b; srv ; n1(a; b; s) >); s℄�t)This uses the auxiliary predi
ates In and NotPlayed whi
h are intended to be re-spe
tively the membership test on tra
es and a test that this step has not alreadybeen 
ompleted for the same session (see �gure 2 for 
omplete de�nitions).Finally, let us des
ribe how the last step of the proto
ol is translated: werequire a to have 
ompleted the �rst step and assume that she re
eives a messageof the expe
ted form. This message may be forged by the intruder: we do notin
lude re
eive events in the tra
e sin
e messages that are possibly re
eived are



De�nition of Sup: Num(x) ) Sup(s(x); 0)Sup(x; y) ) Sup(s(x); s(y))De�nition of Fresh: ) Fresh(?; s)Fresh(t; s);Sup(s; s0) ) Fresh([e; s0℄ � t; s)De�nition of In: Tra
e([e; s℄ � t) ) In([e; s℄; [e; s℄ � t)In(x; t) ) In(x; [e; s℄ � t)De�nition of NotPlayed: ) NotPlayed(a; i; s;?)NotPlayed(a; i; s; t); Sup(s; s0) ) NotPlayed(a; i; s; [e; s0℄ � t)NotPlayed(a; i; s; t); Sup(s0; s) ) NotPlayed(a; i; s; [e; s0℄ � t)NotPlayed(a; i; s; t); Sup(i; j) ) NotPlayed(a; i; s; [st(a; j;m); s℄ � t)Fig. 2. De�nitions of the auxiliary predi
ates
identi
al to messages that 
an be forged by the intruder.T (t);In([u1; s℄; t);NotPlayed(a; 3; s; t);I(< fb; x; n1(a; b; s); ygshr(a); z >; t)

9>>=>>;) T ([< z; fygx >; s℄ � [u2; s℄ � t)
where u1=st(a;2;<a;b;srv ; n1(a;b;s)>) and u2=st(a;3;<a;b;srv ; n1(a;b;s); x>).
2.4 The modelNow, we assume de�ned the sets of Horn 
lauses CI ; CD for the proto
ol inde-pendent 
lauses and the proto
ol dependent 
lauses. For a proto
ol P , we let CPbe CI [ CD. We assume that CP does not 
ontain negative 
lauses (i.e. we onlyspe
ify what is possible). Then CP has a least Herbrand model HP .De�nition 1. A valid tra
e for the proto
ol P is a member of the interpretationof T in HP .
2.5 Atta
ksLet � be the se
urity property that we want to 
he
k. We assume that � 
an beexpressed as a 
lause using the primitives des
ribed in previous se
tions. This isnot a strong restri
tion sin
e, at least the tra
e properties 
an be expressed inthis way (and possibly other properties whi
h relate di�erent tra
es), as shownby the following examples.



Example 1. We 
an express that u(x; y; s) (or u(x; y) if we want to express these
re
y of a 
onstant data) is a (long term) se
ret shared by x and y by:(8t; x; y; s)::T (t) _ :Ha(x) _ :Ha(y) _ :I(u(x; y; s); t)whi
h means that, in any tra
e t, if x and y are honest agents, then u(x; y; s) isunknown to the intruder.Example 2. We 
an express that u(x; y; s) is a short term se
ret. I does not knowu(x; y; s) as long as session s is not 
ompleted:(8t; x; y; s)::T (t) _ :Ha(x) _ :Ha(y) _ :I(u(x; y; s); t) _ :NotPlayed(x; 3; s; t):If we assume that the last message of the proto
ol is sent by x then we expresshere that, in any tra
e t, if x and y are honest agents, then u(x; y; s) is unknownto the intruder unless the session is already 
ompleted.Example 3. We 
an express an authenti
ation property: if x re
eives the messagem(x; y; s), then it has been sent previously by y: (8t; x; y; s):T (t) _ :Ha(x) _ :Ha(y) _ :I(m(x; y; s); t) _ In([st(y;m(x; y; s)); s℄; t):De�nition 2. A proto
ol P satis�es a property � i� HP j= �.Dually, there is an atta
k when HP 6j= �. In su
h a 
ase (by 
ompa
tness),there is a �nite subset H0 of HP su
h that H0 6j= �:De�nition 3. An atta
k on P for � is a �nite subset H0 of HP su
h thatH0 6j= �. H0 is an atta
k with n agents if there are at most n distin
t terms ofsorts Agent in H0.For instan
e, if the property � is a \tra
e property", H0 may 
ontain a singlepredi
ate T (t) where t is a �nite tra
e whi
h violates the property.
2.6 Relevan
e of the modelThe model we present here is a
tually an extension of the Millen-Rue� model [21,12℄ (hereafter referred to as the MR model), expressed in Horn 
lauses. The MRmodel is itself inspired from Paulson's model [24℄ and from the strand spa
es [28℄.Formally, we proved in [11℄ that for ea
h proto
ol of the MR model, we 
anasso
iate a �nite set of Horn 
lauses CP and a �nite set of purely negative
lauses �P su
h that P is inse
ure if and only if there is an atta
k on CP forsome � 2 �P .



3 Redu
tion to a �xed number of agents3.1 From n agents to 2 agentsWe show that if there is an atta
k with n agents, then an atta
k with 2 agents
an be 
onstru
ted: given an atta
k using n agents, we proje
t every honest iden-tity on one single honest identity and every dishonest identity on one dishonestidentity. Then we obtain a valid atta
k using only two agents. This proje
tionuses the fa
t that our model allows an agent to speak to herself, whi
h is the
ase of most of the models for 
ryptographi
 proto
ols [21, 28, 17, 5, 14, 3℄. How-ever, a similar result holds even if an agent is disallowed to speak to herself (seesubse
tion 3.2). We also 
onsider here purely negative properties, whi
h easilyen
ompasses se
re
y, but does not en
ompass authenti
ation in a natural way.We will dis
uss this in se
tion 3.3.We emphasize that our result holds for all models of proto
ols whi
h do notmake use of our internal representation of agents ids. More pre
isely:De�nition 4. A set of 
lauses C is admissible if it does not use the symbolssh; sd. A 
lause is said purely negative if it only 
ontains negative literals.The 
lauses whi
h were proposed in the previous se
tions are admissible.Furthermore, any proto
ol spe
i�
ation 
an not use our parti
ular representationof names, hen
e it is always represented as an admissible set of 
lauses.Theorem 1. Let CP be an admissible set of 
lauses. Let � be a purely negativeadmissible 
lause. If there is an atta
k of P for �, using n agents, then there isan atta
k using (at most) two agents.Proof. We �rst introdu
e some notations. LetM be the set of messages, T be theset of all positive ground literals, and �g be the set of mappings from variablesto ground terms, whi
h are 
ompatible with the sort 
onstraints.Given a Horn 
lause 
 = B1(x); :::; Bn(x)) A(x) where B1(x); : : : ; Bn(x); A(x)are positive literals whose free variables are 
ontained in x, and a subset S ofT , we de�ne 
(S) as follows:
(S) def= fA(x)� j � 2 �g; 8i; Bi(x)� 2 Sg:Then, the immediate 
onsequen
e relation FC is the mapping from 2T to 2Tde�ned by: FC(S) def= S [ [
2C 
(S):For simpli
ity, we will write FP for the mapping FCP .It is well-known that the set of positive literals H+P of the least Herbrandmodel HP is the least �xed point of FP :H+P = +1[k=1F kP (;)For every L 2 H0 there is a minimal index nL su
h that L 2 FnLP (;).



We de�ne now the proje
tion fun
tion: we map every honest agent to h andevery dishonest agent to d : for every literal L, let L be the literal L in whi
hevery maximal subterm of sort Ha is repla
ed with h and every maximal subtermof sort Da is repla
ed with d:f(t1; : : : ; tn) def= f(t1; : : : ; tn) If f =2 fsh; sdgsh(t) def= hsd(t) def= dOur proof relies on the following lemma whi
h ensures that if a positive literalis in HP then its proje
tion is also in HP .Lemma 1. Let L be a positive literal of HP , then L is in HP .This is prove by indu
tion on nL. If nL = 0, there is no literal su
h that nL = 0thus there is nothing to prove.Suppose the property true for nl � n and 
onsider a positive literal L of HPsu
h that nL = n+1. There exists a 
lause 
L and positive literals L1; : : : ; Lk 2H+P su
h that L 2 
L(fL1; : : : ; Lkg) with nLi � n for all 1 � i � k. By indu
tionhypothesis, L1; : : : ; Lk 2 H+P . In addition, 
L is on the form B1(x); : : : ; Bk(x))A(x) j C with L = A(x)�, Li = B1(x)� for some � 2 �g. Sin
e 
L is anadmissible 
lause, it does not 
ontains the symbols sh and sd thus L = A(x)�and Li = B1(x)�. Hen
e L 2 
L(fL1; : : : Lk) and L 2 H+P .We are now ready to 
omplete the proof. Assume that H0 is a �nite subsetof HP su
h that H0 6j= �. Sin
e � is assumed to be purely negative, we mayassume w.l.o.g. that H0 only 
ontains positive literals.Let H1 = fL j L 2 H0g. The set H1 is still �nite and, by lemma 1, H1 � HP .Let us show that H1 6j= �. Let �� an instan
e of � falsi�ed by H0. Then �� isfalsi�ed by H1. Sin
e � is an admissible 
lause �� = ��, thus H1 6j= �. �A
tually, this theorem does not hold when � may 
ontain positive literals.Example 4. Let CP be: 8<:Da(x)) A(x; y)Da(y)) A(x; y)) A(x; x)and � be A(x; y). :A(h; sh(h)) is an atta
k and there is no atta
k with a singlehonest agent.We will 
onsider in se
tion 3.3 an extension of theorem 1 for formulas 
on-taining positive literals.
3.2 Disallowing an agent to speak with herselfIn the last se
tion we used the ability for an agent to speak with herself, whi
hwas not expli
itly ruled out by the spe
i�
ation. There are however examples inwhi
h the existen
e of an atta
k relies on this ability:



Example 5. Consider the following \toy" example where an agent A sends ase
ret to an agent B:A! B : fA;B;Nagpub(B); fse
retgfA;A;Nagpub(B) :B is able to build the 
ompound key fA;A;Nagpub(B) and gets the se
ret. One
an show that Na will remain unknown to the intruder, thus fA;A;Nagpub(B) isunknown to the intruder unless A = B. Thus this proto
ol is 
awed only if anhonest agent sends a se
ret to herself.We are now 
onsidering expli
itly disallowing su
h self-
onversations betweenhonest agents. Still, a dishonest agent is enabled to speak with himself, whi
ha
tually does not bring any new information to the intruder (see remark 1 below).For, we add a predi
ate symbol Distin
t de�ned by the set of 
lauses:
C6= def=

8>>>><>>>>:
Distin
t(x; y);Ha(x);Ha(y)) Distin
t(sh(x); sh(y))Ha(x)) Distin
t(h; sh(x))Ha(x);Da(y)) Distin
t(x; y)Distin
t(x; y)) Distin
t(y; x)Da(x);Da(y)) Distin
t(x; y)The least Herbrand model of Distin
t 
onsists of pairs (skh(h); smd (d)),(smd (d); skh(h)), (smd (d); skd(d)) and (sih(h); sjh(h)) with i 6= j.We rede�ne the notion of an admissible 
lause and we introdu
e the de�nitionof proto
ol 
lauses:De�nition 5. A 
lause � is admissible if{ � does not 
ontain the symbols sh; sd,{ Distin
t o

urs only negatively in �.We 
an spe
ify that the sender a is distin
t from the (expe
ted) re
eiver bwith admissible 
lauses: it suÆ
es to add negative literals Distin
t(a; b). Notehowever that su
h a property is not expressible in e.g. the Millen-Rue� model.The proto
ol model HP is now the least Herbrand model of C 6= [ CP . All otherde�nitions are un
hanged.Remark 1. If we want to spe
ify that an agent is not allowed to speak withherself, even for dishonest agents, we 
an introdu
e a predi
ate Distin
t whosesemanti
 is exa
tly the pairs of distin
t agents. In this 
ase, an admissible 
lauseshould also verify that Distin
t o

urs at most on
e, whi
h is suÆ
ient to expressthat an agent is not allowed to speak to herself. In addition, the proto
ol hasto verify that the 
orresponden
e between two 
ompromised agents does notin
rease the intruder knowledge, whi
h is the 
ase of all \real" proto
ols ([7℄).This leads to a spe
i�
ation whi
h 
an be redu
ed to the above one.Our redu
tion result will now depend on the se
urity property under 
on-sideration: if the property � uses k distin
t agents variables then if there is anatta
k, there is an atta
k with (at most) k + 1 agents.



Theorem 2. Assume CP is an admissible set of 
lauses, whi
h does not 
ontainany variable of sort Ha and � is a purely negative admissible 
lause. If there isan atta
k on P for � using n agents, then there is an atta
k on P for � using atmost k+1 agents, where k is the number of variables of sort Ha o

urring in �.Note that disallowing variables of sort Ha in CP is not a real restri
tion. In-deed, the spe
i�
ation of the proto
ol itself (CD) should not distinguish betweenhonest and dishonest agents, while the spe
i�
ation of the intruder power (CI)should not give spe
i�
 knowledge depending on honest agent: either data (de-pending on agents) are known for all agents (like agent ids) or data are knownonly for 
ompromised agents (like private keys).Proof. We keep the notations of the proof of theorem 1. Again, we 
onsider asubset H0 of HP whi
h falsi�es �. As before, sin
e � is purely negative, we mayassume that H0 does not 
ontain any negative literal.Now, we let � be an instan
e of � whi
h is falsi�ed by H0. If x1; : : : xk arethe variables of sort Ha in �, we let sm1h (h); : : : ; smph (h) be the set fx1�; : : : ; xk�gwith m1 < : : : < mp (p � k). Next, we de�ne the proje
tion fun
tion as follows:8><>:f(t1; : : : ; tn) def= f(t1; : : : ; tn) If f(t1; : : : ; tn) is not of sort Ha or Dasmih (h) def= si�1h (h) For i = 1; :::; pt def= d OtherwiseAgain, we let H1 = fL j L 2 H0g and we are going to prove that H1 � HP andH1 falsi�es ��. This will 
on
lude the proof sin
e H1 will be an atta
k with p+1agents: d; h; sh(h); : : : ; sp�1h (h), p � k.A
tually, with the following lemma, the proof that H1 � HP is very mu
hthe same as in theorem 1:Lemma 2. If Distin
t(u1; u2) 2 FnP (;), then Distin
t(u1; u2) 2 FnP (;).Proof of lemma 2:We may assume n > 0. Let ti = xi�. Then there are three possible situations(let us re
all that Distin
t only o

urs positively in C 6=):{ if u1; u2 =2 ft1; : : : ; tkg, then using that the least Herbrand model of Distin
t
onsists of pairs (sk(h); sm(d)), (sm(d);sk(h)), (sm(d);sk(d)) and (si(h);sj(h))with i 6= j, we have that Distin
t(u1; u2) = Distin
t(d; d) 2 FP (;);{ if u12ft1; : : : ;tkg and u2 =2ft1; : : : ;tkg (or the 
onverse), then Distin
t(u1;u2)=Distin
t(sjh(h); d) (or Distin
t(d; sjh(h))), whi
h also belongs to FP (;);{ if u1; u2 2 ft1; : : : ; tkg: u1 = smih (h); u2 = smjh (h) with i 6= j, thenDistin
t(u1; u2) = Distin
t(sih(h); sjh(h)) 2 F jj�ijP (;). In this last 
ase, jj�ij �jmj �mij by 
onstru
tion, hen
e the result.End of the proof of lemma 2.As in theorem 1, we 
an now prove by indu
tion on nL that for any literalL 2 HP , L 2 HP : Distin
t literals are handled by lemma 2. We also need herethat there is no variable of sort Ha in the 
lauses, in order to ensure the well-sortedness of � (sin
e, now, for some terms t : Ha, t is no longer of sort Ha). �



Note that the bound k + 1 
an be rea
hed for some proto
ols P and someproperties �.Example 6. Let k � 2. Consider the following proto
ol, inspired from the Needham-S
hroeder publi
 key proto
ol. a1; : : : ; ak are variables of sort Agent.Let u =< a1; : : : ; ak >.InitializationFresh(t; s); T (t)) T ([st(a1; 1; u); s℄ � [st(a2; 1; a2); s℄ � � � � � [st(ak; 1; ak); s℄ � t)First message: A1 ! A2 : fA1; A2; : : : ; Ak; NA1gpub(A2), Ai 6= Aj , for i 6= j.T (t);Distin
t(ai; aj) i 6= jIn([st(a1; 1; u); s℄; t);NotPlayed(a1; 2; s; t)
9=;) T ( [fu; n1(a1; : : : ; ak; s)gpub(a2); s℄�[st(a1; 2; < u; n1(a1; : : : ; ak; s) >); s℄�t)Se
ond message: A2 ! A1 : fNA1 ; NA2gpub(A1)T (t);Distin
t(ai; aj) i 6= jI(fu; xgpub(a2); t)In([st(a2; 1; a2); s℄; t);NotPlayed(a2; 2; s; t)
9>>=>>;) T ( [fx; n2(a1; : : : ; ak; s)gpub(a1); s℄�[st(a2; 2; < u; n2(a1; : : : ; ak; s) >); s℄�t)Third message: A1 ! A2 : fNA2gpub(A2)T (t); I(fn1(a1; : : : ; ak; s); ygpub(a1); t)In([st(a1; 2; < u; n >); s℄; t);NotPlayed(a2; 3; s; t)

9=;) T ( [fygpub(a1); s℄�[st(a1; 3; < u; n; y >); s℄�t)where n = n1(a1; : : : ; ak; s).We 
ould also add some other rules to make the roles of a3; : : : ; ak less �
titious.We 
onsider the property:� = :Ha(x1) _ : : : _ :Ha(xk) _ :I(n2(x1; : : : ; xk; s); t):Then, following the Lowe atta
k, there is an atta
k on �, using k + 1 agent ids.Let us sket
h why every atta
k on � uses at least k+1 agent ids. Assume there isan atta
k, then there exist t; s; a1; : : : ; ak su
h that I(n2(a1; : : : ; ak; s); t) 2 HPwhere HP is the least Herbrand model and a1; : : : ; ak are honest agents. Sin
ea2 produ
es n2(a1; : : : ; ak; s) only if Distin
t(ai; aj) for i 6= j holds and sin
ea1; : : : ; ak are honest agents, we have that a1; : : : ; ak are distin
t. In addition,if no dishonest identity is used, then the intruder 
annot de
rypt any messagethus he 
an not obtain n2(a1; : : : ; ak; s). Consequently, at least one 
ompromisedidentity has been used, thus at least k+1 identities have been used for the atta
k.3.3 ExtensionsTheorems 1 and 2 assume that � is purely negative whi
h is ne
essary a

ordingto Example 4.



We have seen in se
tion 2.5 that su
h a restri
tion to negative propertiesis not a problem for se
re
y. On the other hand, authenti
ation is naturallyexpressed as:T (t) _ :Ha(x) _ :Ha(y) _ :I(m(x; y; s); t) _ In([st(x;m(x; y; s)); s℄; t)whi
h involves a positive literal. However, it is still possible to handle su
hproperties. Let us extend the de�nition of admissible properties to a 
lass whi
hen
ompasses authenti
ation and se
re
y properties.De�nition 6. A se
urity property � is admissible if � is of the formC _ In(u1; t1) _ � � � _ In(un; tn);where C is a purely negative 
lause, the ti's are variables of sort Tra
e and theui's are terms with variables of sort Num or Ha. In addition � must still verifythat:{ it does not 
ontain the symbols sh; sd,{ if a ground subterm of some ui is of sort Agent then it is of sort Ha.Then we 
an redu
e su
h a 
ase to the purely negative 
ase and we get:Theorem 3. Assume that CP is an admissible set of 
lauses, whi
h does not
ontain any variable of sort Ha, � is an admissible se
urity property, then ifthere is an atta
k on P for � using n agents, there is an atta
k on P for � usingat most k + 1 agents, where k is the number of variables of sort Ha o

urringin �.For instan
e, 3 agents are suÆ
ient if we 
onsider the above-spe
i�ed authen-ti
ation property.Proof sket
h:For every positive literal L = In(ui; ti) o

urring in �, we 
onstru
t a set of Horn
lauses CL de�ning a predi
ate eL and su
h that:{ the least Herbrand model HP;� of CP [ C 6= [SL CL 
ontains HP ;{ for every (well sorted) ground substitution �, HP 6j= L� i� HP;� j= eL�;{ the new set of 
lauses CP [SL CL is admissible.We �rst 
onstru
t CL using the 
omplementation te
hniques, whi
h yields a def-inition of the predi
ates negations (see e.g. [4, 8℄). Let xi1; : : : ; xin be the variablesof ui. The set of 
lauses CL is de�ned by: ) eL(xi1; : : : ; xin;?)eL(xi1; : : : ; xin; t);Di�(ui; y)) eL(xi1; : : : ; xin; y � t)These 
lauses satisfy the above two �rst 
onditions. However, they make use ofa predi
ate symbol Di�, whose semanti
s is the set of pairs of distin
t terms,and the de�nition of Di� is not admissible. Then, we remove 
lauses de�ningDi� whi
h are not admissible, and repla
e negative literals :Di�(x; y) where x; yare of sort Agent with :Distin
t(x; y). The resulting 
lauses satisfy the threeabove 
onditions sin
e the semanti
s for the new de�nition of Di�, restri
ted toinstan
iations of pairs (ui; y), is still a set of pairs of distin
t terms. �



4 Con
lusionsWe have shown that it is possible to restri
t the number of agents without lossof generality: se
urity properties whi
h fail in an unbounded network, also failin a small limited network. This does not assume any property of the proto
ols.To prove a se
urity property for some proto
ol P , it is therefore suÆ
ient to
onsider �nitely many instan
es of the roles of P , typi
ally 2n where n is thenumber of roles in P (or (k+1)n if we don't allow an agent to be both the senderand the re
eiver of a message). These numbers are small sin
e n = 2 for mostproto
ols (sometimes n = 3). They 
an be further lowered sin
e sessions onlyinvolving dishonest agents are not relevant.This redu
tion result also provides with a de
ision result if we assume apassive atta
ker, i.e. an atta
ker who may only analyze the messages sent on thenet but who 
annot forge and send new messages. Indeed, in the presen
e of su
han atta
ker (or eavesdropper), we 
an also assume that an agent 
annot 
onfusemessages from di�erent sessions: it suÆ
es to label the messages by a sessionnon
e and the rule number (whi
h is often the 
ase for implemented proto
ols).Thus there is no need to 
onsider interleaving of sessions. In addition, given aset of messages S and a message m, de
iding whether the intruder may dedu
em from S is in PTIME (side result of [1℄). Sin
e our redu
tion result ensures thatonly a �nite number of agents have to be 
onsidered, we 
on
lude that se
re
yis de
idable in EXP(n)� PTIME where n is the number of roles of the proto
ol.A
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