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AbstratWe introdue a lass of tree automata that perform tests on a memorythat is updated using funtion symbol appliation and projetion. Thelanguage emptiness problem for this lass of tree automata is shown to bein DEXPTIME.We also introdue a lass of set onstraints with equality tests and proveits deidability by ompletion tehniques and a redution to tree automatawith one memory.Finally, we show how to apply these results to ryptographi protools.We introdue a lass of ryptographi protools and show the deidabilityof serey for an arbitrary number of agents and an arbitrary number of(onurrent or suessive) sessions, provided that only a bounded number ofnew data is generated. The hypothesis on the protool (a restrited opyingability) is shown to be neessary: without this hypothesis, we prove thatserey is undeidable, even for protools without nones.
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1 IntrodutionSet onstraints were introdued in the eighties and have been studied thoroughlysine, with appliations to the analysis of programs of various styles (see [2℄ fora survey). Typially, the problem of interest is to deide the satis�ability ofa onjuntion of set expression inlusions e � e0 in whih the set expressionsare built from variables and various onstrutions, inluding, e.g., projetion.Although some set variables may our several times in an expression, mostlasses of set onstraints do not make it possible to write a set expression for aset of terms of the form f(t; t), in whih one subterm ours more than one.One exeption is the lass of onstraints studied in [6℄.Our motivating interest is to develop lasses of ryptographi protools forwhih some form of serey is deidable. A historial lass of deidable proto-ols are the so-alled ping-pong protools [14℄. Although none of the protoolsof [8℄ belongs to this lass, ping-pong protools remain a deidable lass, whilemost larger lasses of seurity protools are undeidable [5℄. One of the mainrestritions in [15, 14℄ is that messages are built using unary symbols only. Inontrast, many protools of interest are written using a binary enryption sym-bol and a pairing funtion. Another restrition in [15, 14℄ is that eah protoolpartiipant is stateless: after a message is sent, the partiipant does not retainany memory of the ontents of the message. This is a signi�ant limitation sinemany protools rely on hallenge-response steps, that require memory. A previ-ous investigation of ping-pong protools with added state led to undeidability[19℄.It is insightful to observe that Dolev and Yao's result [15℄ an be proved usingset onstraints. This suggests a generalization of their approah to trees. A teh-nial ompliation, though, is that the generalization to trees is less expressivethan one might expet: in the ase of unary funtions only, a funtion and itsinverse are set inverses of eah other, in the sense that f(f�1(X)) is preisely X.However, this is no longer true with trees: if f�11 and f�12 are the two proje-tions orresponding to a binary funtion symbol f , the set f(f�11 (X); f�12 (X))ontains pairs f(t1; t2) whih are not neessarily in X. In order to inreasethe expressiveness of set onstraints with binary funtions, we need a \diagonalonstrution", enabling us to test for equalities between the members of sets.In this paper, we introdue a new lass of set onstraints, allowing limiteddiagonal onstrutions. This lass is inomparable with the lass skethed in [6℄.We show that satis�ability is deidable for this lass, allowing us to generalizeDolev and Yao's result to trees. More preisely, we de�ne a lass of rypto-graphi protools whose deidability does not assume any bound on the numberof sessions (whether onurrent or not), improving over former deision results,e.g. [3, 27, 25℄ (see [12℄ for a survey on deidability results for ryptographi
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protools). We also allow ompound keys. Protools in the lass assume a lim-ited opying apability for the agents. More preisely, we assume that an agentan only blindly opy one piee of the reeived message in the message (s)hesends. By \blindly" we mean here, without any type knowledge; this notion willbe made preise in the paper. Let us emphasize that this restrition is satis-�ed by almost all protools that we found in the literature. We also prove thatthis restrition is neessary: serey beomes undeidable if we allow two blindopies.Our lass of set onstraints does not apture all protool onepts of interest.In partiular, as an be seen from the survey [8℄, many authentiation protoolsmake use of nones or time stamps, whih we annot express (more preisely,we have to assume that there is a bounded number of nones produed by eahprinipal in any ombination of sessions). On the other hand, properties ofprotools that are modeled using set onstraints are deidable, while nonesand timestamps typially lead to undeidability [5℄. Moreover, we an expressonservative approximations of general protools, and it is possible in priniplethat set onstraints with equality tests provide algorithms for determining theseurity of some suh protools.We prove the deidability of set onstraints with equality tests by a redu-tion to an emptiness problem for a lass of tree automata with onstraints. Treeautomata with various forms of onstraints have been studied by several authors(see [9℄ for a survey). However, the lass we onsider in this paper is inompa-rable with known deidable lasses. Roughly, we allow eah state to hold onearbitrarily large memory register and restrit the use of this memory to equalitytests. Sine memory registers are updated using projetions and funtion appli-ation, this lass is a generalization of pushdown word (alternating) automata.Despite the generality of the lass, there is a simple proof that the emptinessdeision problem is in DEXPTIME.We start in setion 2.1 by introduing Dolev and Yao result and its formu-lation in terms of set onstraints. In setion 2.2, we reall (one possible) formalsemantis of ryptographi protools. We also prove that, even in the abseneof nones, serey is undeidable.In setion 3.1, we reall lassial results on de�nite set onstraints and gen-eralize them to set onstraints with non-emptiness guards in setion 3.2. Theresults of this last setions are used in the following setions.In setion 4, we introdue tree automata with one memory and we provesome deidability results, relying on de�nite set onstraints with non-emptinessguards. This an be seen as a stand-alone deidability result.Next, we introdue in setion 5 our lass of set onstraints with one equality,showing how to redue the satis�ability of these onstraints to the non-emptinessdeision for tree automata with one memory. The redution is similar to the
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saturation proess desribed in [7℄ for set onstraints with intersetion, but it ismore ompliated due to equality tests.In setion 6.1 we de�ne our lass of ryptographi protools and show how toapply the results of the previous setions to prove that serey is deidable forthis lass.Several tehnial proofs, whih are not interesting by themselves, are pushedto appendies.
2 Protool motivation2.1 Dolev-Yao's resultDolev and Yao [15℄ onsider protools in whih eah prinipal holds a singlepubli key (whih is known to everybody) and a orresponding private key thatis known to them only. The prinipals are able to build messages using plaintext, enryption eX with the publi key of X and signatures dX appending thename of prinipal X. Here is a simple example from [15℄:Example 1 ([15℄):
A! B : eB(dA(eB(s))) Alie sends to Bob a message enrypted usingBob's publi key onsisting of a signed enryptedtext s
B ! A : eA(s) Bob aknowledges the reeption by sending bak toAlie the text s, enrypted using the publi key ofAlieIn this model, ommuniation hannels are inseure. This allows an intruderto interept messages, remember them, and replae them with alternate (possiblyforged) messages. The intruder may derypt a message if the orresponding keyhas beome known to him, may append or remove signatures, and may enryptusing any publi key. The serey question asks whether there is a way foran intruder to get the plain text message s that is supposed to be kept seretbetween Alie and Bob. In the above example, the answer is yes (the protoolis inseure). For example, Dolev and Yao give the following attak: After a �rstsession of the protool, the intruder, I, who overhears the messages exhangedduring that session, sends to A the message eA(dI(eA(s))), whih he an buildusing the reply from Bob, and reeives eI(s) in return.The possible use of set onstraints in ryptographi protools analysis hasbeen suggested in several papers, e.g. [20℄. It is however interesting to seethat the Dolev-Yao deidability proof an be summarized using set onstraintsby letting I be the set of messages that an be built by the intruder (after any
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number of sessions). Sine I an interept any message of any run of the protool,we write set onstraints putting every protool message in I. For the exampleprotool above, we haveeY (dX(eY (s))) � I eX(e�1Y (d�1X (e�1Y (I)))) � Ifor every pair of prinipalsX;Y , sine Bob aknowledges a messagem from Alieby sending eA(e�1B (d�1A (e�1B (m)))). Finally, for every prinipal X, we express theability of the intruder to perform operations using publi information about X:dX(I) � I; eX(I) � I; d�1X (I) � IThis proess translates a protool into a olletion of set onstraints about theset I of messages available to the intruder. Serey now beomes the questionwhether the set onstraints, together with s =2 I, is satis�able ? Assuming a �xednumber of prinipals, this is deidable in polynomial time for set onstraintsarising from Dolev-Yao's ping-pong protools: we an ompute an automatonaepting the minimal solution of the de�nite set onstraint and hek the mem-bership of s.There are several restritions in the Dolev-Yao approah. In partiular, onlya �xed number of prinipals and, as mentioned above, only unary symbols maybe used. A pairing funtion or a binary enryption symbol, allowing to writee.g. e(k;m) instead of ek(m), i.e. allowing to onsider keys as �rst-lass objets,would onsiderably inrease the expressive power. Suh a model is presentedbelow.2.2 A more expressive modelWe start from a model inspired by Paulson [26℄ and developed by Millen andRuess in [24℄. However, we do not use the trae model as in [24℄ or [26℄, but a newstate-transition model similar to the MSR model proposed by Mithell et al [5℄or those presented in [13℄. Suh models are muh too expressive to be deidable,thus we onsider in this paper a restrited model whih does not allow nonereation but on the other hand we add an arbitrary number of funtion symbols.In partiular, we add ompound keys and hashing. If a limited number of nonesis allowed for eah pair of prinipals, none reation an be simulated beforehand,using additional binary funtion symbols N1; : : : ; Nk whose arguments are agentnames.In this setion, it will be shown that this restrited model is still undeidablebut not so far from deidability : setions 4 and 5 develop a deidable lass ofset onstraints whih will be used as a tool to extrat a deidable fragment (seesetion 6.1) of the model desribed below.
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2.2.1 MessagesThey are built from a set of funtion symbols F . Symbols of F are split intoseveral sets:agent's names: we assume that F ontains onstants and funtion symbolswhih allow to built agent's names. We assume that the set of agent'snames is in�nite. Furthermore, we distinguish an in�nite subset of honestagents Ah.invertible symbols whih, intuitively, orrespond to onstrutions whose om-ponents an be omputed by an intruder. Typially, the pairing funtionsbelong to this set of symbols sine it is assumed that an intruder an re-trieve eah omponent u; v from a pair < u; v >. Suh symbols an beapplied to any term.one way symbols whih, intuitively, orrespond to onstrutions whose om-ponents annot be omputed by an intruder. Typially, hash funtionsbelong to this set. Suh funtion symbols an be applied to any term. Inaddition, we assume that there are two speial funtion symbols with oneargument: pub() and priv(). Intuitively, pub() and priv() return respetivelya publi and a private key when they are applied to agents names.partially invertible symbols whih intuitively orrespond to onstrutionswhose omponents an be omputed by an intruder, subjet to some knowl-edge of the intruder. More spei�ally, we will onsider only one suh fun-tion: enryption. (This is the only relevant example we an think of, but weould generalize to more symbols in this set). For suh a binary funtion,whih takes as argument a term k (a key) and a term u and whose appli-ation will be written fugk, the intruder an build fugk when he knows uand k and an retrieve u when he knows fugk and the inverse key k�1. Apriori, the enryption funtion an be applied to any pair of terms so thatwe are not restrited to so-alled \atomi keys". However, we will assumethat the inverse of a key is the key itself, exept for expressions pub(a) andpriv(a) whih are inverse of eah other.The set agent's names is denoted by AG, the set of invertible symbols by IFand the set of one way symbols by OF . We get F = AG ℄ IF ℄ OF ℄ ff g g.Orthogonally, F is split into three sets of funtion symbols: those whihare known publily PF (for instane pub(), < ; >, f g ), those whih areannot be used by the publi UF , but only by spei� agents (for instane a keyonstrution funtion, whih is known to a spei� server only) and �nally thosewhih an be used by an intruder AF , only with spei� arguments. This lastnotion is the dual of partially invertible symbols. priv() is an example of suh a9



symbol, whih an be used by an intruder i, with the argument i only. We willsee later more examples. To summarize, the set of funtion symbols onsists ofF = AG ℄ IF ℄ OF ℄ ff g g = PF ℄ UF ℄ AFwhere pub() 2 PF , priv() 2 AF , f g 2 PF . For eah partially onstrutiblesymbol in AF , it must be spei�ed whih of the arguments must be spei� andwhih are unrestrited. The only argument of priv() is restrited.Moreover, we assume a �nite set of sorts ontaining in partiular the sortsAgent; Ah; Ad; Message suh that Ah and Ad are subsorts of Agent and Agent isa subsort of Message, the sort of all messages. In addition, the set of messagesof sort Ah is exatly Ah and the set of messages of sort Ad is exatly AG � Ah.Elements of AG are onstants or funtion symbols returning agent's names ofsort Agent. The funtions symbols pub(); priv(); f g take messages as argumentand return messages: pub(); priv(); f g : Message � Message ! Message. Thetype of other symbols has to be spei�ed with the protool.The set of messages is the set of (ground) terms T (F) built over the abovedesribed signature and whose sort is Message.As an example of an additional sort, we ould onsider nones. Note how-ever that, in our (un)deidability results, we will always assume that there is abounded number of nones; it is then possible to represent them as messages ofthe form e.g. ni(a; b) where a; b are agents (in whih ase ni 2 AF \OF and itis restrited in its �rst argument, meaning that only a an generate ni(a; b), forany b).Desribing protools and the behavior of honest partiipants requires vari-ables ranging either over messages or over agents. Variables ranging over agentsare usually alled roles. Message shemes are terms of sort Message, built overF and possibly variables.Example 2 We present here a protool example (inspired by Kerberos), whihwill be used as a running example through the paper.1: A! S : A;B2: S ! A : f< B;K(A;B); f< A;K(A;B) >gshr(B) >gshr(A)3: A! B : < fm(A;B)gK(A;B); f< A;K(A;B) >gshr(B) >4: B ! A : fh(m(A;B))gK(A;B)In words, A tells the key server S that she wants to seurely ommuniate withB. Then S sends bak to A a message, enrypted using a key that she shareswith the server and ontaining a session key K(A;B) together with a erti�atewhih an be opened by B only. At the third step, A sends her message m(A;B),enrypted using the key K(A;B), together with the erti�ate, whih is opied
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blindly from message 2. Finally, B aknowledges the reeption, sending bak adigest h(m(A;B)) of the previous message, enrypted using the shared key.We are going to see in more detail how this protool is formally desribedin the model. For the moment, let us only make preise the omponents of thesignature.We assume here six sorts: Nat; Agent; Ah; Ad; Message; Key. The last sort isprotool spei�. Introduing suh a sort means that the agents are assumed tobe able to see whether a message is a key or not (we will disuss this hypothesislater on).There is a spei� onstant s (the server) of sort Agent. The way otheragent's names are built is irrelevant. We ould, for instane, use natural numberstogether with a label for (dis)honest partiipants: 0 :! Nat, su : Nat ! Nat,ha : Nat ! Ah, da : Nat ! Ad. For simpliity, in what follows, we will usethe notation a1; a2; ::: for honest agents (i.e agent of sort Ah) and i1; i2; ::: fordishonest agents (i.e. the other agents). Note that the set of agents is in�nite.Then, we use IF = f< ; >;< ; ; >g. These tupling funtions takearbitrary messages as arguments and return messages.OF = fh;m;K; shr; su; 0; ha; dagwith h : Message ! Message, m : Agent � Agent ! Message, K : Agent �Agent! Key, shr : Agent! Key.Now, the following are publi symbols:PF = f< ; >;< ; ; >; pub; f g ; h; 0; su; da; hagIn partiular, anybody an know every agent name and every agents publi key.Now, K an only be used by the serverUF = fKgFinally, AF = fm; prv; shrgwhere both symbols are restrited in their �rst argument.2.2.2 Events and Global StatesThere are two kinds of events: message and state events. A state event is of theform Q = S(A; n;X) where S is taken in a �nite set Fs of funtion symbols. Typ-ially, Fs = fInit;Resp;Servg. Usually, for state events of the form Serv(A; n;X),A is always equal to s the onstant representing the server. A is a ground termof sort Agent, n is a natural number that represents the step of the protool, andX = Mem(Q) is a tuple of messages representing the memory held by the state.11



A state sheme is built in the same way, exept that the agent an be abstrated(using a role) and the messages are replaed with message shemes.A global state is a set (not a multiset) of events. The ontent of a global stateis its set of messages, written:Cont(H) def= H \MessagesExample 3 (example 2 ontinued)The messages i1 or m(i1; a2) an be built from the formalism desribed in ourrunning example. Init(i1; 1; < i1; a1; s >) is a state event. Intuitively, it repre-sents the dishonest agent i1 ready to start a session as initiator.2.2.3 Indutive Relations.Given a term t = f(t1; : : : ; tn), parts(t) is de�ned indutively as follows:� if f 2 OF [AG, then parts(t) def= ftg,� if f 2 IF , then parts(t) def= ftg [Sni=1 parts(ti),� if f = f g , then parts(ft1gt2g) def= ftg [ parts(t1).Given a set of terms S, parts(S) is the set of parts of all terms in S.analz(S) is the subset of parts(S) onsisting of only those subterms that areaessible to an attaker: analz(S) is the least set S0 ontaining S and suh that:� if f(t1; : : : ; tn) 2 S0 and f 2 IF , then t1; : : : ; tn 2 S0,� if ft1gt2 2 S0 and t�12 2 S0, then t1 2 S0.Conversely, an attaker may use any available funtion to build new messages.synth(S) is the least set of messages S0 ontaining S and suh that� If f 2 PF and t1; : : : ; tn 2 S0, then f(t1; : : : ; tn) 2 S0� If f 2 AF , f is restrited w.r.t. its arguments j1; : : : ; jk, t1; : : : ; tn 2 S0, andtj1 ; : : : ; tjk 2 Ad, then f(t1; : : : ; tn) 2 S0, where Ad is the set of dishonestagents (Ad = fin jn 2 N g).The intruder in our model synthesizes faked messages from analyzable partsof a set of available terms and he an iterate the proess. This motivatesthe following de�nition: fake(S) is the least set S0 ontaining S and suh thatsynth(S0) � S0 and analz(S0) � S0. Note that fake(S) is not neessarily equalto synth(analz(S)) if we do not assume atomi keys: for instane if an intruderknows t1; ftg<t1;t2>; t2, he an build t by �rst onstruting < t1; t2 > and thenderypt the message. 12



Example 4 (example 3 ontinued)Assume that (in some state), the intruder holds the following messages:S1 = ff< m(a1; i1); a2 >gh(K(a1;a2)); fh(K(a1; a2))gpub(i1);fm(a1; a2)gK(a1;a2); pub(i1)gThen analz(S1) ontains for instane h(K(a1; a2));m(a1; i1) but not m(a1; a2).fake(S1) ontains for instane f< a2; h(K(a1; a2)) >gh(m(a1;i1)).2.2.4 ProtoolsA protool transition t is of the form Pre(t) �! Post(t), where Pre(t) andPost(t) are (�nite) sets of messages and states. Unlike in [13℄, there is not anynew spell : the serey poliy may be spei�ed independently as presented later.Suh transitions speify a possible global state hange in a way to be explainedbelow. A transition t shows a state hange for one agent. Formally, Pre(t) andPost(t) ontain at most one state event and Pre(t) ontains one state event ifand only if Post(t) ontains one state event.A protool is simply a set of protool transitions, an initial global state H0and a serey spei�ation S0. When H0 is not spei�ed, it is assumed thatH0 = ;. Both the protool transitions and the serey spei�ation is in�nite.They are however represented by means of instanes of a �nite number of terms:typially, the protool is given by a �nite set of rules ui ! vi where ui and viare �nite sets of message shemes and state shemes. Suh rules represent thein�nite set ui� ! vi� where � is any substitution ompatible with the types.The serey poliy S0 is given by an �nite union of sets of the form:ft1; : : : ; tn j x1; : : : ; xk 2 Ahgwhere x1; : : : ; xk are the free variables of the message shemes t1; : : : ; tn.S0 represents the set of messages that the intruder should not hold.Example 5 (example 4 ontinued)The protool, as desribed in example 2 is a bit sloppy. We used there thestandard notations, but, if we want to be more preise, we have to speify forinstane in message 3 how Alie retrieves the di�erent omponents of the messageshe sends. Typially in suh protools, A;B are roles, not agent's names. The\B" in message 3 an be either the name sent in message 1 or the name passed inmessage 2 (It does not make a di�erene in this partiular example. But it doesmake a di�erene in other situations, as shown by the attak on the Needham-Shroeder protool [22℄).
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; �! 8<: Init(A; 1; <A;B; s>);Resp(B; 1; <B; s>);Serv(s; 1; s) 9=; (0)fInit(A; 1; <A;B; s>)g �! fInit(A; 2; <A;B; s>); <A;B>g (1)� Serv(s; 1; s)<A;B> � �! � Serv(s; 2; s);fB;K(A;B); fA;K(A;B)gshr(B)gshr(A) � (2)� Init(A; 2; <A;B; s>);fB;X; Y gshr(A) � �! � Init(A; 3; <A;B; s;X;m(A;B)>);<fm(A;B)gX ; Y > � (3)� Resp(B; 1; <B; s>);<fZgX ; fA;Xgshr(B)> � �! � fResp(B; 1; <B; s;A; Z;X>);fh(Z)gXg � (4)
Figure 1: Rules of the protool

This protool should not reveal the messages m(a; b), K(a; b), shr(a) when aand b are honest agents. This an be expressed by the following serey poliy S0:S0 = fm(a; b);K(a; b) j a; b 2 Ahg [ fshr(a) j a 2 Ahg:Next, the protool rules are given in �gure 1. The rule 0 says that, at anytime, a new session an be started (the preondition is an empty set). Afterapplying this rule to an instane a; b, the agents a; b; s are ready to at as parti-ipants of a protool session.The rule 1 orresponds to the �rst step of the protool: any agent a who isready to at as A in the protool an send the message < a; b > to s and swith toa state in whih she remembers having ompleted the �rst step (hene the seondargument is 2) and having sent the message < a; b > to s.Rule 2 orresponds to the seond step of the protool: if s is ready to serve akey and if the message < a; b > has been sent, then the server swithes, generatesthe key K(a; b) and sends the expeted message. Note that the variables A;B areloal to the rule, hene the instanes are not neessarily the same as in theprevious step: an intruder an very well perform the �rst step of the protool, inwhih ase there are two < a; b >;< a0; b0 > in the global state and the seondinstane may be used instead of the �rst one.In the rule 3, the agent a, who ompleted the �rst steps of the protool expetsa message of the form fb; �; �gshr(a). She an hek that the message is an en-rypted message ontaining three omponents and that the �rst omponent is anagent's name, with whom she started a session. However, she annot hek thatthe seond omponent is indeed K(a; b) and, similarly, she annot open the thirdomponent (the tiket). Hene these two omponents are left as loal variablesof the rules whih an be instantiated in an arbitrary way, provided that Y getsa term of sort Message and X gets a term of sort Key. (We assume here that ais able to reognize whether a term has type Key or not.)14



Similarly, in the last rule, the expeted instane of Z is m(a; b), but it ouldbe any faked message: there is no way to hek this.This formal spei�ation of the protool gives more preision on the abilitiesof eah agent. We make preise here what is expeted by eah partiipant andwhat is his behavior.2.2.5 Global State Transitions.Given a protool P and a set of initial knowledge I (of the intruder), the globalsuession relation transforms a state H to a new state H 0. A suession is eitherhonest, i.e. it orresponds to an ation by an agent following the protool, or itis faked by the intruder.� H 0 is an honest suessor ofH, denoted by honest(P )(H;H 0), if there existsan appliable transition t in P suh that H 0 = (Hn(Pre(t) \ States)) [Post(t).� H 0 is a fake suessor of H, denoted by fake(I)(H;H 0), if there exists a�eld X 2 fake(Cont(H) [ I) suh that H 0 = H [ fXg.In the honest ase, a transition t is appliable in H if Pre(t) � H. In the fakease, the intruder is restrited to adding only messages that an be inferred fromthe ontent of the urrent state and the initial knowledge. In either ase, wewrite global(P; I)(H;H 0). This relation determines a logial transition systemwith the initial global state H0 as its initial state. The set of reahable states ofthis transition system is denoted by reahable(P; I).2.2.6 Serey PoliyGiven the intruder's initial knowledge I and a serey poliy S0, a global stateH is alled I; S0-seure if fake(Cont(H) [ I) \ S0 = ;; these states are olletedin the set seure(I; S0). Now, a protool P is alled seure if seure(I; S0) is aninvariant of the transition relation assoiated with P and S0 is the serey poliyassoiated to P ; i.e. for all I, reahable(P; I) is a subset of seure(I; S0).Remark : atually, it is suÆient to prove that seure(I0; S0) is an invariant forI0 the maximal set ompatible with S0 :I0 = fm j parts(m) \ S0 = ;g:This de�nition is slightly di�erent from the one given in [13℄ but it mathesmore preisely the idea of serey while the de�nition given in [13℄ was an over-approximation of serey in order to allow indutive proofs.
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2.2.7 An undeidability resultWe present now an undeidability result. Let us emphasize that we do not havehere the none onstrution. Hene, the result is stronger than the undeidabilityresult of [18℄.Theorem 6 It is undeidable whether or not a protool P is seure.A proof of this result has been proposed S. Even and O. Goldreih in [19℄by reduing serey to the Post Correspondene Problem (PCP). A simpli�edproof was proposed by M. Rusinowith. The intuitive idea is the following one:onsider a �nite alphabet � and an instane of PCP: (ui; vi)1�i�n; ui; vi 2 ��.We onstrut the following protool:A ! B : f< 0; 0 >gKabB ! A : f< N1; N2 >gKabA : f< x; y >gKab ! B : f< xui; yvi >gKab ; fsgf<xui;xui>gKab 1 � i � nThe key Kab is a symmetri, private key between A an B. The last rule desribesn rules for the agent A. The left-hand-side desribes the message expeted byA. One an show that s remains seret if and only if there is no solution tothe onsidered instane of PCP. A similar protool an be build without usingomposed keys.An inonvenient of both onstrutions is that for eah instane of PCP withno solution, the orresponding protool does not have one honest instane. UsingPetri nets, we onstrut in [10℄ a redution suh that the orresponding protoolis a \real" protool in the sense that eah rule of the protool an be played inthe given order : the �rst rule, than the seond and so on, i.e., there is at leastan honest instane of the protool. In addition this redution only uses standardryptographi primitives, namely pairing and enryption with symmetri keysand a �xed number of roles (atually only one role) and a �nite number of pro-tool rules. For eah redution (using PCP or Petri Nets), the intruder atuallymay atually only forwards messages and does not need to forge new ones.
3 De�nite set onstraints3.1 De�nite set onstraints and intersetion onstraintsThis lass of set onstraints has been introdued in [21℄ and studied by variousauthors (e.g. [7℄). Eah onstraint is a onjuntion of inlusions e1 � e2 wheree1 is a set expression and e2 is a term set expression. Term set expressions arebuilt out of a �xed ranked alphabet of funtion symbols F , the symbols >;?
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and set variables. A set expression is either a term set expression or a union oftwo set expressions e1[e2, or an intersetion of two set expressions e1\e2 or theimage of set expressions by some funtion symbol f(e1; : : : ; en) or a projetionf�1i (e1) where f is a funtion symbol and i 2 [1::n℄ if n is the rank of f . Notethat negation is not allowed.Example 7 Here is a de�nite set onstraint:f�12 (X) � g(Y ) f(f(X;Y ) \X;X) � Xg(Y ) \ Y � X a � Ywhere a; f; g are funtion symbols and X;Y are set variables.Set expressions denote sets of subsets of the Herbrand universe T (F); if � assignseah variable to some subset of T (F), then [[ ℄℄� is de�ned by:[[X℄℄� def= X�[[f(e1; : : : ; en)℄℄� def= ff(t1; : : : ; tn) j 8i 2 [1::n℄; ti 2 [[ei℄℄�g[[e1 \ e2℄℄� def= [[e1℄℄� \ [[e2℄℄�[[f�1i (e)℄℄� def= fti j 9t1; :::; tn:f(t1; :::; tn) 2 [[e℄℄�g[[>℄℄� def= T (F)[[?℄℄� def= ;[[e1 [ e2℄℄� def= [[e1℄℄� [ [[e2℄℄�� satis�es e1 � e2 i�, [[e1℄℄� � [[e2℄℄�. This extends to onjuntions of inlusions.Example 8 (example 7 ontinued)The substitution �def=[X ! ;; Y ! fag℄ satis�es the set onstraints desribed inexample 7.Following a standard translation (see e.g. [7℄), the de�nite set onstraintsan be rewritten (in polynomial time) into intersetion onstraints whih areonjuntion of inlusions of one of the forms:X � Y f(X1; : : : ;Xn) � XX � f(Y1; : : : ; Ym) f(X1; : : : ;Xn) � g(Y1; : : : ; Ym)where X;X1; : : : ;Xn; Y; Y1; : : : ; Ym are intersetions of set variables. In otherwords, the onstraints an be attened and union and projetions eliminatedthanks (in partiular) to the equivalene:f�1i (X) � Y , X \ f(>; : : : ;>) � f(>; : : : ; Y;>; : : :)where the Y is in ith position.The translation � from de�nite set onstraints to intersetion onstraints mayrequire the introdution of new variables. Formally, � preserves the solutions:17



Lemma 9 � is a solution of the de�nite set onstraint C if and only if there ex-ists �0, solution of the intersetion onstraint �(C), suh that � is the restritionof �0 to the variables of C.Theorem 10 ([7℄) The satis�ability of intersetion onstraints (resp. de�niteset onstraints) is DEXPTIME-omplete and eah satis�able onstraint has aleast solution whih is aepted by a �nite tree automaton.Moreover, the deision proedure provides e�etively the �nite tree automa-ton aepting the least solution.3.2 Intersetion onstraints with non-emptiness guardsNow, we onsider a slight extension of intersetion onstraints, yielding a resultsimilar to theorem 10. If e is a set expression, let nonempty(e) be a statementwhih is satis�ed by � i� [[e℄℄� is not empty.We extend the formalism as follows. A at expression is either an intersetionof set variables or a set expression f(X1; : : : ;Xn) where X1; : : : ;Xn are interse-tions of set variables. An intersetion onstraint with non-emptiness guards is aonjuntion of lausesnonempty(e01); :::; nonempty(e0n)) e1 � e2where e01; : : : ; e0n; e1; e2 are at expressions.The interpretation of suh onstraints is the expeted one. Note that, ofourse, they extend intersetion onstraints. However, the algorithm given in [7℄an be applied with slight hanges only.In other words, enrihing the intersetion onstraints with lauses of theabove form, we still have the same result as in theorem 10, as a orollary of [7℄:Theorem 11 The satis�ability of intersetion onstraints with non-emptinessguards is DEXPTIME-omplete and eah satis�able onstraint has a least solu-tion whih is e�etively aepted by a �nite tree automaton.Proof: If we want to be as self-ontained as possible, we need to reprodue, atleast partly, the proof of [7℄. In the next setion, we will also rely on this proof.First, we an assume that all expressions ourring in the guards also ouras members of inlusions (if neessary, add e � e and atten again).Now, aording to [7℄, we saturate the onstraints using the inferene rulesgiven in �gure 2.In this �gure, X;X1; : : : ;Xn;X 0;X 01; : : : ;X 0n are intersetion of set variablesand e; e0; e1; e2; e01; e02 are any at set expressions. If these rules are applied to in-tersetion onstraints, we get as onlusions intersetion onstraints again, with18



Reexivity e � e
Transitivity e1 � e2 e2 � e3e1 � e3Weakening X1 \ : : : \Xn � Xi
Compatibility e1 � e2 e01 � e02e1 \ e01 � e2 \ e02
Propagation 1 nonempty(e) e � e0nonempty(e0)
Propagation 2 nonempty(X1); : : : ; nonempty(Xn)nonempty(f(X1; : : : ;Xn))
Projetion nonempty(f(X1; : : : ;Xn)) f(X1; : : : ;Xn) � f(X 01; : : : ;X 0n)Xi � X 0i
Inompatibility nonempty(e) e � f(X1; : : : ;Xn) e � g(X 01; : : : ;X 0m) If f 6= gfalse
Cut nonempty(e) nonempty(e); �) e0 � e00�) e � e0

Figure 2: Inferene rules for intersetion onstraints
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the onvention that expressions f(e1; : : : ; en)\ f(e01; : : : ; e0n) are eagerly normal-ized into f(e1 \ e01; : : : ; en \ e0n).As shown in [7℄ the rules of �gure 2 are orret and applying the inferenerules saturates the set onstraint in deterministi exponential time (assumingthat reexivity and weakening do not introdue new variables).For every onstraint , we let C be the saturated set. As in [7℄ again, let Sbe the solved form of :S = ff(e1; : : : ; en) � X 2 C j nonempty(f(e1; : : : ; en)) 2 Cgwhere X is a variable.S is essentially the de�nition of a tree automaton whose states are set vari-ables. Let � be the substitution, assigning to eah variable X, the languagereognized by this tree automaton in state X. We are going to prove that eitherfalse 2 C or else � is the least solution of . The minimality of � omes fromautomata theory. Let us onentrate on the fat that � is a solution of .The proof that � satis�es all inlusions e1 � e2 in �C is idential to [7℄.Consider a lause nonempty(e1); : : : ; nonempty(en) ) e � e0 with n � 1. Ifthere is an i suh that [[ei℄℄� is empty, then the lause is trivially satis�ed. Oth-erwise, we may assume that every ei is an intersetion variable sine � satis�esnonempty(f(Y1; : : : ; Yn)) if and only if it satis�es nonempty(Y1); : : : ; nonempty(Yn).Then let ei be the intersetion X1i \: : :\Xkii . For every i, there is a term ti whihis aepted by the tree automaton in every state Xji . We prove below that, ift is aepted in all states X1; : : : ;Xn, then nonempty(X1 \ : : : \Xn) 2 C . Letus assume this for the moment. Then, by the rules Cut and Propagation 2,e � e0 2 C , whih proves that � satis�es e � e0, thanks to [7℄.We prove by indution on the size of t that, if t is aepted in all statesX1; : : : ;Xn, then nonempty(X1 \ : : :Xn) 2 C .� If t is a onstant, by de�nition of the automaton, t � Xi 2 C for every i.Then, by Compatibility (applied n� 1 times), t � X1 \ : : : \Xn 2 C� If t = f(t1; : : : ; tm). By de�nition of the automaton, there are inlusionsf(ei1; : : : ; eim) � Xi 2 �C suh that, for every j 2 [1::m℄, for every i, tj 2[[eij℄℄�. Now, we apply the indution hypothesis: for every j, nonempty(e1j \: : :\enj ) 2 C . By Propagation 2, nonempty(f(e11\ : : :\en1 ; : : : ; e1m\ : : :\enm)) 2 C . Now, by Compatibility,f(e11 \ : : : \ en1 ; : : : ; e1m \ : : : \ enm)) � X1 \ : : : \Xn 2 Cand, by Propagation 1, we onlude that nonempty(X1 \ : : :\Xn) 2 C .
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To summarize: the assignment � de�ned by the solved form S also satis�esthe onditional inlusions of C , whih means that C is satis�able wheneverfalse =2 C and � is then the minimal solution of . �In the proof of the last result, we have seen in passing that nonempty(X) is alogial onsequene of the onstraint i� it belongs to the saturated set. It followsthat:Corollary 12 Deiding whether the minimal solution of a de�nite set onstraintwith non-emptiness guards assigns the empty set to X is DEXPTIME-ompleteAtually, the DEXPTIME-hardness of this orollary is missing so far. Butwe an redue the non-emptiness problem of the intersetion of n tree automata(whih is DEXPTIME-omplete) by translating the de�nitions of the automatainto intersetion onstraints and adding a lausenonempty(X1 \ : : : \Xn)) a � Xwhere X1; : : : ;Xn are the set variables orresponding to the aepting states ofthe n automata respetively, X is a new variable and a is a onstant.
4 Tree automata with one memoryThe idea is to enrih the expressiveness of tree automata by allowing them toarry and test some information. For instane, a pushdown automaton will keepa stak in its memory and hek the symbols at the top of the stak. What wedo here is something similar. Our automata work on trees instead of words andmay perform more general onstrutions and more general tests. We will seelater as an example how to express pushdown automata in our formalism.Informally, a tree automaton with one memory omputes bottom-up on a treet by synthesizing both a state (in a �nite set of states Q) and a memory, whihis a tree over some alphabet �. Eah transition uses some partiular funtionwhih omputes the new memory from the memories at eah diret son. Eahtransition may also hek for equalities the ontents of the memories at eah son.Given an alphabet of funtion symbols �, the set of funtions � whih weonsider here (and whih may be used to ompute on memories) is the least setof funtions over T (�) whih is losed by omposition and ontaining:� for every f 2 � of arity n, the funtion �x1; :::xn:f(x1; : : : ; xn)� for every n and every 1 � i � n, the funtion �x1; ::::; xn:xi
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� for every f 2 � of arity n and for every 1 � i � n, the (partial) funtionwhih assoiates eah term f(t1; : : : ; tn) with ti, whih we write �f(~x):xi.For instane, if � ontains a onstant (empty stak) and unary funtionsymbols, � is the set of funtions whih push or pop after heking the topof the stak.De�nition 13 A tree automaton with one memory is a tuple (F ;�; Q;Qf ;�)where F is an alphabet of input funtion symbols, � is an alphabet of memoryfuntion symbols, Q is a �nite set of states, Qf is a subset of �nal states, � isa �nite set of transition relations of the form f(q1; :::; qn) �!F q where� f 2 F is alled the head symbol of the rule,�  is a subset of f1; :::; ng2, de�ning an equivalene relation on f1; : : : ; ng.� F 2 � suh that F takes k arguments where k is the number of equivalenelasses w.r.t. � q1; : : : ; qn; q 2 Q, (q is the target of the rule).A on�guration of the automaton onsists of a state and a term in T (�)(the memory). Then omputations work as follows: if t = f(t1; : : : ; tn) and theomputation on t1; : : : ; tn respetively yields the on�gurations q1; �1, ... , qn; �n,then the automaton, reading t, may move to q; � when there is a transition rulef(q1; : : : ; qn) �!F q and for every i = j 2 , �i = �j and � = F (�i1 ; : : : ; �ik)where i1; : : : ; ik are any representatives of the equivalene lasses for  (the wayij is hosen in its equivalene lass is not relevant). A tree t is aepted by theautomaton whenever there is a omputation of the automaton on t yielding aon�guration q;  with q 2 Qf .Example 14 Assume that the transitions of the automaton A are (other ompo-nents of the automaton are obvious from the ontext, > is the identity relation):g(q) >����!�x1:x1 q f(qa; qa) 1=2������!�x1:h(x1) qg(qa) >������!�x1:h(x1) q f(q; q) 1=2������!�h(x1):x1 qa >�!b qaA omputation of the automaton on f(g(f(a; a)); g(a)) is displayed on �gure 3,in whih the on�gurations reahed at eah node are displayed in a frame.
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f q; b��� PPPgq; h(b) g q; h(b)
fq; h(b) a qa; b��� PPPaqa; b a qa; b

Figure 3: A tree t and a omputation of A on t
Pushdown automata (on words) perform transitions a; q; � �  ! q0; � � where a is an input symbol, q; q0 are states and �; �;  are words over the stakalphabet (the rule pops � and pushes �). Suh a rule an be translated inthe above formalism, viewing letters as unary symbols: a(q) ������!�x:���1x q0. Ifw = a1(: : : ak( ) : : :), we use here the notation w�1(x) for a�1k (: : : (a�11 (x))), theadditional subsript 1 being impliit for eah letter, whih has only one argument.This translation does not make use of equality tests. Orthogonally, it ispossible to simulate tree automata with equality tests between brothers [4℄. Thisrequires some oding, beause the funtion F an refer to one representativefor eah lass only, hene we annot keep diretly in the memory the subtreereognized so far. However, it is possible to show that any language reognizedby an automaton with equality tests between brothers (and, more generally,with non-overlapping equality tests) is also aepted by an automaton with onememory. We don't need the projetions here.In some respet, our de�nition is a generalization of both models: we anboth use a stak and hek for equality, and keep reord of deep subtrees. Weavoid overlapping tests, whih yield undeidability [23, 9℄, beause we allow onlyone representative of eah lass in the funtion in the body of F .Theorem 15 The emptiness of the language reognized by a tree automaton withone memory is deidable in DEXPTIME. More generally, the reahability of agiven on�guration is deidable in DEXPTIME.Proof: For every q 2 Q, let Mq be the subset of T (�) of memory ontents msuh that there is a tree t and a omputation of the automaton on t yieldingthe on�guration < q;m >. We prove that the sets Mq are the least solutionsof the de�nite set onstraint with non-emptiness guards CA, onsisting, for eahtransition rule f(q1; : : : ; qn) �!F q of the inlusionnonempty(eqi1 ); : : : ; nonempty(eqik )) F (eqi1 ; :::eqik ) � Xq23



and eqij is the intersetion for all indies l equivalent (w.r.t. ) to ij of Xql .CA an be assumed to be an intersetion onstraint with non-emptinessguards (see setion 3).First, the assignment �0 whih maps every Xq to Mq is a solution of theonstraint. Indeed, onsider any lause of the above form with F = �x1; : : : ; xk:Gand assume (for simpliity) that x1; :::; xr do not our in G, while xr+1; : : : ; xkour (one) in G.If [[eqij ℄℄�0 6= ; for every ij , then it is possible to reah on�gurations <q1;m1 >; : : : ; < qn;mn > suh that mj 2 [[eqij ℄℄�0, i.e mi = mj whenever i = j 2. Now, onsider any terms m01; : : : ;m0k�r respetively in Mqr+1 ; : : : ;Mk. Thereare trees t1; : : : ; tr; : : : ; tk suh that there are omputations of the automaton onthis trees yielding respetively the on�gurations < q1;m1 >; : : : ; < qr;mr >;<qr+1;m01 >; : : : ; < qk;m0k�r >. From these on�gurations, reading the input f ,the automaton an move to the on�guration < q;G(m01; : : : ;m0k�r) >, heneG(m01; : : : ;m0k�r) 2Mq.Conversely, we have to prove that any solution � of the onstraint is largerthan �0. Let m 2 Mq. There is a omputation of the automaton on sometree t, yielding the on�guration < q;m >. We prove, by indution on t, thatm 2 [[Xq℄℄�.� If t is a onstant, then there must be a rule a �!F q and F = m 2 T (�).By de�nition, there is a onstraint F � Xq. Hene m 2 [[Xq℄℄�.� Now, let t = f(t1; : : : ; tn) and let f(q1; : : : ; qn) �!F q be the last rule appliedin the omputation yielding < m; q >. Let moreover < q1;m1 >; : : : ; <qn;mn > be the on�gurations orresponding to omputations on t1; : : : ; tn.By de�nition, mi = mj whenever (i; j) 2  and m = F (mi1 ; : : : ;mik).By indution hypothesis, for every i, mi 2 [[Xi℄℄� and, beause of theequality onstraints, mi 2 [[eqil ℄℄� if (il; i) 2 . It follows that � satis-�es nonempty(eqij ) for all j and, sine � satis�es the lause assoiated withthe rule, it satis�es F (eq11 ; : : : ; eqik ) � Xq. In partiular, m 2 [[Xq℄℄�.This ompletes the proof that the setsMq are the least solutions of the onstraintCA.Then the non-emptiness of the language reognized by A redues to theproblem of deiding whether at least one of some designated variables gets a non-empty set in the least solution of the onstraint. This is DEXPTIME-omplete,thanks to orollary 12. �The result an be generalized to alternating tree automata with one memorykeeping the same omplexity. Alternation here has to be understood as follows:24



we may replae the states ourring in the left hand sides of the rules witharbitrary positive Boolean ombinations of states. The above proof simply works,using additional intersetions and unions.Corollary 16 The emptiness problem of alternating tree automata with onememory is DEXPTIME-omplete.Note however that the lass of automata with one memory is neither losedunder intersetion nor omplement (both yield undeidable models).
5 Set onstraints with equality tests5.1 De�nition of the lass5.1.1 General set onstraints with equality testsWe onsider now de�nite set onstraints as in setion 3, with non-emptinessonstraints and with an additional onstrution: funtion symbols an be labeledwith equality tests, whih are onjuntions of equalities p1 = p2 between paths.The intention is to represent sets of terms t suh that the subterms at positionsp1 and p2 are idential. We assume, without loss of generality, that there is nounion and no projetion symbol, whih, as we have seen, is not a restrition(provided that the equality tests do not overlap projetion symbols).We use the standard notations on terms [17℄. Let us reall some of them. Aposition will be a string of non-negative integers. A term t labeled with F anbe seen as a mapping from the set Pos(t) of its positions to F . The subterm oft at position p is written tjp.An equality onstraint  is an equivalene relation on a �nite set of positionsP (). We assume that no strit pre�x of a position in P () does belong to P ()(this restrition will be dropped in setion 5.2.1). We will often write equalityonstraints as �nite sets (or �nite onjuntions) of expressions p1 = p2 wherep1; p2 are positions. Then, it must be understood that  is the least equivalenerelation ontaining the pairs (p1; p2) on the set of positions ourring in some ofthe equalities. We also say that a position p is heked by  when p 2 P ().A term t satis�es , whih we write t j=  , if every path in P () is a positionof t and moreover, tjp1 = tjp2 (the subterms of t at positions p1 and p2 areidential).We enrih the set expressions of setion 3 with the onstrution f (e1; : : : ; en)where  is an equality onstraint. These expressions are interpreted as follows:[[f (e1; : : : ; en)℄℄� def= ft 2 [[f(e1; : : : ; en)℄℄� j t j= g
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The set of paths in an expression e is de�ned as follows:�(f (e1; : : : ; en)) def= f�g [ 1 ��(e1) [ : : : [ n ��(en)�(e1 \ e2) def= �(e1) [ �(e2)�(X) def= f�gLet p 2 �(e). We let ejp be the set of subexpressions at position p:ej� def= feg(e1 \ e2)ji�p def= e1ji�p [ e2ji�p(f (e1; : : : ; en))ji�p def= eijpXji�p def= ;When ejp ontains only one element, we onfuse ejp with this element andsay that ejp is the subexpression of e at p.We will assume that, in every expression f (e1; : : : ; en),P () � �(f (e1; : : : ; en))All other onstrutions are the same as in setion 3. In partiular, right handsides of inlusions should not ontain onstrutions f . When  is empty, wemay omit it or write >.Example 17 f21=12(f(Z; Y ) \X; g(X) \ Y ) � f(Y; g(X)) is an inlusion on-straint. � = fX 7! fa; b; f(a; b)g;Y 7! fb; g(a); g(b); f(a; b)g;Z 7! fa; bgg is asolution of the onstraint sine [[f12=21(f(Z; Y )\X; g(X)\Y )℄℄� = ff(f(a; b); g(b))g5.1.2 A omplete dedution systemWe �rst design a omplete dedution system and show that every satis�able setonstraint has a least solution. These results are not meant to be pratial.Let S be a set onstraint as in the previous setion, whose variables areV ar(S) = fX1; : : : ;Xng. Let � be the subset of (2T (F))n of assignments �mapping every variable Xi to a �nite set.We may assume in this setion that, in every lause�) e � e0the expression e0 does not ontain intersetion symbols. This is not a restritionas a lause �) e � e0[e1 \ e2℄ is equivalent to the two lauses �) e � e0[ei℄ fori = 1; 2.With this assumption, we an assoiate with eah right hand side of aninlusion e0 a term te0 2 T (F ;X ) suh that every variable ours only one in te0and e0 is obtained from te0 by substituting set variables to the variables of te0 .We de�ne the one step dedution relation TS on � [ f�g as follows:26



TS(�) def= �If there is a lause �) e � e0 in S suh that � j= � and there is a t 2 [[e℄℄� suhthat t is not an instane of te0 , then TS(�) = �.Otherwise, for eah lause C = �) e � e0 in S� If � 6j= �, then we let �C be the assignments mapping every set variableto the empty set� If � j= �, then for every term t 2 [[e℄℄�, and every set variable X, welet �t;C(X) be the set of terms tjp suh that e0jp = X.Finally, we de�ne TS(�) by:[[Xi℄℄TS(�) def= [[Xi℄℄� [ f�t;C(Xi) j C 2 S; t 2 [[e℄℄�gWe let �; be the assignment mapping every set variable to the empty set andwe de�ne �! as the least �xed point of `:
�!(Xj) = 1[i=1T iS(�;)(Xj)

if T iS(�;) 6= � for every i and �! = � otherwise.Proposition 18 �! = � i� S is not satis�able.If �! 6= �, it is the least solution of S.Proof: It is similar to the standard result that the least �xed point of the diretonsequene operator of a Horn lause set is the least model of the program.If �! 6= �, then �! is ontained in any solution of S (by indution on i,T iS(�;) is ontained in any solution of S).Now, if �! 6= �, then �! is a solution of S: this is a routine veri�ation. �
5.1.3 An undeidability resultAs a onsequene of undeidability results on tree automata with equality tests(see e.g. [9℄), the satis�ability of suh general onstraints is undeidable, beauseof possible overlapping tests.Proposition 19 The satis�ability of suh general onstraints (even without non-emptiness preonditions) is undeidable.

27



Note that suh a result is onsistent with theorem 6 and the translation of seurityproblems into set onstraints as given in setion 6.1. We sketh the proof of thisproposition, beause, even if the reader should already be onvined, the proofsheds some lights on the restritions we take later on.Proof: (sketh) We enode Turing mahine omputations. A on�guration isrepresented as a triple ontaining the state, the part of the tape on the left of thehead (inluding the head position) and the part of the tape on the right of thehead. Tape ontents are enoded using unary symbols (one for eah element inthe tape alphabet), in suh a way that symbols whih are lose to the head appearon the top of the terms. For instane a tape ontent abaabaab" is represented bythe words b(a(a(b(a(0))))); a(a(b(0))). We use a binary tupling symbol < ; ; >to put together the two omponents of the tape and the state. Now, for instane,with eah transition rule < q; a >!< q0; b; left > we assoiate the onstraint:f12=2121;131=213(< q0;X; b(Y ) >;Z \ f(< q; a(X); Y >;>)) � ZX;Y being tape ontents, the equality tests ensure that we keep the same re-maining tape ontents when we move from one state to another.The idea is that the least solution �0 of the onstraint will assign to Z the(enoding of the) set of omputations of the Turing mahine. AddingZ \ f(< qf ;>;> >;>) � X0for the �nal states and < q0; 0; 0 >� Zfor the initial state, the emptiness of �0(X0) is equivalent to the halting problem(i.e. the reahability of the state qf ). �
5.1.4 Basi variables and expressionsThat is why we are going to put more restritions on the onstraints. The ideais to divide the set variables into two sets: the basi and the non-basi variables.The basi ones orrespond to sets of terms whose only a �xed part an be seen.This orresponds to non-invertible symbols in setion 2.2. We do not impose anyrestritions on the equality tests for suh basi variables sine, intuitively, thenon-invertible symbols impose a boarder in the terms under whih no test takesplae, hene limiting the overlaps of equalities whih yield the undeidabilityresult.For non-basi variables, we impose a restrition, whih, roughly, allows tohek the equalities using one memory only. The goal is of ourse to use theresults of setion 4. 28



If X is a variable of a onstraint S, then let R(X) be the set of atomionstraints whose right hand side ontains X.We introdue now one-way funtion symbols of a onstraint S. This notionis of ourse related to the one-way funtion symbols of setion 2 (it is a gener-alization). Intuitively, a symbol is one-way in a onstraint S if, in eah of itsappliations, there is no way to look at the subterms. \Looking at the subterms"our in two ases: when we apply a \projetion" (i.e. when there is an inlusionwhose right member is headed with that symbol) and when we hek for equalityof some subterms.De�nition 20 A funtion symbol g is one-way in a set onstraint S if� it does not our on the right of an inlusion onstraint of S� in any expression e = f (e1; : : : ; en) ourring in S, for every � 2 P () andfor every strit pre�x �0 of �, ej�0 does not ontain any expression headedwith g.Let OF(S) be the set of one-way funtion symbols in S.De�nition 21 The basi variables of a set onstraint  is the largest set ofvariables ourring in  suh that� If X is basi then R(X) only ontains one-way symbols and basi variables.� If X is basi then{ either R(X) ontains only one lause � ) e � X suh that X doesnot our in e.{ or every funtion symbol ourring in R(X) ours (possibly) only inR(Y ) where Y is basi.Intuitively, the funtion symbols used reursively to onstrut basi variablesannot be used for non-basi variables.Example 22 The following example is inspired by examples from setion 2. LetNat, A, DA, HA, M, Key, In be set variables and  onsist of:0 � Nat su(Nat) � Natda(Nat) � DA ha(Nat) � HADA � A HA � AK(A;A) � Key shr(A) � MA � M Key � M< M;M > � M fMgM � M29



Intruder apabilities suh as:< In; In > � In fIngIn � InIn\ < >;> > � < In; In > In \ f>gIn � fIngInA � In shr(DA) � InIn\ < >;>;> > � < In; In; In >And protool-spei� onstraints suh as < A;A > � In<> (f< A;Key;M >gshr(A) \ In; fm(A;A)gKey;M) � Inwhere  stands here for 121 = 211 ^ 111 = 212 ^ 112 = 22 ^ 113 = 3. (Wewill see in setion 6.1 how to translate ryptographi protool into set onstraintsand, in partiular, we will develop a full example). In this example, all funtionsymbols are one-way, exept the tupling < ; > and < ; ; > and enryptionf g , beause of the intruder's onstraints.Then In and M are not basi while all other variables are basi.This notion is extended to expressions: an expression e is basi if� e is a basi variable or� e is an intersetion e1 \ e2 and either e1 or e2 is basi� e is an expression f(e1; : : : ; en) (or f (e1; : : : ; en)) and e1; : : : ; en are basi5.1.5 Our assumptionsDe�nition 23 (Basiness ondition) An an equality test  in an expressionf (e1; : : : ; en) satis�es the basiness ondition (w.r.t. a set of basi variables) ifp � i � q � p0i 6= jp0 6�pref p8w; p � j � w 6� p � i � q
9>>=>>;) There are positions p1; p2 suh thatp1 � p0; p2 � p � j andeither ejp1 or ejp2ontains basi expressions onlywhere �pref is the pre�x ordering on positions.An expression e satis�es the basiness ondition (w.r.t. a set of basi vari-ables) if for eah expression f (e1; :::; en), the equality test  satis�es the basinessondition.The situation is depited on �gure 4: one of the three terminal positions on thepiture should hold basi expressions only.
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Figure 4: The basiness ondition

Example 24 Let us examine the last onstraint whih is displayed in example22. <> (f< A;Key;M >gshr(A) \ In; fm(A;A)gKey;M) � Inwhere  stands for 121 = 211 ^ 111 = 212 ^ 112 = 22 ^ 113 = 3. At positions121,111, there is only one subexpression A, whih is basi. At position 112, thereis only one subexpression: Key, whih is also basi. Remain the positions 3; 113,whih do not hold basi expressions.In the de�nition, p0 an only be 3 and p 2 f1; 11g. The basiness onditionredues to hek that subexpressions at positions 12; 111; 113 are basi, whih isthe ase here.Note that, if there are only two ourrenes of non-basi variables in theexpression, then the basiness ondition is always satis�ed.The basiness ondition looks a bit ompliated, but let us give more intu-ition.From tree automaton point of view, while omputing on the trees bottom-up,we want to be able to hek the equalities without arrying more than one mem-ory at eah node. The diÆulty is that we need the stability under intersetionof this property.Consider for instane the following onstraints:f12=2(X \ f(X;Y ); Y ) � Yf11=2(Y \ f(X;Y );X) � XOnly one memory is suÆient to reognize the instanes of any of the two on-straints. Putting them together, however, we an derivef12=2(f11=2(Y \ f(X; Y );X) \ f(X;Y ); Y ) � Y:
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Now, we need 2 memories to aept the instanes of the left hand side sine, whenreahing X we must keep this term in the memory (it is heked for equalityhigher up) and we must also keep in the memory f(X; Y ), whih is also hekedfor equality higher up. Note that here X;Y are not basi sine f is not a one-wayfuntion symbol.Atually, a more natural, weaker, ondition would be to assume that, in any, if p; q are in two di�erent equivalene lasses, then they do not share any pre�x.Imposing suh a ondition only yields an undeidable lass of onstraints.On the other hand, if we interset a basi expression with any expression,the result is a basi expression. Hene, the basiness ondition expresses roughlythat on the sides of a path heked for equality, we only �nd basi expressions,freeing us from keeping additional information when we interset with anotherexpression.The basiness ondition is also relevant for our appliation, as we will see.The onstraints satisfying the basiness ondition are alled set onstraintswith equality tests (ET-onstraints for short). Let us summarize:De�nition 25 An ET-onstraint is a �nite onjuntion of lauses�) e � e0in whih e; e0 are set expressions built using� Set variables� The onstant symbol ?� Intersetion� Funtion symbol appliation f (: : :) or f(: : :).We assume:� That right hand sides (the expression e0 above) do not make use of theonstrutions f  with a non-empty .� For every onstrution f (e1; : : : ; en), P () � �(f (e1; : : : ; en))� The basiness onditionET-onstraints ontain properly intersetion onstraints sine we an on-strut an ET-onstraint whose least solution is the set of trees � = ff(t; t) j t 2T (F)g. The only other deidable set onstraint formalism whih allows to ex-press � is the lass de�ned in [6℄, in whih, however, equality tests are restritedto brother positions (whih is not the ase here). On the other hand, we haverestritions whih are not present in [6℄.32



5.2 SaturationWe use here a �xed point omputation method whih is similar to the one in [7℄:the goal is to dedue enough onsequenes so that the inlusions whose right handside is not a variable beome redundant, hene an be disarded. Unfortunately,the �rst step (representation) in [7℄ annot be used in the same way here, sineit does not preserve the lass of onstraints we onsider.** desription of the struture of the setion **We start with some simpli�ations of the onstraints.5.2.1 NormalizationFor every expression e, let us de�ne two notions of size:� jejF is the ardinal of Sp2�(e) ejp. This is proportional to the memory size,whih is required to store the expression, regardless to the equality tests.� jejt is the sum, for every expression f (e1; : : : ; en) 2 Sp2�(e) ejp of the sizeof . The size of an individual test  is the sum of sizes of positions hekedby .The goal of the �rst transformation step (Normalization) is to redue theexpression to a normal form.De�nition 26 An expression e is normal if the following onditions are satis�edfor e:1. All subexpressions of e satisfy the basiness ondition2. If f (e1; : : : ; en) \ e0 2 ejp0, p � q and p � p1 � q1 for a non-trivial p1,then ejp0�p�p1 is a basi expression. ("For anestor positions, the lowest oneis basi").3. For every p 2 �(e), if g(e1; : : : ; en) \ e0 2 ejp, then, for every p1 � p2,the subexpressions at positions p1 and p2 in g(e1; : : : ; en) are idential.4. for every equality test  ourring in e, every equivalene lass of  ontainsat least two positions whih do not share any non-trivial pre�x5. For every p 2 �(e), ejp is either an intersetion of variables or an inter-setion g(e1; : : : ; en) \X1 \ : : : \Xm, in whih ase, for every p 2 �(e),ejp is a singleton.6. If f (e1; : : : ; en)\e0 2 ejp0, p �p1 � q for non-empty p; p1, g0(e01; : : : ; e0m)\e00 2 ejp0�p, then either ejp0�p�p1 is a basi expression, or else for everyp0 �0 q0, ejp0�p�p0 is a basi expression ("For overlapping tests, the lowestone is basi "). 33
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Figure 5: The properties 2 and 6

Conditions 1 and 2 are satis�ed initially. Atually, even a property strongerthan ondition 2 is initially satis�ed sine, so far, any two distint positions inP () are inomparable w.r.t. the pre�x ordering. We need however this weakerproperty to keep it invariant.Properties 2, 6 are illustrated on �gure 5.The main result of this setion, whose proof is quite long and tehnial andis given in appendix A is the following:Lemma 27 Every expression e whih satis�es the basiness ondition an betransformed into a normal expression e0 suh that, for every �, [[e℄℄� = [[e0℄℄�.We also onjeture that the transformation, as desribed in the appendix, yieldsan expression e0 suh that je0jF and je0jt are polynomially bounded by jejt andjejF .As a side onsequene, the subexpression at a given position is now de�nedin a unique way:Lemma 28 If e is an expression satisfying ondition 5, then for every p 2 �(e),ejp is a singleton.Proof: We prove that ejp is a singleton for every p 2 �(e) by indution on e.If e is a variable or a onstant, then ejp is a singleton onsisting in e itself.Now, assuming e satis�es ondition 5, e is either an intersetion of variables oran expression f (e1; : : : ; en)\X1; : : :\Xn. In the �rst ase �(e) = f�g and ejp =feg by de�nition. In the latter ase, if p = i�p0, then ejp = eijp0[X1ji�p0 : : : = eijp0by de�nition. And, by indution hypothesis, eijp0 is a singleton. �So, now, we an use the terminology \the subexpression at position p", aswell as replaement at position p: C[e℄p means either (this will be unambiguous34



from the ontext) that e ours at position p in the expression C[e℄p or that wehave replaed the subexpression at position p with e.The normalization is extended to onstraints: every expression ourring inthe onstraint an be assumed normal thanks to lemma 27.5.2.2 AbstrationsWe abstrat out subexpressions introduing new variables, as long as this pre-serves the form of the onstraints. For instane, for ontexts C[ ℄p, an inlusione � C[f(~e0)℄p beomes C[X℄p � e; f(~e0) � X where X is a new variable. Thisresults in an equivalent onstraint (on the original variables) in whih the inlu-sions are e � e0 where e0 is either an intersetion of variables X1 \ : : :\Xn or anexpression f(X1; : : : ;Xn).More formally, we use the following rules, assuming that n � 2 and p is notthe root position:(A1) �) f (~e) \ e1 � e0 ! (9X)f (~e) � X;�) X \ e1 � e0(A2) �) e � C[f(~e0)℄p ! (9X)�) e � C[X℄p; f(~e0) � X;X � f(~e0)(A3) �) e � C[e1 \ : : : \ en℄p ! (9X)�) e � C[X℄p; e1 \ : : : \ en � XIn these rules, X is a new variable: we assume that there is no apture. Thefollowing lemma is a onsequene of the de�nitions:Lemma 29 Applying abstration does terminate on any onstraint S, resultingin a onstraint S0 suh that the solutions of S are the restritions of solutions ofS0 to the free variables of S. Moreover, if S is an ET-onstraint, then so is S0and if every expression is normal in S, then every expression is normal in S0.We an also abstrat out in the onditions of the inlusions. However, usingsuh a rule in an unrestrited way would lead to non termination of the satu-ration. That is why we are going to use it only one, to simplify the originalonstraint and forget it afterwards:(A4) nonempty(e); �) e1 � e2! (9Y )e � Y ^ nonempty(Y ); �) e1 � e2In this rule, e is assumed not to be a variable. It is also assumed that there isno apture (Y is a new variable).Lemma 30 (A4) preserves the solutions of the onstraint.Proof: Assume S ! S0 using the rule (A4). If � is a solution of S, extending� with Y 7! [[e℄℄� yields a solution of S0.
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Conversely, if �0 is a solution of S0, then its restrition � to variables otherthan Y is a solution of S: either � 6j= nonempty(e); �, in whih ase � satis�esnonempty(e); �) e1 � e2, or else [[e℄℄� is non-empty. In the latter ase, [[Y ℄℄�0 isnon-empty (beause of the onstraint e � Y ) and [[e1℄℄� = [[e1℄℄�0 � [[e2℄℄�0 = [[e2℄℄�.� Inspeting the normal forms w.r.t. (A1); (A2); (A3); (A4), together with ourhypotheses, the atomi onstraints are now of the form � ) e � e0 where � isa onjuntion of nonempty(X), e0 is of the form f(X1; : : : ;Xn) or X1 \ : : : \Xnand e is either X1 \ : : : \Xn or f (~e).5.2.3 Getting rid of basi variablesNext, we an get rid of basi type variables. The main idea is that we an replaeeah basi variable with a suitably hosen �nite set, while keeping the desirableproperties. This is desribed in the next lemmas.We let B(S) be the set of basi variables of S. We split eah ET-onstraintinto two parts S = SB ℄ SNB: SB is the union of R(X) for X 2 B(S) and SNBis the remaining onstraint.Remember that for any basi variable, either every funtion symbols of R(X)ours only in SB (�rst type) or R(X) ontains only one lause on the form� ) CX(X1; : : : ;Xk) � X where X is distint from the Xi (seond type). We�rst get ride of the basi variables X of seond type by replaing them by thelause CX(X1; : : : ;Xk).Lemma 31 Given an ET-onstraint S, letS0def=S[X 7! CX(X1; : : : ;Xk)℄X of seond type :Then S0 is an ET-onstraint and S is satis�able if and only if S0 is satis�able.Proof: Sine CX(X1; : : : ;Xk) ontains only one-way funtion symbols and basivariables, CX(X1; : : : ;Xk) is a basi expression thus S0 is an ET-onstraint.If � is a solution of S0, then � extended to the basi variables of seond type by�(X) = [[CX(X1; : : : ;Xk)℄℄� is learly a solution of S.Conversely, if S is satis�able, then S has a minimal solution �. By minimalityof �, we have neessarily [[X℄℄� = [[CX(X1; : : : ;Xk)℄℄�. Thus � is solution of S0.�From now on, we onsider only ET-onstraints with only basi variables of seondtype. In partiular, the funtion symbols ourring in SB do not our in SNB.
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Example 32 We onsider some of the onstraints presented in Example 22.
SB

2664 0 � Nat su(Nat) � Natda(Nat) � DA ha(Nat) � HADA � A HA � AK(A;A) � Key
SNB 24 A � M Key � M< M;M > � M fMgM � Mshr(A) � MThen there is one basi variable of seond type: Key. Thus we transform ourET-onstraint following lemma 31:
SB 24 0 � Nat su(Nat) � Natda(Nat) � DA ha(Nat) � HADA � A HA � A
SNB 24 A � M K(A;A) � M< M;M > � M fMgM � Mshr(A) � MLemma 33 SB has a least solution �m. It is possible to ompute a �nite treeautomaton Am, whose states are �nite sets of variables in SB and suh that�m(X) is the set of trees aepted in the state fXg.Proof:Sine one-way funtion symbols do not our on the right of inlusions, in anyonstraint � ) e � e0, e0 is an intersetion of variables. Then SB is satis�able:assigning every variable to T (OF) is a solution. Then, by proposition 18 thereis a minimal solution �m.We an also easily onstrut the minimal solution in an e�etive way, apply-ing e.g. the saturation rules of �gure 2 to this partiular ase: beause there areonly one-way funtions in SB, there is no onstrution f (: : :) here. The satu-rated onstraint oinides here with the solved form (sine there are no funtionsymbols on the right).As in setion 3.2, the solved form orresponds to a tree automaton Am whosestates are set variables. �Let � be any equivalene relation on T (OF). � is extended to the leastongruene relation on T (F), whih we write again �. Then, every assignment� from the set of variables to 2T (F) is extended into the assignment �� de�nedby: ��(X) def= ft 2 T (F) j 9u 2 T (F); t � u; u 2 �(X)g:in other words, � is saturated by �. 37



Lemma 34 For every equivalene relation � on T (OF), if � is a solution of anET-onstraint S, in normal form w.r.t. Norm, (A1); (A2); (A3); (A4), then ��is a solution of S.Proof: Assume �) e � e0 2 S. Sine � only onsists of formulas nonempty(X)where X is a variable, � j= � if and only if �� j= �.Let t 2 [[e℄℄� and u � t.We prove, by indution on the size of e0 thatt 2 [[e0℄℄� ) u 2 [[e0℄℄��� If e0 is a variable, the impliation follows from the ongruene property of�.� If e0 = e1 \ e2, this is straightforward� if e0 = f(e1; : : : ; en) then f =2 OF (by de�nition of one-way symbols).From t 2 [[e0℄℄, it follows that t = f(t1; : : : ; tn). Then u = f(u1; : : : ; un)with ti � ui for every i, sine f =2 OF(S). By indution hypothesis, forevery i, ti 2 [[ei℄℄�, hene ui 2 [[ei℄℄��, therefore u 2 [[e0℄℄��. �Now, the idea is to onstrut a �nite index relation � suh that we mayinterpret the basi variables in a set of representatives modulo �.Lemma 35 There is a ongruene � and an assignment �0 to the variables ofS suh that �0� = �m and �0(X) is �nite for every variable X.Proof: We use the automaton desribing �m and we onsider � de�ned byt � u i� t and u are aepted in exatly the same states of the automaton. Let Rbe a set of representatives for � suh that if f(t1; : : : ; tn) is in R then, t1; : : : ; tnare also in R. �0 assigns R \ [[X℄℄�m to X. �Remark : Note that every element of R is reognized by at least one state Xof the automaton.Example 36 We onsider again the onstraints presented in Example 32. Theautomaton Am assoiated with SB is the following one:0 ! qNat su(qNat) ! qNatda(qNat) ! qDA ha(qNat) ! qHAqDA ! qA qHA ! qA
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Thus the equivalene lasses are:fsun(0)jn 2 N g; fda(sun(0))jn 2 N g; fha(sun(0))jn 2 N gWe hoose R = f0; ha(0); da(0)g and �0(Nat) = f0g, �0(HA) = fha(0)g, �0(DA) =fda(0)g, �0(Agent) = fha(0); da(0)g.If � is an assignment of basi set variables to �nite set of terms in T (OF),then �(SNB) is the set onstraint obtained, replaing eah basi variable Xwith St2�(X) t. Sine basi variables do not our on the right hand sides ofinlusions in SNB, �(SNB) an be normalized in an ET-onstraint, removingunions ourring on the left or in the onditions by dupliating the onstraints.Example 37 In our example 36, �0(SNB) is equal to:ha(0) � M da(0) � MK(ha(0); ha(0)) � M K(ha(0); da(0)) � MK(da(0); ha(0)) � M K(da(0); da(0)) � M< M;M > � M fMgM � Mshr(ha(0)) � M shr(da(0)) � MLemma 38 Let �0 be the restrition to basi variables of the assignment de�nedas in lemma 35. Let � be the ongruene as de�ned in lemma 35. Then S issatis�able i� �0(SNB [ SOF ) is satis�able.Proof: First assume that S is satis�able and � is a solution of S. Thanks tolemma 34, we an assume w.l.o.g. that � = ��. Let us onstrut �0 suh that�0� = � and �0 is a solution of �0(SNB).For every term t 2 T (F ), let t # be its representative for �. We de�ne�0(X) = ft # j t 2 �(X)gLet us prove that �0 is a solution of �0(SNB). Let �) e � e0 in SNB. If �0 6j= �then �0 satis�es the lause. Otherwise, � j= � and therefore [[e℄℄� � [[e0℄℄�. Lett 2 [[e℄℄� (and hene t 2 [[e0℄℄�). We want to prove that t #2 [[e0℄℄�0. By abstration,e0 is either an intersetion of variables or an expression f(X1; : : : ;Xn). In the�rst ase, t 2 [[e0℄℄� implies, by de�nition of �0, t #2 [[e0℄℄�0. In the seond ase,f =2 OF , by de�nition of one-way funtion symbols. Then t 2 [[e0℄℄� impliesthat t = f(t1; : : : ; tn) and t #= f(t1 #; : : : ; tn #). Then ti 2 [[Xi℄℄� implies, byde�nition of �0, that ti #2 [[Xi℄℄�0, hene t 2 [[e0℄℄�0.Conversely, assume that �0 is the minimal solution of �0(SNB). We extend�0 with �0 to basi variables. Let us prove that �0� is a solution of S. We �rstneed to establish some properties on �0:39



Lemma 39 If u 2 [[X℄℄�0, then u = u #.Proof: For every term t 2 T (F ), let t # be its representative for �. t #= C[t1 #; : : : ; tn #℄ for some ontext C, suh that t = C[t1; : : : ; tn℄ and for every termu � t, u = C[u1; : : : ; un℄ with ti � ui. The maximal ontext C verifying theproperty above is alled the anonial ontext of t. Note that sine the ti # arerepresentatives of the minimal solution of SB, then the funtion symbols of theti # do not our in SNB. In addition, the ti are equivalent (modulo �) to theti #, thus we have also that the funtion symbols of the ti do not our in SNB.Let us �rst prove by indution on e that:for every �, if for every term t and every set variable X, t 2 [[X℄℄�implies t = t #, then for every expression e ourring in �0(SNB),t 2 [[e℄℄� implies t = t #.Indeed, assume that for every term t and every set variable X, t 2 [[X℄℄� impliest = t # and onsider e ourring in �0(SNB) and u 2 [[e℄℄�, u = C[u1; : : : ; un℄where C is the anonial ontext of u. For every i, let us split up both e and C:� either there exists pi and Ci � C suh that Ci[ui℄ 2 [[ejpi℄℄� and ejpi = e00\Y .In partiular, Ci[ui℄ 2 [[Y ℄℄�, thus by hypothesis, Ci[ui℄ = Ci[ui℄ #. Byonstrution of the ontext, Ci[ui℄ #= Ci[ui #℄ thus ui = ui #.� or there exists pi suh that ui 2 [[ejpi℄℄�. Sine e = �0(e1) for some e1ourring in SNB, we have to onsider again two ases:{ either pi is not a path in e1, i.e., there exists qi < pi suh that e1jqi = Xwhere X is a basi variable and ejqi 2 �0(X). Thus ujqi 2 �0(X) � Rand ujqi = Ci[ui℄. Sine ujqi 2 R, Ci[ui℄ = Ci[ui℄ #= Ci[ui #℄, thusui = ui #.{ either pi is a path in e1: Sine the funtion symbols of ui does notour in SNB and ui 2 [[ejpi℄℄�, e1jpi is neessarily an intersetion ofvariables: e1jpi = X1 \ : : : \ Xn. If one of the variable, say X1, isbasi then �0(e1) 2 �0(X) and we onlude like above. Else ui 2[[X1 \ : : : \Xn℄℄� and we onlude by hypothesis.We are now ready to end the proof of Lemma 39 by indution on the �xed pointof our dedution system: assume that for every n0 < n, then u 2 [[X℄℄Tn0(�;)implies u = u #. and let us show that u 2 [[X℄℄Tn(�;) implies u = u #. Let�) e � e0 2 �0(SNB) be the lause whih generated u (we assume w.l.o.g. thate0 does not ontain intersetion symbols like in setion 5.1.2):if e0 = X then u 2 [[e℄℄Tn�1(�;) and we onlude by indution.
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if e0 = f(X1; : : : ;Xn) and X = Xi then there exists v 2 [[e℄℄Tn�1(�;) suh thatv = f(: : : ; u; : : :). Sine f does not ours in R(X) for X basi variable,v an not be aepted in any state X where is a basi variable, thus v #=f(: : : ; u #; : : :). By indution and the property we have just demonstrated,we know that v = v # whih implies u = u #. �We are now ready to prove lemma 38. �0� is a solution of SB, by de�nition of �and �0. Let us onsider a lause �) e � e0, whih does not belong to SB. Sine� only ontains atomi formulas of the form nonempty(X), �0 j= � i� �0� j= �.Assume that �0 j= � (if it is not the ase, then �0� trivially satis�es the lause).By indution on e, any term t 2 [[e℄℄�0� is equivalent, modulo � to a termu 2 [[e℄℄�0 suh that u 2 [[e0℄℄�0 . Indeed, if e is a variable, this is true by de�nitionof �. If e = e1 \ e2, then, by indution, there exists u1 2 [[e1℄℄�0 and u2 2 [[e2℄℄�0suh that t � u1 and t � u2. By lemma 39, u1 = u1 #, u2 = u2 #, thusu1 = u2 and u1 2 [[e℄℄�0. If e = f(e1; : : : ; en) (last ase), then t = f(t1; : : : ; tn),ti 2 [[ei℄℄�0�. By indution, there exists ui � ti suh that ui 2 [[ei℄℄�0, thusudef=f(u1; : : : ; un) 2 [[e℄℄�0 and u � t.Now, either e0 is the intersetion of the variables Xi, in whih ase thereexists ui 2 [[Xi℄℄�0 for every i suh that ui � t, hene t 2 [[Xi℄℄�0� for everyi, or else e0 = f(X1; : : : ;Xn). In the latter ase, f =2 OF and therefore t =f(t1; : : : ; tn); u = f(u1; : : : ; un) with ti � ui and ui 2 [[Xi℄℄�0. Again, this impliesthat ti 2 [[Xi℄℄�0� for every i, hene t 2 [[e0℄℄�0�. �Thanks to lemma 38, and as far as satis�ability is onerned, we an nowrestrit our attention to the onstraint �0(SNB) in whih there is no longer anybasi variable.From the ryptographi protools point of view, if we assume that the set ofprinipal names orrespond in the set onstraint formalism to a basi variableN (whih is the ase in all formalism we know), lemma 38 shows that, if thereis an attak, then there is an attak with a bounded number of prinipals. Thebound is given by the ardinal of �0(N). Again, in any desription of prinipalsthat we an think of, �0(N) will ontain at most two elements. Then, the resultshows that, if there is an attak, then there is an attak involving two distintprinipals only (a honest one and a dishonest one).5.2.4 Complexity issues in eliminating the basi variablesBefore going any further, let us omment on the omplexity of �0(SNB) withrespet to S.
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First onsider the omputation of �m. Following theorem 11, the omputationof Am requires deterministi exponential time in general, sine it is quite easyto enode the emptiness problem for the intersetion of tree automata [28℄.On the other hand, we want to point out a partiular ase whih an be rele-vant to the appliation to ryptographi protools. SB often satis�es additionalproperties, whih we desribe below.For every basi variableX, letHead(X) be the least set of (one-way) funtionsymbols suh that� if f(:::) � X is an inlusion of R(X), then f 2 Head(X)� if X1\: : :\Xn � X 2 R(X), then Head(X1)\: : :\Head(Xn) � Head(X)Lemma 40 If for every two basi variables X;Y , either X � Y 2 SB or Y �X 2 SB or Head(X)\Head(Y ) = ;, then it is possible to ompute in polynomialtime a �nite tree automaton whose states ontain the basi variables and whihaepts �m(X) in state X.Proof: We an ompute Head(X) in polynomial time. Then, while saturatingSB, we replae every intersetion with either ; or the largest variable, preventingthe ombinatorial explosion. �A seond soure of omplexity omes from the omputation of an ET-onstraintout of �0(SNB): eliminating the disjuntions may lead to an exponential blow-up in general. However, with the same hypothesis as above, the ardinal of�0(X) is smaller or equal to the number of inlusions of the form Y � X. Inpartiular, in our running example, only �0(A) ontains more than one element:�0(A) = fha(0); da(0)g. In addition, if we assume that there is no inlusion be-tween basi variables as it was the ase in our previous version [11℄, then �0(X)assigns eah basi variable either the empty set of a singleton set and therefore�0(SNB) is smaller in size than S itself.5.2.5 Simplifying again the expressionsThe goal of this setion is to ahieve further simpli�ations. In partiular we showthat, after eliminating the basi variables, we an get rid of nested onstrutionsf (: : :).Thanks to lemma 38, we an now restrit our attention to the onstraint�0(SNB). In suh a onstraint, there is no longer any basi variable, whih allowsfor several simpli�ations. First, we an abstrat one the left side of inlusionssuh that the inlusions are e � e0 where e is either an intersetion of variablesor an expression f (~e) in whih, at any position whih is not a strit pre�x of aposition heked by , there is a variable.42



Simpli�ation(N8) t \ e1 ! ? If t is groundand �(e1) 6� �(t)(N9) �) e[t \ e0℄p � e0 ! (9Y ) �; nonempty(Y )) e[t℄p � e0;t \ e0 � YIf t is groundand �(e0) � �(t)(N10) fp=q^(~e) ! f (~e)If f (~e)jp = f (~e)jq are ground(N11) �) e[f ^p=q(~e)℄p � e0 ! trueIf t 2 f ^p=q(~e)jp�p1 is ground,u 2 f ^p=q(~e)jq�p1 is groundfor some p1 and t 6= u
Figure 6: Simpli�ation rules

Formally, we use the following rules, assuming that n � 2 and p is not theroot position: and that p is not a strit pre�x of any path heked (higher) in C:
(A4) �) C[f (~e)℄p � e0 ! (9X)�) C[X℄p � e0; f (~e) � X(A5) �) C[e1 \ : : : \ en℄p � e0 ! (9X)�) C[X℄p � e0; e1 \ : : : \ en � XIn these rules, X is a new variable: we assume that there is no apture. Thefollowing lemma is a onsequene of the de�nitions:Lemma 41 Applying abstration does terminate on any onstraint S, resultingin a onstraint S0 suh that the solutions of S are the restritions of solutions ofS0 to the free variables of S. Moreover, if S is an ET-onstraint, then so is S0and if every expression is normal in S, then every expression is normal in S0.In addition, in the equality tests, if f ^p=q(~e) is an expression suh that thesubexpression at position p (or q) is basi then the expressions at positions p; qmust ontain the same ground term. This is also suÆient: the equality testp = q an then be removed if the appropriate inlusions t � X (t is ground) areadded. Formally, we use the rules displayed in �gure 6.
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Lemma 42 The simpli�ation rules displayed in �gure 6 are terminating. IfS is an ET-onstraint in whih all expressions are normal, then the result S0of simplifying and abstrating �0(SNB) is an ET-onstraint in whih all expres-sions are normal and whih is satis�able i� S is satis�able. Moreover, in anyexpression f (e1; : : : ; en) ourring in S0, e1; : : : ; en do not ontain a onstrutiong0(: : :).Proof: The orretness of the rules is a routine veri�ation. let us only onsiderthe rule (N9). If � 6j= �, it suÆes to assign T (F) to Y and both sides are satis�edby �. If � j= � and [[e[t \ e0℄℄℄� � [[e0℄℄�, then extending � with Y 7! [[t \ e0℄℄� weget a solution of the right hand side:� either [[t \ e0℄℄� = ; and this is straightforward� or else [[t\ e0℄℄� = ftg, sine t is a ground term, in whih ase [[e[t\ e0℄℄℄� =[[e[t℄℄℄�Conversely, if � is a solution of the right hand side, either [[Y ℄℄� is empty, whihmeans that t =2 [[e0℄℄� and the left hand side is satis�ed by � or [[Y ℄℄� = ftg, inwhih ase [[e[t \ e0℄℄℄� = [[e[t℄℄℄� � [[e0℄℄�.Thanks to lemma 38, it only remains to show that all expressions are normalin S0 whenever all expressions are normal in S and that, moreover, there is nolonger any nested equality test.For every expression f (~e), P () � �(f (~e)) . Only the ase of (N9) is nottrivial. The property is ensured by the side ondition.Condition 5 is satis�ed �0 may replae variables with ground terms, henereplae expressions g(~e) \X1 \ : : :Xn with g(~e) \ t1 \ : : : \ tn. However,eah ti is either a variable or is ground. If at least one of them is ground,we an apply either (N8) or (N9).Condition 3 is satis�ed There are two situations in whih property 3 is nottrivially preserved: �rst when, while removing disjuntions in �0(SNB), wedo not keep the onsisteny with equality tests: in an expression fp=q^(~e),X has been replaed with t at a position p � p1, while X has been replaedwith u at the position q � p1. This ase is handled by rule (N11).The seond situation in whih ondition 3 may not be preserved is whenwe apply the rule (N9). However, in this ase, applying the rule to allidential expressions restores ondition 3.Condition 1 is satis�ed Thanks to (N10) and (N11), we annot have p � q,ejp ground and ejq not ground. So, a repeated appliation of (N10) onsistsin removing an equivalene lass, whih preserves ondition 1, thanks tolemma 71. The rules other than (N10) trivially preserve ondition 1.44



Conditions 4, 2 and 6 are satis�ed Again, the only rule to be onsidered is(N10) sine this is the only rule in the set whih modi�es the tests withoutremoving them entirely. As above, sine its repeated appliation removesa lass, properties 4, 2 and 6 are preserved.There is no nested test Assume that there are nested tests: f (~e)jp = g0(~e0)\e00.First, if there are p1 � p2 suh that p is a pre�x of p1, by properties 6 and1, for every p0 �0 q0, g0(~e0)jp0 must be a basi expression, hene a groundterm. Then, the rules (N8); (N9); (N10); (N11) ensure that 0 is empty.On the other hand, if this is not the ase and if there are p1 � p2 suhthat p1 shares a non-trivial pre�x with p, then, by property 1, f (~e)jp mustbe a basi expression, hene a ground term. In this last ase 0 must beempty again.Remains only the ase in whih, for every p1 � p2, p1 is either inom-parable with p or a pre�x of p. Then, Abstrat an be applied, whihontradits the hypothesis on SNB. �We use a �nal simpli�ation rule, abstrating away some more expressions:
(N12) �) e[X \ g(e01; : : : ; e0m)℄p � e0 ! (9Y1; : : : ; Ym)X \ g(>; : : : ;>) � g(Y1; : : : ; Ym)�) e[g(Y1 \ e01; : : : ; Ym \ e0m)℄p � e0If p is non-empty.The rule assumes that there is a variable > whih aptures all terms (this iseasy to de�ne).The orretness of the rule as well as the preservation of all properties is quitestraightforward. Let us now inspet the onstraints we have still to onsider.De�nition 43 The SET-onstraints (Simpli�ed Equality Tests onstraints) area sublass of ET-onstraints in whih, for every lausenonempty(e01); : : : ; nonempty(e0m)) e � e0(resp. nonempty(e01); : : : ; nonempty(e0m)) false)1. eah of e; e01; : : : ; e0m is either an intersetion of variables or an expressionf (e1; : : : ; en) suh that e1; : : : ; en do not ontain any equality tests norexpressions X \ g(: : :). 45



2. For every p 2 �(e), exept the root, either p is a strit pre�x of someq 2 P (), or else ejp is a (basi) ground term or p 2 P () and ejp is anintersetion of variables.3. If p � q, ejp = ejq.4. e0 is either a variable or an expression f 0(X1; : : : ;Xn) where X1; : : : ;Xnare variables.Lemma 44 The simpli�ation rules displayed in �gure 6 are terminating. If Sis a SET-onstraint in whih all expressions are normal, then the result S0 ofsimplifying and abstrating �0(SNB) is an ET-onstraintProof: Let us show that S0 veri�es the four onditions of SET-onstraints.1. Assume e or one of the e0i is of the form f (e1; : : : ; en) and that one of theej ontains an equality test j . Then, by abstrating, it must be that overlaps j whih is not possible sine S0 is normalized.2. After abstration, if p is not a strit pre�x of some q 2 P () and p is in�(e), then p 2 P () and ejp is a variable. After simplifying, if p is nota strit pre�x of some q 2 P (), then ejp is either a variable or a groundterm.Conditions 3 and 4 are onsequenes of the de�nitions. �
5.2.6 Dedution rulesNow, we are ready to apply the dedution rules given in �gure 7.  #i is de�nedby ( ^ 0) #idef=  #i ^0 #i, (i � p = i � q) #idef= p = q and (j � p = q) #idef= > wheni 6= j. e is the expression in whih the top symbol of e is onstrained by .(It is used only in a ontext where e must be headed with a funtion symbol or = >). Finally, X denotes a variable in these rules.Lemma 45 The inferene rules in �gure 7 are orret: the new onstraint is aonsequene of the previous ones.Proof: Only Projetion andDedution are not trivially orret. Let us startwith Projetion.We want to prove that, if � is a solution of �) f (e1; : : : ; en) � f(e01; : : : ; e0n),then � is a solution of �; nonempty(f (e1; : : : ; en))) e#ii � e0i.Assume � j= �; nonempty(f (e1; : : : ; en)). Then there is an u 2 [[f (e1; : : : ; en)℄℄�and [[f (e1; : : : ; en)℄℄� � [[f(e01; : : : ; e0n)℄℄�.Let t 2 [[e#ii ℄℄�. We build v as follows: v is the term u in whih46



Transitivity �1 ) e1 � X �2 ) X � e2�1; �2 ) e1 � e2
Compatibility �) X \ e1 � e01 �0 ) e2 � X�; �0 ) e1 \ e2 � e01If both e1 and e2 are interse-tions of variables
Clash �) f(~e) � g(~e0)�) false if f 6= g
Projetion �) f (e1; : : : ; en) � f(e01; : : : ; e0n)�; nonempty(f (e1; : : : ; en)))) e#ii � e0i

Dedution
�1 ) f 1(e11; : : : ; e1n) � X1...�k ) f k(ek1; : : : ; ekn) � Xk�) X1 \ : : : \Xk � e9X11 ; : : :Xn1 ; : : : ;X1k ; : : : ;Xnk :�) f(X11 \ : : : \X1k ; : : : ;Xn1 \ : : : \Xnk ) � e�1 ) f 1(e11; : : : ; e1n) � f(X11 ; : : : ;X1n)...�k ) f k(ek1; : : : ; ekn) � f(Xk1 ; : : : ;Xkn)The lause � ) f(X11 \ : : : \ X1k ; : : : ;Xn1 \ : : : \ Xnk ) � e in the onlusion ofDedution is marked so that it annot be used as a premisse of Dedution. Inaddition, if �1 ) e1 � X is a marked lause, then for every lause �2 ) X � e2,then lause �1; �2 ) e1 � e2 is also a marked lause.Figure 7: The saturation rules
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� uji is replaed with t� for every i � p � j � q with i 6= j, ujj�q is replaed with tjp.Let us show that v 2 [[f (e1; : : : ; en)℄℄�.� First, v 2 [[f(e1; : : : ; en)℄℄�: let v = f(v1; : : : ; vn). vi = t 2 [[ei℄℄� and weprove by indution on jj that, for every i 6= j, vj 2 [[ej℄℄.If  is empty, or if  does not ontain any equation i �p = j � q, then vj = ujand therefore vj 2 [[ej℄℄�.If i � p � j � q, by indution hypothesis, wj = vj [ujj�q℄q 2 [[ej℄℄�. Moreover,by property 3, ej jq = eijp, hene tjp 2 [[ejjq℄℄�. Now, sine we assumed inthe ondition of the projetion rule, that there is no intersetion symbolalong the path j � q, vj 2 [[ej℄℄�.� We have to prove now that v j= :{ For the tests i � p = i � q 2 , v j= i � p = i � q follows from t j= p = q(sine t j=  # i).{ The tests i � p = j � q with i 6= j are satis�ed by onstrution.{ For the tests j1�p = j2�q, either there is a r suh that j1�p � i�r and weare bak to the previous ase, or else ujj1�p = vjj1�p and ujj2�q = vjj2�q,whih implies v j= j1 � p = j2 � q sine u j= j1 � p = j2 � q.Now, v 2 [[f (e1; : : : ; en)℄℄� implies that v 2 [[f(e01; : : : ; e0n)℄℄�, hene t 2 [[e0i℄℄�.Now onsiderDedution. The rule is atually a ombination of several ruleswhih are all orret: for every i, we introdue(1) Xi \ f(>; : : : ;>) = f(Xi1; : : : ;Xin)Then, we may interset both sides of X1 \ : : : \ Xk � e with f(>; : : : ;>) anduse a ompatibility. We get:�) f(X11 ; : : : ;X1n) \ : : : \ f(Xk1 ; : : : ;Xkn) � eNormalizing the left hand side, we get the lause:�) f(X11 \ : : : \X1k ; ; : : : ;Xn1 \ : : : \Xnk ) � eNow, for every i, from (1) and the inlusion �i ) f i(ei1; : : : ; ein) � Xi, inter-seting again both sides with f(>; : : : ;>), we dedue by transitivity and sinef (: : :) � f(>; : : :>):�i ) f i(ei1; : : : ; ein) � f(Xi1; : : : ;Xin) �
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Lemma 46 Every transformation rule transforms a SET-onstraint into a SET-onstraint.Proof: Only the projetion rule has to be onsidered: we need to hek thate#ii satis�es the onditions of SET-onstraints, whih follows from the fat thatp �#i q i� p � i � q � i. �Now, we onsider the termination problem. The main problem is to ontrolthe reation of new variables.Lemma 47 The number of variables reated during the saturation proedure anbe bounded by jSjt � a.Proof: Only Dedution introdues new variables. It is simpler to see theDedution rule as a variable introdution (rule (1) in the proof of lemma 45)ombined with other dedution rules, whih preserve the semantis and do notintrodue variables. As far as variables reation is onerned, we an, w.l.o.g,assume that the onlusion of Dedution are the lauses Xi \ f(>; : : : ;>) �f(Xi1; : : : ;Xin). In partiular, if the rule is applied twie with the same variableXi and the same funtion symbol f , we an use the same variables Xij .The main problem is that these new variables Xij may trigger again theintrodution of new variables. However, if we trae the origin of suh variables,we observe that introduing the Xij is subjet to the presene of a onstraint�i ) f i(: : :) � Xi. Now, if later a onstraint �0i ) f 0i(: : :) � Xij triggersthe introdution of new variables again, the expression f 0i(: : :) must be theprojetion of some expression ourring at the previous level. And sine we anonly perform a bounded number of projetions on a given expression, we anbound the number of suessive variables generation. Let us formalize this.Let us assoiate �rst with eah variable a level: the variables ourring in theoriginal onstraint have level 0, and, eah time we introdue new variables with:(1) X \ f(>; : : : ;>) � f(X1; : : : ;Xn)the level of every variable Xi is one plus the level of X.We prove, by indution on the level m of a variable X, that, if (1) is appliedto X, then there is an expression e in the original set onstraint and lauses� ) e0 � X 0, �1 ) X 0 � X1, . . . , �n+1 ) Xn � X suh that e0 is obtainedby at least m suessive projetions of e (we say that e0 is a projetion of e ife = f (e1; : : : ; en) and e0 = e#ii for some i).When m = 0, observe that lauses � ) f (: : :) � X 0 are either in theoriginal set onstraint, or obtained by projetion, or obtained by Transitivityor obtained by Dedution itself. In ase Transitivity has been applied, there
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exist an other lause �0 ) f (: : :) � X 00 and a lause �00 ) X 00 � X 0. Thus,by a simple indution, there exist a lause �0 ) f (: : :) � X 00 and lauses�1 ) X 00 � X1, . . . , �n+1 ) Xn � X 0 suh that �0 ) f (: : :) � X 00 has beenobtained by projetion or by Dedution itself. However, in the latter ase, weexpliitly prevented using the resulting lause as a premisse of Dedution.When m > 0, observe that the variables Xij reated by Dedution appearin only one lause on the right of an inlusion: the lause �i ) f i(ei1; : : : ; ein) �f(Xi1; : : : ;Xin). Only Projetion, applied to this lause, may produe a lausein whih Xij ours on the right of an inlusion: there exists a lause �i )eiji#j � Xij suh that eiji#j is the projetion of f i(ei1; : : : ; ein). Then we applythe indution hypothesis to �i ) f i(ei1; : : : ; ein) � Xi sine Xi is of level m� 1.Now, how many expressions f (: : :) an be derived by projetion from agiven expression ? Note �rst that no projetion an be applied to a ground(basi) expression sine one-way symbols do not our on the right of inlusions.Then, by de�nition of expressions ourring in a SET-onstraint, the numberof expressions f (: : :) whih an be derived by projetion from an expressiong0(: : :) is the number of strit pre�xes of positions in P (0). It follows that thenumber of new variables is bounded by jSjt � a. �
Lemma 48 The rules of �gure 7 are terminating: a �xed point is reahed after�nitely many steps (at most O(jSja � 2(a+1)jSj) where a is the maximal arity ofa funtion symbol and jSj = jSjt + jSjF is the size of the original onstraint.Proof: We are going to show that only a �nite number of distint lauses anbe generated by the rules.As we have seen in the proof of lemma 47, the number of distint expressionsf (: : :) ourring on the left of an inlusion is bounded by jSjt, plus the numberof times Dedution is applied, whih is itself bounded by jSjt � a thanks tolemma 47. The other left sides of inlusions are intersetion of variables, henethere are at most 2ajSjt+jVS j suh possible left hand sides, thanks to lemma 47.The right sides of inlusions are variables or a funtion symbol applied tovariables, whih gives a bound of ajSjt + jVSj+ jFj � (ajSjt + jVSj)a.Finally, we have to analyze the possible preonditions. They are onjuntionsof � nonempty(X) where X 2 VS� nonempty(f (e1; : : : ; en)) where f (e1; : : : ; en) ours as a left member ofan inlusion onstraint
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Thanks to lemma 47, this gives the following bound for the number of possibledistint preonditions: 2jVS j+jSjtNow, putting everything together, at most((a+ 1)� jSjt + 2ajSjt+jVS j)� (ajSjt + jVSj+ jFj � (ajSjt + jVSj)a)� 2jVS j++jSjtdistint lauses an be generated. Sine jSjt+jVSj � jSj and ajSjt+jVSj � a�jSj,we get the bound O(jSja � 2(a+1)jSj). �If S is an ET-onstraint, let solved(S) be the lauses � ! a in S suh thateither a is false or else a is an inlusion f (~e) � X where X is a variable.As in [7℄, the following ompleteness result is obtained by inspeting eahlause C 2 S whih is not in solved(S), showing that, thanks to saturatedness,the least solution of solved(S) is a solution of C. There are only some additionalases for non-at onstraints e.g. f (X \ g(~e); ~e0) � f(~e00).Theorem 49 If S is saturated, then either both S and solved(S) are unsatis�ableor else S has a least solution, whih is the least solution of solved(S).Proof: If solved(S) is unsatis�able, then S, whih ontains solved(S), is unsat-is�able. Now, assume solved(S) is satis�able and let � be its least solution. Weshow that � is a solution of S.We prove, by indution on n+ size(t) that, for every lause �) e � e0 in Ssuh that � j= �, and for every t 2 [[e℄℄Tnsolved(S)(;) (whih we abbreviate t 2 [[e℄℄n),t 2 [[e0℄℄�.The result will follow, by minimality of �.There are only three kinds of lauses �) e � e0, whih are possibly in S andnot in solved(S). We study eah of them (e0 is either a variable or an expressionf(X1; : : : ;Xn)).�) X � g(Y1; : : : ; Ym) , t 2 [[X℄℄n, hene there is a lause �0 ) e0 � X insolved(S) suh that � j= �0 and t 2 [[e0℄℄n�1. By Transitivity, there is alause �; �0 ) e0 � g(Y1; : : : ; Ym) in S. Sine � j= �; �0 and t 2 [[e0℄℄n�1,we apply the indution hypothesis and get t 2 [[g(Y1; : : : ; Ym)℄℄�.�) X1 \ : : : \Xp � e We use an indution on the multisetM(X1\ : : :\Xp) def=fk1; : : : ; kpg of integers ki suh that t 2 [[Xi℄℄ki and t =2 [[Xi℄℄ki�1. Themaximum of k1; : : : ; kp is, by hypothesis, smaller or equal to n. If it isstritly smaller than n, we use diretly the indution hypothesis. If thismultiset is equal to fng, then we are bak to the �rst ase. Hene, let us51



assume now that the multiset is stritly larger than fng, whih means inpartiular that p � 2.Sine t 2 [[Xi℄℄ki for every i, there are lauses �i ) ei0 � Xi in solved(S)suh that � j= �i and t 2 [[ei0℄℄ki�1. If one of the expressions ei0 is anintersetion of variables, then by Compatibility, there is a lause �i; �0 )X1 \ : : : \ Xi�1 \ ei0 \ Xi+1 \ : : : \ Xp � e in S. Moreover, � j= �0 andt 2 [[X1 \ : : :\Xi�1 \ ei0 \Xi+1 \ : : :\Xp℄℄n. Finally, M(X1 \ : : :\Xi�1 \ei0 \ Xi+1 \ : : : \ Xp) is obtained replaing ki in M(X1 \ : : : ;\Xp) witha multiset of stritly smaller numbers. Hene we get a stritly smallermultiset and we may apply the indution hypothesis: t 2 [[e℄℄�.Now, if none of the expressions ei0 is an intersetion of variables: t =f(t1; : : : ; tn) and ei0 = f i(ei1; : : : ; ein). If one of the lauses�i ) f(ei1; : : : ; ein) � Xiis marked, then there exist a lause �0i ) f(ei1; : : : ; ein) � X 0i marked byDedution and lauses  1 ) X 0i � X1, . . . ,  n+1 ) Xn � Xi suh that�i = �0i;  1; : : : ;  n+1. Thus, there is a lause �0i ) Z1 \ : : : \ Zm � X 0iwhih triggered the appliation of Dedution. Then, applying repeatedlytransitivity, there is a lause �i ) Z1 \ : : : \ Zm � Xi. In suh a ase,for every k, eik = Z1k \ : : : \ Zmk . Now, t 2 [[ei0℄℄ki�1, hene, for everyk; j, tk 2 [[Zjk℄℄ki�1. It follows that, for every j, t 2 [[Zj℄℄ki�1. Now, byCompatibility, there is a lause �; �i ) X1\ : : : Z1\ : : :\Zm : : :\Xn � ein S. And, as before, we get an intersetion of variables with a stritlysmaller multiset. We onlude thanks to the indution hypothesis.Remains only the ase where none of the lauses �i ) f(ei1; : : : ; ein) � Xiis marked. In this last ase, we an apply Dedution. For every lause�i ) f i(ei1; : : : ; ein) � f(Xi1; : : : ;Xin), � j= �i and t 2 [[f i(ei1; : : : ; ein)℄℄ki�1,hene tj 2 [[Xij℄℄ki for every i; j, by indution hypothesis.If t is a onstant, then �) t � e is a lause of S and we an onlude.Otherwise, if e is a variable, then�) f(X11 \ : : : \X1p ; : : : ;Xn1 \ : : : \Xnp ) � Xis a lause of solved(S). Hene t = f(t1; : : : ; tn) 2 [[X℄℄n+1.If e is not a variable, then e must be f(Y1; : : : ; Yn) and, by Projetion,for every j,�; nonempty(f(X11 \ : : : \X1p ; : : : ;Xn1 \ : : : \Xnp ))) Xj1 \ : : : \Xjp � Yjis a lause of S. � satis�es the premisse sine t is a witness for the seondpart of the preondition. Moreover, for every j, tj 2 [[Xj1 \ : : : \ Xjp ℄℄n52



and M(Xj1 \ : : : \ Xjp) is smaller or equal to M(X1 \ : : : ;Xp). Then, byindution hypothesis, tj 2 [[Yj℄℄� for every j. Hene t 2 [[e℄℄�.�) f (e1; : : : ; ep) � g(X1; : : : ;Xm). If f 6= g, then, by Clash, the lause � )false is in S, hene in solved(S), whih ontradits � j= �.Assume now f = g. Then t = f(t1; : : : ; tn). By Projetion, there is alause Ci def= �; nonempty(f (e1; : : : ; ep))) e#i � Xiin S, for every i. Sine t 2 [[f (e1; : : : ; en)℄℄�,� j= �; nonempty(f (e1; : : : ; en)):For every i, ti 2 [[ei℄℄n sine t 2 [[f(e1; : : : ; ep)℄℄n and ti j=  #i sine t j= (and by de�nition of  #i). Thus ti 2 [[e#ii ℄℄n whih implies ti 2 [[Xi℄℄� byindution., thus f(t1; : : : ; tp) 2 [[f(Y1; : : : ; Yp)℄℄�. �We are now redued to prove that the satis�ability of solved(S) is deidable.5.3 Connetion with automata with one memoryTheorem 50 For every satis�able SET-onstraint S, there is an (e�etivelyomputable) alternating automaton with one memory AS and an homomorphismH suh that AS aepts t in the state X i� H(t) 2 [[X℄℄� where � is the leastsolution of solved(S).Proof:The memory alphabet of the automaton is the set of funtion symbols usedin the onstraint and the alphabet FAS is the memory alphabet with some addi-tional symbols allowing to hek on auxiliary branhes non emptiness onditions.More preisely,� the states of AS onsist of{ the variables of S. We write them qX suh states, for X a variable ofS{ the states q� for every � = nonempty(e1); : : : ; nonempty(em) suh thatnonempty(e1); : : : ; nonempty(em); nonempty(em+1); : : : ; nonempty(en) isa preondition of a lause in S.{ for every expression e = f (e1; : : : ; en) and for every non-leaf positionp of suh an expression, a state qe;p53



{ a state qa for every onstant a 2 F� The memory alphabet is F� The set of funtion symbols FAS onsists in an auxiliary binary symbol Eand, for every symbol f 2 F a symbol f+1 whose arity is one plus the arityof f .Let H be the homomorphism:H(f(t1; : : : ; tn)) def= f(H(t1); : : : ;H(tn))H(f+1(t0; t1; : : : ; tn)) def= f(H(t1); : : : ;H(tn))H(E(t1; t2)) def= awhere a is any onstant in F . �(X) will be the image byH of the trees reognizedin state qX by AS .By onvention, if p is a leaf position of f (e1; : : : ; en), we let qe;p be theonjuntion qX1 ^ : : : ^ qXm if ejp = X1 \ : : : \ Xm and qe;p = qa if ejp is theonstant a.The transition rules of AS onsist of1. a >�!a qa.2. f(qe;1; : : : ; qe;n) �������!�x1;:::;xn:a qf(e1;:::;en) for every literal nonempty(f (e1; : : : ; en))ourring in S.  is the equality test ~ de�ned as follows: ^i � p = j � q def=i = j and ̂1 ^ 2 def= e1 ^ e2.3. g(qe;p�1; : : : ; qe;p�k) f#p��!F qe;p in whih e = f (e1; : : : ; en) ours in S, p is anon-root position of e, ejp is headed with g. F = �x1; : : : ; xk:xi if p � i isa pre�x of a position in P (). Note that if there are several suh indies,lemmas 27 and 42 imply that the hoie is irrelevant.  # p is de�ned asin the projetion rule:  # � def= , 1 ^ 2 # i � p def= (1 # i � p) ^ (2 # i � p),(j � p1 = k � p2) # i � p def= > if either i 6= j or k 6= i and (i � p1 = i � p2) #i � p def= (p1 = p2) # p.4. E(qe; qe0) >������!�x1;x2:x1 qnonempty(e);nonempty(e0) for every nonempty(e); nonempty(e0)whih is an initial sequene of a preondition of a lause of S.5. E(q�; qe) >������!�x1;x2:x1 q�;nonempty(e) for every �; nonempty(e) whih is aninitial sequene of a preondition of a lause of S.
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6. f+1(q�; qe;1; : : : ; qe;n) ~�!F qX for every lause � ) e � X in S suh thate = f (e1; : : : ; en). F = �xi1 ; : : : ; xik :t where t is the expression e in whih,at eah ejj�p suh that j � p 2 P () is replaed with xij where ij = j 2 ~.The following intermediate results are proved in appendix B:� If a term is aepted in state q� where � is a preondition, then � j= �� If � j= �, then there is a term aepted in state q�� If a term t is aepted in state qX , then H(t) 2 �(X)� If t 2 �(X), then there exists t0 is aepted in state qX suh that H(t0) = t.From these lemmas, it follows thatAS aepts the least solution � of solved(S)in the sense that t is aepted in the state X i� H(t) 2 [[X℄℄�. �Remark: We onjeture that the minimal solution of a SET-onstraint isreognized by an alternating tree automata with one memory. However, to provethis would require more saturation rules to get rid of non-emptiness onditions(as in setion 3).As a onsequene of theorem 50 we get:Theorem 51 The satis�ability of ET-onstraints is deidable.Proof: As a onsequene of lemma 45, lemma 48, theorem 49, we an assumethat S is a solved form.Then, onsider all lauses �) false in S and let S0 be the rest of S.S0 is satis�able, then, thanks to theorem 50, there is an automaton AS suhthat t is aepted in qX i� H(t) 2 [[X℄℄� where � is the minimal solution of S0.Let Qf be the set of states q� suh that �) false is in S. Then S is satis�-able i�, the automaton AS with �nal states Qf does not aept any tree, whihis deidable thanks to theorem 15. �
6 Analysis of ryptographi protoolsWe present here a deidable fragment of the lass of protools desribed in Setion2.2 and we illustrate the relevane of this fragment by an example (inspired byKerberos).
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6.1 A deidable lass of protoolsAs we have seen in setion 2, the spei�ation of a protool and its serey poliyrely not only on the rules of the protool, but also on the signature. In partiular,we must say what are the expeted types of eah argument of a funtion symbol.This is far from being innoent, sine this orresponds to the ability of eahagent to reognize di�erent data types. If all funtion symbols are assumedto take messages or agents as arguments and return messages or agents, thenthe prinipals are assumed to distinguish only agents from other messages. Forinstane, a pair of agents an be taken as a key in this ase. Sine many attaksare due to type onfusion [8℄, suh a signature spei�ation would allow to detetmany more attaks. On the other hand, if typing information is available, thendeiding serey is easier.One spei�ity of our model is that both the signature, hene the availabletype information, and the protool itself are parameters. The de�ning onditionsfor our lass will therefore depend on both the signature and the protool andbe more restritive when the typing poliy is more sloppy.A rule of a protool is of the formfS(A; i;M);M1; : : : ;Mpg �! fS(A; i+ 1;M 0);M 01; : : : ;M 0qgwhere Mi are messages. As we have seen in setion 2, the serey for gen-eral protools of this form is undeidable. To obtain a deidable lass, weonsider protools suh that, for eah rule, the variables whih are shared byM1; : : : ;Mp;M 01; : : : ;M 0q satisfy a \basiness ondition". Roughly, suh a ondi-tion will state that only one variable may our several times in di�erent ontextswithout being of basi type. For instane, if we don't assume any speial abilityof agents to reognize data types, then repeated variables ourring in di�erentontexts must be agents names, exept for possibly one suh variable.In order to express our ondition, let Xs be a variable for eah sort s in thesignature and let Cmsg be the union of the de�nite set onstraintsf(Xsort1 ; : : : ;Xsortn) � Xsort;for every funtion symbol f of type sort1� : : :�sortn ! sort, and the de�niteset onstraints Xsort � Xsort0if sort is a subsort of sort0. The basi sorts are de�ned as in de�nition 21: thisis the largest set of sorts suh that� If s is basi then R(Xs) only ontains one-way symbols and basi sorts.
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� If s is basi then{ either R(Xs) ontains only one lause e � Xs suh that Xs does notour in e.{ or every funtion symbol ourring in R(Xs) ours (possibly) onlyin R(Xs0) where s0 is basi.For instane, we have seen in example 22 that, in our running example, all sortsare basi exept Message. Let Bmsg be the set of basi sorts.Now, for eah rulerl = fS(A; i;M);M1; : : : ;Mpg �! fS(A; i+ 1;M 0);M 01; : : : ;M 0qg;let trldef= << A;M >;M1; : : : ;Mp; < A;M 0 >;M 01; : : : ;M 0q > and for eah vari-able Y , ourring in rl , let Srl;Y def= fp suh that trljp = Y g. Let rl;Y be theequality onstraint p1 = : : : = pjk for pj 2 Srl;Y . In the partiular ase whereSrl;Y is a singleton, rl;Y is the empty onstraint. Finally, let rl be the onjun-tion of the rl;Y for all variables Y ourring in rl .Example 52 We desribe here the trl and rl orresponding to our runningexample (see �gure 1, example 5).For the rule
; �! 8<: S(A; 1; <A;B; s>);S(B; 1; <B; s>);S(s; 1; s)

9=;we get the term and onstraints:trl0 def= << A;< A;B; s >>;< B;< B; s >>;< s; s >>rl0 def= 11 = 121 ^ 122 = 21 = 221For the rule 1:fS(A; 1; <A;B; s>)g �! fS(A; 2; <A;B; s>); <A;B>g
trl1 def= <<A;<A;B; s>>;<A;<A;B; s>>;<A;B>>;rl1 def= 11 = 121 = 212 = 221 ^ 122 = 222For the rule 2:� S(s; 1; s)<A;B> � �! � S(s; 2; s);fB;K(A;B); fA;K(A;B)gshr(B)gshr(A) �57



trl2 def= <<s; s>;<A;B>;<s; s>;<fB; k1(A;B); fA; k1(A;B)gshr(B)gshr(A)>>rl2 def= 21 = 4121 = 41311 = 413121 = 42 ^ 22 = 411 = 4122 = 413122 = 4132For the rule 3:� S(A; 2; <A;B; s>);fB;X; Y gshr(A) � �! � S(A; 3; <A;B; s;X;m(A;B)>);<fm(A;B)gX ; Y > �
trl3 def= <<A;<A;B; s>>; fB;X; Y gshr(A);<A;<A;B; s;X; n1(A;B)>>;<fn1(A;B)gX ; Y >>rl3 def= 11 = 121 = 22 = 31 = 321 = 3251 = 4111 ^122 = 211 = 322 = 3252 = 4112 ^ 212 = 324 = 412 ^ 213 = 42For the rule 4:� S(B; 1; <B; s>);<fZgX ; fA;Xgshr(B)> � �! � fS(B; 1; <B; s;A;Z;X>);fh(Z)gXg �
trl4 def= <<B;<B; s>>;<fZgX ; fA;Xgshr(B)>;<B;<B; s;A;Z;X>>; fH(Z)gXgrl4 def= 11 = 121 = 222 = 31 = 321 ^ 211 = 324 = 411 ^ 212 = 2212 = 325 = 42For eah term t, let et be the expression obtained by replaing in t eah variableof sort s with Xs. Finally, let url be the expression (with equality onstraints)obtained from ftrl by adding (at the top) the onstraint rl.We are now ready to de�ne the basiness ondition.De�nition 53 A protool P satis�es the basiness ondition if, for eah rule rlof P , url as de�ned above satis�es the basiness ondition w.r.t. the set of basisorts.We tried to give here a de�nition whih is as general as possible, hene mightbe a bit diÆult to grasp. Let us give a simple suÆient ondition:Proposition 54 A protool satis�es the basiness ondition if, for eah rule rlof the protool, one of the following holds:� There is at most one variable ourring at least twie in rl and whose sortis not basi. 58



� There is a deomposition of tl into C[t1; : : : ; tn℄ suh that every variablewhih is not of sort Agentours in at most one ti.For instane, in example 52, only Y;Z have a non-basi sort, hene the �rstondition above is met by every rule.For simpliity, we often write A and Msg instead of respetively XAgent andXMessage.Theorem 55 If P satis�es the basiness ondition, then the serey of P isdeidable.In partiular, our running example satis�es the basiness ondition. Indeed,there are at most two ourrenes of non-basi variables in eah expressions.However, note that giving the ability for agents to reognize messages of theform K(a; b) was not innoent: if we replae our key variable K by a messagevariable X then our protool does not remain in our deidable lass.We prove the theorem in next setion.6.2 Proof of Theorem 55The proof of Theorem 55 proeeds in two steps. First, we show that everyprotool an be \translated" into Horn lauses suh that a message an be sent ifand only if a orresponding formula an be derived from the Horn lauses. Then,we show that if a protool satis�es the basiness ondition then the orrespondingHorn lauses an be expressed as ET-onstraints, thus serey is deidable.Step 1Lemma 56 Let P be a protool with its serey poliy S0. Let I0 be the maximalset of initial knowledge of the intruder (ompatible with the serey poliy S0 ofP ) mentioned in setion 2. Then, there exists a set H of Horn lauses with aspeial prediate I suh that I(m) is derivable from C (where m is a message),i� there exists a reahable H suh that m 2 H.Proof: H is built as the union of four sets: Hmsg, HI0 , HI and HP .Hmsg orresponds to the onstrution of the messages with their sort: Hmsg is theunion of the lauses Psort1(x1) : : : Psortn(xn)Psort(f(x1; : : : ; xn))
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for every funtion symbol f of type sort1 � : : : � sortn ! sort, where thePsort are new prediates. We also add to Hmsg the union of the lausesPsort(x)Psort0(x)for every sort; sort0 suh that sort is a subsort of sort0. Moreover, we need todistinguish between symmetri and publi keys: every term is symmetri exeptthe terms of the form pub(t) or prv(t). Thus we add to Hmsg the lausesPMessage(x1) : : : PMessage(xn)Sym(f(x1; : : : ; xn))for every funtion symbol f , f 6= pub and f 6= prv. Then it is easy to prove thatPsort(m) is derivable from Hmsg if and only if m is a message of sort sort andSym(m) is derivable from Hmsg if and only if m is a symmetri term.Then, by the following lemma (proved in Appendix C), there exists a set of Hornlauses HI0 suh that I0(m) is derivable from HI0 [Hmsg if and only if m 2 I0.Lemma 57 Let t1; : : : ; tn be message shemes with the free variables x1; : : : ; xk.Then, there exists a set of Horn lauses HI0 with two prediates I0 and P�p suhthat I0(m) is derivable from HI0 [ Hmsg if and only if parts(m) \ fti� j 1 � i �n; �(xi) 2 Ahg = ;.The lauses of HI are desribed Figure 8. They simulate the apabilities of theintruder.To simulate the protool rules, we �rst de�ne the set of expressions types(t)generated by a message sheme t by indution on t. If t is a onstant, thentypes(t) = ;. If t is a variable of sort sort, then types(t) = fPsort(t)g. If tis a term of the form f(t1; : : : ; tn), then types(t) = S1�i�n types(ti). Intuitivelytypes(t) is the set of onstraints orresponding to the sorts of the variables of t.We sometimes write types(t1; t2) instead of types(t1) [ types(t2).Example 58 Let us onsider the message sheme fB;K;XgK of our runningexample. Thentypes(fB;X; Y gshr(A)) = fPAgent(B); PKey(X); PMessage(Y ); PAgent(A)gensures that A and B stand for agent variables, X stands for a key variable andY for a message variable.
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Initialknowledge I0(x)I(x)
Analysis I(f(x1; : : : ; xn))I(xi) f 2 IF ; 1 � i � n

I(fx1gx2) I(x2) Sym(x2)I(x1)I(fx1gpub(x2)) I(prv(x2))I(x1) I(fx1gprv(x2)) I(pub(x2))I(x1)
Synthesis I(x1) � � � I(xn)I(f(x1; : : : ; xn)) f 2 PF

I(x1) � � � I(xn) PAd(xj1) : : : PAd(xjk)I(f(x1; : : : ; xn)) f 2 AF ;f restrited v.s.j1; : : : ; jk
Figure 8: Horn lauses for the intruder apabilities

Then HP is the union, for eah rulefS(A; i;M);M1; : : : ;Mpg �! fS(A; i+ 1;M 0);M 01; : : : ;M 0qgof the protool P , of the lauses desribed in Figure 9.We prove by indution in Appendix C that H veri�es the required property,whih onludes the proof of Lemma 56 �Remark: The prediate symbols ofH are the Psort, P�p introdued by Lemma57 and three distint prediate symbols: I; I0 and Sym.Example 59 We present here the lauses HP orresponding to our running ex-ample. For simpliity, we fatorize the rules whose premises are idential, lettingthem ontain several onlusions (though it must be kept in mind that these are61



I(si(A;M)) I(M1) � � � I(Mp) types(A;M;M1; : : : ;Mp;M 01; : : : ;M 0q)I(si+1(A;M 0))I(si(A;M)) I(M1) � � � I(Mp) types(A;M;M1; : : : ;Mp;M 01; : : : ;M 0q)I(M 0i)For i = 1; : : : ; q
Figure 9: Horn lauses orresponding to the rule fS(A; i;M);M1; : : : ;Mpg �!fS(A; i+ 1;M 0);M 01; : : : ;M 0qg
Horn lauses).Initialization rule: PAgent(A) PAgent(B)I(s1(A;<A;B; s>)) I(s1(B;<B; s>)); I(s1(s; s)) :Rule 1: PAgent(A) PAgent(B) I(s1(A;<A;B; s>))I(s2(A;<A;B; s>)) I(<A;B>)Rule 2: PAgent(A) PAgent(B) I(s1(s; s)) I(<A;B>)I(s2(s; s)) I(fB;K(A;B); fxA;K(A;B)gshr(B)gshr(A))Rule 3: PAgent(A) PAgent(B) PKey(X) PMessage(Y )I(s2(A;<A;B; s>)) I(fB;X; Y gshr(A))I(s3(A;<A;B; s;X;m(A;B)>)) I(<fm(A;B)gX ; Y >)and similarly for Rule 4.
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Step 2 We an start the seond part of the proof of Theorem 55. We writeH `? E when E is derivable from H.Let P be a protool. Its serey poliy S0 is de�ned by:S0 = s[j=1 ftj1; : : : ; tjnj j xj1; : : : ; xjkj 2 Akg;
where the tji are message shemes with free variables xj1; : : : ; xjkj . By de�nition ofserey, P is not seure i� there exists a reahable H suh that fake(Cont(H) [I0) \ S0 = ;, i.e.,i� there exists a reahable H 0 suh that Cont(H 0) \ S0 = ;, i.e.,i� there exists a reahableH 0, 9i; j, 9ai1 ; : : : ; aip 2 Ah suh that tji (ai1 ; : : : ; aip) 2 H 0i�, by Lemma 56, 9i; j;9ai1 ; : : : ; aip 2 Ah suh that H `? I(tji (ai1 ; : : : ; aip)).Thus, we are left to prove that 9i; j;9ai1 ; : : : ; aip 2 Ah suh that H `?I(tji (ai1 ; : : : ; aip)) is deidable.We express the setH of Horn lauses as a set onstraint: the set of de�nite setonstraint orresponding to Hmsg is the set Cmsg desribed Setion 6.1 augmentedwith the inlusions: f(Msg ; : : : ;Msg) � XSymfor every funtion symbol f 2 F , f 6= pub, f 6= prv.The de�nite set onstraint CI orresponding to HI is desribed in �gure 10. Theset of de�nite set onstraint CI0 orresponding to HI0 is onstruted similarly.We assoiate with eah Horn lause desribed in Figure 9 the following ET-onstraint:< si(A;fM) \ I; fM1 \ I; : : : ; fMp \ I; si+1(A; fM 0); fM 01; : : : ; fM 0q >rl� I (5)where rl and f� are de�ned in setion 6.1. The union of these ET-onstraint isdenoted by CP .Example 60 The Horn lause orresponding to the rule 3 of our running ex-ample is expressed by:<s2(A;<A;A; s>) \ I; fA;XKey;Msggshr(A) \ I;s3(A;<A;A; s;XKey;m(A;A)>); <fm(A;A)gXKey;Msg>>rl3� Iwhere rl3 is the equality onstraint desribed in Figure ??, Setion 6.1.Let C be the union of Cmsg, CI0 , CI and CP . The set variables of C are thevariablesXsort for eah sort sort and the four additional variables: X�p, whihorresponds to P�p, I; I0 and XSym .C is a faithful representation of H: 63



Initialknowledge I0 � I
Analysis f(I; : : : ; I) � I f 2 IFfg�11 (fMsggI\Sym \ I) � Ifg�11 (fMsggprv(pub�1(I)) \ I) � I fg�11 (fMsggpub(prv�1(I)) \ I) � ISynthesis f�1i (I) � I f 2 PF ; i � arity(f)

f(�1; : : : ; �n) � I f 2 AF ;f restrited v.s. j1; : : : ; jk�m = XAd if 9i;m = ji;�m = I otherwise.
Figure 10: Set onstraints orresponding to the intruder apabilities

Lemma 61 Let M be a olletion of sets SQ for every (unary) prediate symbolQ. Then M is a model of H i� the substitution �M assigning XQ to SQ is asolution of C.Proof: Let M be a model of H and let us show that �M satis�es C.The only non obvious part of the proof is to show that SI satis�es the setonstraint de�ned in Equation 5. Let rl be a rule of the protool, lett 2< si(A;fM�)\SI ;℄M1�\SI ; : : : ; fMp�\SI ; si+1(A; fM 0�); fM 01�; : : : ; fM 0q� >suh that t satis�es rl . t =<si(a;m);m1; : : : ;mp; si+1(a;m0);m01; : : : ;m0q> andsi(a;m);m1; : : : ;mp 2 SI . Sine t satis�es rl , by applying the lause de�ned inFigure 9, we dedue si+1(a;m0);m01; : : : ;m0q 2 SI , thus, by applying the lauseI(m1) I(m2)I(<m1;m2>) , t is in SI , thus SI satis�es the onstraint 5.
Conversely, let �M be a model of C. The only non obvious part of the proof isto show that SI satis�es the Horn lause de�ned in Figure 9. Let m =M�0;m =M 0�, mi = Mi�0;m0i = M 0i�, a = A�0 suh that si(a;m);m1; : : : ;mp 2 SI and�0 satis�es the onditions ond(A;M;M1; : : : ;Mp;M 01; : : : ;M 0q). Thus for everyvariable X of A;M;M1; : : : ;Mp;M 01; : : : ;M 0q, �0(X) 2 I(S ~X): �0 respets the
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type of the variables. Let t =< si(a;m);m1; : : : ;mp; si+1(a;m0);m01; : : : ;m0q >,thent 2< si(A;fM�) \ SI ;℄M1� \ SI ; : : : ; fMp� \ SI ;si+1(A; fM 0�); fM 01�; : : : ; fM 0q� >and, by onstrution of rl , t satis�es rl . Thus t is in SI . Applying the set on-straint <>�1i (SI) � SI , we get si+1(a;m0);m01; : : : ;m0q 2 SI , thus SI satis�esthe Horn lause de�ned in Figure 9. �Then, applying Lemma 61, it is easy to verify that9i;9ai1 ; : : : ; aip 2 Ah suh that H `? I(ti(ai1 ; : : : ; aip))if and only if C[i I \ ti(XAh; : : : ;XAh) �?is not satis�able.Assume now that P satis�es the basiness ondition as in theorem 55, thenthe set C as onstruted above is a set of ET-onstraints. ThusC[i I \ ti(XAh; : : : ;XAh) �?
is also a set of ET-onstraints. Then, thanks to theorem 51, the satis�ability ofthis onstraint is deidable, whih ompletes the proof of theorem 55.
7 ConlusionLet us summarize the ontributions of the paper (roughly in inreasing order ofsigni�ane) and disuss their meaning and possible further developments.1. The seurity of a protool P is undeidable, even for a restrited lass inwhih there are no nones, no ompound keys and there is at least onehonest instane of P . This is theorem 6. This shows that the soure ofundeidability does not ome from nones, but from the memorization andopying failities of the agents.2. The satis�ability of intersetion onstraints with non-emptiness guards isDEXPTIME-omplete. This is theorem 11. It is a slight extension ofresults about set onstraints.
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3. We introdued the new lass of tree automata with one memory and weshowed that the emptiness is DEXPTIME-omplete for this lass. This istheorem 15. This result is interesting in itself. One open question is itsgeneralization with disequality tests (and not only equality tests betweenmemory ontents).4. We introdued a lass of set onstraints with equality tests, in whih thetests are not restrited to brother positions. We showed the deidability ofonstraints in this lass by a redution to tree automata with one memory.This is theorem 51. It must be emphasized that we did not use the fullpower of automata with one memory here.Interpreting lemma 38 in the ontext of ryptographi protools, it showsthat, for basi variables, we may restrit our attention to �nitely many in-stanes (the representatives w.r.t. an appropriate equivalene relation).This shows in partiular that we an assume w.l.o.g. that there is abounded number of prinipals (the bound is given by the index of theequivalene relation).One possible researh diretion is to investigate generalizations of thislemma, for instane in the ontext of nones: is there an equivalene rela-tion (preserving the solutions) whih redues the general ase to the ase of�nitely many nones ? Suh a result would not neessarily ontradit theundeidability result of [18℄ sine the protool resulting from the oding ofthat paper does not satisfy the basiness hypothesis. In other words, assuggested by theorem 6, the key for deiding the serey of ryptographiprotools might be to limit the opying failities of the agents, not thenumber of sessions or nones they generate.5. We showed the deidability of serey for a lass of ryptographi protools,without any assumptions on the number of sessions (whether parallel ornot). This is theorem 55. This result is obtained by a redution to setonstraints with equality tests, but we did not use the full power of suhonstraints.The use of set onstraints, abstrating away the order in whih messageshave been sent over the network is proved to be relevant. Also, the abilityof agents to reognize di�erent types of data appeared learly as a simpli�-ation fator, whih an be tuned so that we fall in or out of the deidablelass. We have showed the relationship between this ability and the opy-ing failities of the agents: the more they are able to distinguish betweendi�erent data types, the more they are allowed to opy blindly piees ofmessages, without esaping from the deidable lass.
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There are still several weaknesses in our paper. First, the onstraint solvingtehnique is too omplex: we onjeture that our algorithm is in DEXPTIME,though we only showed a doubly exponential upper bound. It is also too ompli-ated for the appliations we have in mind. That is mainly beause we tried tobe as general as possible. However, most of the time, we don't need suh generalonstraints. In partiular, we an avoid the most ompliated step (lemma 27)simply by designing normalized onstraints only.Finally the big open question is the extension of these results to an unboundednumber of nones.
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A Proof of lemma 27Lemma 27 Every expression e whih satis�es the basiness ondition an betransformed into a normal expression e0 suh that, for every �, [[e℄℄� = [[e0℄℄� and,moreover je0jF and je0jt are polynomially bounded by jejt and je0jF .Note �rst that ondition 2 is initially satis�ed by all expressions sine weassumed that any two expressions in P () are inomparable with respet to thepre�x ordering.We are going to perform suessive transformations, verifying more and moreonditions, while preserving those whih have already been reahed. Initially, weonly assume that ondition 1 is satis�ed, as stated in the hypothesis of the lemma.Step 1 The goal of this step is to ensure, in addition to properties 1 and 2 aproperty, whih implies ondition 3.
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If  is an equality test and p is a position, we write p �  the equality testVq�r p � q = p � r. In addition to ondition 3, we want to ensure that in anyexpression g(: : : ; ei; : : :) suh that, for some 1, i � 1 � , if ei = f 0(~e0) \ e00,then P (1) � �(f 0(~e0)).To de�ne our rule, we �rst need to introdue a new equivalene relation:De�nition 62 Given an equality test  suh that  is satis�able, we de�ne 'and S to be the least set S and equivalene relation ' suh that:p � q ) p; q 2 S and p ' qp �0 q ) p; q 2 S and p ' qp ' q ) q ' pp ' q; q ' r ) p ' rp � q 2 Sp ' p0 �) � p0 � q 2 Sp � q ' p0 � qLemma 63 The �xed point for ' and S is reahed after a �nite number ofsteps. In addition, there exists an order � on the equivalene lasses of ' suhthat u � u0 implies that no position of u is a pre�x of a position of u0.Proof: (sketh) First, if there are two non-empty positions suh that p � q ' pthen  is unsatis�able: by indution (on the �xed point omputation of S;'), ift j=  ^ 0, then for every p ' q, t j= p = q. Sine we are only onsidering �niteterms, we annot have tjp = tjp�q.Consider the DAG G whose verties are elements of P ()[P (0) and (labeled)edges p i�! p � i. Then, for eah p �i p0, merge the two orresponding verties.We get a new graph Gf , whose set of verties is ontained in the original setof verties. Then, by indution (on the �xed point omputation of S;'), S isinluded in the set of paths of in Gf and if p ' q, then the path labelled by pand those labelled by q leads to the same vertex (starting from the vertex �).As we have seen above, Gf is ayli, thus S and ' are �nite, thus the �xedpoint for S, ' is reahed after a �nite number of steps. Note that the numberof verties of Gf is smaller or equal to the number of verties of G.Sine Gf is ayli, Gf indues an order � on its verties suh that if v � v0than no path leading to the vertex v is a pre�x of a path leading to the vertexv0. Eah equivalene lass u of ' is inluded in the set of paths of one of thevertex vu of the graph. We �rst order arbitrarily the equivalene lasses whihlead to the same verties and then we extend this order by u � u0 if vu � vu0and vu 6= vu0 . Then u � u0 implies that no position of u is a pre�x of a positionof u0. �
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Gf : �1 2 3 41 1 1
G:

4 � 12 � 1 3 � 1

�
1 2 3 41 2 3

1 1 1
4

Figure 11: G and Gf for 
Example 64 Consider def=1 = 21 ^ 3 = 41 ^ 2 = 31. Then, the graphs G andGf are pitured in �gure 11 and'= f1 = 21; 3 = 41; 2 = 31; 21 = 311; 31 = 411; 311 = 4111g:

In addition, we de�ne the equality test e of an expression e by indution one by: e1^:::^en = e1 ^ : : : ^ enf(e1;:::;en) =  ^ 1 � e1 ^ : : : ^ n � en ^ 1 = 1 ^ : : : ^ n = nLet 'e be the equivalene relation orresponding to e and u1; : : : ; un be itsequivalene lasses numbered in suh a way that ui �e uj implies i � j (this ispossible thanks to lemma 63).Then, (N1) is the suessive appliation of Nu1 ; : : : ; Nun where(Nu) e! e[ \p0 2 u \�(e)e00 2 ejp0
e00℄p2u\�(e)

Note: The rule (N1) is obviously terminating sine it requires at most asmany steps as the number of lasses modulo 'e . However, its omplexity isunlear. We onjeture for instane that je0jF is plynomially bounded by jejFand jejt.Lemma 65 (N1) preserves the semantis as well as properties 1 and 2.Proof: For every equivalene lass u and for every p1; p2 2 u \ �(e), byonstrution, e j= p1 = p2. Hene the rule preserves the semantis.71



Now, it preserves properties 1 and 2 sine it onsists in repeatedly replaingan expression e0 with the intersetion of e0 and other expressions, without hang-ing the tests and, if an expression is basi, then its intersetion with any otherexpression is also basi. �
Lemma 66 If e0 is the result applying (N1) to e, then:� 8p 2 Se \ �(e0), e0jp is a singleton.� 8p 'e p0, e0jp = e0jp0 .� if e0jp = f (e1; : : : ; en)\e00, then p � �'e and for all 1 � i � n, p � i 2 Se.� if p 2 �(e0) and p > p0 for some p0 2 ui where ui is minimal for �, thene0jp � Sq2�(e) ejq.� if e0jp = f (e1; : : : ; en) \ f 0(e01; : : : ; e0n) \ e00 then for every i = 1; ::; n,ei = e0i.Proof: We prove by indution on k that if e0 is the result of applyingNu1 : : : Nukto e, then for all i � k,1. 8p 2 ui \�(e0), e0jp is a singleton.2. 8p; p0 2 ui \�(e0), e0jp = e0jp0 .3. if e0jp = f (e1; : : : ; en)\ e00, then p �  �'e and for all 1 � i � n, p � i 2 Se .4. if p 2 �(e0) and p > p0 for some p0 2 ui \ �(e0); i � k where ui is minimalfor �, then e0jp � S(e), where S(e)def=Sq2�(e) ejq.If k = 0, i.e., no rule has been applied, then 1, 2 and 4 are true. 3 is true byonstrution of Se and 'e .Assume it is proved for k and let us prove the property for k + 1. We onsidere00 the result of e0 by Nuk+1 where e0 is the result of e by the appliation ofNu1 : : : Nuk . e00 = e0[ \p0 2 uk+1 \ �(e0)e000 2 e0jp0

e000℄p2uk+1\�(e0):
Consider q; q0 2 ui \�(e00), i < k + 1.� either q is inomparable with the paths of uk+1 \ �(e), then e00jq = e0jqand, by indution hypothesis, ejq is a singleton.
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� or there exists p 2 uk+1 \ �(e) suh that q � p, i.e. q = p � q1, thene00jq = e0[ \p0 2 uk+1 \ �(e0)e000jq1 2 e0jp0
e000℄p2uk+1\�(e0):

By onstrution of our equivalene relation, sine p ' p0 and p � q1 2 ui,we have p0 � q1 2 ui. Thus, by indution hypothesis e0jp0�q1 = e0jp�q1 and isa singleton,thus e00jq = e0jq.� or there exists p 2 uk+1 \�(e) suh that q < p, whih is impossible by thehoie of the order on the equivalene lasses.Conlusion: in any ases, we have that e00jq = e0jp is a singleton and e00jq = e00jq0 .Assume p > q for some p 2 �(e00) and assume ui is minimal w.r.t. �, thene00jq = e0jp � S(e) by indution.Consider q; q0 2 uk+1 \ �(e00). Assume q 62 �(e0). Then q is a path reated byappliation of Nuk+1 . This means that there exists p 2 uk+1 \ �(e0) suh that pis a strit pre�x of q whih ontradits Gf ayli.Thus q; q0 are in uk+1 \ �(e0), thus by onstrutione00jq = e00jq0 = \p0 2 uk+1 \�(e0)e000 2 e0jp0
e000

is a singleton. Assume p > q, i.e. p = q � p1, for some p 2 �(e00) and assume uiis minimal w.r.t. �, then for all p0 2 uk+1 \�(e0), we have e0jp0 = ejp0 , sine byminimality of uk+1 no rule an have been applied above p0 for p0 2 uk+1 \�(e0).Thus e00jp = [p0 2 uk+1 \ �(e)e000 2 ejp0
e000jp1 � S(e)

It remains to prove 3: assume e00jq = f (e1; : : : ; en) \ e4. Then, either q isinomparable with the paths of uk+1 \ �(e0), then e00jq = e0jq and we anapply the indution hypothesis. Or q < p for some p 2 uk+1 \ �(e0), thene0jq = f (e01; : : : ; e0n) \ e40) and 3 is ensured by indution. Or (last ase) q � pfor some p 2 uk+1 \ �(e0), then q = p � q1 and there exists p0 2 uk+1 \ �(e0)suh that e00jq = e0jp0�q1 . Thus, by indution hypothesis p0 �  2'e and for every1 � i � n, p0 � i 2 Se. Now, by onstrution of 'e and Se , sine p 'e p0, wehave p �  2'e and for every 1 � i � n, p � i 2 Se .
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e Nu1! e1def=f1=21^3=41(X \X1; g(X \X1); Y; g(Y ))\f2=31(X \X1; Z; g(Z);X2)e1 Nu2! e2def=f1=21^3=41(X \X1; Z \ g(X \X1); Y; g(Y ))\f2=31(X \X1; Z \ g(X \X1); g(Z \ g(X \X1));X2)e2 Nu3! e3def=f1=21^3=41(X \X1; Z \ g(X \X1); Y \ g(Z \ g(X \X1));g(Y \ g(Z \ g(X \X1))))\f2=31(X \X1; Z \ g(X \X1); Y \ g(Z \ g(X \X1));X2)e3 Nu3! e3def=f1=21^3=41(X \X1; Z \ g(X \X1); Y \ g(Z \ g(X \X1));X2 \ g(Y \ g(Z \ g(X \X1))))\f2=31(X \X1; Z \ g(X \X1); Y \ g(Z \ g(X \X1));X2 \ g(Y \ g(Z \ g(X \X1))))
Figure 12: Redution of e by (N1)

Now onsider the last property. e ontains the identities p = p for p 2 �(e).Hene, if f (e1; : : : ; en)\f 0(e01; : : : ; e0n)\e00 2 e0jp, then ei = e0i is the intersetionof expressions ejp0 suh that p � i 'e p0 (note that ei; e0i 2 e0jp�i. �Thanks to lemma 66, we have the required properties:Corollary 67 If e0 is the result of e by the appliation of (N1), then for everyequality test, if p � q then the expressions at positions p and q in e0 are idential.In addition, in any expression g(: : : ; ei; : : :) suh that, for some 1, i � 1 � , ifei = f 0(~e0) \ e00, then P (1) � �(f 0(~e0)).Example 68 Considere = f1=21^3=41(X; g(X); Y; g(Y )) \ f2=31(X1; Z; g(Z);X2)Then edef=1 = 21 ^ 3 = 41 ^ 2 = 31 and the equivalene lasses of 'e are:u1 = f1; 2 � 1; 3 � 1 � 1; 4 � 1 � 1 � 1g; u2 = f2; 3 � 1; 4 � 1 � 1g; u3 = f3:4 � 1g; u4 = f4gThe suessive appliations of Nu1, Nu2, Nu3 and Nu4 are desribed �gure 12.Note that, now, \every expression in ejp is basi" is equivalent to \there isan expression in ejp whih is basi" sine the intersetion of a basi expression74



with any other expression yields a basi expression. That is why, from now on,we may say, by abuse of language that \ejp is basi" to mean either of the twoabove versions.We onsider, in addition to the rule (N1), the following \leaning" rules:(N2) f (e1; : : : ; en) \ f(e01; : : : ; e0n)! f (e1 \ e01; : : : ; en \ e0n)(N3) f (e1; : : : ; en) \ g0(e01; : : : ; e0m)!? if f 6= g.Lemma 69 The rules (N2); (N3), applied to normal forms w.r.t. (N1), preservethe semantis as well as properties 1, 2, 3 and the properties desribed in lemma66.Proof: First, by lemma 66, in any appliation of (N2), we must have ei = e0i.Then, it suÆient to notie that e is unhanged by appliation of (N2), heneits appliation does not trigger (N1) and preserves the properties of lemma 66. �
Step 2 We start with some properties of equality tests.Lemma 70 Let j � 1 be the subset of 2 ontaining all equalities whose bothsides are pre�xed by j. If 2 satis�es the basiness ondition in e and e satis�esondition 3, then 1 satis�es the basiness ondition in every expression belongingto ejj.Proof: Let p � i1 � q �1 p0, i1 6= i2 and p0 6�pref p. Then j � p � i1 � q �2 j � p0 andj �p0 6�pref j �p. By basiness of 2, either ejj�p0 is basi or ejj�p�i2 ontains basi ex-pressions only or else j �p�i2 �w �2 j �p0 for some w, whih implies p�i2 �w �1 p0 �
Lemma 71 If  satis�es the basiness ondition in e and 1 is an equivalenelass of , then  n 1 satis�es the basiness ondition in e.Proof: Let p � i1 � q �n1 p0, i1 6= i2 and p0 6�pref p. Then p � i1 � q � p0and, by basiness of , either ejp0 or every expression in ejp�i2 is basi or elsep � i2 � w � p0for some w. In the latter ase, sine 1 is an equivalene lass,p � i2 � w �n1 p0. �Now, we use the following two transformation rules:(N4) f ^j�1(: : : ; ej; : : :)! f ^j�1(: : : ; ej \ g1(e1j ; : : : ; ekjj ); : : :)if ej = g0(e1j ; : : : ; ekjj ) \ e00 and  does not ontain any test whose both sides arepre�xed by j. 75



(N5) f ^p1�1^:::^pn�n(~e)! f (~e)if p1 � 1 [ : : : pn � n is a union of equivalene lasses, every pi is non emptyand, for every i, there is an expression ei at position pi in f ^:::(~e) suh thatei = g0i(~e0i) \ e00i and 0i j= i. (In words: we may remove lasses whih areonsequenes of equality tests lower in the expression).Lemma 72 (N4) and (N5) preserve onditions 3, 1 and 2. An expression whihis unhanged by appliation of these two rules satis�es ondition 4. Moreover,the size (w.r.t. F) is preserved by the two rules, the size (w.r.t. t) is redued bythe seond rule and, using repeatedly the �rst rule in an expression e results inan expression e0 suh that je0jt � jej2t .Proof: (sketh) By lemmas 70 and 71, these transformations preserve ondition1 and they preserve trivially ondition 3.Condition 2 is also preserved sine we did not merge any equality test so far.The satisfation of ondition 4 follows from an inspetion of the expressionswhih are left unhanged by any appliation of these rules.The preservation of jejF follows from the de�nition. If  yields a new test0, possibly after repeated appliations of (N4), then there is a p1 suh that 0onsists in equalities p = q suh that p1 � p � p1 � q. If we �x the size of p1, thenthe sum of sizes of suh 0 is bounded by jj. Hene the total size of the newtests is bounded by jj2. �
Step 3 The purpose of this step is to show how to satisfy in addition theondition 5, while preserving properties 3, 1,4, 2. In what follows, integers i; j:::are always assumed range over a �nite set 1::n whih is onsistent with the arityof funtion symbols.Let e be an expression f (~e1) \ f 0(~e2) \ : : :. If e is in normal form w.r.t.(Ni), i � 5, then we may assume that ~e1 = ~e2. Indeed, this is true of normalforms w.r.t. (N1); (N2); (N3) thanks to lemmas 66 and 69, and suh a propertyis trivially preserved by the rules (N4); (N5). We will however only assume inwhat follows the weaker property �(f (~e1)) = �(f 0(~e2)).We de�ne  u 0 (relatively to e) as follows: �rst, if  ^ 0 is unsatis�able, wereplae it with ?. Otherwise, for every non-trivial equivalene lass 0 for , letQ(0; 0) = fw j 9p 2 P (0); p � w 2 P (0); ejp�w not basi gandQm(0; 0) = fw � i j 9w0 2 Q(0; 0); w <pref w0; 8w0 2 Q(0; 0); w � i 6<pref w0g:76



Q(0; 0)Qm(0; 0)

Figure 13: A representation of Q(0; 0) and Qm(0; 0)Intuitively, Qm(0; 0) is the border of Q(0; 0) with its maximal elements. See�gure 13.Eah time Q(0; 0) is empty, we let 0 = 0 and, otherwise:00 def= ^p�0q ^w2Qm(0;0) p � w = q � w
Then 0 def= ^0a lass of  00We de�ne now the sequene n as follows: 1 = , 01 = 0 and n+1 def= n0nand 0n+1 def= 0nn .Note that if p � w = q � w 2 0 , then p � w; q � w 2 �(f (~e1)) = �(f 0(~e2))).Moreover, if  6= , then jj > jj. It follows that the sequenes n and 0n areultimately stationary: let 1 and 01 be the respetive limit values of n and 0n.We de�ne  u 0 def= 1 ^ 01:Example 73 Let us onsider  def= 1 = 2 and 0 def= 211 = 3^ 11 = 4 and assumethat every position of  or 0 is not basi. Then  u 0 is omputed in two steps:step 1 Q(; 0) = f11; 1g thus Qm(; 0) = f11g.Q(01; ) = Q(02; ) = ; where 01 = 211 = 3 and 02 = 11 = 4.Thus 2 def= 0 = 111 = 211 and 02 def= 0 = 0 = 211 = 3 ^ 11 = 4.step 2 Q(2; 02) = ;.Let 120 def= 211 = 3 and 220 def= 11 = 4, then Q(120; 2) = ; and Q(220; 2) =f1g thus Qm(220; 2) = f1g.Thus 3 def= 202 = 2 = 111 = 211 and 03 def= 022 = 211 = 3 ^ 111 = 41.77



303 = 3, 033 = 03, thus  u 0 def= 111 = 211 ^ 211 = 3 ^ 111 = 41.Let us analyze a bit more preisely the omplexity: for every pair p �u0 q,there is a position r 2 P () [ P (0) suh that p = p1 � i and r = p1 � r1. Then, ifa is the maximal arity of a funtion symbol, thenjP ( u 0)j � (jj+ j0j)� awhere a is the maximal arity of a funtion symbol and sine the number ofpossible hoies for p1 is bounded by jj+ j0j. It follows thatj u 0j � (jj+ j0j)�M(; 0)� a � a� (jj+ j0j)2where M(; 0) is the maximal length of a position in P () [ P (0).Then we use the following transformation rule:(N6) f (e1; : : : ; en) \ f 0(e01; : : : ; e0n)! f u0(e1 \ e01; : : : ; en \ e0n)if �(f (~e)) = �(f 0(~e0)).First, P (); P (0) � �(f(~e)), thanks to property 3. It follows that P (u0) ��(f(~e)). The semantis is also preserved sine, as long as all positions p � i andq � i are in �(f (~e)), and the top symbols at positions p and q are idential, anequality test p = q 2  is equivalent to the onjuntion of equality tests p�i = q �i.Condition 3 is also trivially satis�ed. Remains to verify the preservation ofthe other ones: ondition 4 is shown to be preserved in lemma 74, ondition 1 inlemma 75, ondition 2 in lemma 76.Lemma 74 The rule preserves property 4.Proof: Atually, every 0 and 00 satisfy property 4. Indeed, if, in the lass 0of p (in ), q does not share any pre�x with p, then in the lass of p � w (w.r.t.0), q � w does not share any pre�x with p � w. �
Lemma 75 The transformation preserves the basiness ondition.Proof: It suÆes to show that ^ 0 satis�es the basiness ondition, whenever; 0 do. Then we use an indution on the �xed point omputation for  u 0.Assume p � i � q �^0 p0, p0 6�pref p, j 6= i and, for every w, p � j � w 6�^0 p0.Then p is not empty. Assume w.l.o.g that p � i � q; p0 2 P (0) where 0 is anequivalene lass of . (If this is not the ase, exhange the roles of  and 0).Then, by lemma 74, there is a p01 �0 p � i � q suh that p is not a pre�x of p01.Hene we may assume w.l.o.g. that p is not a pre�x of p0 (possibly after replaingp0 with some p01). 78



If p � i � q � p0, then the result follows from the basiness property of :in suh a ase, we must have 0 = 0 (sine, in any ase, either 0 = 0 orP (0) \ P (0) = ;), hene p � j � w � p0 i� p � j � w �^0 p0.Let us assume now that this is not the ase: 0 6= 0, p � i � q = p0 �w0 � i0 withw0 � i0 2 Qm(0; 0) and p0 � q0.8>>>><>>>>:
p � i � q = p0 � w0 � i0p0 = q0 � w0 � i0p0 � q0 � p00p00 � p1 �0 q1ejp00�p1 is not basi

and � w0 <pref p1w0 � i0 6<pref p1
In addition, we may assume, thanks to property 4 again that p0 and q0 on onehand and p00 and q1 on the other hand do not share any non-trivial pre�x.First ase: p <pref p0 . There is a q0 suh that p0 = p � i � q0. We use thebasiness property of , onsidering the equivalene p � i � q0 � q0: eitherejp�j is basi or ejp0 is basi or p � j � w � p0 for some w. In the �rst twoases, we get what we want (ejp0 basi implies ep�i�q basi). In the last ase,p � j � w � w0 � i0 �0 p0 by onstrution, hene ontraditing the hypothesis8w0:p � j � w0 6�^0 p0.Seond ase: p0 � w0 >pref p �pref p0 . Sine w0 � i0 6<pref p1 and w0 �pref p1,p1 = w0 � j0 � � for some j0 6= i0 and �. We apply now the basinessproperty of 0, onsidering the equivalene p00 �w0 � j0 � � �0 q1 (reall thatp00 � p1 �0 q1). Sine ejp00�p1 is not basi, only two ases an our:Case 2.1: ejp00�w0�i0 is basi whih implies ejp0�w0�i0 basi, hene the de-sired onlusionCase 2.2: p00 � w0 � i0 � w �0 q1 �0 p00 � p1 for some w. Let p = p0�p2; w0 =p2 � i � w1. Then p00 � p2 � i � w1 � i0 � w �0 q1 and, sine i 6= j, by thebasiness of 0, either ep00�p2�j is basi or ejq1 is basi or else there is aw2 suh that p00 � p2 � j � w2 �0 q1.In the �rst ase, ejp0�p2�j is also basi (i.e. ejp�j is basi) and we on-lude.The seond ase ontradits the hypothesis that ejp00�p1 is not basi.In the third ase, p00 � p2 � j � w2 �0 p00 � p1 �0 p00 � w0 � i0. Then, byonstrution, p0 �w0 � i0 �^0 p0 �p2 �j �w2 = p �j �w2, whih ontraditsagain the hypothesis.Third ase: p = p0 � w0, i = i0 and q is empty . p1 = w0 � j0 � � with j0 6=i0. If j = j0, from ejp00�p1 is not basi, we onlude the desired result.Otherwise, j 6= j0 and we use the basiness property of 0, onsidering79



again p00 � w0 � j0 � � �0 q1, j 6= j0. Either ejp00�w0�j is basi (in whih asewe also onlude) or there is w01 p00 � p1 �0 p00 � w0 � j � w01.In the latter ase, we use again the basiness property on 0, onsideringp00 � w0 � j0 � � �0 q1, i 6= j0. Either ejp00�w0�i0 is basi, in whih ase weonlude, or else there is a w02 suh that p00 � p1 �0 p00 � w0 � i0 � w02. Now,let us reall that, by onstrution, 8w0 2 Q(0; 0), w0 � i0 6<pref w0. Sinew0 � i0 � w01 2 Q(0; 0), we must have w01 empty.ejp00�w0�i0 is basi (in whih ase we onlude) orIt follows that p00 �w0 �i0 �0 p00 �w0 �j �w02, whih ontradits p�i 6�^0 p�j �w02.�
Lemma 76 The transformation (N6) preserves property 2.Proof: We prove, by indution on n that1. for every p � q; p 2 P (n) [ P (0n) suh that q is not empty, either ejp�q is abasi expression or else n+1 6= n or 0n+1 6= 0n.2. n and 0n (individually) satisfy property 2The lemma will follow.For every n, if p 2 P (n) and if p � q 2 P (0n) and if ejp�q is not basi, thenq 2 Q(0; 0n) by de�nition (0 is the equivalene lass of p) and, sine q is notempty, a suÆx of q belongs to Qm(0; 0n). It follows that 00n 6= 0 and thereforen+1 6= n. So, from now on we may assume w.l.o.g that both p and p � q are inP (n).In the base ase, n =  and 0n = 0 and ; 0 satisfy ondition 2. Then, ifp; p � q 2 P (), ejp�q is basi.Consider now the indution step and let p 2 P (00n), p � q 2 P (10n), q is notempty and 0; 1 are lasses of n.Assume �rst that 00n 6= 0. Then, aording to the de�nition of n+1, thereare positions suh that:8>>>>>><>>>>>>:

p = p1 � w � iw <pref w0p2 �n p1p2 � w0 2 P (0n)ejp2�w0 is not basi8w00 2 Q(0; 0n); w � i 6<pref w00We onsider now several ases for p � q.80



ase 1: p � q 2 P (10n), 10n = 1 � n . Then p1 <pref p � q and we on-lude using property 2 on n (Indution hypothesis).ase 2: p � q 2 P (1), 1 6= 1 � n . Then, by de�nition, there are posi-tions suh that:8>>>>>><>>>>>>:
p � q = p3 � w1 � i1w1 <pref w01p4 �n p3p4 � w01 2 P (0n)ejp4�w01 is not basi8w001 2 Q(1; 0n); w1 � i1 6<pref w001In this ase, p � q = p3 � w1 � i1 = p1 � w � i � q, hene p3 and p1 mustbe omparable w.r.t. the pre�x ordering. If they are distint, assumepk is the largest one, then, by property 2 on n, ejpk must be basi,hene ejp or ejp�q must be basi and we onlude. Otherwise, p1 = p3and 0 = 1. By hypothesis, 8w00 2 Q(0; 0n); w � i 6<pref w00, thusw00 = w � i � q =2 Q(0; 0n), whih an only our when ejp1�w�i�q = ejp�qis basi, and we onlude again.Assume now 00n = 0. If 10n = 1, we onlude by the indution hypothesis:property 2 holds on n.Otherwise, there are positions suh that:8>>>>>><>>>>>>:

p � q = p1 � w1 � i1w1 <pref w01p2 �n p1p2 � w01 2 P (0n)ejp2�w01 is not basi8w001 2 Q(1; 0n); w1 � i1 6<pref w00100n = 0 implies p1 6<pref p. If p1 >pref p, from p1 �n p2, we onludethat ejp1 is basi (hene ejp�q), thanks to the indution hypothesis.We are left to the ase p = p1. Then p2 �n p and p2 � w01 2 P (0n) and w01is not empty, hene 00n 6= 0, a ontradition. �
Lemma 77 Property 5 is satis�ed for normal forms w.r.t. (N6).Proof: At step 1, we ensured that, for every p 2 �(e), ejp only ontains expres-sions of the form f 1(~e) \ : : : \ f n(~e) \X1 \ : : : \Xm. The rule (N6) imposes81
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Figure 14: the tests of example 78
n = 1, hene property 5. �In this step, we did not inrease jejF and j u 0j � a � (jj + j0j)2, heneje0jt � a� jej2t .Step 4 . The purpose of this last step is to rearrange the equality tests sothat there are no overlapping tests exept possibly for basi expressions. (Moreformally, we need to ensure ondition 6).Let us show �rst some examples of what we want.Example 78 e def= f11=12=2(f11=12=21=22(f(X;X); f(X;X)); f(X;X)). e on-tains overlapping tests. We an however use �rst the rules (N4); (N2) and getf11=12=2(f11=12=21=22(f1=2(X;X); f1=2(X;X)); f(X;X))Now, it turns out that the intermediate test is a onsequene of the top one andthe lowest ones, and it an be removed, yielding (after normalization w.r.t. (N2)): f11=12=2(f(f1=2(X;X); f1=2(X;X)); f1=2(X;X))for whih there is no overlapping test.In this example, pitured in �gure 14, we see that we do not need to hange thetests but only to reorganize them.Example 79 Lete = f111=121=112=122=2(f1=2(g(X;X; Y ); g(X;X; Y ));X);
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Figure 15: the tests of example 79

whih ontains overlapping tests. Using the rule (N4) we getf (f1=2(g(X;X; Y ); g(X;X; Y ))\f11=12=21=22(g1=2(X;X; Y ); g1=2(X;X; Y ));X)with  def= 111 = 121 = 112 = 122 = 2. Using rule (N6) we getf111=121=112=122=2(f11=12=21=22^13=23(g1=2(X;X; Y ); g1=2(X;X; Y ));X)Now, the lass 11 = 12 = 21 = 22 is a onsequene of the top and low tests andit an be removed:f111=121=112=122=2(f13=23(g1=2(X;X; Y ); g1=2(X;X; Y ));X)Finally the low tests an also be removed sine they are onsequenes of the topone, yielding:f111=121=112=122=2(f13=23(g(X;X; Y ); g(X;X; Y ));X)in whih there is a remaining overlapping test. However, in e, Y must be basi(thanks to the basiness ondition) and thus the lower positions 13 and 23 or-respond to basi expressions.In this example, pitured in �gure 15, we need to push some tests down.So, the idea is to �rst inherit the onstraints thanks to rule (N4) (this hasbeen done at step 2), next normalize w.r.t. (N6) (this has been done at step 3)and �nally remove useless tests, whih we do now.(N7) f 1(~e1)[g2^0(~e2) \ e02℄p1 ! f 1(~e1)[g2(~e2) \ e02℄p1If 83



� 0 is an equivalene lass in 2 ^ 0� 1 ^ p1 � ^r 2 �(g2^0( ~e2))r 6= �g2^0( ~e2)jr = hr ( ~er) \ e0r
r � r j=e 0

� e = f 1(~e1)[g2^0(~e2) \ e02℄p1� j=e is the onsequene relation aording to the following rules:{ reexivity, symmetry and transitivity{ right ompatibility: p = q j=e p � r = q � r{ folding (w.r.t. e): if ejp = f (~e0) \ e00 and f has arity n, then p � 1 =q � 1 ^ : : : ^ p � n = q � n j=e p = q.{ onjuntion introdution: 1 j=e 012 j=e 02 �) 1 ^ 2 j=e 01 ^ 02.We must be areful on how to apply this rule. Consider the following exampleExample 80 e def= f111=12=2(f11=12=2(f1=2(g>(X); g>(X)); g>(X)); g>(X)). Thisexpression is in normal form w.r.t. the previous transformations. There aretwo ways of applying rule (N7): we an remove the onstraint 1 = 2 sine11 = 12 = 2 ^ 11 � > ^ 12 � > j= 1 � (1 = 2). Then the expression is in nor-mal form for N7 and there are still some overlapping tests. The other possibilityis to apply (N7) to 11 = 12 = 2: 111 = 12 = 2^ 1 � 1 � (1 = 2) j= 1 � (11 = 12 = 2)and there is no longer any overlapping tests in the expression.We assume that the previous steps have been ompleted and use the rule(N7) top-down.Lemma 81 (N7) (applied top-down) is terminating, it preserves the semantisand the properties 5, 3, 1, 4, 2.Proof: The termination is straightforward: the size of the expression is stritlydereasing (and the resulting expression e0 satis�es je0jF = jejF and je0jt � jejt.)The ondition of the rule ensures the preservation of interpretations. Prop-erty 5 is preserved sine we do not hange the term struture of the expression.Property 3 is not neessarily preserved by one-step appliation of (N7). However,if p0 � p1 = p0 � p01 is heked higher up in the expression, then the expressions atpositions p1 and p01 must be idential (by property 3) and the rule (N7) will beapplied twie to these expressions, yielding removal of 0 for both ourrenes.Lemma 71 ensures the preservation of property 1. Also, property 4 is pre-served sine we remove an equivalene lass and property 2 is preserved sine we84



remove some tests. �
Lemma 82 Normal forms w.r.t. rule (N7) (applied top-down) satisfy ondition6.Proof: Assume that we are in the situation of property 6: e = f (e1; : : : ; en)\e0,p1 � p2 � q, p1; p2 are non-empty, f (e1; : : : ; en)jp1 = g0(e01; : : : ; e0m) \ e00 andp0 2 P (0).Assume that there is no position p02 suh that p1 � p02 � p1 � p2 and p02 isomparable with p0 w.r.t. �pref . Let p1 �p02 � p1 �p2 suh that p02 is the positionwhih shares the longest pre�x with p0 . Then we an write p0 = w � j � w0 andp02 = w �i �w00 with i 6= j. By ondition 1 (for ), onsidering p1 �w �i �w00 � p1 �p2,either ejp1�p2 is basi or ejp1�p0 is basi or 9w1; p1 � p2 � p1 � w � j � w1. This lastase ontradits the maximal shared pre�x hypothesis.We are left to the ase where p0 is omparable w.r.t. �pref with some positionp02 suh that p1 � p02 � p1 � p2.If p0 �0 q0 and q0 does not share any non-trivial pre�x with p0 (this is possiblethanks to property 4 on 0), then a similar property holds for q0: we assume nowthat p0 �0 q0 and there are positions p02 and p002 suh that p1 �p2 � p1 �p02 � p1 �p002and p0 and p02 on one hand and q0 and p002 on the other hand are omparable w.r.t.the pre�x ordering. p02 must be distint from p002 sine p0 and q0 do not share anypre�x.By rules (N4); (N6), 0 = 1 u : : : u n and 1 j= p02 = p002. Now, we onsider anumber of ases, depending on the omparisons between p0; q0; p02; q02:Case 1: p0 <pref p02 .In this ase, by de�nition of u, ejp1�p02 must be basi: 0 has to ontain asuÆx of p02 and we use property 2 on 0. It follows that ejp1�p2 is basi.Case 2: q0 <pref p002 . This is similar to the �rst ase.Case 3: p0 �pref p02 and q0 �pref p002 .Let p0 = p02 � q02. By de�nition of u, p0 �0 p002 � q02. Then q0 must be equalto p002 � q02 and  j= p1 � (p0 = q0). Next, equalities p0 �0 q00, in whih p0 andq00 share a non-trivial pre�x must be onsequenes (w.r.t. j=e) of equalitytests on subexpressions: this is true for normal forms w.r.t. (N4) and thisis an invariant of (N6) sine  u 0 j=e  ^ 0.Then, rule N7 an be applied (ontradition). �
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B SET-onstraints and Automata with one memoryWe onsider a satis�able SET-onstraint S and we assume that AS is onstrutedas desribed in setion 5.3.We an �rst note that if e = f (e1; : : : ; en) ours in S and if p is a non-root position of e, then  # p has only one non-trivial equivalene lass. This isensured by onditions 1, 4 and 2 of normal expressions (see de�nition 26.We prove by indution on the size of t that, if � is the solution of solved(S),then for every t aepted in qX , H(t) 2 �(X).For the sake of simpliity, we will say shortly that \t is aepted in < q;m >"instead of \there is a omputation of the automaton on t yielding the on�gura-tion < q;m >.Lemma 83� if t is aepted in < qe;p; � >, then H(t) 2 �(ejp), H(t) j=  # p and� = H(t)jp�p0 for some p0 tested by  # p (sine H(t) j=  # p and sine  # phas only one non-trivial equivalene lass, for every p0; p00 tested by  # p,we have H(t)jp�p0 = H(t)jp�p00).� if t is aepted in < qe; � >, then H(t) 2 �(e) and � = a.� if t is aepted in < qX ; � >, then H(t) 2 �(X) and � = H(t).� if t is aepted in < q�; � >, then � j= �.� if t is aepted in < qa; � >, then t = a and � = a.Proof: (sketh) If jtj = 1, then t = b for some onstant in F and the onlytransition leading to b is b >�!b qb.Assume Lemma 83 is satis�ed for every t of size � n and onsider t suh thatjtj = n+ 1.If t is aepted in < qe;p; � >, then t = g(t1; : : : ; tk) suh that ti is aepted in< qe;p�i; �i >. By indution hypothesis, H(ti) 2 �(ejp�i), H(ti) j=  # p � i and� = H(ti)jp�i�p0 for some p0 tested by  # p � i. H(t) = g(H(t1); : : : ;H(tn)), thusH(t) 2 �(ejp). We have also that H(t) j= g # p, thus H(t) j=  # p. Finally,� = �i for some i suh that p � i is a position heked by , thus � = H(t)jp�p0 forsome p0 tested by  # p.The other ases are proved similarly. �Conversely, if t 2 �(X) where � is the minimal solution of solved(S), thenthere exists t0 suh that H(t) = t0 and t0 is aepted in state qX .Lemma 84 86



1. if t 2 �(X), then there exists t0 suh that H(t0) = t and t0 is aepted in< qX ; t0 >.2. if t 2 �(ejp) and t j=  # p, then there exists t0 suh that H(t0) = t and t0 isaepted in < qe;p; tjp�p0 > for some p0 tested by  # p.3. if t 2 �(e), then there exists t0 suh that H(t0) = t and t0 is aepted in< qe; a >.Proof: (sketh) We prove that if Tnsolved(S)(;) satis�es the properties of lemma84, then Tn+1solved(S)(;) also satis�es the properties of lemma 84. The result followsby minimality of �.Assume Tnsolved(S)(;) satis�es the properties of lemma 84. First, we an verifythat if Tnsolved(S)(;) j= � then there exists t0 suh that t0 is aepted in state q�.Assume now that Tn+1solved(S)(;) satis�es property 1, then, by well-founded indu-tion on � (the reverse pre�x order), we show that Tn+1solved(S)(;) satis�es property2 and 3.Thus, it is suÆient to prove that Tn+1solved(S)(;) satis�es property 1: assumet 2 [[X℄℄n, then there exists a lause � ) e � X suh that Tnsolved(S)(;) j= �and t 2 [[e℄℄n. Applying the indution hypothesis and the rules of the automaton,we dedue that there exists t0 suh that H(t0) = t and t0 is aepted in < qX ; t0 >.�
C Protools and Horn ClausesLet P be a protool. We assume HMsg ;HI and HP onstruted as desribed inSetion 6.2.We �rst onstrut HI0 suh that the maximal initial knowledge of the in-truder I0 is a minimal interpretation of the prediate I0 whih satis�es HI0 .Lemma 57 Let t1; : : : ; tn be message shemes with the free variables x1; : : : ; xk.Then, there exists a set of Horn lauses HI0 suh that I0(m) is derivable fromHI0 [Hmsg if and only if parts(m) \ fti� j 1 � i � n; �(xi) 2 Ahg = ;.Proof: Let p be the maximal depth of the terms t1; : : : ; tn. Let S = fti� j 1 �i � n; �(xi) 2 Ahg. We introdue a new prediate P�p suh P�p aepts theterms of depth larger or equal to p. The lauses HI0 for P�p and I0 are desribed�gure 16. jmjd denotes the depth of the term m. Let H0 = HMsg [HI0 .By onstrution, H0 ` P�p(m) if and only if the depth of m is greater or equalto p. 87



(1) I0(m) if jmjd � pand parts(m) \ S = ;
(2) P�p(m) if jmjd = p
(3) Msg(x1) : : :Msg(xn) P�p(xi)P�p(f(x1; : : : ; xn) 1 � i � n
(4) I0(x1) : : : I0(xn) P�p(xi)I0(f(x1; : : : ; xn)) 1 � i � n; f 2 IF
(5) Msg(x1) : : :Msg(xn) P�p(xi)I0(f(x1; : : : ; xn)) 1 � i � n; f 2 OF
(6) I0(x1) Msg(x2) P�p(xi)I0(fx1gx2) i = 1; 2

Figure 16: Horn lauses for P�p and I0
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Let us show by indution on the number of rules whih have been applied thatif H0 ` I0(m) then parts(m)\S = ;. Let m be a term suh that H0 ` I0(m) andlet us onsider the last rule whih has been applied:rule (1): parts(m) \ S = ; by de�nition of rule (1).rule (4): m = f(m1; : : : ;mn suh that f 2 IF , H0 ` I0(m1); : : : ; I0(mn) andthere exists i suh that H0 ` P�p(mi).parts(m) = fmg [ [1�i�n parts(mi):
By indution hypothesis, parts(mi) \ S = ;. In addition, there exists isuh that jmijd � p, thus jmjd > p whih implies that m 62 S. Thusparts(m) \ S = ;.rule (5): m = f(m1; : : : ;mn suh that f 2 OF and there exists i suh thatH0 ` P�p(mi), thus jmjd > p. Sine parts(m) = fmg and jmjd > p, wehave parts(m) \ S = ;.rule (6): this ase is similar to the previous ones.Conversely, an indution on the depth of m proves that if parts(m)\S = ;, thenH0 ` I0(m). �We prove here Lemma 56 by proving the following stronger lemma.Lemma 85 Let m be a message and a an agent, C `? I(m) i� there exists areahable H suh that [m℄ 2 H andC `? I(si(a;m)) i� there exists a reahable H suh that S(a; i;m) 2 H.To prove this, we need few lemmas:Lemma 86 If there exists a reahable H1 suh that m1 2 H1 where m1 is amessage and if there exists a reahable H2 suh that e2 2 H2 where e2 is eithera message or a state, then there exists a reahable H suh that m1; e2 2 H.A transition t of a protool is appliable in H provided Pre(t) � H. Thus, if tis appliable in H, then t is appliable in H 0, for all H 0 � H. In the same way,if X 2 fake(Cont(H) [ I) then X 2 fake(Cont(H 0) [ I), for all H 0 � H.Therefore, let H be the global state obtained from H1 by applying all the tran-sitions used to obtain H2. e2 is in H and m1 is still in H sine the transitionsdo not remove any message.Lemma 87 Let S a set of messages suh that 8m 2 S C `? m. Then 8m 2fake(S); C `? m. 89



Pairing, unpairing, enryption and deryption are simulated by the lauses inFigure 8.For Lemma 56, we �rst prove by indution on n that if C `n I(m) then thereexists a reahable H suh that [m℄ 2 H and if C `n I(si(a;m)) then there existsa reahable H suh that S(a; i;m) 2 H.For n = 0, it is true,Assume the hypothesis is veri�ed for n, and assume C `n+1 I(m). Thelast dedution rule is either one of those presented Figure 8, in this ase, byinspetion of the dedution rules, using the indution hypothesis and Lemma86, we onlude that there exists a reahable H suh that [m℄ 2 H. Or the lastdedution rule is one of those presented Figure 9. Then,C `n I(si(a;m0));Msg(m0); I(m1);Msg(m1); : : : ; I(mp);Msg(mp)where mi = Mi�0, m0 = M0�0 and �0 preserves the type : if �0(xA) = t whereA is an agent variable, then C `n A(t), thus t is an agent. By appliation of theindution hypothesis and applying Lemma 86, there exists a reahable H suhthat m;m1; : : : ;mp 2 H. Thus, the transitiont = fS(A�0; i;M�0);M1�0; : : : ;Mp�0g �!fS(A�0; i+ 1;M 0�0);M 01�0; : : : ;M 0q�0gis appliable in H. Let H 0 the global state obtained from H by applying t, m isin H 0.Assume C `n+1 I(si(a;m)). The only hoie for the last dedution rule isone those presented Figure 9. The same reasoning as above allow us to onludethat there exists a reahable H suh that S(a; i;m) 2 H.Conversely, we prove by indution on n that if there exists a n-reahable Hsuh that [m℄ 2 H or S(a; i;m) 2 H then C `? I(m) or C `? I(si(a;m)) wheren-reahable stands for \reahable with n global transitions".For n = 0, H = H0 and H0 does not ontain any message or state.Assume the hypothesis is veri�ed for n, and assume there exists a n + 1-reahable H suh that [m℄ 2 H. Thus, there exists a n-reahable H1 suh thatH is an honest or fake suessor of H 0. If [m℄ 2 H 0, we onlude immediately.Assume [m℄ 62 H 0:honest suessor Let t the appliable transition suh that H = (H 0n(Pre(t)\H 0) [ Post(t)). By appliation of the indution hypothesis and applyingthe lause desribed in Figure 9, we onlude C `? I(m).fake suessor IfH = H 0[fmg whereH 0 is n-reahable andm 2 fake(Cont(H)[I). Lemma 87 and the indution hypothesis allows us to onlude.
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