
Security properties: two agents are sufficient

Hubert Comon-Lundh and Véronique Cortier⋆⋆

Laboratoire Spécification et Vérification, CNRS, INRIA
Ecole Normale Supérieure de Cachan,
{comon,cortier}@lsv.ens-cachan.fr

Abstract. We consider an important family of cryptographic protocols
and a class of security properties which encompasses secrecy and au-
thentication. We show that it is always sufficient to consider a bounded
number of agents b (b = 2 for secrecy properties for example): if there is
an attack involving n agents, then there is an attack involving at most b

agents.

1 Introduction

The task of automatically verifying cryptographic protocols has now been un-
dertaken by several research groups, because of its relevance to secure internet
transactions. Let us cite for instance (this is far from being exhaustive): CAPSL
[15], CASRUL/Datac [21], casper/FDR [29].

Though cryptographic protocols are often described in a concise way (see
e.g. [8]), the verification problem is difficult for two reasons:

1. The protocol descriptions contain free variables called roles, which may be
instantiated by any identities thereafter called agents. A protocol may be
executed several times: we get several protocol sessions. Both the number of
agents and the number of sessions are unbounded.

2. We assume the presence of an attacker which may record and analyze the
messages sent through the net and which may forge and send new messages.
The size of messages which can be forged by an intruder is also unbounded.

And, in fact, even for simple properties such as secrecy and for subclasses of
protocols, the verification problem is undecidable (see e.g. [17, 16, 10, 3]).

The verification tools have either to assume stronger properties on the pro-
tocols (e.g. [23, 11, 30, 3]) or to consider a bounded number of sessions (hence a
bounded number of agents) only [4, 28, 18, 25], in which case the security prob-
lem becomes co-NP-complete [28]. Yet another solution is to consider an upper
approximation of the set of execution sequences, in such a way that, when no
attack is found on this upper approximation, then there is no attack on the
protocol. This is typically the approach of [7, 6].

In this paper, we consider a simple reduction, which works for any protocols
and security properties typically considered for automated verification. We show

⋆⋆ Partially supported by INRIA project SECSI and RNTL project EVA.

that it is always sufficient to consider a bounded number of agents b (actually
b = 2 for secrecy properties; we will discuss this point later): if there is an attack
involving n agents, then there is an attack involving at most b agents. Such a
result is useful for automatic tools: we may forget the universal quantifications
on agent ids and consider finitely many instances of the protocol roles, with-
out loosing information. This actually proves that the instantiation techniques
in [21] are complete. This also provides completeness results for abstraction used
in [7, 26]. Of course, the verification problem will remain undecidable, because
we cannot faithfully give a bound on the number of sessions. Still, approxima-
tion techniques such as [6, 7] can be simplified and when considering a bounded
number of sessions we may assume w.l.o.g. that only these b agents are involved.
This reduction result also provides a decision result for cryptographic protocols
against a passive intruder, provided the messages are labeled by a nonce session
and a rule number (which is often the case of implemented protocols).

Our result extends and clarifies a side result of [20]. Indeed, J. Heather and
S. Schneider show that one may consider only four agents (three honest, one
dishonest) using implicitly that an agent may talk to herself. We actually prove
that in J. Heather and S. Schneider’s setting, only two agents are sufficient. In
addition, our reduction result holds for more general security properties and also
holds when an agent is disallowed to speak with herself.

The proof of our result is not difficult, once the protocol and its properties are
expressed as Horn clauses: given an attack against a secrecy property, we simply
project every honest identity on one single honest identity and every dishonest
identity on one single dishonest identity. For more general security properties like
authentication, we need k + 1 agents where k is the number of agents variables
used in the security property. Actually, the result can be stated for a class of
Horn clauses, which encompasses protocols descriptions. Everybody has her (his)
favorite model. We do not argue that the Horn clause model is better than others.
However, this model has two advantages for the setting of our result:

1. We do not need to define precisely the intruder power: our result holds for any
intruder provided it satisfies some slight hypotheses, defined in our model. In
particular, our reduction also holds considering the usual equational theories
associated to the exclusive or, modular exponentiation...

2. For conditional security properties of the form “if φ then ψ”, we show that
the reduction still holds when the negation of the property ψ can be ex-
pressed in Horn clauses, which is the case for authentication. Horn clauses
are therefore an appropriate model to express the class of properties for
which the reduction holds.

We claim that most other models can be reduced to this one, hence our
reduction also applies to other models of cryptographic protocols. In order to
support this claim, we provide (in [13]) a reduction of the Millen-Rueß model
[24] to Horn clauses, while keeping the number of agents involved in an attack.
We hope that this will provide enough evidence that the reduction result works
for other models as well. (It is not possible to show in detail all reductions from
other models to Horn clauses).

Our paper is organized as follows. We introduce our model in section 2. In
section 3.1 we prove that, if there is an attack involving n agents, then there is
an attack involving at most 2 agents, besides the constant agents which might
be used in the protocol description. In other words, we show that we have to
consider only instances of the roles in a two-element set. This is quite intuitive
since the protocols never refer to the representation of agents identities: they are
indeed irrelevant when verifying properties of cryptographic protocols. However,
the formal proof of this result reveals two assumptions. First, the same agent may
play different roles in a given protocol session: “an agent may talk to herself”.
Most of the models do not discard this ability. However, it may be considered as
more realistic that an agent cannot play several roles in the same session. Some
models [27, 23] explicitly disallow this possibility. In addition, this reduction
result holds only for properties expressed as purely negative clauses, which is
not the case of authentication properties. That is why we consider in section 3.2
more general security properties and models in which an agent may be forbidden
to talk with herself. We prove in this case that, if there is an attack involving
n agents, then there is an attack involving at most k + 1 agents where k is the
number of agent variables occurring in the security property.

2 The model

We define a trace model by means of Horn clauses, in which terms are messages.
A similar representation can also be found in [6] for instance. The important
feature is that we only use Horn clauses, which contain at least one positive
literal. Hence there is a least Herbrand model H, which is the intended trace
semantics: the possible traces are the members of TH, the interpretation of the
unary predicate T in H. Clauses come in two parts: the first part is protocol
independent and the second part is protocol specific.

2.1 Messages and traces

We consider a set of (ground) terms built over a set of function symbols F and
basic sorts: Num,Agent,Ha,Da,Message,Event,Trace. F contains the following
function symbols:

0 : → Num ni : Agentki ,Num → Message

s : Num → Num st : Agent,Num,Num,Message → Event

h : → Ha ⊥: → Trace

d : → Da [,] · : Event,Num,Trace → Trace

sh : Ha → Ha srv i : → Agent

sd : Da → Da

Terms of sort Agent are called agents, terms of sort Message are called messages.
All other symbols, including the classical cryptographic primitives for building

keys, encryption and pairs take messages as arguments and return a message.
This set of cryptographic primitives is denoted by:

Fmsg = {< , >, { } , pub(), prv(), shr()}.

In addition, we may have e.g. hash function symbols.
We also assume that every agent is a message and every message is an event;

we have the subsort relations Agent ≤ Message ≤ Event, Ha ≤ Agent and Da ≤
Agent. Let us comment a little bit:

– Num is only used for internal representations of session numbers, nonces... It
is important to provide one representation since we will consider Herbrand
models. However, such a representation is irrelevant in what follows. In par-
ticular, neither the intruder nor the agents have access to this representation.

– There are two non-standard sorts Da,Ha. The terms of these sorts are re-
spectively sk

d(d) and sk
h(h) and are intended to represent compromised and

honest agents respectively. Again, this is for internal representation only. Of
course, this distinction is never used in the protocol description. It is however
necessary in the protocol property definition: typically, we want to state that
a secret shared by honest agents remains unknown to the intruder, hence we
need a way to express that an agent is honest. The use of sd, sh as a mean to
represent agents identities is arbitrary. It could be replaced with any other
representation.

– srv i are intended to be server names. They are constant names in the proto-
cols, they will not be counted in the number of agents needed for an attack.

– ni is a collection of function symbols, which are used to represent nonces
(randomly generated data): ni is intended to take as arguments some agent
ids (who generates the nonce and who are supposed to receive the nonce)
and a session number. i is intended to be the protocol step. Note that we
may also consider a single symbol n with an additional argument i. Then
ni() is simply a notation for n(i,).

– st is intended to represent the local state of an agent: the term st(a, i, j,m)
represents the agent a being at the jth step of the role i and having the
message m in his memory. Events will consist of either sending a message or
increasing a local memory. Traces are sequences of pairs of an event and a
session number.

– We do not assume any a priori typing of messages (there is no a priori way
to distinguish between a nonce and a pair for instance), though any such
policy could be specified at the protocol description level.

By abuse of notation, we will sometimes write e.g. 2 instead of s(s(0)), < x, y, z >
instead of < x,< y, z >>, or {x, y}z instead of {< x, y >}z.

We will sometimes use unary predicate symbols instead of sort names in order
to explicitly state the sort of a variable. For instance, we may write Agent(x),
expressing that x is of sort Agent (other authors use the notation x : Agent). Such
unary predicate symbols can only be used with variable arguments. Though this
is not used in the present paper, note that the definition of such unary symbols is

a tree automaton [12], hence their least Herbrand interpretation is a recognizable
set of trees.

2.2 Protocol independent clauses

We sketch here and in the following section how to design a set of Horn clauses
defining valid traces. We also show in [13] that this is a reasonable definition
since other models can be reduced to this one.

We use a binary predicate symbol I to describe the intruder knowledge. I
takes two arguments: a message m and a trace t; I(m, t) means that message m
is known to the intruder after executing t. The first clauses describe the initial
knowledge of the intruder, the second ones describe his ability to analyze and
synthesize messages, the third ones his ability to learn new messages.

Initial knowledge

Agent(x) ⇒ I(x, t) The intruder knows all agent ids.

Agent(x) ⇒ I(pub(x), t) The intruder knows all public keys.

Da(x)
Da(x)

⇒
⇒

I(prv(x), t)
I(shr(x), t)

The intruder knows all keys of com-
promised agents..

Analysis and Synthesis

I(x, t), I(y, t) ⇒ I(< x, y >, t)
The intruder can compose mes-
sages.

I(x, t), I(y, t) ⇒ I({x}y, t)
The intruder can encrypt a known
message with a known key.

I({x}pub(y), t), I(prv(y), t)
I({x}prv(y), t), I(pub(y), t)
I({x}y, t), I(y, t), Sym(y)

⇒
⇒
⇒

I(x, t)
I(x, t)
I(x, t)

The intruder can retrieve the clear
text of an encrypted message when
he knows the inverse of the key.

The predicate Sym is defined in figure 1.

Interception and Memorization

T ([x, s] · t) ⇒ I(x, [x, s] · t) All messages sent through the net-
work are available to the intruder.

I(x, t) ⇒ I(x, y · t) The intruder remembers a message
whatever is added to the trace.

Protocol independent clauses also contain the definition of some auxiliary
predicates, which are described on figure 1 as well as the clause T (⊥), which
states that the empty trace is a trace. How to continue a trace is protocol-
dependent.

The variables a, b stand for variables of sort Agent, x, y, z, m for variables of sort
Message, s, t and e for variables of sort respectively Num, Trace and Event.

Definition of Sym:
Agent(x) ⇒ Sym(x)

Agent(x1), . . . , Agent(xki
), Num(s) ⇒ Sym(ni(x1, . . . , xk, s))

Message(x1), . . . , Message(xk) ⇒ Sym(f(m1, . . . , mk)) f ∈ {< , >, { } , shr()}

Definition of Sup:
Num(x) ⇒ Sup(s(x), 0)

Sup(x, y) ⇒ Sup(s(x), s(y))

Definition of Neq:
Sup(s, s′) ⇒ Neq(s, s′)

Sup(s′, s) ⇒ Neq(s′, s)

Definition of Fresh:
⇒ Fresh(⊥, s)

Fresh(t, s),Sup(s, s′) ⇒ Fresh([e, s′] · t, s)

Definition of In:
⇒ In([e, s], [e, s] · t)

In(x, t) ⇒ In(x, [e, s] · t)

Definition of NotPlayed:

⇒ NotPlayed(a, i, k, s,⊥)

NotPlayed(a, k, i, s, t) ⇒ NotPlayed(a, k, i, s, [m, s
′] · t)

NotPlayed(a, k, i, s, t), Neq(s, s′) ⇒ NotPlayed(a, k, i, s, [e, s′] · t)

NotPlayed(a, k, i, s, t), Neq(i, j) ⇒ NotPlayed(a, k, i, s, [st(a, k, j, m), s] · t)

NotPlayed(a, k, i, s, t),Neq(k, k
′) ⇒ NotPlayed(a, i, s, [st(a, k

′

, j, m), s] · t)

Fig. 1. Definitions of the auxiliary predicates

2.3 Protocol dependent clauses

We describe here how to define the set of valid traces T on the Yahalom protocol
(see e.g. [8] for a description and further references). This protocol aims at
establishing a session key between two agents, using a trusted server. In this
section, a, b will stand for variables of sort Agent, x, y, z,m for variables of sort
Message, s, t and e for variables of sort respectively Num, Trace and Event.

A→ B : A,Na

B → S : B, {A,Na, Nb}shr(B)

S → A : {B,Kab, Na, Nb}shr(A), {A,Kab}shr(B)

A→ B : {A,Kab}shr(B), {Nb}Kab

We first state that, at any point, we may start a new session of the protocol
assigning roles to any of the agents. This is expressed by:

Fresh(t, s), T (t) ⇒ T ([st(a, 1, 1, < a, b, srv >), s]
·[st(b, 2, 1, < b, srv >), s]
·[st(srv , 3, 1, srv), s] · t)

Fresh is an auxiliary predicate (defined in figure 1), which holds when the number
s is larger than any number occurring in t. Then the trace t can be extended
accordingly.

Now, if a has started a session s, and if she has not already sent the first
message of this session, she can do it, hence extending the trace, and moving to
stage 2 for this session:

T (t),
In([st(a, 1, 1, < a, b, srv >), s], t),

NotPlayed(a, 2, s, t)



 ⇒

T ([< a, n1(a, s) >, s]
·[st(a, 1, 2, < a, b, srv , n1(a, b, s) >), s]
·t)

This uses the auxiliary predicates In and NotPlayed which are intended to be re-
spectively the membership test on traces and a test that this step has not already
been completed for the same session (see figure 1 for complete definitions).

Finally, let us describe how the last step of the protocol is translated: we
require a to have completed the first step and assume that she receives a message
of the expected form. This message may be forged by the intruder: we do not
include receive events in the trace since messages that are possibly received are
identical to messages that can be forged by the intruder.

T (t),
In([u1, s], t),

NotPlayed(a, 3, s, t),
I(< {b, x, n1(a, b, s), y}shr(a), z >, t)





⇒ T ([< z, {y}x >, s] · [u2, s] · t)

where u1 =st(a,1,2,<a,b,srv ,n1(a,b,s)>) and u2 =st(a,1,3,<a,b,srv ,n1(a,b,s), x>).

2.4 The model

Now, we assume defined the sets of Horn clauses CI , CD for the protocol inde-
pendent clauses and the protocol dependent clauses. For a protocol P , we let CP

be CI ∪ CD. We assume that CP does not contain negative clauses (i.e. we only
specify what is possible). Then CP has a least Herbrand model HP .

Definition 1. A valid trace for the protocol P is a member of the interpretation
of T in HP .

2.5 Attacks

Let φ be the security property that we want to check. We assume that φ can be
expressed as a clause using the primitives described in previous sections. This is
not a strong restriction since, at least the trace properties can be expressed in
this way (and possibly other properties which relate different traces), as shown
by the following examples.

Example 1. We can express that u(x, y, s) (or u(x, y) if we want to express the
secrecy of a constant data) is a (long term) secret shared by x and y by:

(∀t, x, y, s).¬T (t) ∨ ¬Ha(x) ∨ ¬Ha(y) ∨ ¬I(u(x, y, s), t)

which means that, in any trace t, if x and y are honest agents, then u(x, y, s) is
unknown to the intruder.

Example 2. We can express that u(x, y, s) is a short term secret. I does not know
u(x, y, s) as long as session s is not completed for the agent x playing the first
role:

(∀t, x, y, s).¬T (t)∨¬Ha(x) ∨¬Ha(y)∨¬I(u(x, y, s), t)∨¬NotPlayed(x, 1, 3, s, t).

If we assume that the last message of the protocol is sent by x then we express
here that, in any trace t, if x and y are honest agents, then u(x, y, s) is unknown
to the intruder unless the session is already completed.

Example 3. We can express an authentication property: if x receives the message
m(x, y, s), then it has been sent previously by y: (∀t, x, y, s)

¬T (t) ∨ ¬Ha(x) ∨ ¬Ha(y) ∨ ¬I(m(x, y, s), t) ∨ In([st(y, 2, 2,m(x, y, s)), s], t).

Definition 2. A protocol P satisfies a property φ iff HP |= φ.

Dually, there is an attack when HP 6|= φ. In such a case (by compactness),
there is a finite subset H0 of HP such that H0 6|= φ:

Definition 3. An attack on P for φ is a finite subset H0 of HP such that
H0 6|= φ. H0 is an attack with n agents if there are at most n distinct terms of
sorts Agent in H0.

For instance, if the property φ is a “trace property”, H0 may contain a single
predicate T (t) where t is a finite trace which violates the property.

2.6 Relevance of the model

The model we present here is actually an extension of the Millen-Rueß model [24,
14] (hereafter referred to as the MR model), expressed in Horn clauses. The MR
model is itself inspired from Paulson’s model [27] and from the strand spaces [31].
Formally, we proved in [13] that for each protocol of the MR model, we can
associate a finite set of Horn clauses CP and a finite set of purely negative
clauses ΦP such that P is insecure if and only if there is an attack on CP for
some φ ∈ ΦP . Such a reduction preserves the number of agents involved in the
attack [13].

3 Reduction to a fixed number of agents

We are now ready to state and prove our reduction results. In section 3.1, we
prove that for secrecy properties, it is sufficient to consider 2 agents. In sec-
tion 3.2, we extend this result when an agent is disallowed to speak to herself
and/or for more general security properties like authentication.

3.1 From n agents to 2 agents

In this section, we consider purely negative properties, which easily encompass
secrecy, but do not encompass authentication in a natural way. We will discuss
this in section 3.2. We show that if there is an attack with n agents, then we can
construct an attack with 2 agents: given an attack using n agents, we project
every honest identity on a single honest identity and every dishonest identity
on a single dishonest identity. Since protocols and properties do not rely on
internal agents representations, we obtain a valid attack using only two agents.
This projection uses the fact that our model allows an agent to speak to herself,
which is the case of most of the models for cryptographic protocols [24, 31, 19,
6, 16, 4]. However, a similar result holds even if an agent is disallowed to speak
to herself (see subsection 3.2).

We emphasize that our result holds for any model of protocols which do not
make use of our internal representation of agent ids (which is the case of any
model we know). More precisely:

Definition 4. A set of clauses C is admissible if it does not use the symbols
sh, sd. A clause is said purely negative if it only contains negative literals.

The clauses which were proposed in the previous sections are admissible.
Furthermore, any protocol specification can not use our particular representation
of names, hence it is always represented as an admissible set of clauses.

Theorem 1. Let CP be an admissible set of clauses. Let φ be a purely negative
admissible clause. If there is an attack of P for φ, using n agents, then there is
an attack using (at most) two agents.

Proof. We first introduce some notations. Let M be the set of messages, T be the
set of all positive ground literals, and Σg be the set of mappings from variables
to ground terms, which are compatible with the sort constraints.
Given a Horn clause c = B1(x), ..., Bn(x) ⇒ A(x) where B1(x), . . . , Bn(x), A(x)
are positive literals whose free variables are contained in x, and a subset S of
T , we define c(S) as follows:

c(S)
def
= {A(x)σ | σ ∈ Σg, ∀i, Bi(x)σ ∈ S}.

Then, the immediate consequence relation FC is the mapping from 2T to 2T

defined by:
FC(S)

def
= S ∪

⋃

c∈C

c(S).

For simplicity, we will write FP for the mapping FCP
.

It is well-known that the set of positive literals H+
P of the least Herbrand

model HP is the least fixed point of FP :

H+
P =

+∞⋃

k=1

F k
P (∅)

For every L ∈ H0 there is a minimal index nL such that L ∈ FnL

P (∅).
We define now the projection function: we map every honest agent to h and

every dishonest agent to d : for every literal L, let L be the literal L in which
every maximal subterm of sort Ha is replaced with h and every maximal subterm
of sort Da is replaced with d:

f(t1, . . . , tn)
def
= f(t1, . . . , tn) If f /∈ {sh, sd}

sh(t)
def
= h

sd(t)
def
= d

Our proof relies on the following lemma which ensures that if a positive literal
is in HP then its projection is also in HP .

Lemma 1. If L is a positive literal of HP , then L is in HP .

This is proved by induction on nL. If nL = 0, there is no literal such that nL = 0
thus there is nothing to prove.

Suppose the property true for nl ≤ n and consider a positive literal L of HP

such that nL = n+ 1. There exists a clause cL and positive literals L1, . . . , Lk ∈
H+

P such that L ∈ cL({L1, . . . , Lk}) with nLi
≤ n for all 1 ≤ i ≤ k. By induction

hypothesis, L1, . . . , Lk ∈ H+
P . In addition, cL is on the form B1(x), . . . , Bk(x) ⇒

A(x) with L = A(x)σ, Li = B1(x)σ for some σ ∈ Σg. Since cL is an admissible
clause, it does not contains the symbols sh and sd thus L = A(x)σ and Li =
B1(x)σ. Hence L ∈ cL({L1, . . . Lk) and L ∈ H+

P .
We are now ready to complete the proof. Assume that H0 is a finite subset

of HP such that H0 6|= φ. Since φ is assumed to be purely negative, we may
assume w.l.o.g. that H0 only contains positive literals.

Let H1 = {L | L ∈ H0}. The set H1 is still finite and, by lemma 1, H1 ⊂ HP .
Let us show that H1 6|= φ. Let φσ an instance of φ falsified by H0. Then φσ is
falsified by H1. Since φ is an admissible clause φσ = φσ, thus H1 6|= φ. �

Actually, this theorem does not hold when φ may contain positive literals.

Example 4. Let CP be:




Da(x) ⇒ A(x, y)
Da(y) ⇒ A(x, y)

⇒ A(x, x)

and φ be A(x, y). ¬A(h, sh(h)) is an attack and there is no attack with a single
honest agent.

We will consider in section 3.2 an extension of theorem 1 for formulas con-
taining positive literals.

3.2 Extensions of our reduction result

Disallowing an agent to speak with herself

In the last section we used the ability for an agent to speak with herself, which
was not explicitly ruled out by the specification. There are however examples in
which the existence of an attack relies on this ability:

Example 5. Consider the following “toy” example where an agent A sends a
secret to an agent B:

A→ B : {A,B,Na}pub(B), {secret}{A,A,Na}pub(B)
.

B is able to build the compound key {A,A,Na}pub(B) and gets the secret. One
can show that Na will remain unknown to the intruder, thus {A,A,Na}pub(B) is
unknown to the intruder unless A = B. Thus this protocol is flawed only if an
honest agent sends a secret to herself.

We are now considering explicitly disallowing such self-conversations between
honest agents. Still, a dishonest agent is enabled to speak with himself, which
actually does not bring any new information to the intruder (see remark 1 below).
Following this, we add a predicate symbol Distinct defined by the set of clauses:

C 6=
def
=





Distinct(x, y),Ha(x),Ha(y) ⇒ Distinct(sh(x), sh(y))
Ha(x) ⇒ Distinct(h, sh(x))

Ha(x),Da(y) ⇒ Distinct(x, y)
Distinct(x, y) ⇒ Distinct(y, x)
Da(x),Da(y) ⇒ Distinct(x, y)

The least Herbrand model of Distinct consists of pairs (sk
h(h), sm

d (d)),

(sm
d (d), sk

h(h)), (sm
d (d), sk

d(d)) and (si
h(h), sj

h(h)) with i 6= j.
We redefine the notion of an admissible clause:

Definition 5. A clause φ is admissible if

– φ does not contain the symbols sh, sd,
– Distinct occurs only negatively in φ.

We can specify that the sender a is distinct from the (expected) receiver b
with admissible clauses: it suffices to add negative literals Distinct(a, b). Note
however that such a property is not expressible in e.g. the Millen-Rueß model.
The protocol model HP is now the least Herbrand model of C 6= ∪ CP . All other
definitions are unchanged.

Remark 1. If we want to specify that an agent is not allowed to speak with
herself, even for dishonest agents, we can introduce a predicate Distinct whose
semantic is exactly the pairs of distinct agents. In this case, an admissible clause
should also verify that Distinct occurs at most once, which is sufficient to express
that an agent is not allowed to speak to herself. In addition, the protocol has
to verify that the message exchanges between two compromised agents does not
increase the intruder knowledge, which is the case of all “real” protocols ([8]).
This leads to a specification which can be reduced to the one above.

More general security properties

Theorem 1 assumes that φ is purely negative, which is necessary according
to Example 4.

We have seen in section 2.5 that such a restriction to negative properties
is not a problem for secrecy. On the other hand, an authentication property
(non-injective agreement) is naturally expressed as

¬T (t) ∨ ¬Ha(x) ∨ ¬Ha(y) ∨ ¬I(m(x, y, s), t) ∨ In([st(x,m(x, y, s)), s], t)

which involves a positive literal. However, it is still possible to handle such
properties. Let us extend the definition of admissible security properties to a
class which encompasses authentication and secrecy properties.

Definition 6. A clause φ is an admissible security property if φ is admissible
and if φ is of the form

C ∨ In(u1, t1) ∨ · · · ∨ In(un, tn),

where C is a purely negative clause, t1, . . . , tn, u1, . . . , un are terms.

Reduction result

Our reduction result will now depend on the security property under considera-
tion: if the property φ uses k distinct agents variables then if there is an attack,
there is an attack with (at most) k + 1 agents.

Theorem 2. Assume CP is an admissible set of clauses, which does not contain
any variable of sort Ha, and φ an admissible security property. If there is an
attack on P for φ using n agents, then there is an attack on P for φ using at

most k1 +k2 +1 agents, where k1 is the number of variables of sort Ha occurring
in φ and k2 is the number of variables of sort Agent which are not of subsort
Ha, occurring in the positive literals of φ.

Note that disallowing variables of sort Ha in CP is not a real restriction. In-
deed, the specification of the protocol itself (CD) should not distinguish between
honest and dishonest agents. Moreover, the intruder capabilities (CI) should not
depend on specific honest agents: an intruder knows all the public information
of honest agents and the private information of dishonest agents only.

Proof. We keep the notations of the proof of theorem 1. This new reduction
result is proved in two steps: first, we reduce φ to a purely negative clause and
then we use a projection function to get our result.

First step: φ is of the form C ∨ In(u1, t1) ∨ · · · ∨ In(un, tn). We define a

predicate Ĩn whose interpretation will coincide with the complement of the in-
terpretation of In in HP . This could be performed using general techniques such
as in [5, 9]. We give however here a direct definition:

T̃race(x) ⇒ Ĩn(y, x)

Ẽvent(x) ⇒ Ĩn([x, s], y)

Ñum(x) ⇒ Ĩn([x, s], y)

⇒ Ĩn(x,⊥)

Ĩn(x, y),Diff(x, z) ⇒ Ĩn(x, y · z)

T̃race, Ẽvent, Ñum are defined by complementation of tree automata: their inter-
pretation coincides with the complement of Trace,Event and Num respectively
in HP . Diff is defined by the following clauses:

⇒ Diff(f(x1, . . . , xn), g(y1, . . . , yk)) ∀f 6= g
Diff(xi, yi) ⇒ Diff(f(x1, . . . , xn), f(x1, . . . , xn)) 1 6 i 6 n

We let C¬ be these additional clauses. Note that C¬ is not an admissible set
of clauses but we show in the second step of the proof that we can still handle
such clauses since they are not used elsewhere in the protocol clauses.

Let HP,φ be the least Herbrand model of CP ∪ C 6= ∪ C¬. It contains HP

(since all clauses in C¬ are headed with predicate symbols which do not occur

in any clause of CP ∪C 6=). Moreover, for every ground terms u, t, HP,φ |= Ĩn(u, t)
iff HP 6|= In(u, t). Indeed, the interpretation of Diff in HP,φ is the set of pairs

of distinct ground terms. Next, the interpretations of Ĩn and In in HP,φ have
an empty intersection: we prove this result by contradiction and by induction
on the minimal index n such that both In(s, t) and Ĩn(s, t) belong to Fn

P,φ(∅).
Finally, every pair of terms (s, t) is either in the interpretation of In or in the

interpretation of Ĩn, by induction on the size |s| + |t|.

Second step: projection. Let ψ
def
=C∨¬Ĩn(u1, t1)∨· · ·∨¬Ĩn(un, tn) and assume

there exists a ground substitution θ such that HP 6|= φθ. Then HP,φ 6|= ψθ. Now,

since ψθ is purely negative, there is a finite subset C0 of ground instances of
CP ∪ C 6= ∪ C¬ such that C0 |= L for every literal ¬L occurring in ψθ.

We let H0 be the set of (positive) literals defined by:

H0 = {P (t1, . . . , tm) ∈ HP,φ | P 6= Ĩn, P 6= Diff, C0 |= P (t1, . . . , tm)}

∪ {Ĩn(uiθ, t) ∈ HP,φ | i ∈ {1, . . . , n}, C0 |= Ĩn(uiθ, t)}
∪ {Diff(uiθ, t) ∈ HP,φ | i ∈ {1, . . . , n}, C0 |= Diff(uiθ, t)}

Since C0 is a set of Horn clauses, for L ∈ H0, there is an integer nL and a clause
CL ∈ C0 such that L ∈ FnL

C0
(∅), L /∈ FnL−1

C0
(∅), CL = ¬L1 ∨ . . . ∨ ¬Lk ∨ L,

L1, . . . , Lk ∈ FnL−1
C0

(∅). With such definitions, H0 has the following properties:

– H0 is a finite subset of HP,φ

– H0 falsifies ψθ
– because of the form of the clauses defining Ĩn, for every L ∈ H0, if CL =

¬L1 ∨ . . . ∨ ¬Lk ∨ L, then either L1, . . . , Lk ∈ H0, or else L = Diff(uiθ, t).

Let us now define the projection. If x1, . . . xk1 are the variables of sort Ha

in ψ, we let sm1

h (h), . . . , s
mp

h (h) be the set {x1θ, . . . , xk1θ} with m1 < . . . < mp

(p ≤ k1). If y1, . . . yk2 are the variables of ui, ti, of sort Agent but not of subsort
Ha, we let sn1

d (d), . . . , s
mq

d (d) be the set {y1θ, . . . , yk2θ} with n1 < . . . < nq

(q ≤ k2). Next, we define the projection function as follows:





f(t1, . . . , tn)
def
= f(t1, . . . , tn) If f(t1, . . . , tn) is not of sort Ha or Da

smi

h (h)
def
= si−1

h (h) For i = 1, ..., p

sni

d (d)
def
= si−1

d (d) For i = 1, ..., q

t
def
= sq

d(d) Otherwise

Again, we let H1 = {L | L ∈ H0} and we are going to prove that H1 ⊆ HP,φ

and H1 falsifies ψθ. This will conclude the proof since considering H′
1 the set

H1 where the literals Ĩn(ui, ti)θ are replaced with ¬In(ui, ti)θ, we have H′
1 ⊆ HP

since HP |= ¬In(ui, ti)θ iff HP,φ |= Ĩn(ui, ti)θ from the first part of the proof.
Moreover H′

1 falsifies φθ, thus H′
1 will be an attack with p + q + 1 agents:

d, sd(d), . . . , s
q
d(d), h, sh(h), . . . , sp−1

h (h), p+ q ≤ k1 + k2.
Actually, with the three following lemmas, the proof that H1 ⊆ HP,φ is

similar to the proof of theorem 1:

Lemma 2. For every ground terms g1, g2, if Distinct(g1, g2) ∈ Fn
P,φ(∅), then

Distinct(g1, g2) ∈ Fn
P,φ(∅).

Proof of lemma 2:
We may assume n > 0. Let ti = xiθ. Then there are three possible situations
(let us recall that Distinct only occurs positively in C 6=):

– if g1, g2 /∈ {t1, . . . , tk}, then using that the least Herbrand model of Distinct

consists of pairs (sk(h), sm(d)), (sm(d),sk(h)), (sm(d),sk(d)) and (si(h),sj(h))
with i 6= j, we have that Distinct(g1, g2) = Distinct(d, d) ∈ FP,φ(∅);

– if g1∈{t1, . . . ,tk} and g2 /∈{t1, . . . ,tk} (or the converse), then Distinct(g1,g2)=
Distinct(sj

h(h), d) (or Distinct(d, sj
h(h))), which also belongs to FP,φ(∅);

– if g1, g2 ∈ {t1, . . . , tk}: g1 = smi

h (h), g2 = s
mj

h (h) with i 6= j, then

Distinct(g1, g2) = Distinct(si
h(h), sj

h(h)) ∈ F
|j−i|
P,φ (∅). In this last case, |j−i| ≤

|mj −mi| by construction, hence the result.

End of the proof of lemma 2.

Lemma 3. For every i = 1, ..., n, for every term t, if Diff(uiθ, t) ∈ HP,φ then

Diff(uiθ, t) ∈ HP,φ.

Proof of lemma 3:
By construction of the predicate Diff, we have Diff(u, v) ∈ HP,φ if and only
if u 6= v. Thus it is sufficient to show that uiθ = t implies uiθ = t. Assume
uiθ = t. Since the variables of ui, which are of sort Agent, are contained in
{x1, . . . xk1}∪{y1, . . . yk2}, the maximal subterms of uiθ of sort Agent belong to:

A
def
={sm1

h (h), . . . , s
mp

h (h), sn1

d (d), . . . , s
mq

d (d)},

thus the maximal subterms of uiθ of sort Agent belong to:

{d, sd(d), . . . , s
q−1
d (d), h, sh(h), . . . , sp−1

h (h)}.

Assume t contains a maximal subterm of sort Agent, which does not belongs to
A, then one of the maximal subterms of sort Agent of t is sq

d(d). Thus uiθ and t
can not be equal. Consequently, the maximal subterms of t of sort Agent belong
to A. Since the function · is injective on A, we get uiθ = t.
End of the proof of lemma 3.

Lemma 4. If T̃race(t) ∈ HP,φ (resp. Ẽvent(t), resp. Ñum(t)) then T̃race(t) ∈

HP,φ (resp. Ẽvent(t), resp. Ñum(t)).

Proof sketch of lemma 4: In every state of a minimal deterministic tree au-

tomaton accepting T̃race, either all terms of sort Agent are accepted or no term
of sort Agent is accepted. End of proof of lemma 4.

As in theorem 1, we prove now that, if L ∈ H0, then L ∈ HP,φ. This is proved
by induction on nL. If nL = 0, there is nothing to prove. Otherwise, let CL =
¬L1 ∨ . . .∨¬Lk ∨L. By property of H0, either L = Diff(uiθ, t), in which case we
conclude using lemma 3, or else L1, . . . , Lk ∈ H0. Then, by induction hypothesis,
L1, . . . , Lk ∈ HP,φ. Moreover, CL = Cσ for some clause C ∈ CP ∪ C 6= ∪ C¬. If
C ∈ CP , as in the proof of theorem 1, CL = Cσ and we conclude that L ∈ HP,φ.
If C ∈ C 6=, L is of the form Distinct(g1, g2) and we conclude using lemma 2.

Finally, if C ∈ C¬, either L = T̃race(t) (resp. Ẽvent(t), resp. Ñum(t)) and we

conclude using lemma 4, or else C is one of the clauses defining Ĩn. However,
since sh, sd do not occur in these clauses, Cσ = Cσ and we can simply apply
the induction hypothesis.

This shows that H1 ⊆ HP,φ, hence concludes the proof as noticed above. �

Remark: Note that our reduction result strongly depends on the fact that the
negation of the predicate In can also be expressed by a set of Horn clauses.

3.3 Discussion on the bound k1 + k2 + 1

We show here that the bound k1 + k2 + 1 can be reached for some protocols
P and some properties φ when k1 = 1 or k2 = 0. We have not built examples
in the general case (when k1 6= 1, k2 6= 0) because it seemed technical but we
are convinced that it could be obtained by a combination of the two following
examples.

Example 6. (bound k1 + 1 when k2 = 0) Let k ≥ 2. Consider the following
protocol, inspired from the Needham-Schroeder public key protocol. a1, . . . , ak

are variables of sort Agent.
Let u =< a1, . . . , ak >.
Initialization

Fresh(t, s), T (t) ⇒ T ([st(a1, 1, u), s] · [st(a2, 1, a2), s] · · · · · [st(ak, 1, ak), s] · t)

First message: A1 → A2 : {A1, A2, . . . , Ak, NA1}pub(A2), Ai 6= Aj , for i 6= j.

T (t),Distinct(ai, aj) i 6= j
In([st(a1, 1, u), s], t),
NotPlayed(a1, 2, s, t)



 ⇒

T ([{u, n1(a1, . . . , ak, s)}pub(a2), s]
·[st(a1, 2, < u, n1(a1, . . . , ak, s) >), s]
·t)

Second message: A2 → A1 : {NA1 , NA2}pub(A1)

T (t),Distinct(ai, aj) i 6= j
I({u, x}pub(a2), t)

In([st(a2, 1, a2), s], t),
NotPlayed(a2, 2, s, t)





⇒
T ([{x, n2(a1, . . . , ak, s)}pub(a1), s]

·[st(a2, 2, < u, n2(a1, . . . , ak, s) >), s]
·t)

Third message: A1 → A2 : {NA2}pub(A2)

T (t), I({n1(a1, . . . , ak, s), y}pub(a1), t)
In([st(a1, 2, < u, n >), s], t),

NotPlayed(a2, 3, s, t)



 ⇒

T ([{y}pub(a1), s]
·[st(a1, 3, < u, n, y >), s]
·t)

where n = n1(a1, . . . , ak, s).
We could also add some other rules to make the roles of a3, . . . , ak less fictitious.
We consider the property:

φ = ¬Ha(x1) ∨ . . . ∨ ¬Ha(xk) ∨ ¬I(n2(x1, . . . , xk, s), t).

Then, following the attack described by G. Lowe in [22], there is an attack on
φ, using k+ 1 agent ids. Let us sketch why every attack on φ uses at least k+ 1

agent ids. Assume there is an attack, then there exist t, s, a1, . . . , ak such that
I(n2(a1, . . . , ak, s), t) ∈ HP where HP is the least Herbrand model and a1, . . . , ak

are honest agents. Since a2 produces n2(a1, . . . , ak, s) only if Distinct(ai, aj) for
i 6= j holds and since a1, . . . , ak are honest agents, we have that a1, . . . , ak are
distinct. In addition, if no dishonest identity is used, then the intruder cannot
decrypt any message thus he can not obtain n2(a1, . . . , ak, s). Consequently, at
least one compromised identity has been used, thus at least k+1 identities have
been used for the attack.

Example 7. (bound k2 + 1 when k1 = 1) Let k ≥ 2. Consider the following toy
protocol:

A1 → A2 : {A1, . . . , Ak+1}prv(A1),
⋃

{i1, . . . , ik+1} ⊂ {1, . . . , k + 1}
| #{i1, . . . , ik+1} ≤ 1

< Ai1 , . . . , < Aik
, Aik+1

>

The agent A sends an authentication message {A1, . . . , Ak+1}prv(A1) and all pos-
sible k + 1-tuples of agents names where at least two agent’s name are equal.
This can be encoded by one single clause:

T (t),Fresh(t, s) ⇒ T ([{a1, . . . , ak+1}prv(a)]·
⋃

{i1, . . . , ik+1} ⊂ {1, . . . , k + 1}
| #{i1, . . . , ik+1} ≤ k

[< ai1 , . . . , < aik
, aik+1

>, s]·t)

where a1, . . . , ak+1 are variables of sort Agent and #S denotes the cardinal of a
set S.
To reach the bound k2 of theorem 2, the important part is the choice of the
security property. Consider:

φ = ¬Ha(x) ∨ ¬Agent(y1) ∨ · · · ∨ ¬Agent(yk) ∨ ¬I({x, y1, . . . , yk}prv(x), t)

∨ In(< x, y1, . . . , yk >, t)

Then, using the notation of theorem 2, k1 = 1 and k2 = k. To obtain an attack,
there must be a trace t where the intruder is able to know a message of the form
{a1, . . . , ak+1}prv(a1), where a1 is an honest agent identity. This means that the
clause φθ must has been used for some ground substitution θ, since the other
clauses do not allow the intruder to encrypt with an honest private key. Assume
the {xθ, y1θ, . . . , ykθ} contains less than k + 1 elements. Then, by construction
of the clauses, the tuple <xθ, y1θ, . . . , ykθ> is in the trace t thus we do not have
an attack. Consequently, to have an attack, we need at least k + 1 = k2 + k1

agents.

4 Limitations

In this section, we discuss about limitations of our reduction results. First, it does
not hold for security properties expressed as observational equivalence. Secondly,
as stated in the introduction, it does not imply any reduction result on the
number of sessions. We actually show that an arbitrary number of interleaved
sessions can be necessary to obtain a secret data.

4.1 Observational equivalence

Secrecy properties may be expressed using reachability properties but may also
be defined using observational equivalence. For example, in spi-calculus [1], a
protocol P (z) preserves the secrecy of z if for any terms M and M ′, the pro-
tocols P (M) and P (M ′) are barbed equivalent (denoted by P (M) ∼= P (M ′)),
i.e. if for any process O, the processes P (M) | O and P (M ′) | O are weakly
bisimilar. Intuitively, P (z) preserves the secrecy of z if an observer can not tell
the difference between P (M) and P (M ′). We will not define here the semantics
of the spi-calculus and the barbed equivalence, the reader is referred to [1] for
precise definitions.

For such properties, our method does not work: the weak bisimilarity is not
stable by projection on agent identities. Indeed, we may have P (M) ∼= P (M ′)
while P (M) 6∼= P (M ′) or conversely. This means that the study of secrecy in this
case can not be restricted to processes with a fixed abd finite number of agents.
Finding a subclass of processes in spi-calculus for which a similar reduction result
holds is an open problem.

4.2 An unbounded number of sessions

Our result does not give any bound on the number of sessions. On the contrary,
it is easy to see that an arbitrary number of interleaved sessions can be needed to
obtain a secret, using the Post Correspondence Problem (PCP). The encoding we
present here is inspired by the encoding given by Michael Rusinowitch (private
communication) to show the undecidability of secrecy for general cryptographic
protocols.

Let Σ a finite alphabet and (ui, vi)1≤i≤n, ui, vi ∈ Σ∗ an instance of PCP. We
build the following protocol:

A→ B : {< 0, 0 >, 0}Kab

B → A : {< 0, 0 >,Nb}Kab

A : {< 0, 0 >, z}Kab
→ B : {< 0, 0 >, {z}Na

}Kab

B → A : {< 0, 0 >, {z}Na
}Kab

A : {<x, y>, {z}Na
}Kab

→ B : {<xui, yvi>, z
′}Kab

, {s}{<xui,xui>,0}Kab
1 ≤ i ≤ n

Kab is a private key between two honest agents A and B, unknown to the
intruder. The protocol encodes PCP. In addition, we have added a “counter”
which ensures that as many sessions as the number of couples of words needed
for the solution, have to be opened at the same time. All messages exchanged
between honest agents are of the form {<u, v>, t}Kab

, an intruder is not able to
decrypt or modify them and the term t represents a nonce successively encrypted
by other nonces. Let nt denotes the number of encryption symbols used in t.

The second rule of the agent A consists in incrementing the number of en-
cryption symbols. Note that this rule can be played only if the terms u and
v are both equal to zero, i.e., the intruder has not started to build a solution.

Conversely, each time the agent A plays his last rule, the number of encryption
has to be decremented. To simulate a solution of PCP for this instance, we have
to proceed in the following way:

– opening as many sessions between A and B as the number of couples of
words needed for the solution,

– then successively in each session, letting A playing his second rule by for-
warding in the session i+ 1 the message obtained from A in the session i,

– eventually, playing successively, but in the reverse order of the sessions, the
last rule of A by forwarding only the part corresponding the couple of word
needed to build the solution at this step.

One can show by induction that, on the first hand, the secret s is revealed if and
only if the instance (ui, vi)1≤i≤n of PCP has a solution and, on the second hand,
an attack needs at least k parallel sessions where k is the number of couples of
words of (ui, vi)1≤i≤n used to construct the smallest solution w:

w = uφ(1) · · ·uφ(n) = vφ(1) · · · vφ(n).

Our proof is quite informal here but it could be easily formalized in most models
of cryptographic protocols.

5 Conclusions

We have shown that it is possible to restrict the number of agents without loss
of generality: security properties which fail in an unbounded network, also fail
in a small limited network. This does not assume any property of the protocols.

To prove a security property for some protocol P , it is therefore sufficient to
consider finitely many instances of the roles of P , typically 2n where n is the
number of roles in P (or (k+1)n for authentication properties or if we don’t allow
an agent to be both the sender and the receiver of a message). These numbers
are small since n = 2 for most protocols (sometimes n = 3). They can be further
lowered since sessions involving only dishonest agents are not relevant.

This reduction result also provides a decision result if we assume a passive
attacker, i.e. an attacker who may only analyze the messages sent on the net
but who cannot forge and send new messages. Indeed, in the presence of such
an attacker (or eavesdropper), we can also assume that an agent cannot confuse
messages from different sessions: it suffices to label the messages by a session
nonce and the rule number (which is often the case for implemented protocols).
Thus there is no need to consider interleaving of sessions. In addition, given a
set of messages S and a message m, deciding whether the intruder may deduce
m from S is in PTIME (side result of [2]). Since our reduction result ensures that
only a finite number of agents have to be considered, we conclude that secrecy is
decidable in EXP(n) × PTIME(s) where n is the number of roles of the protocol
and s is the size of the protocol.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calcu-
lus. In proceedings of the 4th ACM Conference on Computer and Communications
Security, pages 36–47. ACM Press, 1997.

2. D. M. Allester. Automatic recognition of tractability in inference relations. In
Journal of the ACM 40(2), pages 284–303, April 1993.

3. R. Amadio and W. Charatonik. On name generation and set-based analysis in the
dolev-yao model. In Proc. CONCUR 02. Springer-Verlag, 2002.

4. R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols.
In Proc. CONCUR, vol. 1877 of Lecture Notes in Computer Science, pages 380-394,
2000.

5. R. Barbuti, P. Mancarella, D. Pedreshi, and F. Turini. A transformation approach
to negation in logic programming. Journal of Logic Programming, 8:201–228, 1990.

6. B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules.
In CSFW: Proceedings of 14th Computer Security Foundations Workshop. IEEE
Computer Society Press, 2001.

7. L. Bozga, Y. Lakhnech, and M. Périn. Pattern-based abstraction for verifying
secrecy in protocols. In Tools and Agorithms for the Construction and Analysis of
Sytems (TACAS’03), to appear, 2003.

8. J. Clark and J. Jacob. A survey of authentication protocol literature: Version,
1997.

9. H. Comon. Disunification: a survey. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robinson. MIT Press, 1991.

10. H. Comon and V. Cortier. Tree automata with one memory, set constraints and
cryptographic protocols. Technical Report LSV-01-13, LSV, 2001.

11. H. Comon, V. Cortier, and J. Mitchell. Tree automata with memory, set constraints
and ping pong protocols. In Proc. ICALP 2001, 2001.

12. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1rst 2002.

13. H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. In
Research Report LSV-02-10, Lab. Specification and Verification, ENS de Cachan,
Cachan, France, August 2002.

14. V. Cortier, J. Millen, and H. Rueß. Proving secrecy is easy enough. In 14th IEEE
Computer Security Foundations Workshop, pages 97–108. IEEE Computer Society,
2001.

15. G. Denker, J. Millen, and H. Rueß. The capsl integrated protocol environment.
Technical Report SRI-CSL-2000-02, SRI International, Oct. 2000.

16. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded se-
curity protocols. In Proc. of Workshop on Formal Methods and Security Protocols,
Trento, 1999., 1999.

17. S. Even and O. Goldreich. On the security of multi-party ping-pong protocols. In
Proc. IEEE Symp. on Foundations of Computer Science, 1983.

18. M. Fiore and M. Abadi. Computing symbolic models for verifying cryptographic
protocols. In Proc.14th IEEE Computer Security Foundations Workshop, Cape
Breton, Nova Scotia, June 2001.

19. J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security
protocols. In CSFW: Proc. 13th IEEE Computer Security Foundations Workshop.
IEEE Computer Society Press, 2000.

20. J. Heather and S. Schneider. Towards automatic verification of authentication
protocols on an unbounded network. In Proceedings of the 13th Computer Security
Foundations Workshop (CSFW’00), pages 132–143, Cambridge, England, 2000.
IEEE Computer Society Press.

21. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and verifying crypto-
graphic protocols. In Proc. Logic Programming and Automated Reasoning, volume
1955 of Lecture Notes in Computer Science, 2000. See also the CASRUL page
http://www.loria.fr/equipes/cassis/softwares/casrul/.

22. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing FDR. In T. Margaria and B. Steffen, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’96), volume 1055, pages 147–166,
Passau, Germany, march 1996. Springer-Verlag, Berlin Germany. Also in Software
Concepts and Tools, 17:93-102, 1996.

23. G. Lowe. Towards a completeness result for model checking of security protocols.
Journal of Computer Security, 7(2–3):89–146, 1999.

24. J. Millen and H. Rueß. Protocol-independent secrecy. In RSP: 21th IEEE Com-
puter Society Symposium on Research in Security and Privacy, 2000.

25. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Proc. 8th ACM Conference on Computer and Communica-
tions Security, 2001.

26. L. Paulson. Mechanized proofs for a recursive authentication protocol. In Proceed-
ings of the 10th Computer Security Foundations Workshop, pages 84–95. IEEE
Computer Society Press, 1997.

27. L. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6(1):85–128, 1998.

28. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In 14th IEEE Computer Security Foundations Workshop, 2001.

29. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and A. Roscoe. The modelling and
analysis of security protocols: the CSP approach. Addison-Wesley, 2000.

30. S. D. Stoller. A bound on attacks on payment protocols. In Proc. 16th Annual IEEE
Symposium on Logic in Computer Science (LICS), pages 61–70. IEEE Computer
Society Press, June 2001.

31. J. Thayer, J. Herzog, and J. Guttman. Strand spaces: proving security protocols
correct. In Journal of Computer Security, Vol. 7, pages 191–230. IEEE Computer
Society, 1999.

