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Abstract. We consider arbitrary cryptographic protocols and security
properties. We show that it is always sufficient to consider a bounded
number of agents b (actually b = 2 in most of the cases): if there is an
attack involving n agents, then there is an attack involving at most b
agents.

1 Introduction

The task of automatically verifying cryptographic protocols has now been un-
dertaken by several research groups, because of its relevance to secure internet
transactions. Let us cite for instance (this is far from being exhaustive): CAPSL
[13], CASRUL/Datac [19], casper/FDR [26].

Though cryptographic protocols are often described in a concise way (see
e.g. [7]), the verification problem is difficult for two reasons:

1. The number of agents potentially using the protocol is unbounded, as well
as the number of protocol sessions.
2. The size of messages which can be forged by an intruder is also unbounded.

And, in fact, even for simple properties such as secrecy and for subclasses of
protocols, the verification problem is undecidable (see e.g. [15, 14,9, 2]).

The verification tools have either to assume stronger properties on the pro-
tocols (e.g. [20,10,27,2]) or to consider a bounded number of sessions (hence a
bounded number of agents) only [3,25,16,22], in which case the security prob-
lem becomes co-NP-complete [25]. Yet another solution is to consider an upper
approximation of the set of execution sequences, in such a way that, when no
attack is found on this upper approximation, then there is no attack on the
protocol. This is typically the approach of [6,5].

In this paper, we consider a simple reduction, which works for any protocols
and security properties typically considered for automated verification. We show
that it is always sufficient to consider a bounded number of agents b (actually
b = 2; we will discuss this point later): if there is an attack involving n agents,
then there is an attack involving at most b agents. Such a result is useful for
automatic tools: we may forget the universal quantifications on agents ids and
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consider finitely many (4 most of the time) instances of the protocol roles, with-
out loosing information. This proves actually that the instanciation techniques
in [19] are complete. This also provides completeness results for abstraction used
in [6,23]. Of course, the verification problem will remain undecidable, because
we cannot faithfully give a bound on the number of sessions. Still, approximation
techniques such as [5, 6] can be simplified and when considering a bounded num-
ber of sessions we may assume w.l.o.g. that only these b agents are involved. This
reduction result also provides with a decision result for cryptographic protocols
against a passive intruder.

Our result extends and clarifies a side result of [18]. Indeed, J. Heather and
S. Schneider chow that one may consider only four agents (three honest, one
dishonest) using implicitly that an agent may talk to herself. We prove actually
that in J. Heather and S. Schneider case, only two agents are sufficient. In
addition, our reduction result holds for more general security properties and
also holds when an agent is disallowed to speak with herself.

The proof of our result is not difficult, once the protocol and its properties are
expressed as Horn clauses: given an attack against a security property, we simply
project every honest identity on one single honest identity and every dishonest
identity on one single dishonest identity. Actually, the result can be stated for
a class of Horn clauses, which encompasses protocols descriptions. Everybody
has her (his) favorite model. We do not argue that the Horn clause model is
better than others. It is simply more convenient for our proof and we claim that
most other models can be reduced to this one, hence our reduction also applies
to other models of cryptographic protocols. In order to support this claim, we
provide (in [11]) with a reduction of the Millen-Ruefl model [21] to Horn clauses.
We hope that this will provide with enough evidence that the reduction result
works for other models as well. (It is not possible to show in detail all reductions
from other models to Horn clauses).

Our paper is organized as follows. We introduce our model in section 2. A
more detailed definition can be found in [11]. In section 3.1 we prove that, if there
is an attack involving n agents, then there is an attack involving at most 2 agents,
besides the constant agents which might be used in the protocol description. In
other words, we show that we have to consider only instances of the roles in a
two-element sets. This result assumes however that the same agent may play
different roles in a given protocol session: “an agent may talk to herself”. Most
of the models do not discard this ability. However, it may be considered as more
realistic that an agent cannot play several roles in the same session. Some models
[24, 20] explicitly disallow this possibility. That is why we consider in section 3.2
models in which an agent cannot talk with herself. We prove in this case that, if
there is an attack involving n agents, then there is an attack involving at most
k + 1 agents where k is the number of roles in the protocol.



2 The model

We define a trace model by means of Horn clauses, in which terms are messages.
A similar representation can also be found in [5] for instance. The important
feature is that we only use Horn clauses, which contain at least one positive
literal. Hence there is a least Herbrand model H, which is the intended trace
semantics: the possible traces are the member of T%, the interpretation of the
unary predicate T in H.

Clauses come in two parts: the first part is protocol independent and the
second part is protocol specific. It is a bit lengthy to describe the two parts in
details: we will only show here examples and the less standard constructions.
The reader is referred to [11] for more details.

2.1 Messages and traces

The set of messages is the set of (ground) terms built over a set of function
symbols F and basic sorts: Num, Agent, Ha, Da, Message, Event, Trace. F contains
the following function symbols:

0: — Num n; : Agentki, Num — Message
s : Num — Num st : Agent, Num, Message — Event
h: — Ha L: — Trace
d: — Da [.,]--: Event,Num, Trace — Trace
sp . Ha— Ha sTU; — Agent

sq: Da— Da

Terms of sort Agent are called agents. All other symbols, including the classical
cryptographic primitives for building keys, encryption and pairs take messages as
arguments and return a message. This set of cryptographic primitives is denoted
by:
}—msg = {< - = >7 {—}_7 pUb(—)a prv(_), Shr(—)}'

In addition, we may have e.g. hash function symbols.

We also assume that every agent is a message and every message is an event;
we have the subsort relations Agent < Message < Event, Ha < Agent and Da <
Agent. Let us comment a little bit:

— Num is only used for internal representations of session numbers, nonces...
It is important to provide with one representation since we will consider
Herbrand models. However, such a representation is irrelevant in what fol-
lows. In particular, neither the intruder nor the agents have access to this
representation.

— There are two non-standard sorts Da, Ha. The terms of these sorts are re-
spectively s%(d) and s¥(h) and are intended to represent compromised and
honest agents respectively. Again, this is for internal representation only. Of
course, this distinction is never used in the protocol description. It is however
necessary in the protocol property definition: typically, we want to state that
a secret shared by honest agents remains unknown to the intruder, hence we
need a way to express that an agent is honest.



— srv; are intended to be server names.

— n; is a collection of function symbols, which are used to represent nonces
(randomly generated data): n; is intended to take as arguments some agent
ids (who generates the nonce and who are supposed to receive the nonce)
and a session number. 7 is intended to be the protocol step. Note that we
may also consider a single symbol n with an additionnal argument i. Then
n; () is simply a notation for n(i, ).

— st is intended to represent the local state of an agent. Events will consist of
either sending a message or increasing a local memory. Traces are sequences
of pairs of an event and a session number.

— We do not assume any a priori typing of messages (there is no a priori way
to distinguish between a nonce and a pair for instance), though any such
policy could be specified at the protocol description level.

By abuse of notation, we will sometimes write e.g. 2 instead of s(s(0)), < =, y,z >
instead of < z,< y,z >>, or {z,y}. instead of {< z,y >}..

We will sometimes use unary predicate symbols instead of sort names in order
to explicitly state the sort of a variable. For instance, we may write Agent(z),
expressing that = is of sort Agent (other authors use the notation x : Agent).
Such unary predicate symbols can only be used with variable arguments.

2.2 Protocol independent clauses

We sketch here and in the following section how to design a set of Horn clauses
defining valid traces. We also show in [11] that this is a reasonable definition
since other models can be reduced to this one.

Agent(z) = I(z.t) The intruder knows all agents ids.

The intruder knows all keys of com-
Da(z) = I(prv(z).1) promised agents.

I(xz,t) = I(pub(z),t) The intruder knows all public keys.

The intruder can encrypt a known

I, 1), Iy t) = I({z}y, 1) message with a known key.

The intruder can retrieve the clear text
I({z}she(y)» 1), I(shr(y), t) = I(x,t) of a message encrypted with a known
symmetric key.

All messages sent through the network

T(z,s]-t) = I(x,[z,s] -t
([x,s]-t) (z, [w,s] - 1) are available to the intruder.

The intruder remembers a message

I(z,t) = I(z,y -t
(x,t) (@.y-1) whatever is added to the trace.

Fig. 1. Some of the clauses defining



We use a binary predicate symbol I to describe the intruder knowledge. I
takes two arguments: a message m and a trace t; I(m,t) means that message m
is known to the intruder after executing ¢. Some typical clauses defining I are
displayed on figure 1. There are other clauses for e.g. (un)pairing.

Protocol independent clauses will also contain the definition of some auxiliary
predicates, which will be described when needed as well as the clause T'(.1),
which states that the empty trace is a trace. How to continue a trace is protocol-
dependent.

2.3 Protocol dependent clauses

We sketch here how to define the set of valid traces T on the Yahalom protocol.
In this section, a,b will stand for variables of sort Agent, z,y, z for variables of
sort Message, s, t and e for variables of sort respectively Num, Trace and Event.

A— B:A N,

B — S: B,{A, Na, Ny }sne(B)

S = A {B, Kapy Nay Ny babw(a)s {As Kb Yohe( )
A= B:{A Ku}lshe(n) { Vo) K.,

We first state that, at any point, we may start a new session of the protocol
assigning roles to any of the agents. This is expressed by:

Fresh(t, s), T(t) = T( [st(a,1,< a,b, srv >), s]
[st(b, 1, < b, sTv >), 9]
[st(srv, 1, srv), s] - t)

Fresh is an auxiliary predicate (defined in figure 2), which holds when the number
s is larger than any number occurring in {. Then the trace ¢ can be extended
accordingly.

Now, if a has started session s, and if she has not already sent the first
message of this session, she can do it, hence extending the trace, and moving to
stage 2 for this session:

T(t), T([< a,ni(a,s) >,s]
In([st(a,1,< a,b,srv >),s],t), p = [st(a,2,< a,b, srv,nq(a,b,s) >),s]
NotPlayed(a, 2, s, t) 1)

This uses the auxiliary predicates In and NotPlayed which are intended to be re-
spectively the membership test on traces and a test that this step has not already
been completed for the same session (see figure 2 for complete definitions).
Finally, let us describe how the last step of the protocol is translated: we
require a to have completed the first step and assume that she receives a message
of the expected form. This message may be forged by the intruder: we do not
include receive events in the trace since messages that are possibly received are



Definition of Sup: Num(z) = Sup(s(z),0)
Sup(z, y) = Sup(s(x), s(y))
Definition of Fresh: = Fresh(L, s)
Fresh(t, s), Sup(s,s’) = Fresh([e, s'] - ¢, s)

Definition of In: Trace([e, s] - t) = In([e, 5], [e, s] - t)
In(z,t) = In(z, [e, s] - 1)

Definition of NotPlayed:

= NotPlayed(a, i, s, L)
NotPlayed(a, 4, s, t), Sup(s,s’) = NotPlayed(a, i, s, [e, s'] - t)
NotPlayed(a, , s, t),Sup(s’, s) = NotPlayed(a, i, s, [e, s'] - t)
NotPlayed(a, i, s, t), Sup(i, j) = NotPlayed(a, i, s, [st(a,j,m), s] - t)

Fig. 2. Definitions of the auxiliary predicates

identical to messages that can be forged by the intruder.

T(t),

NotPIayed(([CTLIl?)7 2’37 = T([< 2,{y}s >, 5] - [ua, s] - t)

I(< {ba €, nl(aa ba S)a y}shr(a,) V2>, )

where uy = st(a,2,<a,b,srv,ny(a,b,s)>) and ug = st(a,3,<a,b,srv,nq(a,b,s),x>).

2.4 The model

Now, we assume defined the sets of Horn clauses Cy,Cp for the protocol inde-
pendent clauses and the protocol dependent clauses. For a protocol P, we let Cp
be C; UCp. We assume that Cp does not contain negative clauses (i.e. we only
specify what is possible). Then Cp has a least Herbrand model H p.

Definition 1. A valid trace for the protocol P is a member of the interpretation
of T in Hp.

2.5 Attacks

Let ¢ be the security property that we want to check. We assume that ¢ can be
expressed as a clause using the primitives described in previous sections. This is
not a strong restriction since, at least the trace properties can be expressed in
this way (and possibly other properties which relate different traces), as shown
by the following examples.



Ezample 1. We can express that u(z,y, s) (or u(x,y) if we want to express the
secrecy of a constant data) is a (long term) secret shared by x and y by:

(Vt,@,y,s).=T(t) vV —~Ha(z) V ~Ha(y) V =I(u(z,y, s).1)

which means that, in any trace ¢, if x and y are honest agents, then u(z,y, s) is
unknown to the intruder.

Ezample 2. We can express that u(z, y, s) is a short term secret. I does not know
u(x,y,s) as long as session s is not completed:

(Vt,z,y,8).~T(t) Vv —-Ha(z) Vv =Ha(y) V =T (u(z,y, s),t) V —=NotPlayed(z, 3, s, t).

If we assume that the last message of the protocol is sent by = then we express
here that, in any trace t, if x and y are honest agents, then u(x,y, s) is unknown
to the intruder unless the session is already completed.

Ezample 3. We can express an authentication property: if « receives the message
m(z,y, ), then it has been sent previously by y: (Vt,z,y,s)

=T(t) V —Ha(z) V —Ha(y) V ~I(m(x,y, s),t) V In([st(y, m(z,y, s)), 8], t).
Definition 2. A protocol P satisfies a property ¢ iff Hp = ¢.

Dually, there is an attack when Hp [~ ¢. In such a case (by compactness),
there is a finite subset Hg of Hp such that Hy £ ¢:

Definition 3. An attack on P for ¢ is a finite subset Ho of Hp such that
Ho = &. Ho is an attack with n agents if there are at most n distinct terms of
sorts Agent in Hy.

For instance, if the property ¢ is a “trace property”, Ho may contain a single
predicate T'(t) where ¢ is a finite trace which violates the property.

2.6 Relevance of the model

The model we present here is actually an extension of the Millen-Ruefi model [21,
12] (hereafter referred to as the MR model), expressed in Horn clauses. The MR
model is itself inspired from Paulson’s model [24] and from the strand spaces [28].
Formally, we proved in [11] that for each protocol of the MR model, we can
associate a finite set of Horn clauses Cp and a finite set of purely negative
clauses @p such that P is insecure if and only if there is an attack on Cp for
some ¢ € Pp.



3 Reduction to a fixed number of agents

3.1 From n agents to 2 agents

We show that if there is an attack with n agents, then an attack with 2 agents
can be constructed: given an attack using n agents, we project every honest iden-
tity on one single honest identity and every dishonest identity on one dishonest
identity. Then we obtain a valid attack using only two agents. This projection
uses the fact that our model allows an agent to speak to herself, which is the
case of most of the models for cryptographic protocols [21,28,17,5, 14, 3]. How-
ever, a similar result holds even if an agent is disallowed to speak to herself (see
subsection 3.2). We also consider here purely negative properties, which easily
encompasses secrecy, but does not encompass authentication in a natural way.
We will discuss this in section 3.3.

We emphasize that our result holds for all models of protocols which do not
make use of our internal representation of agents ids. More precisely:

Definition 4. A set of clauses C is admissible if it does not use the symbols
Shy8q- A clause is said purely negative if it only contains negative literals.

The clauses which were proposed in the previous sections are admissible.
Furthermore, any protocol specification can not use our particular representation
of names, hence it is always represented as an admissible set of clauses.

Theorem 1. Let Cp be an admissible set of clauses. Let ¢ be a purely negative
admissible clause. If there is an attack of P for ¢, using n agents, then there is
an attack using (at most) two agents.

Proof. We first introduce some notations. Let M be the set of messages, 7 be the
set of all positive ground literals, and X, be the set of mappings from variables
to ground terms, which are compatible with the sort constraints.
Given a Horn clause ¢ = By (x), ..., By () = A(x) where By (z), ..., B,(x), A(x)
are positive literals whose free variables are contained in «, and a subset S of
T, we define ¢(S) as follows:

o(S) ¥ {A(z)o | 0 € X,.Vi, Bi(z)o € S}.

Then, the immediate consequence relation Fe is the mapping from 27 to 27

defined by: .
Fe(S)EsulJels).
ceC
For simplicity, we will write Fip for the mapping F¢,, .
It is well-known that the set of positive literals ’H;; of the least Herbrand
model Hp is the least fixed point of Fp:
+oo

Hp =] FEO)

k=1

For every L € Hy there is a minimal index ny, such that L € Fp*(0).



We define now the projection function: we map every honest agent to h and
every dishonest agent to d : for every literal L, let L be the literal L in which
every maximal subterm of sort Ha is replaced with h and every maximal subterm
of sort Da is replaced with d:

Tt b)) S F@, .5 TEf ¢ {sn,sq)
sn(t)
sa(t) 2 d

Our proof relies on the following lemma which ensures that if a positive literal
is in H p then its projection is also in Hp.

Lemma 1. Let L be a positive literal of Hp, then L is in Hp.

This is prove by induction on ny. If ny, = 0, there is no literal such that ny =0
thus there is nothing to prove.

Suppose the property true for n; < n and consider a positive literal L of Hp
such that n;, = n+ 1. There exists a clause ¢y, and positive literals Ly,..., L €
H; such that L € ¢, ({L1,...,Lr}) withng, <n for all 1 <i < k. By induction
hypothesis, Ly, ..., L, € HE. In addition, cr, is on the form By (z),..., By(x) =
A(x) | C with L = A(x)o, L; = Bi(x)o for some o € X . Since ¢ is an
admissible clause, it does not contains the symbols s, and s4 thus L = A(x)&
and L; = By(z)o. Hence L € cr,({L1,... L) and L € HE.

We are now ready to complete the proof. Assume that #Hg is a finite subset
of Hp such that Ho = ¢. Since ¢ is assumed to be purely negative, we may
assume w.l.o.g. that H, only contains positive literals.

Let Hy = {L | L € Ho}. The set H; is still finite and, by lemma 1, H,; C Hp.
Let us show that H; [~ ¢. Let ¢o an instance of ¢ falsified by Ho. Then ¢o is
falsified by H;. Since ¢ is an admissible clause ¢o = ¢7, thus H; [~ ¢. O

Actually, this theorem does not hold when ¢ may contain positive literals.

Exzample 4. Let Cp be: Da(z) = A(x,y)
Da(y) = A(z,y)
= Az, x)

and ¢ be A(z,y). —A(h, sp(h)) is an attack and there is no attack with a single
honest agent.

We will consider in section 3.3 an extension of theorem 1 for formulas con-
taining positive literals.

3.2 Disallowing an agent to speak with herself

In the last section we used the ability for an agent to speak with herself, which
was not explicitly ruled out by the specification. There are however examples in
which the existence of an attack relies on this ability:



Ezxample 5. Consider the following “toy” example where an agent A sends a
secret to an agent B:

A— B: {A, B, Na}pub(B)a {SCCT’et}{A7A7N”}pub(B)

B is able to build the compound key {A, A, N, },up(5) and gets the secret. One
can show that N, will remain unknown to the intruder, thus {4, A, Ny }oub(B) is
unknown to the intruder unless A = B. Thus this protocol is flawed only if an
honest agent sends a secret to herself.

We are now considering explicitly disallowing such self-conversations between
honest agents. Still, a dishonest agent is enabled to speak with himself, which
actually does not bring any new information to the intruder (see remark 1 below).
For, we add a predicate symbol Distinct defined by the set of clauses:

Distinct(z, y), Ha(x), Ha(y) = Distinct(sy (), sn(y))

Ha(x) = Distinct(h, sp(z))
c, Ha(z), Da(y) = Distinct(z, y)
D|st|nct(x,y) = Distinct(y, z)
Da(x), Da(y) = Distinct(x,y)

The least Herbrand model of Distinct consists of pairs (s (h), sm(d)),
(st (d). sk (h), (s(d), s5i(d)) and (s} (h), s} (k) with i # j.

We redefine the notion of an admissible clause and we introduce the definition
of protocol clauses:

Definition 5. A clause ¢ is admissible if

— ¢ does not contain the symbols sy, s4,
— Distinct occurs only negatively in ¢.

We can specify that the sender « is distinct from the (expected) receiver b
with admissible clauses: it suffices to add negative literals Distinct(a, b). Note
however that such a property is not expressible in e.g. the Millen-Ruefi model.
The protocol model Hp is now the least Herbrand model of C. U Cp. All other
definitions are unchanged.

Remark 1. If we want to specify that an agent is not allowed to speak with
herself, even for dishonest agents, we can introduce a predicate Distinct whose
semantic is exactly the pairs of distinct agents. In this case, an admissible clause
should also verify that Distinct occurs at most once, which is sufficient to express
that an agent is not allowed to speak to herself. In addition, the protocol has
to verify that the correspondence between two compromised agents does not
increase the intruder knowledge, which is the case of all “real” protocols ([7]).
This leads to a specification which can be reduced to the above one.

Our reduction result will now depend on the security property under con-
sideration: if the property ¢ uses k distinct agents variables then if there is an
attack, there is an attack with (at most) k + 1 agents.



Theorem 2. Assume Cp is an admissible set of clauses, which does not contain
any variable of sort Ha and ¢ is a purely negative admissible clause. If there is
an attack on P for ¢ using n agents, then there is an attack on P for ¢ using at
most k+ 1 agents, where k is the number of variables of sort Ha occurring in ¢.

Note that disallowing variables of sort Ha in Cp is not a real restriction. In-
deed, the specification of the protocol itself (Cp) should not distinguish between
honest and dishonest agents, while the specification of the intruder power (Cy)
should not give specific knowledge depending on honest agent: either data (de-
pending on agents) are known for all agents (like agent ids) or data are known
only for compromised agents (like private keys).

Proof. We keep the notations of the proof of theorem 1. Again, we consider a
subset Hg of Hp which falsifies ¢. As before, since ¢ is purely negative, we may
assume that Hy does not contain any negative literal.

Now, we let 6 be an instance of ¢ which is falsified by Hg. If zq,...xz are
the variables of sort Ha in ¢, we let s)"* (h),..., s, "(h) be the set {210,... 2,0}
with my < ... <m, (p <k). Next, we define the projection function as follows:

ftr, o ytn) = f(t1,. .. tn) If f(t1,...,tn) is not of sort Ha or Da
ST (h) L s (n) Fori=1,...p
79y Otherwise

Again, we let H; = {L | L € H,} and we are going to prove that #; C Hp and
H, falsifies ¢f. This will conclude the proof since #; will be an attack with p+1
agents: d, h, sp(h),..., sfl_l(h), p<k.

Actually, with the following lemma, the proof that H; C Hp is very much
the same as in theorem 1:

Lemma 2. If Distinct(u1,u2) € Fp(0), then Distinct(uq, us) € Fp(0).

Proof of lemma 2:
We may assume n > 0. Let t; = x;0. Then there are three possible situations
(let us recall that Distinct only occurs positively in C.):

— if uy,ug ¢ {t1,...,t;}, then using that the least Herbrand model of Distinct
consists of pairs (s*(h), s™(d)), (s™(d),s*(h)), (s™(d),s*(d)) and (s%(h),s? (h))
with 7 # j, we have that Distinct(uy, uz) = Distinct(d, d) € Fp(0);

— ifuy €{ts,... tp} and ua € {t1,... tx} (or the converse), then Distinct(uy,uz)=
Distinct(s7 (h),d) (or Distinct(d, s},(h))), which also belongs to Fp(0);

— if uy,ug € {t1,.... tx}: ug = 83 (h),up = s, 7 (h) with i # j, then
Distinct(u1, u2) = Distinct(s} (h), s?l(h)) € Fgﬂ‘(@). In this last case, [j—i| <
|m; — m;| by construction, hence the result.

End of the proof of lemma 2.

As in theorem 1, we can now prove by induction on nj that for any literal
L € Hp, L € Hp: Distinct literals are handled by lemma 2. We also need here
that there is no variable of sort Ha in the clauses, in order to ensure the well-
sortedness of & (since, now, for some terms ¢ : Ha, ¢ is no longer of sort Ha). O



Note that the bound & 4+ 1 can be reached for some protocols P and some
properties ¢.

Ezxample 6. Let k > 2. Consider the following protocol, inspired from the Needham-

Schroeder public key protocol. aq, ..., a are variables of sort Agent.
Let u=<ay,...,ax >.
Initialization
Fresh(t, s), T(t) = T([st(a1,1,u),s] - [st(az,1,a2),s] - [st(ag, 1,ax),s] 1)

First message: A; — Ay : {41, Ag, ..., Ap, Na, pun(a,), Ai # Aj, for i # j.

T(t),Distinct(a;. aj) i #j T( {u,n1(ay, ..., ak,5)}publas): 5
In([st(a1,1,u),s],t), p = [st(a1,2, < u,ni(a,...,ax,s) >), s
NotPlayed(a, 2, s, 1) ‘1)

Second message: Ay — A1 : {Na,, Na, bpub(as)

T(t), Distinct(a;,a;) i #j T( s na(ars . . an. )} pabiary; 5]

I({uax}pub(a ),t)

2 = -|st(ag, 2, < u,na(ay,...,ax,s) >),s
In([st(ax.1,a2). 5].1). e 2(ar, s ax,s) >)
NotPlayed(as, 2, s, t)

Third message: A; — Ay : {Na, }pub(a,)

T(f)v I({’I’I/l((l,l, <oy Ak, S)-, y}pub(al) ) f) T( [{y}pub(al)v S]
In([st(a1,2, < u,n >),s),t), p = [st(ar,3, < u,n,y >), s
NotPlayed(as, 3, s, ) 1)
where n = ny(ay,...,ax,s).
We could also add some other rules to make the roles of as, . .., ay less fictitious.

We consider the property:
¢ =—-Ha(zy) V...V -Ha(zy) vV -I(n2(x1,..., 2k, $),t).

Then, following the Lowe attack, there is an attack on ¢, using k& + 1 agent ids.
Let us sketch why every attack on ¢ uses at least k+ 1 agent ids. Assume there is
an attack, then there exist ¢, s, a1, ..., a; such that I(ns(a,...,ax,s),t) € Hp
where Hp is the least Herbrand model and aq,...,a; are honest agents. Since
ay produces ns(ai,...,ax,s) only if Distinct(a;,a;) for i # j holds and since
ay,...,ap are honest agents, we have that ay,...,a; are distinct. In addition,
if no dishonest identity is used, then the intruder cannot decrypt any message
thus he can not obtain na(ay, .. ., ag, s). Consequently, at least one compromised
identity has been used, thus at least k41 identities have been used for the attack.

3.3 Extensions

Theorems 1 and 2 assume that ¢ is purely negative which is necessary according
to Example 4.



We have seen in section 2.5 that such a restriction to negative properties
is not a problem for secrecy. On the other hand, authentication is naturally
expressed as

-T(t) vV —Ha(z) v —Ha(y) V =~ I(m(x,y,s),t) V In([st(x,m(z,y,s)), s],t)

which involves a positive literal. However, it is still possible to handle such
properties. Let us extend the definition of admissible properties to a class which
encompasses authentication and secrecy properties.

Definition 6. A security property ¢ is admissible if ¢ is of the form
cv |n(U1, tl) V-V In(un,tn),

where C' is a purely negative clause, the t;’s are variables of sort Trace and the
u;’s are terms with variables of sort Num or Ha. In addition ¢ must still verify
that:

— it does not contain the symbols sy, Sq,
— if a ground subterm of some u; is of sort Agent then it is of sort Ha.

Then we can reduce such a case to the purely negative case and we get:

Theorem 3. Assume that Cp is an admissible set of clauses, which does not
contain any wvariable of sort Ha, ¢ is an admissible security property, then if
there is an attack on P for ¢ using n agents, there is an attack on P for ¢ using
at most k + 1 agents, where k is the number of variables of sort Ha occurring
m Q.

For instance, 3 agents are sufficient if we consider the above-specified authen-
tication property.
Proof sketch:
For every positive literal I = In(u;,t;) occurring in ¢, we construct a set of Horn
clauses (', defining a predicate L and such that:

— the least Herbrand model Hp,4 of Cp UC, U|J; Cr contains Hp;

— for every (well sorted) ground substitution o, Hp & Lo iff Hpg = Lo
— the new set of clauses Cp UJ, Cf is admissible.

We first construct C'f, using the complementation techniques, which yields a def-
inition of the predicates negations (see e.g. [4,8]). Let 2%, ..., 2, be the variables
of u;. The set of clauses C', is defined by:

= L(z%,...,20, 1)

E(m%,...,m;,t), Diff(u;, y) = Z(xﬁ, . ,x;,y - t)

These clauses satisfy the above two first conditions. However, they make use of
a predicate symbol Diff, whose semantics is the set of pairs of distinct terms,
and the definition of Diff is not admissible. Then, we remove clauses defining
Diff which are not admissible, and replace negative literals —Diff(x, y) where z, y
are of sort Agent with —Distinct(z,y). The resulting clauses satisfy the three
above conditions since the semantics for the new definition of Diff, restricted to
instanciations of pairs (u;,y), is still a set of pairs of distinct terms. O



4 Conclusions

We have shown that it is possible to restrict the number of agents without loss
of generality: security properties which fail in an unbounded network, also fail
in a small limited network. This does not assume any property of the protocols.

To prove a security property for some protocol P, it is therefore sufficient to
consider finitely many instances of the roles of P, typically 2 where n is the
number of roles in P (or (k+1)" if we don’t allow an agent to be both the sender
and the receiver of a message). These numbers are small since n = 2 for most
protocols (sometimes n = 3). They can be further lowered since sessions only
involving dishonest agents are not relevant.

This reduction result also provides with a decision result if we assume a
passive attacker, i.e. an attacker who may only analyze the messages sent on the
net but who cannot forge and send new messages. Indeed, in the presence of such
an attacker (or eavesdropper), we can also assume that an agent cannot confuse
messages from different sessions: it suffices to label the messages by a session
nonce and the rule number (which is often the case for implemented protocols).
Thus there is no need to consider interleaving of sessions. In addition, given a
set of messages S and a message m, deciding whether the intruder may deduce
m from S is in PTIME (side result of [1]). Since our reduction result ensures that
only a finite number of agents have to be considered, we conclude that secrecy
is decidable in EXP(n) x PTIME where n is the number of roles of the protocol.

Acknowledgments : We would to thank Michael Périn and anonymous referees
for their helpful comments.
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