
http://www.lsv.ens−cachan.fr/Publis/
Accepted for publication in Theoretical Computer Science.

Tree automata with one memory, set
onstraints and
ryptographi
 proto
ols �
Hubert ComonyDepartment of Computer S
ien
e,Gates 4B, Stanford University,CA 94305-9045andLaboratoire Sp�e
i�
ation et V�eri�
ation,CNRS and E
ole Normale Sup�erieure de Ca
han61 Avenue du Pr�esident Wilson94235 Ca
han
edex, Fran
e
omon�lsv.ens-
a
han.frV�eronique CortierzLaboratoire Sp�e
i�
ation et V�eri�
ation,CNRS and E
ole Normale Sup�erieure de Ca
han61 Avenue du Pr�esident Wilson94235 Ca
han
edex, Fran
e
ortier�lsv.ens-
a
han.frDe
ember 31, 2002

�This is an extended version of a paper whose abstra
t appeared in Pro
. ICALP 2001.yPartially supported by a NATO grant. Partially supported by DoD MURI \Semanti
Consisten
y in Information Ex
hange," ONR Grant N00014-97-1-0505, and NSF CCR-9629754.Partially supported by INRIA proje
t SECSI and RNTL proje
t EVAzPartially supported by INRIA proje
t SECSI and RNTL proje
t EVA1

Abstra
tWe introdu
e a
lass of tree automata that perform tests on a memorythat is updated using fun
tion symbol appli
ation and proje
tion. Thelanguage emptiness problem for this
lass of tree automata is shown to bein DEXPTIME.We also introdu
e a
lass of set
onstraints with equality tests and proveits de
idability by
ompletion te
hniques and a redu
tion to tree automatawith one memory.Finally, we show how to apply these results to
ryptographi
 proto
ols.We introdu
e a
lass of
ryptographi
 proto
ols and show the de
idabilityof se
re
y for an arbitrary number of agents and an arbitrary number of(
on
urrent or su

essive) sessions, provided that only a bounded number ofnew data is generated. The hypothesis on the proto
ol (a restri
ted
opyingability) is shown to be ne
essary: without this hypothesis, we prove thatse
re
y is unde
idable, even for proto
ols without non
es.

2

Contents1 Introdu
tion 52 Proto
ol motivation 72.1 Dolev-Yao's result . 72.2 A more expressive model . 82.2.1 Messages . 92.2.2 Events and Global States 112.2.3 Indu
tive Relations. 122.2.4 Proto
ols . 132.2.5 Global State Transitions. 152.2.6 Se
re
y Poli
y . 152.2.7 An unde
idability result 163 De�nite set
onstraints 163.1 De�nite set
onstraints and interse
tion
onstraints 163.2 Interse
tion
onstraints with non-emptiness guards 184 Tree automata with one memory 215 Set
onstraints with equality tests 255.1 De�nition of the
lass . 255.1.1 General set
onstraints with equality tests 255.1.2 A
omplete dedu
tion system 265.1.3 An unde
idability result 275.1.4 Basi
 variables and expressions 285.1.5 Our assumptions . 305.2 Saturation . 335.2.1 Normalization . 335.2.2 Abstra
tions . 355.2.3 Getting rid of basi
 variables 365.2.4 Complexity issues in eliminating the basi
 variables . . . 415.2.5 Simplifying again the expressions 425.2.6 Dedu
tion rules . 465.3 Conne
tion with automata with one memory 536 Analysis of
ryptographi
 proto
ols 556.1 A de
idable
lass of proto
ols . 566.2 Proof of Theorem 55 . 597 Con
lusion 65
3

A Proof of lemma 27 69B SET-
onstraints and Automata with one memory 86C Proto
ols and Horn Clauses 87

4

1 Introdu
tionSet
onstraints were introdu
ed in the eighties and have been studied thoroughlysin
e, with appli
ations to the analysis of programs of various styles (see [2℄ fora survey). Typi
ally, the problem of interest is to de
ide the satis�ability ofa
onjun
tion of set expression in
lusions e � e0 in whi
h the set expressionsare built from variables and various
onstru
tions, in
luding, e.g., proje
tion.Although some set variables may o

ur several times in an expression, most
lasses of set
onstraints do not make it possible to write a set expression for aset of terms of the form f(t; t), in whi
h one subterm o

urs more than on
e.One ex
eption is the
lass of
onstraints studied in [6℄.Our motivating interest is to develop
lasses of
ryptographi
 proto
ols forwhi
h some form of se
re
y is de
idable. A histori
al
lass of de
idable proto-
ols are the so-
alled ping-pong proto
ols [14℄. Although none of the proto
olsof [8℄ belongs to this
lass, ping-pong proto
ols remain a de
idable
lass, whilemost larger
lasses of se
urity proto
ols are unde
idable [5℄. One of the mainrestri
tions in [15, 14℄ is that messages are built using unary symbols only. In
ontrast, many proto
ols of interest are written using a binary en
ryption sym-bol and a pairing fun
tion. Another restri
tion in [15, 14℄ is that ea
h proto
olparti
ipant is stateless: after a message is sent, the parti
ipant does not retainany memory of the
ontents of the message. This is a signi�
ant limitation sin
emany proto
ols rely on
hallenge-response steps, that require memory. A previ-ous investigation of ping-pong proto
ols with added state led to unde
idability[19℄.It is insightful to observe that Dolev and Yao's result [15℄
an be proved usingset
onstraints. This suggests a generalization of their approa
h to trees. A te
h-ni
al
ompli
ation, though, is that the generalization to trees is less expressivethan one might expe
t: in the
ase of unary fun
tions only, a fun
tion and itsinverse are set inverses of ea
h other, in the sense that f(f�1(X)) is pre
isely X.However, this is no longer true with trees: if f�11 and f�12 are the two proje
-tions
orresponding to a binary fun
tion symbol f , the set f(f�11 (X); f�12 (X))
ontains pairs f(t1; t2) whi
h are not ne
essarily in X. In order to in
reasethe expressiveness of set
onstraints with binary fun
tions, we need a \diagonal
onstru
tion", enabling us to test for equalities between the members of sets.In this paper, we introdu
e a new
lass of set
onstraints, allowing limiteddiagonal
onstru
tions. This
lass is in
omparable with the
lass sket
hed in [6℄.We show that satis�ability is de
idable for this
lass, allowing us to generalizeDolev and Yao's result to trees. More pre
isely, we de�ne a
lass of
rypto-graphi
 proto
ols whose de
idability does not assume any bound on the numberof sessions (whether
on
urrent or not), improving over former de
ision results,e.g. [3, 27, 25℄ (see [12℄ for a survey on de
idability results for
ryptographi

5

proto
ols). We also allow
ompound keys. Proto
ols in the
lass assume a lim-ited
opying
apability for the agents. More pre
isely, we assume that an agent
an only blindly
opy one pie
e of the re
eived message in the message (s)hesends. By \blindly" we mean here, without any type knowledge; this notion willbe made pre
ise in the paper. Let us emphasize that this restri
tion is satis-�ed by almost all proto
ols that we found in the literature. We also prove thatthis restri
tion is ne
essary: se
re
y be
omes unde
idable if we allow two blind
opies.Our
lass of set
onstraints does not
apture all proto
ol
on
epts of interest.In parti
ular, as
an be seen from the survey [8℄, many authenti
ation proto
olsmake use of non
es or time stamps, whi
h we
annot express (more pre
isely,we have to assume that there is a bounded number of non
es produ
ed by ea
hprin
ipal in any
ombination of sessions). On the other hand, properties ofproto
ols that are modeled using set
onstraints are de
idable, while non
esand timestamps typi
ally lead to unde
idability [5℄. Moreover, we
an express
onservative approximations of general proto
ols, and it is possible in prin
iplethat set
onstraints with equality tests provide algorithms for determining these
urity of some su
h proto
ols.We prove the de
idability of set
onstraints with equality tests by a redu
-tion to an emptiness problem for a
lass of tree automata with
onstraints. Treeautomata with various forms of
onstraints have been studied by several authors(see [9℄ for a survey). However, the
lass we
onsider in this paper is in
ompa-rable with known de
idable
lasses. Roughly, we allow ea
h state to hold onearbitrarily large memory register and restri
t the use of this memory to equalitytests. Sin
e memory registers are updated using proje
tions and fun
tion appli-
ation, this
lass is a generalization of pushdown word (alternating) automata.Despite the generality of the
lass, there is a simple proof that the emptinessde
ision problem is in DEXPTIME.We start in se
tion 2.1 by introdu
ing Dolev and Yao result and its formu-lation in terms of set
onstraints. In se
tion 2.2, we re
all (one possible) formalsemanti
s of
ryptographi
 proto
ols. We also prove that, even in the absen
eof non
es, se
re
y is unde
idable.In se
tion 3.1, we re
all
lassi
al results on de�nite set
onstraints and gen-eralize them to set
onstraints with non-emptiness guards in se
tion 3.2. Theresults of this last se
tions are used in the following se
tions.In se
tion 4, we introdu
e tree automata with one memory and we provesome de
idability results, relying on de�nite set
onstraints with non-emptinessguards. This
an be seen as a stand-alone de
idability result.Next, we introdu
e in se
tion 5 our
lass of set
onstraints with one equality,showing how to redu
e the satis�ability of these
onstraints to the non-emptinessde
ision for tree automata with one memory. The redu
tion is similar to the
6

saturation pro
ess des
ribed in [7℄ for set
onstraints with interse
tion, but it ismore
ompli
ated due to equality tests.In se
tion 6.1 we de�ne our
lass of
ryptographi
 proto
ols and show how toapply the results of the previous se
tions to prove that se
re
y is de
idable forthis
lass.Several te
hni
al proofs, whi
h are not interesting by themselves, are pushedto appendi
es.
2 Proto
ol motivation2.1 Dolev-Yao's resultDolev and Yao [15℄
onsider proto
ols in whi
h ea
h prin
ipal holds a singlepubli
 key (whi
h is known to everybody) and a
orresponding private key thatis known to them only. The prin
ipals are able to build messages using plaintext, en
ryption eX with the publi
 key of X and signatures dX appending thename of prin
ipal X. Here is a simple example from [15℄:Example 1 ([15℄):
A! B : eB(dA(eB(s))) Ali
e sends to Bob a message en
rypted usingBob's publi
 key
onsisting of a signed en
ryptedtext s
B ! A : eA(s) Bob a
knowledges the re
eption by sending ba
k toAli
e the text s, en
rypted using the publi
 key ofAli
eIn this model,
ommuni
ation
hannels are inse
ure. This allows an intruderto inter
ept messages, remember them, and repla
e them with alternate (possiblyforged) messages. The intruder may de
rypt a message if the
orresponding keyhas be
ome known to him, may append or remove signatures, and may en
ryptusing any publi
 key. The se
re
y question asks whether there is a way foran intruder to get the plain text message s that is supposed to be kept se
retbetween Ali
e and Bob. In the above example, the answer is yes (the proto
olis inse
ure). For example, Dolev and Yao give the following atta
k: After a �rstsession of the proto
ol, the intruder, I, who overhears the messages ex
hangedduring that session, sends to A the message eA(dI(eA(s))), whi
h he
an buildusing the reply from Bob, and re
eives eI(s) in return.The possible use of set
onstraints in
ryptographi
 proto
ols analysis hasbeen suggested in several papers, e.g. [20℄. It is however interesting to seethat the Dolev-Yao de
idability proof
an be summarized using set
onstraintsby letting I be the set of messages that
an be built by the intruder (after any

7

number of sessions). Sin
e I
an inter
ept any message of any run of the proto
ol,we write set
onstraints putting every proto
ol message in I. For the exampleproto
ol above, we haveeY (dX(eY (s))) � I eX(e�1Y (d�1X (e�1Y (I)))) � Ifor every pair of prin
ipalsX;Y , sin
e Bob a
knowledges a messagem from Ali
eby sending eA(e�1B (d�1A (e�1B (m)))). Finally, for every prin
ipal X, we express theability of the intruder to perform operations using publi
 information about X:dX(I) � I; eX(I) � I; d�1X (I) � IThis pro
ess translates a proto
ol into a
olle
tion of set
onstraints about theset I of messages available to the intruder. Se
re
y now be
omes the questionwhether the set
onstraints, together with s =2 I, is satis�able ? Assuming a �xednumber of prin
ipals, this is de
idable in polynomial time for set
onstraintsarising from Dolev-Yao's ping-pong proto
ols: we
an
ompute an automatona

epting the minimal solution of the de�nite set
onstraint and
he
k the mem-bership of s.There are several restri
tions in the Dolev-Yao approa
h. In parti
ular, onlya �xed number of prin
ipals and, as mentioned above, only unary symbols maybe used. A pairing fun
tion or a binary en
ryption symbol, allowing to writee.g. e(k;m) instead of ek(m), i.e. allowing to
onsider keys as �rst-
lass obje
ts,would
onsiderably in
rease the expressive power. Su
h a model is presentedbelow.2.2 A more expressive modelWe start from a model inspired by Paulson [26℄ and developed by Millen andRuess in [24℄. However, we do not use the tra
e model as in [24℄ or [26℄, but a newstate-transition model similar to the MSR model proposed by Mit
hell et al [5℄or those presented in [13℄. Su
h models are mu
h too expressive to be de
idable,thus we
onsider in this paper a restri
ted model whi
h does not allow non
e
reation but on the other hand we add an arbitrary number of fun
tion symbols.In parti
ular, we add
ompound keys and hashing. If a limited number of non
esis allowed for ea
h pair of prin
ipals, non
e
reation
an be simulated beforehand,using additional binary fun
tion symbols N1; : : : ; Nk whose arguments are agentnames.In this se
tion, it will be shown that this restri
ted model is still unde
idablebut not so far from de
idability : se
tions 4 and 5 develop a de
idable
lass ofset
onstraints whi
h will be used as a tool to extra
t a de
idable fragment (seese
tion 6.1) of the model des
ribed below.
8

2.2.1 MessagesThey are built from a set of fun
tion symbols F . Symbols of F are split intoseveral sets:agent's names: we assume that F
ontains
onstants and fun
tion symbolswhi
h allow to built agent's names. We assume that the set of agent'snames is in�nite. Furthermore, we distinguish an in�nite subset of honestagents Ah.invertible symbols whi
h, intuitively,
orrespond to
onstru
tions whose
om-ponents
an be
omputed by an intruder. Typi
ally, the pairing fun
tionsbelong to this set of symbols sin
e it is assumed that an intruder
an re-trieve ea
h
omponent u; v from a pair < u; v >. Su
h symbols
an beapplied to any term.one way symbols whi
h, intuitively,
orrespond to
onstru
tions whose
om-ponents
annot be
omputed by an intruder. Typi
ally, hash fun
tionsbelong to this set. Su
h fun
tion symbols
an be applied to any term. Inaddition, we assume that there are two spe
ial fun
tion symbols with oneargument: pub() and priv(). Intuitively, pub() and priv() return respe
tivelya publi
 and a private key when they are applied to agents names.partially invertible symbols whi
h intuitively
orrespond to
onstru
tionswhose
omponents
an be
omputed by an intruder, subje
t to some knowl-edge of the intruder. More spe
i�
ally, we will
onsider only one su
h fun
-tion: en
ryption. (This is the only relevant example we
an think of, but we
ould generalize to more symbols in this set). For su
h a binary fun
tion,whi
h takes as argument a term k (a key) and a term u and whose appli-
ation will be written fugk, the intruder
an build fugk when he knows uand k and
an retrieve u when he knows fugk and the inverse key k�1. Apriori, the en
ryption fun
tion
an be applied to any pair of terms so thatwe are not restri
ted to so-
alled \atomi
 keys". However, we will assumethat the inverse of a key is the key itself, ex
ept for expressions pub(a) andpriv(a) whi
h are inverse of ea
h other.The set agent's names is denoted by AG, the set of invertible symbols by IFand the set of one way symbols by OF . We get F = AG ℄ IF ℄ OF ℄ ff g g.Orthogonally, F is split into three sets of fun
tion symbols: those whi
hare known publi
ly PF (for instan
e pub(), < ; >, f g), those whi
h are
annot be used by the publi
 UF , but only by spe
i�
 agents (for instan
e a key
onstru
tion fun
tion, whi
h is known to a spe
i�
 server only) and �nally thosewhi
h
an be used by an intruder AF , only with spe
i�
 arguments. This lastnotion is the dual of partially invertible symbols. priv() is an example of su
h a9

symbol, whi
h
an be used by an intruder i, with the argument i only. We willsee later more examples. To summarize, the set of fun
tion symbols
onsists ofF = AG ℄ IF ℄ OF ℄ ff g g = PF ℄ UF ℄ AFwhere pub() 2 PF , priv() 2 AF , f g 2 PF . For ea
h partially
onstru
tiblesymbol in AF , it must be spe
i�ed whi
h of the arguments must be spe
i�
 andwhi
h are unrestri
ted. The only argument of priv() is restri
ted.Moreover, we assume a �nite set of sorts
ontaining in parti
ular the sortsAgent; Ah; Ad; Message su
h that Ah and Ad are subsorts of Agent and Agent isa subsort of Message, the sort of all messages. In addition, the set of messagesof sort Ah is exa
tly Ah and the set of messages of sort Ad is exa
tly AG � Ah.Elements of AG are
onstants or fun
tion symbols returning agent's names ofsort Agent. The fun
tions symbols pub(); priv(); f g take messages as argumentand return messages: pub(); priv(); f g : Message � Message ! Message. Thetype of other symbols has to be spe
i�ed with the proto
ol.The set of messages is the set of (ground) terms T (F) built over the abovedes
ribed signature and whose sort is Message.As an example of an additional sort, we
ould
onsider non
es. Note how-ever that, in our (un)de
idability results, we will always assume that there is abounded number of non
es; it is then possible to represent them as messages ofthe form e.g. ni(a; b) where a; b are agents (in whi
h
ase ni 2 AF \OF and itis restri
ted in its �rst argument, meaning that only a
an generate ni(a; b), forany b).Des
ribing proto
ols and the behavior of honest parti
ipants requires vari-ables ranging either over messages or over agents. Variables ranging over agentsare usually
alled roles. Message s
hemes are terms of sort Message, built overF and possibly variables.Example 2 We present here a proto
ol example (inspired by Kerberos), whi
hwill be used as a running example through the paper.1: A! S : A;B2: S ! A : f< B;K(A;B); f< A;K(A;B) >gshr(B) >gshr(A)3: A! B : < fm(A;B)gK(A;B); f< A;K(A;B) >gshr(B) >4: B ! A : fh(m(A;B))gK(A;B)In words, A tells the key server S that she wants to se
urely
ommuni
ate withB. Then S sends ba
k to A a message, en
rypted using a key that she shareswith the server and
ontaining a session key K(A;B) together with a
erti�
atewhi
h
an be opened by B only. At the third step, A sends her message m(A;B),en
rypted using the key K(A;B), together with the
erti�
ate, whi
h is
opied
10

blindly from message 2. Finally, B a
knowledges the re
eption, sending ba
k adigest h(m(A;B)) of the previous message, en
rypted using the shared key.We are going to see in more detail how this proto
ol is formally des
ribedin the model. For the moment, let us only make pre
ise the
omponents of thesignature.We assume here six sorts: Nat; Agent; Ah; Ad; Message; Key. The last sort isproto
ol spe
i�
. Introdu
ing su
h a sort means that the agents are assumed tobe able to see whether a message is a key or not (we will dis
uss this hypothesislater on).There is a spe
i�

onstant s (the server) of sort Agent. The way otheragent's names are built is irrelevant. We
ould, for instan
e, use natural numberstogether with a label for (dis)honest parti
ipants: 0 :! Nat, su

 : Nat ! Nat,ha : Nat ! Ah, da : Nat ! Ad. For simpli
ity, in what follows, we will usethe notation a1; a2; ::: for honest agents (i.e agent of sort Ah) and i1; i2; ::: fordishonest agents (i.e. the other agents). Note that the set of agents is in�nite.Then, we use IF = f< ; >;< ; ; >g. These tupling fun
tions takearbitrary messages as arguments and return messages.OF = fh;m;K; shr; su

; 0; ha; dagwith h : Message ! Message, m : Agent � Agent ! Message, K : Agent �Agent! Key, shr : Agent! Key.Now, the following are publi
 symbols:PF = f< ; >;< ; ; >; pub; f g ; h; 0; su

; da; hagIn parti
ular, anybody
an know every agent name and every agents publi
 key.Now, K
an only be used by the serverUF = fKgFinally, AF = fm; prv; shrgwhere both symbols are restri
ted in their �rst argument.2.2.2 Events and Global StatesThere are two kinds of events: message and state events. A state event is of theform Q = S(A; n;X) where S is taken in a �nite set Fs of fun
tion symbols. Typ-i
ally, Fs = fInit;Resp;Servg. Usually, for state events of the form Serv(A; n;X),A is always equal to s the
onstant representing the server. A is a ground termof sort Agent, n is a natural number that represents the step of the proto
ol, andX = Mem(Q) is a tuple of messages representing the memory held by the state.11

A state s
heme is built in the same way, ex
ept that the agent
an be abstra
ted(using a role) and the messages are repla
ed with message s
hemes.A global state is a set (not a multiset) of events. The
ontent of a global stateis its set of messages, written:Cont(H) def= H \MessagesExample 3 (example 2
ontinued)The messages i1 or m(i1; a2)
an be built from the formalism des
ribed in ourrunning example. Init(i1; 1; < i1; a1; s >) is a state event. Intuitively, it repre-sents the dishonest agent i1 ready to start a session as initiator.2.2.3 Indu
tive Relations.Given a term t = f(t1; : : : ; tn), parts(t) is de�ned indu
tively as follows:� if f 2 OF [AG, then parts(t) def= ftg,� if f 2 IF , then parts(t) def= ftg [Sni=1 parts(ti),� if f = f g , then parts(ft1gt2g) def= ftg [parts(t1).Given a set of terms S, parts(S) is the set of parts of all terms in S.analz(S) is the subset of parts(S)
onsisting of only those subterms that area

essible to an atta
ker: analz(S) is the least set S0
ontaining S and su
h that:� if f(t1; : : : ; tn) 2 S0 and f 2 IF , then t1; : : : ; tn 2 S0,� if ft1gt2 2 S0 and t�12 2 S0, then t1 2 S0.Conversely, an atta
ker may use any available fun
tion to build new messages.synth(S) is the least set of messages S0
ontaining S and su
h that� If f 2 PF and t1; : : : ; tn 2 S0, then f(t1; : : : ; tn) 2 S0� If f 2 AF , f is restri
ted w.r.t. its arguments j1; : : : ; jk, t1; : : : ; tn 2 S0, andtj1 ; : : : ; tjk 2 Ad, then f(t1; : : : ; tn) 2 S0, where Ad is the set of dishonestagents (Ad = fin jn 2 N g).The intruder in our model synthesizes faked messages from analyzable partsof a set of available terms and he
an iterate the pro
ess. This motivatesthe following de�nition: fake(S) is the least set S0
ontaining S and su
h thatsynth(S0) � S0 and analz(S0) � S0. Note that fake(S) is not ne
essarily equalto synth(analz(S)) if we do not assume atomi
 keys: for instan
e if an intruderknows t1; ftg<t1;t2>; t2, he
an build t by �rst
onstru
ting < t1; t2 > and thende
rypt the message. 12

Example 4 (example 3
ontinued)Assume that (in some state), the intruder holds the following messages:S1 = ff< m(a1; i1); a2 >gh(K(a1;a2)); fh(K(a1; a2))gpub(i1);fm(a1; a2)gK(a1;a2); pub(i1)gThen analz(S1)
ontains for instan
e h(K(a1; a2));m(a1; i1) but not m(a1; a2).fake(S1)
ontains for instan
e f< a2; h(K(a1; a2)) >gh(m(a1;i1)).2.2.4 Proto
olsA proto
ol transition t is of the form Pre(t) �! Post(t), where Pre(t) andPost(t) are (�nite) sets of messages and states. Unlike in [13℄, there is not anynew spell : the se
re
y poli
y may be spe
i�ed independently as presented later.Su
h transitions spe
ify a possible global state
hange in a way to be explainedbelow. A transition t shows a state
hange for one agent. Formally, Pre(t) andPost(t)
ontain at most one state event and Pre(t)
ontains one state event ifand only if Post(t)
ontains one state event.A proto
ol is simply a set of proto
ol transitions, an initial global state H0and a se
re
y spe
i�
ation S0. When H0 is not spe
i�ed, it is assumed thatH0 = ;. Both the proto
ol transitions and the se
re
y spe
i�
ation is in�nite.They are however represented by means of instan
es of a �nite number of terms:typi
ally, the proto
ol is given by a �nite set of rules ui ! vi where ui and viare �nite sets of message s
hemes and state s
hemes. Su
h rules represent thein�nite set ui� ! vi� where � is any substitution
ompatible with the types.The se
re
y poli
y S0 is given by an �nite union of sets of the form:ft1; : : : ; tn j x1; : : : ; xk 2 Ahgwhere x1; : : : ; xk are the free variables of the message s
hemes t1; : : : ; tn.S0 represents the set of messages that the intruder should not hold.Example 5 (example 4
ontinued)The proto
ol, as des
ribed in example 2 is a bit sloppy. We used there thestandard notations, but, if we want to be more pre
ise, we have to spe
ify forinstan
e in message 3 how Ali
e retrieves the di�erent
omponents of the messageshe sends. Typi
ally in su
h proto
ols, A;B are roles, not agent's names. The\B" in message 3
an be either the name sent in message 1 or the name passed inmessage 2 (It does not make a di�eren
e in this parti
ular example. But it doesmake a di�eren
e in other situations, as shown by the atta
k on the Needham-S
hroeder proto
ol [22℄).
13

; �! 8<: Init(A; 1; <A;B; s>);Resp(B; 1; <B; s>);Serv(s; 1; s) 9=; (0)fInit(A; 1; <A;B; s>)g �! fInit(A; 2; <A;B; s>); <A;B>g (1)� Serv(s; 1; s)<A;B> � �! � Serv(s; 2; s);fB;K(A;B); fA;K(A;B)gshr(B)gshr(A) � (2)� Init(A; 2; <A;B; s>);fB;X; Y gshr(A) � �! � Init(A; 3; <A;B; s;X;m(A;B)>);<fm(A;B)gX ; Y > � (3)� Resp(B; 1; <B; s>);<fZgX ; fA;Xgshr(B)> � �! � fResp(B; 1; <B; s;A; Z;X>);fh(Z)gXg � (4)
Figure 1: Rules of the proto
ol

This proto
ol should not reveal the messages m(a; b), K(a; b), shr(a) when aand b are honest agents. This
an be expressed by the following se
re
y poli
y S0:S0 = fm(a; b);K(a; b) j a; b 2 Ahg [fshr(a) j a 2 Ahg:Next, the proto
ol rules are given in �gure 1. The rule 0 says that, at anytime, a new session
an be started (the pre
ondition is an empty set). Afterapplying this rule to an instan
e a; b, the agents a; b; s are ready to a
t as parti
-ipants of a proto
ol session.The rule 1
orresponds to the �rst step of the proto
ol: any agent a who isready to a
t as A in the proto
ol
an send the message < a; b > to s and swit
h toa state in whi
h she remembers having
ompleted the �rst step (hen
e the se
ondargument is 2) and having sent the message < a; b > to s.Rule 2
orresponds to the se
ond step of the proto
ol: if s is ready to serve akey and if the message < a; b > has been sent, then the server swit
hes, generatesthe key K(a; b) and sends the expe
ted message. Note that the variables A;B arelo
al to the rule, hen
e the instan
es are not ne
essarily the same as in theprevious step: an intruder
an very well perform the �rst step of the proto
ol, inwhi
h
ase there are two < a; b >;< a0; b0 > in the global state and the se
ondinstan
e may be used instead of the �rst one.In the rule 3, the agent a, who
ompleted the �rst steps of the proto
ol expe
tsa message of the form fb; �; �gshr(a). She
an
he
k that the message is an en-
rypted message
ontaining three
omponents and that the �rst
omponent is anagent's name, with whom she started a session. However, she
annot
he
k thatthe se
ond
omponent is indeed K(a; b) and, similarly, she
annot open the third
omponent (the ti
ket). Hen
e these two
omponents are left as lo
al variablesof the rules whi
h
an be instantiated in an arbitrary way, provided that Y getsa term of sort Message and X gets a term of sort Key. (We assume here that ais able to re
ognize whether a term has type Key or not.)14

Similarly, in the last rule, the expe
ted instan
e of Z is m(a; b), but it
ouldbe any faked message: there is no way to
he
k this.This formal spe
i�
ation of the proto
ol gives more pre
ision on the abilitiesof ea
h agent. We make pre
ise here what is expe
ted by ea
h parti
ipant andwhat is his behavior.2.2.5 Global State Transitions.Given a proto
ol P and a set of initial knowledge I (of the intruder), the globalsu

ession relation transforms a state H to a new state H 0. A su

ession is eitherhonest, i.e. it
orresponds to an a
tion by an agent following the proto
ol, or itis faked by the intruder.� H 0 is an honest su

essor ofH, denoted by honest(P)(H;H 0), if there existsan appli
able transition t in P su
h that H 0 = (Hn(Pre(t) \ States)) [Post(t).� H 0 is a fake su

essor of H, denoted by fake(I)(H;H 0), if there exists a�eld X 2 fake(Cont(H) [I) su
h that H 0 = H [fXg.In the honest
ase, a transition t is appli
able in H if Pre(t) � H. In the fake
ase, the intruder is restri
ted to adding only messages that
an be inferred fromthe
ontent of the
urrent state and the initial knowledge. In either
ase, wewrite global(P; I)(H;H 0). This relation determines a logi
al transition systemwith the initial global state H0 as its initial state. The set of rea
hable states ofthis transition system is denoted by rea
hable(P; I).2.2.6 Se
re
y Poli
yGiven the intruder's initial knowledge I and a se
re
y poli
y S0, a global stateH is
alled I; S0-se
ure if fake(Cont(H) [I) \ S0 = ;; these states are
olle
tedin the set se
ure(I; S0). Now, a proto
ol P is
alled se
ure if se
ure(I; S0) is aninvariant of the transition relation asso
iated with P and S0 is the se
re
y poli
yasso
iated to P ; i.e. for all I, rea
hable(P; I) is a subset of se
ure(I; S0).Remark : a
tually, it is suÆ
ient to prove that se
ure(I0; S0) is an invariant forI0 the maximal set
ompatible with S0 :I0 = fm j parts(m) \ S0 = ;g:This de�nition is slightly di�erent from the one given in [13℄ but it mat
hesmore pre
isely the idea of se
re
y while the de�nition given in [13℄ was an over-approximation of se
re
y in order to allow indu
tive proofs.
15

2.2.7 An unde
idability resultWe present now an unde
idability result. Let us emphasize that we do not havehere the non
e
onstru
tion. Hen
e, the result is stronger than the unde
idabilityresult of [18℄.Theorem 6 It is unde
idable whether or not a proto
ol P is se
ure.A proof of this result has been proposed S. Even and O. Goldrei
h in [19℄by redu
ing se
re
y to the Post Corresponden
e Problem (PCP). A simpli�edproof was proposed by M. Rusinowit
h. The intuitive idea is the following one:
onsider a �nite alphabet � and an instan
e of PCP: (ui; vi)1�i�n; ui; vi 2 ��.We
onstru
t the following proto
ol:A ! B : f< 0; 0 >gKabB ! A : f< N1; N2 >gKabA : f< x; y >gKab ! B : f< xui; yvi >gKab ; fsgf<xui;xui>gKab 1 � i � nThe key Kab is a symmetri
, private key between A an B. The last rule des
ribesn rules for the agent A. The left-hand-side des
ribes the message expe
ted byA. One
an show that s remains se
ret if and only if there is no solution tothe
onsidered instan
e of PCP. A similar proto
ol
an be build without using
omposed keys.An in
onvenient of both
onstru
tions is that for ea
h instan
e of PCP withno solution, the
orresponding proto
ol does not have one honest instan
e. UsingPetri nets, we
onstru
t in [10℄ a redu
tion su
h that the
orresponding proto
olis a \real" proto
ol in the sense that ea
h rule of the proto
ol
an be played inthe given order : the �rst rule, than the se
ond and so on, i.e., there is at leastan honest instan
e of the proto
ol. In addition this redu
tion only uses standard
ryptographi
 primitives, namely pairing and en
ryption with symmetri
 keysand a �xed number of roles (a
tually only one role) and a �nite number of pro-to
ol rules. For ea
h redu
tion (using PCP or Petri Nets), the intruder a
tuallymay a
tually only forwards messages and does not need to forge new ones.
3 De�nite set
onstraints3.1 De�nite set
onstraints and interse
tion
onstraintsThis
lass of set
onstraints has been introdu
ed in [21℄ and studied by variousauthors (e.g. [7℄). Ea
h
onstraint is a
onjun
tion of in
lusions e1 � e2 wheree1 is a set expression and e2 is a term set expression. Term set expressions arebuilt out of a �xed ranked alphabet of fun
tion symbols F , the symbols >;?

16

and set variables. A set expression is either a term set expression or a union oftwo set expressions e1[e2, or an interse
tion of two set expressions e1\e2 or theimage of set expressions by some fun
tion symbol f(e1; : : : ; en) or a proje
tionf�1i (e1) where f is a fun
tion symbol and i 2 [1::n℄ if n is the rank of f . Notethat negation is not allowed.Example 7 Here is a de�nite set
onstraint:f�12 (X) � g(Y) f(f(X;Y) \X;X) � Xg(Y) \ Y � X a � Ywhere a; f; g are fun
tion symbols and X;Y are set variables.Set expressions denote sets of subsets of the Herbrand universe T (F); if � assignsea
h variable to some subset of T (F), then [[℄℄� is de�ned by:[[X℄℄� def= X�[[f(e1; : : : ; en)℄℄� def= ff(t1; : : : ; tn) j 8i 2 [1::n℄; ti 2 [[ei℄℄�g[[e1 \ e2℄℄� def= [[e1℄℄� \ [[e2℄℄�[[f�1i (e)℄℄� def= fti j 9t1; :::; tn:f(t1; :::; tn) 2 [[e℄℄�g[[>℄℄� def= T (F)[[?℄℄� def= ;[[e1 [e2℄℄� def= [[e1℄℄� [[[e2℄℄�� satis�es e1 � e2 i�, [[e1℄℄� � [[e2℄℄�. This extends to
onjun
tions of in
lusions.Example 8 (example 7
ontinued)The substitution �def=[X ! ;; Y ! fag℄ satis�es the set
onstraints des
ribed inexample 7.Following a standard translation (see e.g. [7℄), the de�nite set
onstraints
an be rewritten (in polynomial time) into interse
tion
onstraints whi
h are
onjun
tion of in
lusions of one of the forms:X � Y f(X1; : : : ;Xn) � XX � f(Y1; : : : ; Ym) f(X1; : : : ;Xn) � g(Y1; : : : ; Ym)where X;X1; : : : ;Xn; Y; Y1; : : : ; Ym are interse
tions of set variables. In otherwords, the
onstraints
an be
attened and union and proje
tions eliminatedthanks (in parti
ular) to the equivalen
e:f�1i (X) � Y , X \ f(>; : : : ;>) � f(>; : : : ; Y;>; : : :)where the Y is in ith position.The translation � from de�nite set
onstraints to interse
tion
onstraints mayrequire the introdu
tion of new variables. Formally, � preserves the solutions:17

Lemma 9 � is a solution of the de�nite set
onstraint C if and only if there ex-ists �0, solution of the interse
tion
onstraint �(C), su
h that � is the restri
tionof �0 to the variables of C.Theorem 10 ([7℄) The satis�ability of interse
tion
onstraints (resp. de�niteset
onstraints) is DEXPTIME-
omplete and ea
h satis�able
onstraint has aleast solution whi
h is a

epted by a �nite tree automaton.Moreover, the de
ision pro
edure provides e�e
tively the �nite tree automa-ton a

epting the least solution.3.2 Interse
tion
onstraints with non-emptiness guardsNow, we
onsider a slight extension of interse
tion
onstraints, yielding a resultsimilar to theorem 10. If e is a set expression, let nonempty(e) be a statementwhi
h is satis�ed by � i� [[e℄℄� is not empty.We extend the formalism as follows. A
at expression is either an interse
tionof set variables or a set expression f(X1; : : : ;Xn) where X1; : : : ;Xn are interse
-tions of set variables. An interse
tion
onstraint with non-emptiness guards is a
onjun
tion of
lausesnonempty(e01); :::; nonempty(e0n)) e1 � e2where e01; : : : ; e0n; e1; e2 are
at expressions.The interpretation of su
h
onstraints is the expe
ted one. Note that, of
ourse, they extend interse
tion
onstraints. However, the algorithm given in [7℄
an be applied with slight
hanges only.In other words, enri
hing the interse
tion
onstraints with
lauses of theabove form, we still have the same result as in theorem 10, as a
orollary of [7℄:Theorem 11 The satis�ability of interse
tion
onstraints with non-emptinessguards is DEXPTIME-
omplete and ea
h satis�able
onstraint has a least solu-tion whi
h is e�e
tively a

epted by a �nite tree automaton.Proof: If we want to be as self-
ontained as possible, we need to reprodu
e, atleast partly, the proof of [7℄. In the next se
tion, we will also rely on this proof.First, we
an assume that all expressions o

urring in the guards also o

uras members of in
lusions (if ne
essary, add e � e and
atten again).Now, a

ording to [7℄, we saturate the
onstraints using the inferen
e rulesgiven in �gure 2.In this �gure, X;X1; : : : ;Xn;X 0;X 01; : : : ;X 0n are interse
tion of set variablesand e; e0; e1; e2; e01; e02 are any
at set expressions. If these rules are applied to in-terse
tion
onstraints, we get as
on
lusions interse
tion
onstraints again, with18

Re
exivity e � e
Transitivity e1 � e2 e2 � e3e1 � e3Weakening X1 \ : : : \Xn � Xi
Compatibility e1 � e2 e01 � e02e1 \ e01 � e2 \ e02
Propagation 1 nonempty(e) e � e0nonempty(e0)
Propagation 2 nonempty(X1); : : : ; nonempty(Xn)nonempty(f(X1; : : : ;Xn))
Proje
tion nonempty(f(X1; : : : ;Xn)) f(X1; : : : ;Xn) � f(X 01; : : : ;X 0n)Xi � X 0i
In
ompatibility nonempty(e) e � f(X1; : : : ;Xn) e � g(X 01; : : : ;X 0m) If f 6= gfalse
Cut nonempty(e) nonempty(e); �) e0 � e00�) e � e0

Figure 2: Inferen
e rules for interse
tion
onstraints
19

the
onvention that expressions f(e1; : : : ; en)\ f(e01; : : : ; e0n) are eagerly normal-ized into f(e1 \ e01; : : : ; en \ e0n).As shown in [7℄ the rules of �gure 2 are
orre
t and applying the inferen
erules saturates the set
onstraint in deterministi
 exponential time (assumingthat re
exivity and weakening do not introdu
e new variables).For every
onstraint
, we let
C be the saturated set. As in [7℄ again, let
Sbe the solved form of
:
S = ff(e1; : : : ; en) � X 2
C j nonempty(f(e1; : : : ; en)) 2
Cgwhere X is a variable.
S is essentially the de�nition of a tree automaton whose states are set vari-ables. Let � be the substitution, assigning to ea
h variable X, the languagere
ognized by this tree automaton in state X. We are going to prove that eitherfalse 2
C or else � is the least solution of
. The minimality of �
omes fromautomata theory. Let us
on
entrate on the fa
t that � is a solution of
.The proof that � satis�es all in
lusions e1 � e2 in �C is identi
al to [7℄.Consider a
lause nonempty(e1); : : : ; nonempty(en)) e � e0 with n � 1. Ifthere is an i su
h that [[ei℄℄� is empty, then the
lause is trivially satis�ed. Oth-erwise, we may assume that every ei is an interse
tion variable sin
e � satis�esnonempty(f(Y1; : : : ; Yn)) if and only if it satis�es nonempty(Y1); : : : ; nonempty(Yn).Then let ei be the interse
tion X1i \: : :\Xkii . For every i, there is a term ti whi
his a

epted by the tree automaton in every state Xji . We prove below that, ift is a

epted in all states X1; : : : ;Xn, then nonempty(X1 \ : : : \Xn) 2
C . Letus assume this for the moment. Then, by the rules Cut and Propagation 2,e � e0 2
C , whi
h proves that � satis�es e � e0, thanks to [7℄.We prove by indu
tion on the size of t that, if t is a

epted in all statesX1; : : : ;Xn, then nonempty(X1 \ : : :Xn) 2
C .� If t is a
onstant, by de�nition of the automaton, t � Xi 2
C for every i.Then, by Compatibility (applied n� 1 times), t � X1 \ : : : \Xn 2
C� If t = f(t1; : : : ; tm). By de�nition of the automaton, there are in
lusionsf(ei1; : : : ; eim) � Xi 2 �C su
h that, for every j 2 [1::m℄, for every i, tj 2[[eij℄℄�. Now, we apply the indu
tion hypothesis: for every j, nonempty(e1j \: : :\enj) 2
C . By Propagation 2, nonempty(f(e11\ : : :\en1 ; : : : ; e1m\ : : :\enm)) 2
C . Now, by Compatibility,f(e11 \ : : : \ en1 ; : : : ; e1m \ : : : \ enm)) � X1 \ : : : \Xn 2
Cand, by Propagation 1, we
on
lude that nonempty(X1 \ : : :\Xn) 2
C .
20

To summarize: the assignment � de�ned by the solved form
S also satis�esthe
onditional in
lusions of
C , whi
h means that
C is satis�able wheneverfalse =2
C and � is then the minimal solution of
. �In the proof of the last result, we have seen in passing that nonempty(X) is alogi
al
onsequen
e of the
onstraint i� it belongs to the saturated set. It followsthat:Corollary 12 De
iding whether the minimal solution of a de�nite set
onstraintwith non-emptiness guards assigns the empty set to X is DEXPTIME-
ompleteA
tually, the DEXPTIME-hardness of this
orollary is missing so far. Butwe
an redu
e the non-emptiness problem of the interse
tion of n tree automata(whi
h is DEXPTIME-
omplete) by translating the de�nitions of the automatainto interse
tion
onstraints and adding a
lausenonempty(X1 \ : : : \Xn)) a � Xwhere X1; : : : ;Xn are the set variables
orresponding to the a

epting states ofthe n automata respe
tively, X is a new variable and a is a
onstant.
4 Tree automata with one memoryThe idea is to enri
h the expressiveness of tree automata by allowing them to
arry and test some information. For instan
e, a pushdown automaton will keepa sta
k in its memory and
he
k the symbols at the top of the sta
k. What wedo here is something similar. Our automata work on trees instead of words andmay perform more general
onstru
tions and more general tests. We will seelater as an example how to express pushdown automata in our formalism.Informally, a tree automaton with one memory
omputes bottom-up on a treet by synthesizing both a state (in a �nite set of states Q) and a memory, whi
his a tree over some alphabet �. Ea
h transition uses some parti
ular fun
tionwhi
h
omputes the new memory from the memories at ea
h dire
t son. Ea
htransition may also
he
k for equalities the
ontents of the memories at ea
h son.Given an alphabet of fun
tion symbols �, the set of fun
tions � whi
h we
onsider here (and whi
h may be used to
ompute on memories) is the least setof fun
tions over T (�) whi
h is
losed by
omposition and
ontaining:� for every f 2 � of arity n, the fun
tion �x1; :::xn:f(x1; : : : ; xn)� for every n and every 1 � i � n, the fun
tion �x1; ::::; xn:xi

21

� for every f 2 � of arity n and for every 1 � i � n, the (partial) fun
tionwhi
h asso
iates ea
h term f(t1; : : : ; tn) with ti, whi
h we write �f(~x):xi.For instan
e, if �
ontains a
onstant (empty sta
k) and unary fun
tionsymbols, � is the set of fun
tions whi
h push or pop after
he
king the topof the sta
k.De�nition 13 A tree automaton with one memory is a tuple (F ;�; Q;Qf ;�)where F is an alphabet of input fun
tion symbols, � is an alphabet of memoryfun
tion symbols, Q is a �nite set of states, Qf is a subset of �nal states, � isa �nite set of transition relations of the form f(q1; :::; qn)
�!F q where� f 2 F is
alled the head symbol of the rule,�
 is a subset of f1; :::; ng2, de�ning an equivalen
e relation on f1; : : : ; ng.� F 2 � su
h that F takes k arguments where k is the number of equivalen
e
lasses w.r.t.
� q1; : : : ; qn; q 2 Q, (q is the target of the rule).A
on�guration of the automaton
onsists of a state and a term in T (�)(the memory). Then
omputations work as follows: if t = f(t1; : : : ; tn) and the
omputation on t1; : : : ; tn respe
tively yields the
on�gurations q1; �1, ... , qn; �n,then the automaton, reading t, may move to q; � when there is a transition rulef(q1; : : : ; qn)
�!F q and for every i = j 2
, �i = �j and � = F (�i1 ; : : : ; �ik)where i1; : : : ; ik are any representatives of the equivalen
e
lasses for
 (the wayij is
hosen in its equivalen
e
lass is not relevant). A tree t is a

epted by theautomaton whenever there is a
omputation of the automaton on t yielding a
on�guration q;
 with q 2 Qf .Example 14 Assume that the transitions of the automaton A are (other
ompo-nents of the automaton are obvious from the
ontext, > is the identity relation):g(q) >����!�x1:x1 q f(qa; qa) 1=2������!�x1:h(x1) qg(qa) >������!�x1:h(x1) q f(q; q) 1=2������!�h(x1):x1 qa >�!b qaA
omputation of the automaton on f(g(f(a; a)); g(a)) is displayed on �gure 3,in whi
h the
on�gurations rea
hed at ea
h node are displayed in a frame.
22

f q; b��� PPPgq; h(b) g q; h(b)
fq; h(b) a qa; b��� PPPaqa; b a qa; b

Figure 3: A tree t and a
omputation of A on t
Pushdown automata (on words) perform transitions a; q; � �
 ! q0; � �
where a is an input symbol, q; q0 are states and �; �;
 are words over the sta
kalphabet (the rule pops � and pushes �). Su
h a rule
an be translated inthe above formalism, viewing letters as unary symbols: a(q) ������!�x:���1x q0. Ifw = a1(: : : ak() : : :), we use here the notation w�1(x) for a�1k (: : : (a�11 (x))), theadditional subs
ript 1 being impli
it for ea
h letter, whi
h has only one argument.This translation does not make use of equality tests. Orthogonally, it ispossible to simulate tree automata with equality tests between brothers [4℄. Thisrequires some
oding, be
ause the fun
tion F
an refer to one representativefor ea
h
lass only, hen
e we
annot keep dire
tly in the memory the subtreere
ognized so far. However, it is possible to show that any language re
ognizedby an automaton with equality tests between brothers (and, more generally,with non-overlapping equality tests) is also a

epted by an automaton with onememory. We don't need the proje
tions here.In some respe
t, our de�nition is a generalization of both models: we
anboth use a sta
k and
he
k for equality, and keep re
ord of deep subtrees. Weavoid overlapping tests, whi
h yield unde
idability [23, 9℄, be
ause we allow onlyone representative of ea
h
lass in the fun
tion in the body of F .Theorem 15 The emptiness of the language re
ognized by a tree automaton withone memory is de
idable in DEXPTIME. More generally, the rea
hability of agiven
on�guration is de
idable in DEXPTIME.Proof: For every q 2 Q, let Mq be the subset of T (�) of memory
ontents msu
h that there is a tree t and a
omputation of the automaton on t yieldingthe
on�guration < q;m >. We prove that the sets Mq are the least solutionsof the de�nite set
onstraint with non-emptiness guards CA,
onsisting, for ea
htransition rule f(q1; : : : ; qn)
�!F q of the in
lusionnonempty(eqi1); : : : ; nonempty(eqik)) F (eqi1 ; :::eqik) � Xq23

and eqij is the interse
tion for all indi
es l equivalent (w.r.t.
) to ij of Xql .CA
an be assumed to be an interse
tion
onstraint with non-emptinessguards (see se
tion 3).First, the assignment �0 whi
h maps every Xq to Mq is a solution of the
onstraint. Indeed,
onsider any
lause of the above form with F = �x1; : : : ; xk:Gand assume (for simpli
ity) that x1; :::; xr do not o

ur in G, while xr+1; : : : ; xko

ur (on
e) in G.If [[eqij ℄℄�0 6= ; for every ij , then it is possible to rea
h
on�gurations <q1;m1 >; : : : ; < qn;mn > su
h that mj 2 [[eqij ℄℄�0, i.e mi = mj whenever i = j 2
. Now,
onsider any terms m01; : : : ;m0k�r respe
tively in Mqr+1 ; : : : ;Mk. Thereare trees t1; : : : ; tr; : : : ; tk su
h that there are
omputations of the automaton onthis trees yielding respe
tively the
on�gurations < q1;m1 >; : : : ; < qr;mr >;<qr+1;m01 >; : : : ; < qk;m0k�r >. From these
on�gurations, reading the input f ,the automaton
an move to the
on�guration < q;G(m01; : : : ;m0k�r) >, hen
eG(m01; : : : ;m0k�r) 2Mq.Conversely, we have to prove that any solution � of the
onstraint is largerthan �0. Let m 2 Mq. There is a
omputation of the automaton on sometree t, yielding the
on�guration < q;m >. We prove, by indu
tion on t, thatm 2 [[Xq℄℄�.� If t is a
onstant, then there must be a rule a �!F q and F = m 2 T (�).By de�nition, there is a
onstraint F � Xq. Hen
e m 2 [[Xq℄℄�.� Now, let t = f(t1; : : : ; tn) and let f(q1; : : : ; qn)
�!F q be the last rule appliedin the
omputation yielding < m; q >. Let moreover < q1;m1 >; : : : ; <qn;mn > be the
on�gurations
orresponding to
omputations on t1; : : : ; tn.By de�nition, mi = mj whenever (i; j) 2
 and m = F (mi1 ; : : : ;mik).By indu
tion hypothesis, for every i, mi 2 [[Xi℄℄� and, be
ause of theequality
onstraints, mi 2 [[eqil ℄℄� if (il; i) 2
. It follows that � satis-�es nonempty(eqij) for all j and, sin
e � satis�es the
lause asso
iated withthe rule, it satis�es F (eq11 ; : : : ; eqik) � Xq. In parti
ular, m 2 [[Xq℄℄�.This
ompletes the proof that the setsMq are the least solutions of the
onstraintCA.Then the non-emptiness of the language re
ognized by A redu
es to theproblem of de
iding whether at least one of some designated variables gets a non-empty set in the least solution of the
onstraint. This is DEXPTIME-
omplete,thanks to
orollary 12. �The result
an be generalized to alternating tree automata with one memorykeeping the same
omplexity. Alternation here has to be understood as follows:24

we may repla
e the states o

urring in the left hand sides of the rules witharbitrary positive Boolean
ombinations of states. The above proof simply works,using additional interse
tions and unions.Corollary 16 The emptiness problem of alternating tree automata with onememory is DEXPTIME-
omplete.Note however that the
lass of automata with one memory is neither
losedunder interse
tion nor
omplement (both yield unde
idable models).
5 Set
onstraints with equality tests5.1 De�nition of the
lass5.1.1 General set
onstraints with equality testsWe
onsider now de�nite set
onstraints as in se
tion 3, with non-emptiness
onstraints and with an additional
onstru
tion: fun
tion symbols
an be labeledwith equality tests, whi
h are
onjun
tions of equalities p1 = p2 between paths.The intention is to represent sets of terms t su
h that the subterms at positionsp1 and p2 are identi
al. We assume, without loss of generality, that there is nounion and no proje
tion symbol, whi
h, as we have seen, is not a restri
tion(provided that the equality tests do not overlap proje
tion symbols).We use the standard notations on terms [17℄. Let us re
all some of them. Aposition will be a string of non-negative integers. A term t labeled with F
anbe seen as a mapping from the set Pos(t) of its positions to F . The subterm oft at position p is written tjp.An equality
onstraint
 is an equivalen
e relation on a �nite set of positionsP (
). We assume that no stri
t pre�x of a position in P (
) does belong to P (
)(this restri
tion will be dropped in se
tion 5.2.1). We will often write equality
onstraints as �nite sets (or �nite
onjun
tions) of expressions p1 = p2 wherep1; p2 are positions. Then, it must be understood that
 is the least equivalen
erelation
ontaining the pairs (p1; p2) on the set of positions o

urring in some ofthe equalities. We also say that a position p is
he
ked by
 when p 2 P (
).A term t satis�es
, whi
h we write t j=
 , if every path in P (
) is a positionof t and moreover, tjp1 = tjp2 (the subterms of t at positions p1 and p2 areidenti
al).We enri
h the set expressions of se
tion 3 with the
onstru
tion f
(e1; : : : ; en)where
 is an equality
onstraint. These expressions are interpreted as follows:[[f
(e1; : : : ; en)℄℄� def= ft 2 [[f(e1; : : : ; en)℄℄� j t j=
g

25

The set of paths in an expression e is de�ned as follows:�(f
(e1; : : : ; en)) def= f�g [1 ��(e1) [: : : [n ��(en)�(e1 \ e2) def= �(e1) [�(e2)�(X) def= f�gLet p 2 �(e). We let ejp be the set of subexpressions at position p:ej� def= feg(e1 \ e2)ji�p def= e1ji�p [e2ji�p(f
(e1; : : : ; en))ji�p def= eijpXji�p def= ;When ejp
ontains only one element, we
onfuse ejp with this element andsay that ejp is the subexpression of e at p.We will assume that, in every expression f
(e1; : : : ; en),P (
) � �(f
(e1; : : : ; en))All other
onstru
tions are the same as in se
tion 3. In parti
ular, right handsides of in
lusions should not
ontain
onstru
tions f
. When
 is empty, wemay omit it or write >.Example 17 f21=12(f(Z; Y) \X; g(X) \ Y) � f(Y; g(X)) is an in
lusion
on-straint. � = fX 7! fa; b; f(a; b)g;Y 7! fb; g(a); g(b); f(a; b)g;Z 7! fa; bgg is asolution of the
onstraint sin
e [[f12=21(f(Z; Y)\X; g(X)\Y)℄℄� = ff(f(a; b); g(b))g5.1.2 A
omplete dedu
tion systemWe �rst design a
omplete dedu
tion system and show that every satis�able set
onstraint has a least solution. These results are not meant to be pra
ti
al.Let S be a set
onstraint as in the previous se
tion, whose variables areV ar(S) = fX1; : : : ;Xng. Let � be the subset of (2T (F))n of assignments �mapping every variable Xi to a �nite set.We may assume in this se
tion that, in every
lause�) e � e0the expression e0 does not
ontain interse
tion symbols. This is not a restri
tionas a
lause �) e � e0[e1 \ e2℄ is equivalent to the two
lauses �) e � e0[ei℄ fori = 1; 2.With this assumption, we
an asso
iate with ea
h right hand side of anin
lusion e0 a term te0 2 T (F ;X) su
h that every variable o

urs only on
e in te0and e0 is obtained from te0 by substituting set variables to the variables of te0 .We de�ne the one step dedu
tion relation TS on � [f�g as follows:26

TS(�) def= �If there is a
lause �) e � e0 in S su
h that � j= � and there is a t 2 [[e℄℄� su
hthat t is not an instan
e of te0 , then TS(�) = �.Otherwise, for ea
h
lause C = �) e � e0 in S� If � 6j= �, then we let �C be the assignments mapping every set variableto the empty set� If � j= �, then for every term t 2 [[e℄℄�, and every set variable X, welet �t;C(X) be the set of terms tjp su
h that e0jp = X.Finally, we de�ne TS(�) by:[[Xi℄℄TS(�) def= [[Xi℄℄� [f�t;C(Xi) j C 2 S; t 2 [[e℄℄�gWe let �; be the assignment mapping every set variable to the empty set andwe de�ne �! as the least �xed point of `:
�!(Xj) = 1[i=1T iS(�;)(Xj)

if T iS(�;) 6= � for every i and �! = � otherwise.Proposition 18 �! = � i� S is not satis�able.If �! 6= �, it is the least solution of S.Proof: It is similar to the standard result that the least �xed point of the dire
t
onsequen
e operator of a Horn
lause set is the least model of the program.If �! 6= �, then �! is
ontained in any solution of S (by indu
tion on i,T iS(�;) is
ontained in any solution of S).Now, if �! 6= �, then �! is a solution of S: this is a routine veri�
ation. �
5.1.3 An unde
idability resultAs a
onsequen
e of unde
idability results on tree automata with equality tests(see e.g. [9℄), the satis�ability of su
h general
onstraints is unde
idable, be
auseof possible overlapping tests.Proposition 19 The satis�ability of su
h general
onstraints (even without non-emptiness pre
onditions) is unde
idable.

27

Note that su
h a result is
onsistent with theorem 6 and the translation of se
urityproblems into set
onstraints as given in se
tion 6.1. We sket
h the proof of thisproposition, be
ause, even if the reader should already be
onvin
ed, the proofsheds some lights on the restri
tions we take later on.Proof: (sket
h) We en
ode Turing ma
hine
omputations. A
on�guration isrepresented as a triple
ontaining the state, the part of the tape on the left of thehead (in
luding the head position) and the part of the tape on the right of thehead. Tape
ontents are en
oded using unary symbols (one for ea
h element inthe tape alphabet), in su
h a way that symbols whi
h are
lose to the head appearon the top of the terms. For instan
e a tape
ontent abaabaab" is represented bythe words b(a(a(b(a(0))))); a(a(b(0))). We use a binary tupling symbol < ; ; >to put together the two
omponents of the tape and the state. Now, for instan
e,with ea
h transition rule < q; a >!< q0; b; left > we asso
iate the
onstraint:f12=2121;131=213(< q0;X; b(Y) >;Z \ f(< q; a(X); Y >;>)) � ZX;Y being tape
ontents, the equality tests ensure that we keep the same re-maining tape
ontents when we move from one state to another.The idea is that the least solution �0 of the
onstraint will assign to Z the(en
oding of the) set of
omputations of the Turing ma
hine. AddingZ \ f(< qf ;>;> >;>) � X0for the �nal states and < q0; 0; 0 >� Zfor the initial state, the emptiness of �0(X0) is equivalent to the halting problem(i.e. the rea
hability of the state qf). �
5.1.4 Basi
 variables and expressionsThat is why we are going to put more restri
tions on the
onstraints. The ideais to divide the set variables into two sets: the basi
 and the non-basi
 variables.The basi
 ones
orrespond to sets of terms whose only a �xed part
an be seen.This
orresponds to non-invertible symbols in se
tion 2.2. We do not impose anyrestri
tions on the equality tests for su
h basi
 variables sin
e, intuitively, thenon-invertible symbols impose a boarder in the terms under whi
h no test takespla
e, hen
e limiting the overlaps of equalities whi
h yield the unde
idabilityresult.For non-basi
 variables, we impose a restri
tion, whi
h, roughly, allows to
he
k the equalities using one memory only. The goal is of
ourse to use theresults of se
tion 4. 28

If X is a variable of a
onstraint S, then let R(X) be the set of atomi

onstraints whose right hand side
ontains X.We introdu
e now one-way fun
tion symbols of a
onstraint S. This notionis of
ourse related to the one-way fun
tion symbols of se
tion 2 (it is a gener-alization). Intuitively, a symbol is one-way in a
onstraint S if, in ea
h of itsappli
ations, there is no way to look at the subterms. \Looking at the subterms"o

ur in two
ases: when we apply a \proje
tion" (i.e. when there is an in
lusionwhose right member is headed with that symbol) and when we
he
k for equalityof some subterms.De�nition 20 A fun
tion symbol g is one-way in a set
onstraint S if� it does not o

ur on the right of an in
lusion
onstraint of S� in any expression e = f
(e1; : : : ; en) o

urring in S, for every � 2 P (
) andfor every stri
t pre�x �0 of �, ej�0 does not
ontain any expression headedwith g.Let OF(S) be the set of one-way fun
tion symbols in S.De�nition 21 The basi
 variables of a set
onstraint
 is the largest set ofvariables o

urring in
 su
h that� If X is basi
 then R(X) only
ontains one-way symbols and basi
 variables.� If X is basi
 then{ either R(X)
ontains only one
lause �) e � X su
h that X doesnot o

ur in e.{ or every fun
tion symbol o

urring in R(X) o

urs (possibly) only inR(Y) where Y is basi
.Intuitively, the fun
tion symbols used re
ursively to
onstru
t basi
 variables
annot be used for non-basi
 variables.Example 22 The following example is inspired by examples from se
tion 2. LetNat, A, DA, HA, M, Key, In be set variables and

onsist of:0 � Nat su

(Nat) � Natda(Nat) � DA ha(Nat) � HADA � A HA � AK(A;A) � Key shr(A) � MA � M Key � M< M;M > � M fMgM � M29

Intruder
apabilities su
h as:< In; In > � In fIngIn � InIn\ < >;> > � < In; In > In \ f>gIn � fIngInA � In shr(DA) � InIn\ < >;>;> > � < In; In; In >And proto
ol-spe
i�

onstraints su
h as < A;A > � In<>
 (f< A;Key;M >gshr(A) \ In; fm(A;A)gKey;M) � Inwhere
 stands here for 121 = 211 ^ 111 = 212 ^ 112 = 22 ^ 113 = 3. (Wewill see in se
tion 6.1 how to translate
ryptographi
 proto
ol into set
onstraintsand, in parti
ular, we will develop a full example). In this example, all fun
tionsymbols are one-way, ex
ept the tupling < ; > and < ; ; > and en
ryptionf g , be
ause of the intruder's
onstraints.Then In and M are not basi
 while all other variables are basi
.This notion is extended to expressions: an expression e is basi
 if� e is a basi
 variable or� e is an interse
tion e1 \ e2 and either e1 or e2 is basi
� e is an expression f(e1; : : : ; en) (or f
(e1; : : : ; en)) and e1; : : : ; en are basi
5.1.5 Our assumptionsDe�nition 23 (Basi
ness
ondition) An an equality test
 in an expressionf
(e1; : : : ; en) satis�es the basi
ness
ondition (w.r.t. a set of basi
 variables) ifp � i � q �
 p0i 6= jp0 6�pref p8w; p � j � w 6�
 p � i � q
9>>=>>;) There are positions p1; p2 su
h thatp1 �
 p0; p2 �
 p � j andeither ejp1 or ejp2
ontains basi
 expressions onlywhere �pref is the pre�x ordering on positions.An expression e satis�es the basi
ness
ondition (w.r.t. a set of basi
 vari-ables) if for ea
h expression f
(e1; :::; en), the equality test
 satis�es the basi
ness
ondition.The situation is depi
ted on �gure 4: one of the three terminal positions on thepi
ture should hold basi
 expressions only.

30

�
�

d �
d d

������
HH�HH�HH�HH�HH

��� JJJJ���� ��������

p
j i

p0

q
Figure 4: The basi
ness
ondition

Example 24 Let us examine the last
onstraint whi
h is displayed in example22. <>
 (f< A;Key;M >gshr(A) \ In; fm(A;A)gKey;M) � Inwhere
 stands for 121 = 211 ^ 111 = 212 ^ 112 = 22 ^ 113 = 3. At positions121,111, there is only one subexpression A, whi
h is basi
. At position 112, thereis only one subexpression: Key, whi
h is also basi
. Remain the positions 3; 113,whi
h do not hold basi
 expressions.In the de�nition, p0
an only be 3 and p 2 f1; 11g. The basi
ness
onditionredu
es to
he
k that subexpressions at positions 12; 111; 113 are basi
, whi
h isthe
ase here.Note that, if there are only two o

urren
es of non-basi
 variables in theexpression, then the basi
ness
ondition is always satis�ed.The basi
ness
ondition looks a bit
ompli
ated, but let us give more intu-ition.From tree automaton point of view, while
omputing on the trees bottom-up,we want to be able to
he
k the equalities without
arrying more than one mem-ory at ea
h node. The diÆ
ulty is that we need the stability under interse
tionof this property.Consider for instan
e the following
onstraints:f12=2(X \ f(X;Y); Y) � Yf11=2(Y \ f(X;Y);X) � XOnly one memory is suÆ
ient to re
ognize the instan
es of any of the two
on-straints. Putting them together, however, we
an derivef12=2(f11=2(Y \ f(X; Y);X) \ f(X;Y); Y) � Y:
31

Now, we need 2 memories to a

ept the instan
es of the left hand side sin
e, whenrea
hing X we must keep this term in the memory (it is
he
ked for equalityhigher up) and we must also keep in the memory f(X; Y), whi
h is also
he
kedfor equality higher up. Note that here X;Y are not basi
 sin
e f is not a one-wayfun
tion symbol.A
tually, a more natural, weaker,
ondition would be to assume that, in any
, if p; q are in two di�erent equivalen
e
lasses, then they do not share any pre�x.Imposing su
h a
ondition only yields an unde
idable
lass of
onstraints.On the other hand, if we interse
t a basi
 expression with any expression,the result is a basi
 expression. Hen
e, the basi
ness
ondition expresses roughlythat on the sides of a path
he
ked for equality, we only �nd basi
 expressions,freeing us from keeping additional information when we interse
t with anotherexpression.The basi
ness
ondition is also relevant for our appli
ation, as we will see.The
onstraints satisfying the basi
ness
ondition are
alled set
onstraintswith equality tests (ET-
onstraints for short). Let us summarize:De�nition 25 An ET-
onstraint is a �nite
onjun
tion of
lauses�) e � e0in whi
h e; e0 are set expressions built using� Set variables� The
onstant symbol ?� Interse
tion� Fun
tion symbol appli
ation f
(: : :) or f(: : :).We assume:� That right hand sides (the expression e0 above) do not make use of the
onstru
tions f
 with a non-empty
.� For every
onstru
tion f
(e1; : : : ; en), P (
) � �(f
(e1; : : : ; en))� The basi
ness
onditionET-
onstraints
ontain properly interse
tion
onstraints sin
e we
an
on-stru
t an ET-
onstraint whose least solution is the set of trees � = ff(t; t) j t 2T (F)g. The only other de
idable set
onstraint formalism whi
h allows to ex-press � is the
lass de�ned in [6℄, in whi
h, however, equality tests are restri
tedto brother positions (whi
h is not the
ase here). On the other hand, we haverestri
tions whi
h are not present in [6℄.32

5.2 SaturationWe use here a �xed point
omputation method whi
h is similar to the one in [7℄:the goal is to dedu
e enough
onsequen
es so that the in
lusions whose right handside is not a variable be
ome redundant, hen
e
an be dis
arded. Unfortunately,the �rst step (representation) in [7℄
annot be used in the same way here, sin
eit does not preserve the
lass of
onstraints we
onsider.** des
ription of the stru
ture of the se
tion **We start with some simpli�
ations of the
onstraints.5.2.1 NormalizationFor every expression e, let us de�ne two notions of size:� jejF is the
ardinal of Sp2�(e) ejp. This is proportional to the memory size,whi
h is required to store the expression, regardless to the equality tests.� jejt is the sum, for every expression f
(e1; : : : ; en) 2 Sp2�(e) ejp of the sizeof
. The size of an individual test
 is the sum of sizes of positions
he
kedby
.The goal of the �rst transformation step (Normalization) is to redu
e theexpression to a normal form.De�nition 26 An expression e is normal if the following
onditions are satis�edfor e:1. All subexpressions of e satisfy the basi
ness
ondition2. If f
(e1; : : : ; en) \ e0 2 ejp0, p �
 q and p � p1 �
 q1 for a non-trivial p1,then ejp0�p�p1 is a basi
 expression. ("For an
estor positions, the lowest oneis basi
").3. For every p 2 �(e), if g
(e1; : : : ; en) \ e0 2 ejp, then, for every p1 �
 p2,the subexpressions at positions p1 and p2 in g
(e1; : : : ; en) are identi
al.4. for every equality test
 o

urring in e, every equivalen
e
lass of

ontainsat least two positions whi
h do not share any non-trivial pre�x5. For every p 2 �(e), ejp is either an interse
tion of variables or an inter-se
tion g
(e1; : : : ; en) \X1 \ : : : \Xm, in whi
h
ase, for every p 2 �(e),ejp is a singleton.6. If f
(e1; : : : ; en)\e0 2 ejp0, p �p1 �
 q for non-empty p; p1, g
0(e01; : : : ; e0m)\e00 2 ejp0�p, then either ejp0�p�p1 is a basi
 expression, or else for everyp0 �
0 q0, ejp0�p�p0 is a basi
 expression ("For overlapping tests, the lowestone is basi
 "). 33

p1 q1basi

qejp0 = f
 \ e0p ejp0 = f
 \ e0

g
 \ e00 qp1basi
or every positiontested by
0 is basi

p

Property 6Property 2
Figure 5: The properties 2 and 6

Conditions 1 and 2 are satis�ed initially. A
tually, even a property strongerthan
ondition 2 is initially satis�ed sin
e, so far, any two distin
t positions inP (
) are in
omparable w.r.t. the pre�x ordering. We need however this weakerproperty to keep it invariant.Properties 2, 6 are illustrated on �gure 5.The main result of this se
tion, whose proof is quite long and te
hni
al andis given in appendix A is the following:Lemma 27 Every expression e whi
h satis�es the basi
ness
ondition
an betransformed into a normal expression e0 su
h that, for every �, [[e℄℄� = [[e0℄℄�.We also
onje
ture that the transformation, as des
ribed in the appendix, yieldsan expression e0 su
h that je0jF and je0jt are polynomially bounded by jejt andjejF .As a side
onsequen
e, the subexpression at a given position is now de�nedin a unique way:Lemma 28 If e is an expression satisfying
ondition 5, then for every p 2 �(e),ejp is a singleton.Proof: We prove that ejp is a singleton for every p 2 �(e) by indu
tion on e.If e is a variable or a
onstant, then ejp is a singleton
onsisting in e itself.Now, assuming e satis�es
ondition 5, e is either an interse
tion of variables oran expression f
(e1; : : : ; en)\X1; : : :\Xn. In the �rst
ase �(e) = f�g and ejp =feg by de�nition. In the latter
ase, if p = i�p0, then ejp = eijp0[X1ji�p0 : : : = eijp0by de�nition. And, by indu
tion hypothesis, eijp0 is a singleton. �So, now, we
an use the terminology \the subexpression at position p", aswell as repla
ement at position p: C[e℄p means either (this will be unambiguous34

from the
ontext) that e o

urs at position p in the expression C[e℄p or that wehave repla
ed the subexpression at position p with e.The normalization is extended to
onstraints: every expression o

urring inthe
onstraint
an be assumed normal thanks to lemma 27.5.2.2 Abstra
tionsWe abstra
t out subexpressions introdu
ing new variables, as long as this pre-serves the form of the
onstraints. For instan
e, for
ontexts C[℄p, an in
lusione � C[f(~e0)℄p be
omes C[X℄p � e; f(~e0) � X where X is a new variable. Thisresults in an equivalent
onstraint (on the original variables) in whi
h the in
lu-sions are e � e0 where e0 is either an interse
tion of variables X1 \ : : :\Xn or anexpression f(X1; : : : ;Xn).More formally, we use the following rules, assuming that n � 2 and p is notthe root position:(A1) �) f
(~e) \ e1 � e0 ! (9X)f
(~e) � X;�) X \ e1 � e0(A2) �) e � C[f(~e0)℄p ! (9X)�) e � C[X℄p; f(~e0) � X;X � f(~e0)(A3) �) e � C[e1 \ : : : \ en℄p ! (9X)�) e � C[X℄p; e1 \ : : : \ en � XIn these rules, X is a new variable: we assume that there is no
apture. Thefollowing lemma is a
onsequen
e of the de�nitions:Lemma 29 Applying abstra
tion does terminate on any
onstraint S, resultingin a
onstraint S0 su
h that the solutions of S are the restri
tions of solutions ofS0 to the free variables of S. Moreover, if S is an ET-
onstraint, then so is S0and if every expression is normal in S, then every expression is normal in S0.We
an also abstra
t out in the
onditions of the in
lusions. However, usingsu
h a rule in an unrestri
ted way would lead to non termination of the satu-ration. That is why we are going to use it only on
e, to simplify the original
onstraint and forget it afterwards:(A4) nonempty(e); �) e1 � e2! (9Y)e � Y ^ nonempty(Y); �) e1 � e2In this rule, e is assumed not to be a variable. It is also assumed that there isno
apture (Y is a new variable).Lemma 30 (A4) preserves the solutions of the
onstraint.Proof: Assume S ! S0 using the rule (A4). If � is a solution of S, extending� with Y 7! [[e℄℄� yields a solution of S0.
35

Conversely, if �0 is a solution of S0, then its restri
tion � to variables otherthan Y is a solution of S: either � 6j= nonempty(e); �, in whi
h
ase � satis�esnonempty(e); �) e1 � e2, or else [[e℄℄� is non-empty. In the latter
ase, [[Y ℄℄�0 isnon-empty (be
ause of the
onstraint e � Y) and [[e1℄℄� = [[e1℄℄�0 � [[e2℄℄�0 = [[e2℄℄�.� Inspe
ting the normal forms w.r.t. (A1); (A2); (A3); (A4), together with ourhypotheses, the atomi

onstraints are now of the form �) e � e0 where � isa
onjun
tion of nonempty(X), e0 is of the form f(X1; : : : ;Xn) or X1 \ : : : \Xnand e is either X1 \ : : : \Xn or f
(~e).5.2.3 Getting rid of basi
 variablesNext, we
an get rid of basi
 type variables. The main idea is that we
an repla
eea
h basi
 variable with a suitably
hosen �nite set, while keeping the desirableproperties. This is des
ribed in the next lemmas.We let B(S) be the set of basi
 variables of S. We split ea
h ET-
onstraintinto two parts S = SB ℄ SNB: SB is the union of R(X) for X 2 B(S) and SNBis the remaining
onstraint.Remember that for any basi
 variable, either every fun
tion symbols of R(X)o

urs only in SB (�rst type) or R(X)
ontains only one
lause on the form�) CX(X1; : : : ;Xk) � X where X is distin
t from the Xi (se
ond type). We�rst get ride of the basi
 variables X of se
ond type by repla
ing them by the
lause CX(X1; : : : ;Xk).Lemma 31 Given an ET-
onstraint S, letS0def=S[X 7! CX(X1; : : : ;Xk)℄X of se
ond type :Then S0 is an ET-
onstraint and S is satis�able if and only if S0 is satis�able.Proof: Sin
e CX(X1; : : : ;Xk)
ontains only one-way fun
tion symbols and basi
variables, CX(X1; : : : ;Xk) is a basi
 expression thus S0 is an ET-
onstraint.If � is a solution of S0, then � extended to the basi
 variables of se
ond type by�(X) = [[CX(X1; : : : ;Xk)℄℄� is
learly a solution of S.Conversely, if S is satis�able, then S has a minimal solution �. By minimalityof �, we have ne
essarily [[X℄℄� = [[CX(X1; : : : ;Xk)℄℄�. Thus � is solution of S0.�From now on, we
onsider only ET-
onstraints with only basi
 variables of se
ondtype. In parti
ular, the fun
tion symbols o

urring in SB do not o

ur in SNB.
36

Example 32 We
onsider some of the
onstraints presented in Example 22.
SB

2664 0 � Nat su

(Nat) � Natda(Nat) � DA ha(Nat) � HADA � A HA � AK(A;A) � Key
SNB 24 A � M Key � M< M;M > � M fMgM � Mshr(A) � MThen there is one basi
 variable of se
ond type: Key. Thus we transform ourET-
onstraint following lemma 31:
SB 24 0 � Nat su

(Nat) � Natda(Nat) � DA ha(Nat) � HADA � A HA � A
SNB 24 A � M K(A;A) � M< M;M > � M fMgM � Mshr(A) � MLemma 33 SB has a least solution �m. It is possible to
ompute a �nite treeautomaton Am, whose states are �nite sets of variables in SB and su
h that�m(X) is the set of trees a

epted in the state fXg.Proof:Sin
e one-way fun
tion symbols do not o

ur on the right of in
lusions, in any
onstraint �) e � e0, e0 is an interse
tion of variables. Then SB is satis�able:assigning every variable to T (OF) is a solution. Then, by proposition 18 thereis a minimal solution �m.We
an also easily
onstru
t the minimal solution in an e�e
tive way, apply-ing e.g. the saturation rules of �gure 2 to this parti
ular
ase: be
ause there areonly one-way fun
tions in SB, there is no
onstru
tion f
(: : :) here. The satu-rated
onstraint
oin
ides here with the solved form (sin
e there are no fun
tionsymbols on the right).As in se
tion 3.2, the solved form
orresponds to a tree automaton Am whosestates are set variables. �Let � be any equivalen
e relation on T (OF). � is extended to the least
ongruen
e relation on T (F), whi
h we write again �. Then, every assignment� from the set of variables to 2T (F) is extended into the assignment �� de�nedby: ��(X) def= ft 2 T (F) j 9u 2 T (F); t � u; u 2 �(X)g:in other words, � is saturated by �. 37

Lemma 34 For every equivalen
e relation � on T (OF), if � is a solution of anET-
onstraint S, in normal form w.r.t. Norm, (A1); (A2); (A3); (A4), then ��is a solution of S.Proof: Assume �) e � e0 2 S. Sin
e � only
onsists of formulas nonempty(X)where X is a variable, � j= � if and only if �� j= �.Let t 2 [[e℄℄� and u � t.We prove, by indu
tion on the size of e0 thatt 2 [[e0℄℄�) u 2 [[e0℄℄��� If e0 is a variable, the impli
ation follows from the
ongruen
e property of�.� If e0 = e1 \ e2, this is straightforward� if e0 = f(e1; : : : ; en) then f =2 OF (by de�nition of one-way symbols).From t 2 [[e0℄℄, it follows that t = f(t1; : : : ; tn). Then u = f(u1; : : : ; un)with ti � ui for every i, sin
e f =2 OF(S). By indu
tion hypothesis, forevery i, ti 2 [[ei℄℄�, hen
e ui 2 [[ei℄℄��, therefore u 2 [[e0℄℄��. �Now, the idea is to
onstru
t a �nite index relation � su
h that we mayinterpret the basi
 variables in a set of representatives modulo �.Lemma 35 There is a
ongruen
e � and an assignment �0 to the variables ofS su
h that �0� = �m and �0(X) is �nite for every variable X.Proof: We use the automaton des
ribing �m and we
onsider � de�ned byt � u i� t and u are a

epted in exa
tly the same states of the automaton. Let Rbe a set of representatives for � su
h that if f(t1; : : : ; tn) is in R then, t1; : : : ; tnare also in R. �0 assigns R \ [[X℄℄�m to X. �Remark : Note that every element of R is re
ognized by at least one state Xof the automaton.Example 36 We
onsider again the
onstraints presented in Example 32. Theautomaton Am asso
iated with SB is the following one:0 ! qNat su

(qNat) ! qNatda(qNat) ! qDA ha(qNat) ! qHAqDA ! qA qHA ! qA
38

Thus the equivalen
e
lasses are:fsu

n(0)jn 2 N g; fda(su

n(0))jn 2 N g; fha(su

n(0))jn 2 N gWe
hoose R = f0; ha(0); da(0)g and �0(Nat) = f0g, �0(HA) = fha(0)g, �0(DA) =fda(0)g, �0(Agent) = fha(0); da(0)g.If � is an assignment of basi
 set variables to �nite set of terms in T (OF),then �(SNB) is the set
onstraint obtained, repla
ing ea
h basi
 variable Xwith St2�(X) t. Sin
e basi
 variables do not o

ur on the right hand sides ofin
lusions in SNB, �(SNB)
an be normalized in an ET-
onstraint, removingunions o

urring on the left or in the
onditions by dupli
ating the
onstraints.Example 37 In our example 36, �0(SNB) is equal to:ha(0) � M da(0) � MK(ha(0); ha(0)) � M K(ha(0); da(0)) � MK(da(0); ha(0)) � M K(da(0); da(0)) � M< M;M > � M fMgM � Mshr(ha(0)) � M shr(da(0)) � MLemma 38 Let �0 be the restri
tion to basi
 variables of the assignment de�nedas in lemma 35. Let � be the
ongruen
e as de�ned in lemma 35. Then S issatis�able i� �0(SNB [SOF) is satis�able.Proof: First assume that S is satis�able and � is a solution of S. Thanks tolemma 34, we
an assume w.l.o.g. that � = ��. Let us
onstru
t �0 su
h that�0� = � and �0 is a solution of �0(SNB).For every term t 2 T (F), let t # be its representative for �. We de�ne�0(X) = ft # j t 2 �(X)gLet us prove that �0 is a solution of �0(SNB). Let �) e � e0 in SNB. If �0 6j= �then �0 satis�es the
lause. Otherwise, � j= � and therefore [[e℄℄� � [[e0℄℄�. Lett 2 [[e℄℄� (and hen
e t 2 [[e0℄℄�). We want to prove that t #2 [[e0℄℄�0. By abstra
tion,e0 is either an interse
tion of variables or an expression f(X1; : : : ;Xn). In the�rst
ase, t 2 [[e0℄℄� implies, by de�nition of �0, t #2 [[e0℄℄�0. In the se
ond
ase,f =2 OF , by de�nition of one-way fun
tion symbols. Then t 2 [[e0℄℄� impliesthat t = f(t1; : : : ; tn) and t #= f(t1 #; : : : ; tn #). Then ti 2 [[Xi℄℄� implies, byde�nition of �0, that ti #2 [[Xi℄℄�0, hen
e t 2 [[e0℄℄�0.Conversely, assume that �0 is the minimal solution of �0(SNB). We extend�0 with �0 to basi
 variables. Let us prove that �0� is a solution of S. We �rstneed to establish some properties on �0:39

Lemma 39 If u 2 [[X℄℄�0, then u = u #.Proof: For every term t 2 T (F), let t # be its representative for �. t #= C[t1 #; : : : ; tn #℄ for some
ontext C, su
h that t = C[t1; : : : ; tn℄ and for every termu � t, u = C[u1; : : : ; un℄ with ti � ui. The maximal
ontext C verifying theproperty above is
alled the
anoni
al
ontext of t. Note that sin
e the ti # arerepresentatives of the minimal solution of SB, then the fun
tion symbols of theti # do not o

ur in SNB. In addition, the ti are equivalent (modulo �) to theti #, thus we have also that the fun
tion symbols of the ti do not o

ur in SNB.Let us �rst prove by indu
tion on e that:for every �, if for every term t and every set variable X, t 2 [[X℄℄�implies t = t #, then for every expression e o

urring in �0(SNB),t 2 [[e℄℄� implies t = t #.Indeed, assume that for every term t and every set variable X, t 2 [[X℄℄� impliest = t # and
onsider e o

urring in �0(SNB) and u 2 [[e℄℄�, u = C[u1; : : : ; un℄where C is the
anoni
al
ontext of u. For every i, let us split up both e and C:� either there exists pi and Ci � C su
h that Ci[ui℄ 2 [[ejpi℄℄� and ejpi = e00\Y .In parti
ular, Ci[ui℄ 2 [[Y ℄℄�, thus by hypothesis, Ci[ui℄ = Ci[ui℄ #. By
onstru
tion of the
ontext, Ci[ui℄ #= Ci[ui #℄ thus ui = ui #.� or there exists pi su
h that ui 2 [[ejpi℄℄�. Sin
e e = �0(e1) for some e1o

urring in SNB, we have to
onsider again two
ases:{ either pi is not a path in e1, i.e., there exists qi < pi su
h that e1jqi = Xwhere X is a basi
 variable and ejqi 2 �0(X). Thus ujqi 2 �0(X) � Rand ujqi = Ci[ui℄. Sin
e ujqi 2 R, Ci[ui℄ = Ci[ui℄ #= Ci[ui #℄, thusui = ui #.{ either pi is a path in e1: Sin
e the fun
tion symbols of ui does noto

ur in SNB and ui 2 [[ejpi℄℄�, e1jpi is ne
essarily an interse
tion ofvariables: e1jpi = X1 \ : : : \ Xn. If one of the variable, say X1, isbasi
 then �0(e1) 2 �0(X) and we
on
lude like above. Else ui 2[[X1 \ : : : \Xn℄℄� and we
on
lude by hypothesis.We are now ready to end the proof of Lemma 39 by indu
tion on the �xed pointof our dedu
tion system: assume that for every n0 < n, then u 2 [[X℄℄Tn0(�;)implies u = u #. and let us show that u 2 [[X℄℄Tn(�;) implies u = u #. Let�) e � e0 2 �0(SNB) be the
lause whi
h generated u (we assume w.l.o.g. thate0 does not
ontain interse
tion symbols like in se
tion 5.1.2):if e0 = X then u 2 [[e℄℄Tn�1(�;) and we
on
lude by indu
tion.
40

if e0 = f(X1; : : : ;Xn) and X = Xi then there exists v 2 [[e℄℄Tn�1(�;) su
h thatv = f(: : : ; u; : : :). Sin
e f does not o

urs in R(X) for X basi
 variable,v
an not be a

epted in any state X where is a basi
 variable, thus v #=f(: : : ; u #; : : :). By indu
tion and the property we have just demonstrated,we know that v = v # whi
h implies u = u #. �We are now ready to prove lemma 38. �0� is a solution of SB, by de�nition of �and �0. Let us
onsider a
lause �) e � e0, whi
h does not belong to SB. Sin
e� only
ontains atomi
 formulas of the form nonempty(X), �0 j= � i� �0� j= �.Assume that �0 j= � (if it is not the
ase, then �0� trivially satis�es the
lause).By indu
tion on e, any term t 2 [[e℄℄�0� is equivalent, modulo � to a termu 2 [[e℄℄�0 su
h that u 2 [[e0℄℄�0 . Indeed, if e is a variable, this is true by de�nitionof �. If e = e1 \ e2, then, by indu
tion, there exists u1 2 [[e1℄℄�0 and u2 2 [[e2℄℄�0su
h that t � u1 and t � u2. By lemma 39, u1 = u1 #, u2 = u2 #, thusu1 = u2 and u1 2 [[e℄℄�0. If e = f(e1; : : : ; en) (last
ase), then t = f(t1; : : : ; tn),ti 2 [[ei℄℄�0�. By indu
tion, there exists ui � ti su
h that ui 2 [[ei℄℄�0, thusudef=f(u1; : : : ; un) 2 [[e℄℄�0 and u � t.Now, either e0 is the interse
tion of the variables Xi, in whi
h
ase thereexists ui 2 [[Xi℄℄�0 for every i su
h that ui � t, hen
e t 2 [[Xi℄℄�0� for everyi, or else e0 = f(X1; : : : ;Xn). In the latter
ase, f =2 OF and therefore t =f(t1; : : : ; tn); u = f(u1; : : : ; un) with ti � ui and ui 2 [[Xi℄℄�0. Again, this impliesthat ti 2 [[Xi℄℄�0� for every i, hen
e t 2 [[e0℄℄�0�. �Thanks to lemma 38, and as far as satis�ability is
on
erned, we
an nowrestri
t our attention to the
onstraint �0(SNB) in whi
h there is no longer anybasi
 variable.From the
ryptographi
 proto
ols point of view, if we assume that the set ofprin
ipal names
orrespond in the set
onstraint formalism to a basi
 variableN (whi
h is the
ase in all formalism we know), lemma 38 shows that, if thereis an atta
k, then there is an atta
k with a bounded number of prin
ipals. Thebound is given by the
ardinal of �0(N). Again, in any des
ription of prin
ipalsthat we
an think of, �0(N) will
ontain at most two elements. Then, the resultshows that, if there is an atta
k, then there is an atta
k involving two distin
tprin
ipals only (a honest one and a dishonest one).5.2.4 Complexity issues in eliminating the basi
 variablesBefore going any further, let us
omment on the
omplexity of �0(SNB) withrespe
t to S.
41

First
onsider the
omputation of �m. Following theorem 11, the
omputationof Am requires deterministi
 exponential time in general, sin
e it is quite easyto en
ode the emptiness problem for the interse
tion of tree automata [28℄.On the other hand, we want to point out a parti
ular
ase whi
h
an be rele-vant to the appli
ation to
ryptographi
 proto
ols. SB often satis�es additionalproperties, whi
h we des
ribe below.For every basi
 variableX, letHead(X) be the least set of (one-way) fun
tionsymbols su
h that� if f(:::) � X is an in
lusion of R(X), then f 2 Head(X)� if X1\: : :\Xn � X 2 R(X), then Head(X1)\: : :\Head(Xn) � Head(X)Lemma 40 If for every two basi
 variables X;Y , either X � Y 2 SB or Y �X 2 SB or Head(X)\Head(Y) = ;, then it is possible to
ompute in polynomialtime a �nite tree automaton whose states
ontain the basi
 variables and whi
ha

epts �m(X) in state X.Proof: We
an
ompute Head(X) in polynomial time. Then, while saturatingSB, we repla
e every interse
tion with either ; or the largest variable, preventingthe
ombinatorial explosion. �A se
ond sour
e of
omplexity
omes from the
omputation of an ET-
onstraintout of �0(SNB): eliminating the disjun
tions may lead to an exponential blow-up in general. However, with the same hypothesis as above, the
ardinal of�0(X) is smaller or equal to the number of in
lusions of the form Y � X. Inparti
ular, in our running example, only �0(A)
ontains more than one element:�0(A) = fha(0); da(0)g. In addition, if we assume that there is no in
lusion be-tween basi
 variables as it was the
ase in our previous version [11℄, then �0(X)assigns ea
h basi
 variable either the empty set of a singleton set and therefore�0(SNB) is smaller in size than S itself.5.2.5 Simplifying again the expressionsThe goal of this se
tion is to a
hieve further simpli�
ations. In parti
ular we showthat, after eliminating the basi
 variables, we
an get rid of nested
onstru
tionsf
(: : :).Thanks to lemma 38, we
an now restri
t our attention to the
onstraint�0(SNB). In su
h a
onstraint, there is no longer any basi
 variable, whi
h allowsfor several simpli�
ations. First, we
an abstra
t one the left side of in
lusionssu
h that the in
lusions are e � e0 where e is either an interse
tion of variablesor an expression f
(~e) in whi
h, at any position whi
h is not a stri
t pre�x of aposition
he
ked by
, there is a variable.42

Simpli�
ation(N8) t \ e1 ! ? If t is groundand �(e1) 6� �(t)(N9) �) e[t \ e0℄p � e0 ! (9Y) �; nonempty(Y)) e[t℄p � e0;t \ e0 � YIf t is groundand �(e0) � �(t)(N10) fp=q^
(~e) ! f
(~e)If f
(~e)jp = f
(~e)jq are ground(N11) �) e[f
^p=q(~e)℄p � e0 ! trueIf t 2 f
^p=q(~e)jp�p1 is ground,u 2 f
^p=q(~e)jq�p1 is groundfor some p1 and t 6= u
Figure 6: Simpli�
ation rules

Formally, we use the following rules, assuming that n � 2 and p is not theroot position: and that p is not a stri
t pre�x of any path
he
ked (higher) in C:
(A4) �) C[f
(~e)℄p � e0 ! (9X)�) C[X℄p � e0; f
(~e) � X(A5) �) C[e1 \ : : : \ en℄p � e0 ! (9X)�) C[X℄p � e0; e1 \ : : : \ en � XIn these rules, X is a new variable: we assume that there is no
apture. Thefollowing lemma is a
onsequen
e of the de�nitions:Lemma 41 Applying abstra
tion does terminate on any
onstraint S, resultingin a
onstraint S0 su
h that the solutions of S are the restri
tions of solutions ofS0 to the free variables of S. Moreover, if S is an ET-
onstraint, then so is S0and if every expression is normal in S, then every expression is normal in S0.In addition, in the equality tests, if f
^p=q(~e) is an expression su
h that thesubexpression at position p (or q) is basi
 then the expressions at positions p; qmust
ontain the same ground term. This is also suÆ
ient: the equality testp = q
an then be removed if the appropriate in
lusions t � X (t is ground) areadded. Formally, we use the rules displayed in �gure 6.

43

Lemma 42 The simpli�
ation rules displayed in �gure 6 are terminating. IfS is an ET-
onstraint in whi
h all expressions are normal, then the result S0of simplifying and abstra
ting �0(SNB) is an ET-
onstraint in whi
h all expres-sions are normal and whi
h is satis�able i� S is satis�able. Moreover, in anyexpression f
(e1; : : : ; en) o

urring in S0, e1; : : : ; en do not
ontain a
onstru
tiong
0(: : :).Proof: The
orre
tness of the rules is a routine veri�
ation. let us only
onsiderthe rule (N9). If � 6j= �, it suÆ
es to assign T (F) to Y and both sides are satis�edby �. If � j= � and [[e[t \ e0℄℄℄� � [[e0℄℄�, then extending � with Y 7! [[t \ e0℄℄� weget a solution of the right hand side:� either [[t \ e0℄℄� = ; and this is straightforward� or else [[t\ e0℄℄� = ftg, sin
e t is a ground term, in whi
h
ase [[e[t\ e0℄℄℄� =[[e[t℄℄℄�Conversely, if � is a solution of the right hand side, either [[Y ℄℄� is empty, whi
hmeans that t =2 [[e0℄℄� and the left hand side is satis�ed by � or [[Y ℄℄� = ftg, inwhi
h
ase [[e[t \ e0℄℄℄� = [[e[t℄℄℄� � [[e0℄℄�.Thanks to lemma 38, it only remains to show that all expressions are normalin S0 whenever all expressions are normal in S and that, moreover, there is nolonger any nested equality test.For every expression f
(~e), P (
) � �(f
(~e)) . Only the
ase of (N9) is nottrivial. The property is ensured by the side
ondition.Condition 5 is satis�ed �0 may repla
e variables with ground terms, hen
erepla
e expressions g
(~e) \X1 \ : : :Xn with g
(~e) \ t1 \ : : : \ tn. However,ea
h ti is either a variable or is ground. If at least one of them is ground,we
an apply either (N8) or (N9).Condition 3 is satis�ed There are two situations in whi
h property 3 is nottrivially preserved: �rst when, while removing disjun
tions in �0(SNB), wedo not keep the
onsisten
y with equality tests: in an expression fp=q^
(~e),X has been repla
ed with t at a position p � p1, while X has been repla
edwith u at the position q � p1. This
ase is handled by rule (N11).The se
ond situation in whi
h
ondition 3 may not be preserved is whenwe apply the rule (N9). However, in this
ase, applying the rule to allidenti
al expressions restores
ondition 3.Condition 1 is satis�ed Thanks to (N10) and (N11), we
annot have p �
 q,ejp ground and ejq not ground. So, a repeated appli
ation of (N10)
onsistsin removing an equivalen
e
lass, whi
h preserves
ondition 1, thanks tolemma 71. The rules other than (N10) trivially preserve
ondition 1.44

Conditions 4, 2 and 6 are satis�ed Again, the only rule to be
onsidered is(N10) sin
e this is the only rule in the set whi
h modi�es the tests withoutremoving them entirely. As above, sin
e its repeated appli
ation removesa
lass, properties 4, 2 and 6 are preserved.There is no nested test Assume that there are nested tests: f
(~e)jp = g
0(~e0)\e00.First, if there are p1 �
 p2 su
h that p is a pre�x of p1, by properties 6 and1, for every p0 �
0 q0, g
0(~e0)jp0 must be a basi
 expression, hen
e a groundterm. Then, the rules (N8); (N9); (N10); (N11) ensure that
0 is empty.On the other hand, if this is not the
ase and if there are p1 �
 p2 su
hthat p1 shares a non-trivial pre�x with p, then, by property 1, f
(~e)jp mustbe a basi
 expression, hen
e a ground term. In this last
ase
0 must beempty again.Remains only the
ase in whi
h, for every p1 �
 p2, p1 is either in
om-parable with p or a pre�x of p. Then, Abstra
t
an be applied, whi
h
ontradi
ts the hypothesis on SNB. �We use a �nal simpli�
ation rule, abstra
ting away some more expressions:
(N12) �) e[X \ g(e01; : : : ; e0m)℄p � e0 ! (9Y1; : : : ; Ym)X \ g(>; : : : ;>) � g(Y1; : : : ; Ym)�) e[g(Y1 \ e01; : : : ; Ym \ e0m)℄p � e0If p is non-empty.The rule assumes that there is a variable > whi
h
aptures all terms (this iseasy to de�ne).The
orre
tness of the rule as well as the preservation of all properties is quitestraightforward. Let us now inspe
t the
onstraints we have still to
onsider.De�nition 43 The SET-
onstraints (Simpli�ed Equality Tests
onstraints) area sub
lass of ET-
onstraints in whi
h, for every
lausenonempty(e01); : : : ; nonempty(e0m)) e � e0(resp. nonempty(e01); : : : ; nonempty(e0m)) false)1. ea
h of e; e01; : : : ; e0m is either an interse
tion of variables or an expressionf
(e1; : : : ; en) su
h that e1; : : : ; en do not
ontain any equality tests norexpressions X \ g(: : :). 45

2. For every p 2 �(e), ex
ept the root, either p is a stri
t pre�x of someq 2 P (
), or else ejp is a (basi
) ground term or p 2 P (
) and ejp is aninterse
tion of variables.3. If p �
 q, ejp = ejq.4. e0 is either a variable or an expression f 0(X1; : : : ;Xn) where X1; : : : ;Xnare variables.Lemma 44 The simpli�
ation rules displayed in �gure 6 are terminating. If Sis a SET-
onstraint in whi
h all expressions are normal, then the result S0 ofsimplifying and abstra
ting �0(SNB) is an ET-
onstraintProof: Let us show that S0 veri�es the four
onditions of SET-
onstraints.1. Assume e or one of the e0i is of the form f
(e1; : : : ; en) and that one of theej
ontains an equality test
j . Then, by abstra
ting, it must be that
overlaps
j whi
h is not possible sin
e S0 is normalized.2. After abstra
tion, if p is not a stri
t pre�x of some q 2 P (
) and p is in�(e), then p 2 P (
) and ejp is a variable. After simplifying, if p is nota stri
t pre�x of some q 2 P (
), then ejp is either a variable or a groundterm.Conditions 3 and 4 are
onsequen
es of the de�nitions. �
5.2.6 Dedu
tion rulesNow, we are ready to apply the dedu
tion rules given in �gure 7.
 #i is de�nedby (
 ^
0) #idef=
 #i ^
0 #i, (i � p = i � q) #idef= p = q and (j � p = q) #idef= > wheni 6= j. e
 is the expression in whi
h the top symbol of e is
onstrained by
.(It is used only in a
ontext where e must be headed with a fun
tion symbol or
 = >). Finally, X denotes a variable in these rules.Lemma 45 The inferen
e rules in �gure 7 are
orre
t: the new
onstraint is a
onsequen
e of the previous ones.Proof: Only Proje
tion andDedu
tion are not trivially
orre
t. Let us startwith Proje
tion.We want to prove that, if � is a solution of �) f
(e1; : : : ; en) � f(e01; : : : ; e0n),then � is a solution of �; nonempty(f
(e1; : : : ; en))) e
#ii � e0i.Assume � j= �; nonempty(f
(e1; : : : ; en)). Then there is an u 2 [[f
(e1; : : : ; en)℄℄�and [[f
(e1; : : : ; en)℄℄� � [[f(e01; : : : ; e0n)℄℄�.Let t 2 [[e
#ii ℄℄�. We build v as follows: v is the term u in whi
h46

Transitivity �1) e1 � X �2) X � e2�1; �2) e1 � e2
Compatibility �) X \ e1 � e01 �0) e2 � X�; �0) e1 \ e2 � e01If both e1 and e2 are interse
-tions of variables
Clash �) f(~e) � g(~e0)�) false if f 6= g
Proje
tion �) f
(e1; : : : ; en) � f(e01; : : : ; e0n)�; nonempty(f
(e1; : : : ; en)))) e
#ii � e0i

Dedu
tion
�1) f
1(e11; : : : ; e1n) � X1...�k) f
k(ek1; : : : ; ekn) � Xk�) X1 \ : : : \Xk � e9X11 ; : : :Xn1 ; : : : ;X1k ; : : : ;Xnk :�) f(X11 \ : : : \X1k ; : : : ;Xn1 \ : : : \Xnk) � e�1) f
1(e11; : : : ; e1n) � f(X11 ; : : : ;X1n)...�k) f
k(ek1; : : : ; ekn) � f(Xk1 ; : : : ;Xkn)The
lause �) f(X11 \ : : : \ X1k ; : : : ;Xn1 \ : : : \ Xnk) � e in the
on
lusion ofDedu
tion is marked so that it
annot be used as a premisse of Dedu
tion. Inaddition, if �1) e1 � X is a marked
lause, then for every
lause �2) X � e2,then
lause �1; �2) e1 � e2 is also a marked
lause.Figure 7: The saturation rules

47

� uji is repla
ed with t� for every i � p �
 j � q with i 6= j, ujj�q is repla
ed with tjp.Let us show that v 2 [[f
(e1; : : : ; en)℄℄�.� First, v 2 [[f(e1; : : : ; en)℄℄�: let v = f(v1; : : : ; vn). vi = t 2 [[ei℄℄� and weprove by indu
tion on j
j that, for every i 6= j, vj 2 [[ej℄℄.If
 is empty, or if
 does not
ontain any equation i �p = j � q, then vj = ujand therefore vj 2 [[ej℄℄�.If i � p �
 j � q, by indu
tion hypothesis, wj = vj [ujj�q℄q 2 [[ej℄℄�. Moreover,by property 3, ej jq = eijp, hen
e tjp 2 [[ejjq℄℄�. Now, sin
e we assumed inthe
ondition of the proje
tion rule, that there is no interse
tion symbolalong the path j � q, vj 2 [[ej℄℄�.� We have to prove now that v j=
:{ For the tests i � p = i � q 2
, v j= i � p = i � q follows from t j= p = q(sin
e t j=
 # i).{ The tests i � p = j � q with i 6= j are satis�ed by
onstru
tion.{ For the tests j1�p = j2�q, either there is a r su
h that j1�p �
 i�r and weare ba
k to the previous
ase, or else ujj1�p = vjj1�p and ujj2�q = vjj2�q,whi
h implies v j= j1 � p = j2 � q sin
e u j= j1 � p = j2 � q.Now, v 2 [[f
(e1; : : : ; en)℄℄� implies that v 2 [[f(e01; : : : ; e0n)℄℄�, hen
e t 2 [[e0i℄℄�.Now
onsiderDedu
tion. The rule is a
tually a
ombination of several ruleswhi
h are all
orre
t: for every i, we introdu
e(1) Xi \ f(>; : : : ;>) = f(Xi1; : : : ;Xin)Then, we may interse
t both sides of X1 \ : : : \ Xk � e with f(>; : : : ;>) anduse a
ompatibility. We get:�) f(X11 ; : : : ;X1n) \ : : : \ f(Xk1 ; : : : ;Xkn) � eNormalizing the left hand side, we get the
lause:�) f(X11 \ : : : \X1k ; ; : : : ;Xn1 \ : : : \Xnk) � eNow, for every i, from (1) and the in
lusion �i) f
i(ei1; : : : ; ein) � Xi, inter-se
ting again both sides with f(>; : : : ;>), we dedu
e by transitivity and sin
ef
(: : :) � f(>; : : :>):�i) f
i(ei1; : : : ; ein) � f(Xi1; : : : ;Xin) �
48

Lemma 46 Every transformation rule transforms a SET-
onstraint into a SET-
onstraint.Proof: Only the proje
tion rule has to be
onsidered: we need to
he
k thate
#ii satis�es the
onditions of SET-
onstraints, whi
h follows from the fa
t thatp �
#i q i� p � i �
 q � i. �Now, we
onsider the termination problem. The main problem is to
ontrolthe
reation of new variables.Lemma 47 The number of variables
reated during the saturation pro
edure
anbe bounded by jSjt � a.Proof: Only Dedu
tion introdu
es new variables. It is simpler to see theDedu
tion rule as a variable introdu
tion (rule (1) in the proof of lemma 45)
ombined with other dedu
tion rules, whi
h preserve the semanti
s and do notintrodu
e variables. As far as variables
reation is
on
erned, we
an, w.l.o.g,assume that the
on
lusion of Dedu
tion are the
lauses Xi \ f(>; : : : ;>) �f(Xi1; : : : ;Xin). In parti
ular, if the rule is applied twi
e with the same variableXi and the same fun
tion symbol f , we
an use the same variables Xij .The main problem is that these new variables Xij may trigger again theintrodu
tion of new variables. However, if we tra
e the origin of su
h variables,we observe that introdu
ing the Xij is subje
t to the presen
e of a
onstraint�i) f
i(: : :) � Xi. Now, if later a
onstraint �0i) f
0i(: : :) � Xij triggersthe introdu
tion of new variables again, the expression f
0i(: : :) must be theproje
tion of some expression o

urring at the previous level. And sin
e we
anonly perform a bounded number of proje
tions on a given expression, we
anbound the number of su

essive variables generation. Let us formalize this.Let us asso
iate �rst with ea
h variable a level: the variables o

urring in theoriginal
onstraint have level 0, and, ea
h time we introdu
e new variables with:(1) X \ f(>; : : : ;>) � f(X1; : : : ;Xn)the level of every variable Xi is one plus the level of X.We prove, by indu
tion on the level m of a variable X, that, if (1) is appliedto X, then there is an expression e in the original set
onstraint and
lauses�) e0 � X 0, �1) X 0 � X1, . . . , �n+1) Xn � X su
h that e0 is obtainedby at least m su

essive proje
tions of e (we say that e0 is a proje
tion of e ife = f
(e1; : : : ; en) and e0 = e
#ii for some i).When m = 0, observe that
lauses �) f
(: : :) � X 0 are either in theoriginal set
onstraint, or obtained by proje
tion, or obtained by Transitivityor obtained by Dedu
tion itself. In
ase Transitivity has been applied, there
49

exist an other
lause �0) f
(: : :) � X 00 and a
lause �00) X 00 � X 0. Thus,by a simple indu
tion, there exist a
lause �0) f
(: : :) � X 00 and
lauses�1) X 00 � X1, . . . , �n+1) Xn � X 0 su
h that �0) f
(: : :) � X 00 has beenobtained by proje
tion or by Dedu
tion itself. However, in the latter
ase, weexpli
itly prevented using the resulting
lause as a premisse of Dedu
tion.When m > 0, observe that the variables Xij
reated by Dedu
tion appearin only one
lause on the right of an in
lusion: the
lause �i) f
i(ei1; : : : ; ein) �f(Xi1; : : : ;Xin). Only Proje
tion, applied to this
lause, may produ
e a
lausein whi
h Xij o

urs on the right of an in
lusion: there exists a
lause �i)eij
i#j � Xij su
h that eij
i#j is the proje
tion of f
i(ei1; : : : ; ein). Then we applythe indu
tion hypothesis to �i) f
i(ei1; : : : ; ein) � Xi sin
e Xi is of level m� 1.Now, how many expressions f
(: : :)
an be derived by proje
tion from agiven expression ? Note �rst that no proje
tion
an be applied to a ground(basi
) expression sin
e one-way symbols do not o

ur on the right of in
lusions.Then, by de�nition of expressions o

urring in a SET-
onstraint, the numberof expressions f
(: : :) whi
h
an be derived by proje
tion from an expressiong
0(: : :) is the number of stri
t pre�xes of positions in P (
0). It follows that thenumber of new variables is bounded by jSjt � a. �
Lemma 48 The rules of �gure 7 are terminating: a �xed point is rea
hed after�nitely many steps (at most O(jSja � 2(a+1)jSj) where a is the maximal arity ofa fun
tion symbol and jSj = jSjt + jSjF is the size of the original
onstraint.Proof: We are going to show that only a �nite number of distin
t
lauses
anbe generated by the rules.As we have seen in the proof of lemma 47, the number of distin
t expressionsf
(: : :) o

urring on the left of an in
lusion is bounded by jSjt, plus the numberof times Dedu
tion is applied, whi
h is itself bounded by jSjt � a thanks tolemma 47. The other left sides of in
lusions are interse
tion of variables, hen
ethere are at most 2ajSjt+jVS j su
h possible left hand sides, thanks to lemma 47.The right sides of in
lusions are variables or a fun
tion symbol applied tovariables, whi
h gives a bound of ajSjt + jVSj+ jFj � (ajSjt + jVSj)a.Finally, we have to analyze the possible pre
onditions. They are
onjun
tionsof � nonempty(X) where X 2 VS� nonempty(f
(e1; : : : ; en)) where f
(e1; : : : ; en) o

urs as a left member ofan in
lusion
onstraint

50

Thanks to lemma 47, this gives the following bound for the number of possibledistin
t pre
onditions: 2jVS j+jSjtNow, putting everything together, at most((a+ 1)� jSjt + 2ajSjt+jVS j)� (ajSjt + jVSj+ jFj � (ajSjt + jVSj)a)� 2jVS j++jSjtdistin
t
lauses
an be generated. Sin
e jSjt+jVSj � jSj and ajSjt+jVSj � a�jSj,we get the bound O(jSja � 2(a+1)jSj). �If S is an ET-
onstraint, let solved(S) be the
lauses � ! a in S su
h thateither a is false or else a is an in
lusion f
(~e) � X where X is a variable.As in [7℄, the following
ompleteness result is obtained by inspe
ting ea
h
lause C 2 S whi
h is not in solved(S), showing that, thanks to saturatedness,the least solution of solved(S) is a solution of C. There are only some additional
ases for non-
at
onstraints e.g. f
(X \ g(~e); ~e0) � f(~e00).Theorem 49 If S is saturated, then either both S and solved(S) are unsatis�ableor else S has a least solution, whi
h is the least solution of solved(S).Proof: If solved(S) is unsatis�able, then S, whi
h
ontains solved(S), is unsat-is�able. Now, assume solved(S) is satis�able and let � be its least solution. Weshow that � is a solution of S.We prove, by indu
tion on n+ size(t) that, for every
lause �) e � e0 in Ssu
h that � j= �, and for every t 2 [[e℄℄Tnsolved(S)(;) (whi
h we abbreviate t 2 [[e℄℄n),t 2 [[e0℄℄�.The result will follow, by minimality of �.There are only three kinds of
lauses �) e � e0, whi
h are possibly in S andnot in solved(S). We study ea
h of them (e0 is either a variable or an expressionf(X1; : : : ;Xn)).�) X � g(Y1; : : : ; Ym) , t 2 [[X℄℄n, hen
e there is a
lause �0) e0 � X insolved(S) su
h that � j= �0 and t 2 [[e0℄℄n�1. By Transitivity, there is a
lause �; �0) e0 � g(Y1; : : : ; Ym) in S. Sin
e � j= �; �0 and t 2 [[e0℄℄n�1,we apply the indu
tion hypothesis and get t 2 [[g(Y1; : : : ; Ym)℄℄�.�) X1 \ : : : \Xp � e We use an indu
tion on the multisetM(X1\ : : :\Xp) def=fk1; : : : ; kpg of integers ki su
h that t 2 [[Xi℄℄ki and t =2 [[Xi℄℄ki�1. Themaximum of k1; : : : ; kp is, by hypothesis, smaller or equal to n. If it isstri
tly smaller than n, we use dire
tly the indu
tion hypothesis. If thismultiset is equal to fng, then we are ba
k to the �rst
ase. Hen
e, let us51

assume now that the multiset is stri
tly larger than fng, whi
h means inparti
ular that p � 2.Sin
e t 2 [[Xi℄℄ki for every i, there are
lauses �i) ei0 � Xi in solved(S)su
h that � j= �i and t 2 [[ei0℄℄ki�1. If one of the expressions ei0 is aninterse
tion of variables, then by Compatibility, there is a
lause �i; �0)X1 \ : : : \ Xi�1 \ ei0 \ Xi+1 \ : : : \ Xp � e in S. Moreover, � j= �0 andt 2 [[X1 \ : : :\Xi�1 \ ei0 \Xi+1 \ : : :\Xp℄℄n. Finally, M(X1 \ : : :\Xi�1 \ei0 \ Xi+1 \ : : : \ Xp) is obtained repla
ing ki in M(X1 \ : : : ;\Xp) witha multiset of stri
tly smaller numbers. Hen
e we get a stri
tly smallermultiset and we may apply the indu
tion hypothesis: t 2 [[e℄℄�.Now, if none of the expressions ei0 is an interse
tion of variables: t =f(t1; : : : ; tn) and ei0 = f
i(ei1; : : : ; ein). If one of the
lauses�i) f(ei1; : : : ; ein) � Xiis marked, then there exist a
lause �0i) f(ei1; : : : ; ein) � X 0i marked byDedu
tion and
lauses 1) X 0i � X1, . . . , n+1) Xn � Xi su
h that�i = �0i; 1; : : : ; n+1. Thus, there is a
lause �0i) Z1 \ : : : \ Zm � X 0iwhi
h triggered the appli
ation of Dedu
tion. Then, applying repeatedlytransitivity, there is a
lause �i) Z1 \ : : : \ Zm � Xi. In su
h a
ase,for every k, eik = Z1k \ : : : \ Zmk . Now, t 2 [[ei0℄℄ki�1, hen
e, for everyk; j, tk 2 [[Zjk℄℄ki�1. It follows that, for every j, t 2 [[Zj℄℄ki�1. Now, byCompatibility, there is a
lause �; �i) X1\ : : : Z1\ : : :\Zm : : :\Xn � ein S. And, as before, we get an interse
tion of variables with a stri
tlysmaller multiset. We
on
lude thanks to the indu
tion hypothesis.Remains only the
ase where none of the
lauses �i) f(ei1; : : : ; ein) � Xiis marked. In this last
ase, we
an apply Dedu
tion. For every
lause�i) f
i(ei1; : : : ; ein) � f(Xi1; : : : ;Xin), � j= �i and t 2 [[f
i(ei1; : : : ; ein)℄℄ki�1,hen
e tj 2 [[Xij℄℄ki for every i; j, by indu
tion hypothesis.If t is a
onstant, then �) t � e is a
lause of S and we
an
on
lude.Otherwise, if e is a variable, then�) f(X11 \ : : : \X1p ; : : : ;Xn1 \ : : : \Xnp) � Xis a
lause of solved(S). Hen
e t = f(t1; : : : ; tn) 2 [[X℄℄n+1.If e is not a variable, then e must be f(Y1; : : : ; Yn) and, by Proje
tion,for every j,�; nonempty(f(X11 \ : : : \X1p ; : : : ;Xn1 \ : : : \Xnp))) Xj1 \ : : : \Xjp � Yjis a
lause of S. � satis�es the premisse sin
e t is a witness for the se
ondpart of the pre
ondition. Moreover, for every j, tj 2 [[Xj1 \ : : : \ Xjp ℄℄n52

and M(Xj1 \ : : : \ Xjp) is smaller or equal to M(X1 \ : : : ;Xp). Then, byindu
tion hypothesis, tj 2 [[Yj℄℄� for every j. Hen
e t 2 [[e℄℄�.�) f
(e1; : : : ; ep) � g(X1; : : : ;Xm). If f 6= g, then, by Clash, the
lause �)false is in S, hen
e in solved(S), whi
h
ontradi
ts � j= �.Assume now f = g. Then t = f(t1; : : : ; tn). By Proje
tion, there is a
lause Ci def= �; nonempty(f
(e1; : : : ; ep))) e
#i � Xiin S, for every i. Sin
e t 2 [[f
(e1; : : : ; en)℄℄�,� j= �; nonempty(f
(e1; : : : ; en)):For every i, ti 2 [[ei℄℄n sin
e t 2 [[f(e1; : : : ; ep)℄℄n and ti j=
 #i sin
e t j=
(and by de�nition of
 #i). Thus ti 2 [[e
#ii ℄℄n whi
h implies ti 2 [[Xi℄℄� byindu
tion., thus f(t1; : : : ; tp) 2 [[f(Y1; : : : ; Yp)℄℄�. �We are now redu
ed to prove that the satis�ability of solved(S) is de
idable.5.3 Conne
tion with automata with one memoryTheorem 50 For every satis�able SET-
onstraint S, there is an (e�e
tively
omputable) alternating automaton with one memory AS and an homomorphismH su
h that AS a

epts t in the state X i� H(t) 2 [[X℄℄� where � is the leastsolution of solved(S).Proof:The memory alphabet of the automaton is the set of fun
tion symbols usedin the
onstraint and the alphabet FAS is the memory alphabet with some addi-tional symbols allowing to
he
k on auxiliary bran
hes non emptiness
onditions.More pre
isely,� the states of AS
onsist of{ the variables of S. We write them qX su
h states, for X a variable ofS{ the states q� for every � = nonempty(e1); : : : ; nonempty(em) su
h thatnonempty(e1); : : : ; nonempty(em); nonempty(em+1); : : : ; nonempty(en) isa pre
ondition of a
lause in S.{ for every expression e = f
(e1; : : : ; en) and for every non-leaf positionp of su
h an expression, a state qe;p53

{ a state qa for every
onstant a 2 F� The memory alphabet is F� The set of fun
tion symbols FAS
onsists in an auxiliary binary symbol Eand, for every symbol f 2 F a symbol f+1 whose arity is one plus the arityof f .Let H be the homomorphism:H(f(t1; : : : ; tn)) def= f(H(t1); : : : ;H(tn))H(f+1(t0; t1; : : : ; tn)) def= f(H(t1); : : : ;H(tn))H(E(t1; t2)) def= awhere a is any
onstant in F . �(X) will be the image byH of the trees re
ognizedin state qX by AS .By
onvention, if p is a leaf position of f
(e1; : : : ; en), we let qe;p be the
onjun
tion qX1 ^ : : : ^ qXm if ejp = X1 \ : : : \ Xm and qe;p = qa if ejp is the
onstant a.The transition rules of AS
onsist of1. a >�!a qa.2. f(qe;1; : : : ; qe;n)
�������!�x1;:::;xn:a qf
(e1;:::;en) for every literal nonempty(f
(e1; : : : ; en))o

urring in S.
 is the equality test ~
 de�ned as follows: ^i � p = j � q def=i = j and
̂1 ^
2 def= e
1 ^ e
2.3. g(qe;p�1; : : : ; qe;p�k) f
#p��!F qe;p in whi
h e = f
(e1; : : : ; en) o

urs in S, p is anon-root position of e, ejp is headed with g. F = �x1; : : : ; xk:xi if p � i isa pre�x of a position in P (
). Note that if there are several su
h indi
es,lemmas 27 and 42 imply that the
hoi
e is irrelevant.
 # p is de�ned asin the proje
tion rule:
 # � def=
,
1 ^
2 # i � p def= (
1 # i � p) ^ (
2 # i � p),(j � p1 = k � p2) # i � p def= > if either i 6= j or k 6= i and (i � p1 = i � p2) #i � p def= (p1 = p2) # p.4. E(qe; qe0) >������!�x1;x2:x1 qnonempty(e);nonempty(e0) for every nonempty(e); nonempty(e0)whi
h is an initial sequen
e of a pre
ondition of a
lause of S.5. E(q�; qe) >������!�x1;x2:x1 q�;nonempty(e) for every �; nonempty(e) whi
h is aninitial sequen
e of a pre
ondition of a
lause of S.
54

6. f+1(q�; qe;1; : : : ; qe;n) ~
�!F qX for every
lause �) e � X in S su
h thate = f
(e1; : : : ; en). F = �xi1 ; : : : ; xik :t where t is the expression e in whi
h,at ea
h ejj�p su
h that j � p 2 P (
) is repla
ed with xij where ij = j 2 ~
.The following intermediate results are proved in appendix B:� If a term is a

epted in state q� where � is a pre
ondition, then � j= �� If � j= �, then there is a term a

epted in state q�� If a term t is a

epted in state qX , then H(t) 2 �(X)� If t 2 �(X), then there exists t0 is a

epted in state qX su
h that H(t0) = t.From these lemmas, it follows thatAS a

epts the least solution � of solved(S)in the sense that t is a

epted in the state X i� H(t) 2 [[X℄℄�. �Remark: We
onje
ture that the minimal solution of a SET-
onstraint isre
ognized by an alternating tree automata with one memory. However, to provethis would require more saturation rules to get rid of non-emptiness
onditions(as in se
tion 3).As a
onsequen
e of theorem 50 we get:Theorem 51 The satis�ability of ET-
onstraints is de
idable.Proof: As a
onsequen
e of lemma 45, lemma 48, theorem 49, we
an assumethat S is a solved form.Then,
onsider all
lauses �) false in S and let S0 be the rest of S.S0 is satis�able, then, thanks to theorem 50, there is an automaton AS su
hthat t is a

epted in qX i� H(t) 2 [[X℄℄� where � is the minimal solution of S0.Let Qf be the set of states q� su
h that �) false is in S. Then S is satis�-able i�, the automaton AS with �nal states Qf does not a

ept any tree, whi
his de
idable thanks to theorem 15. �
6 Analysis of
ryptographi
 proto
olsWe present here a de
idable fragment of the
lass of proto
ols des
ribed in Se
tion2.2 and we illustrate the relevan
e of this fragment by an example (inspired byKerberos).

55

6.1 A de
idable
lass of proto
olsAs we have seen in se
tion 2, the spe
i�
ation of a proto
ol and its se
re
y poli
yrely not only on the rules of the proto
ol, but also on the signature. In parti
ular,we must say what are the expe
ted types of ea
h argument of a fun
tion symbol.This is far from being inno
ent, sin
e this
orresponds to the ability of ea
hagent to re
ognize di�erent data types. If all fun
tion symbols are assumedto take messages or agents as arguments and return messages or agents, thenthe prin
ipals are assumed to distinguish only agents from other messages. Forinstan
e, a pair of agents
an be taken as a key in this
ase. Sin
e many atta
ksare due to type
onfusion [8℄, su
h a signature spe
i�
ation would allow to dete
tmany more atta
ks. On the other hand, if typing information is available, thende
iding se
re
y is easier.One spe
i�
ity of our model is that both the signature, hen
e the availabletype information, and the proto
ol itself are parameters. The de�ning
onditionsfor our
lass will therefore depend on both the signature and the proto
ol andbe more restri
tive when the typing poli
y is more sloppy.A rule of a proto
ol is of the formfS(A; i;M);M1; : : : ;Mpg �! fS(A; i+ 1;M 0);M 01; : : : ;M 0qgwhere Mi are messages. As we have seen in se
tion 2, the se
re
y for gen-eral proto
ols of this form is unde
idable. To obtain a de
idable
lass, we
onsider proto
ols su
h that, for ea
h rule, the variables whi
h are shared byM1; : : : ;Mp;M 01; : : : ;M 0q satisfy a \basi
ness
ondition". Roughly, su
h a
ondi-tion will state that only one variable may o

ur several times in di�erent
ontextswithout being of basi
 type. For instan
e, if we don't assume any spe
ial abilityof agents to re
ognize data types, then repeated variables o

urring in di�erent
ontexts must be agents names, ex
ept for possibly one su
h variable.In order to express our
ondition, let Xs be a variable for ea
h sort s in thesignature and let Cmsg be the union of the de�nite set
onstraintsf(Xsort1 ; : : : ;Xsortn) � Xsort;for every fun
tion symbol f of type sort1� : : :�sortn ! sort, and the de�niteset
onstraints Xsort � Xsort0if sort is a subsort of sort0. The basi
 sorts are de�ned as in de�nition 21: thisis the largest set of sorts su
h that� If s is basi
 then R(Xs) only
ontains one-way symbols and basi
 sorts.
56

� If s is basi
 then{ either R(Xs)
ontains only one
lause e � Xs su
h that Xs does noto

ur in e.{ or every fun
tion symbol o

urring in R(Xs) o

urs (possibly) onlyin R(Xs0) where s0 is basi
.For instan
e, we have seen in example 22 that, in our running example, all sortsare basi
 ex
ept Message. Let Bmsg be the set of basi
 sorts.Now, for ea
h rulerl = fS(A; i;M);M1; : : : ;Mpg �! fS(A; i+ 1;M 0);M 01; : : : ;M 0qg;let trldef= << A;M >;M1; : : : ;Mp; < A;M 0 >;M 01; : : : ;M 0q > and for ea
h vari-able Y , o

urring in rl , let Srl;Y def= fp su
h that trljp = Y g. Let
rl;Y be theequality
onstraint p1 = : : : = pjk for pj 2 Srl;Y . In the parti
ular
ase whereSrl;Y is a singleton,
rl;Y is the empty
onstraint. Finally, let
rl be the
onjun
-tion of the
rl;Y for all variables Y o

urring in rl .Example 52 We des
ribe here the trl and
rl
orresponding to our runningexample (see �gure 1, example 5).For the rule
; �! 8<: S(A; 1; <A;B; s>);S(B; 1; <B; s>);S(s; 1; s)

9=;we get the term and
onstraints:trl0 def= << A;< A;B; s >>;< B;< B; s >>;< s; s >>
rl0 def= 11 = 121 ^ 122 = 21 = 221For the rule 1:fS(A; 1; <A;B; s>)g �! fS(A; 2; <A;B; s>); <A;B>g
trl1 def= <<A;<A;B; s>>;<A;<A;B; s>>;<A;B>>;
rl1 def= 11 = 121 = 212 = 221 ^ 122 = 222For the rule 2:� S(s; 1; s)<A;B> � �! � S(s; 2; s);fB;K(A;B); fA;K(A;B)gshr(B)gshr(A) �57

trl2 def= <<s; s>;<A;B>;<s; s>;<fB; k1(A;B); fA; k1(A;B)gshr(B)gshr(A)>>
rl2 def= 21 = 4121 = 41311 = 413121 = 42 ^ 22 = 411 = 4122 = 413122 = 4132For the rule 3:� S(A; 2; <A;B; s>);fB;X; Y gshr(A) � �! � S(A; 3; <A;B; s;X;m(A;B)>);<fm(A;B)gX ; Y > �
trl3 def= <<A;<A;B; s>>; fB;X; Y gshr(A);<A;<A;B; s;X; n1(A;B)>>;<fn1(A;B)gX ; Y >>
rl3 def= 11 = 121 = 22 = 31 = 321 = 3251 = 4111 ^122 = 211 = 322 = 3252 = 4112 ^ 212 = 324 = 412 ^ 213 = 42For the rule 4:� S(B; 1; <B; s>);<fZgX ; fA;Xgshr(B)> � �! � fS(B; 1; <B; s;A;Z;X>);fh(Z)gXg �
trl4 def= <<B;<B; s>>;<fZgX ; fA;Xgshr(B)>;<B;<B; s;A;Z;X>>; fH(Z)gXg
rl4 def= 11 = 121 = 222 = 31 = 321 ^ 211 = 324 = 411 ^ 212 = 2212 = 325 = 42For ea
h term t, let et be the expression obtained by repla
ing in t ea
h variableof sort s with Xs. Finally, let url be the expression (with equality
onstraints)obtained from ftrl by adding (at the top) the
onstraint
rl.We are now ready to de�ne the basi
ness
ondition.De�nition 53 A proto
ol P satis�es the basi
ness
ondition if, for ea
h rule rlof P , url as de�ned above satis�es the basi
ness
ondition w.r.t. the set of basi
sorts.We tried to give here a de�nition whi
h is as general as possible, hen
e mightbe a bit diÆ
ult to grasp. Let us give a simple suÆ
ient
ondition:Proposition 54 A proto
ol satis�es the basi
ness
ondition if, for ea
h rule rlof the proto
ol, one of the following holds:� There is at most one variable o

urring at least twi
e in rl and whose sortis not basi
. 58

� There is a de
omposition of tl into C[t1; : : : ; tn℄ su
h that every variablewhi
h is not of sort Agento

urs in at most one ti.For instan
e, in example 52, only Y;Z have a non-basi
 sort, hen
e the �rst
ondition above is met by every rule.For simpli
ity, we often write A and Msg instead of respe
tively XAgent andXMessage.Theorem 55 If P satis�es the basi
ness
ondition, then the se
re
y of P isde
idable.In parti
ular, our running example satis�es the basi
ness
ondition. Indeed,there are at most two o

urren
es of non-basi
 variables in ea
h expressions.However, note that giving the ability for agents to re
ognize messages of theform K(a; b) was not inno
ent: if we repla
e our key variable K by a messagevariable X then our proto
ol does not remain in our de
idable
lass.We prove the theorem in next se
tion.6.2 Proof of Theorem 55The proof of Theorem 55 pro
eeds in two steps. First, we show that everyproto
ol
an be \translated" into Horn
lauses su
h that a message
an be sent ifand only if a
orresponding formula
an be derived from the Horn
lauses. Then,we show that if a proto
ol satis�es the basi
ness
ondition then the
orrespondingHorn
lauses
an be expressed as ET-
onstraints, thus se
re
y is de
idable.Step 1Lemma 56 Let P be a proto
ol with its se
re
y poli
y S0. Let I0 be the maximalset of initial knowledge of the intruder (
ompatible with the se
re
y poli
y S0 ofP) mentioned in se
tion 2. Then, there exists a set H of Horn
lauses with aspe
ial predi
ate I su
h that I(m) is derivable from C (where m is a message),i� there exists a rea
hable H su
h that m 2 H.Proof: H is built as the union of four sets: Hmsg, HI0 , HI and HP .Hmsg
orresponds to the
onstru
tion of the messages with their sort: Hmsg is theunion of the
lauses Psort1(x1) : : : Psortn(xn)Psort(f(x1; : : : ; xn))
59

for every fun
tion symbol f of type sort1 � : : : � sortn ! sort, where thePsort are new predi
ates. We also add to Hmsg the union of the
lausesPsort(x)Psort0(x)for every sort; sort0 su
h that sort is a subsort of sort0. Moreover, we need todistinguish between symmetri
 and publi
 keys: every term is symmetri
 ex
eptthe terms of the form pub(t) or prv(t). Thus we add to Hmsg the
lausesPMessage(x1) : : : PMessage(xn)Sym(f(x1; : : : ; xn))for every fun
tion symbol f , f 6= pub and f 6= prv. Then it is easy to prove thatPsort(m) is derivable from Hmsg if and only if m is a message of sort sort andSym(m) is derivable from Hmsg if and only if m is a symmetri
 term.Then, by the following lemma (proved in Appendix C), there exists a set of Horn
lauses HI0 su
h that I0(m) is derivable from HI0 [Hmsg if and only if m 2 I0.Lemma 57 Let t1; : : : ; tn be message s
hemes with the free variables x1; : : : ; xk.Then, there exists a set of Horn
lauses HI0 with two predi
ates I0 and P�p su
hthat I0(m) is derivable from HI0 [Hmsg if and only if parts(m) \ fti� j 1 � i �n; �(xi) 2 Ahg = ;.The
lauses of HI are des
ribed Figure 8. They simulate the
apabilities of theintruder.To simulate the proto
ol rules, we �rst de�ne the set of expressions types(t)generated by a message s
heme t by indu
tion on t. If t is a
onstant, thentypes(t) = ;. If t is a variable of sort sort, then types(t) = fPsort(t)g. If tis a term of the form f(t1; : : : ; tn), then types(t) = S1�i�n types(ti). Intuitivelytypes(t) is the set of
onstraints
orresponding to the sorts of the variables of t.We sometimes write types(t1; t2) instead of types(t1) [types(t2).Example 58 Let us
onsider the message s
heme fB;K;XgK of our runningexample. Thentypes(fB;X; Y gshr(A)) = fPAgent(B); PKey(X); PMessage(Y); PAgent(A)gensures that A and B stand for agent variables, X stands for a key variable andY for a message variable.
60

Initialknowledge I0(x)I(x)
Analysis I(f(x1; : : : ; xn))I(xi) f 2 IF ; 1 � i � n

I(fx1gx2) I(x2) Sym(x2)I(x1)I(fx1gpub(x2)) I(prv(x2))I(x1) I(fx1gprv(x2)) I(pub(x2))I(x1)
Synthesis I(x1) � � � I(xn)I(f(x1; : : : ; xn)) f 2 PF

I(x1) � � � I(xn) PAd(xj1) : : : PAd(xjk)I(f(x1; : : : ; xn)) f 2 AF ;f restri
ted v.s.j1; : : : ; jk
Figure 8: Horn
lauses for the intruder
apabilities

Then HP is the union, for ea
h rulefS(A; i;M);M1; : : : ;Mpg �! fS(A; i+ 1;M 0);M 01; : : : ;M 0qgof the proto
ol P , of the
lauses des
ribed in Figure 9.We prove by indu
tion in Appendix C that H veri�es the required property,whi
h
on
ludes the proof of Lemma 56 �Remark: The predi
ate symbols ofH are the Psort, P�p introdu
ed by Lemma57 and three distin
t predi
ate symbols: I; I0 and Sym.Example 59 We present here the
lauses HP
orresponding to our running ex-ample. For simpli
ity, we fa
torize the rules whose premises are identi
al, lettingthem
ontain several
on
lusions (though it must be kept in mind that these are61

I(si(A;M)) I(M1) � � � I(Mp) types(A;M;M1; : : : ;Mp;M 01; : : : ;M 0q)I(si+1(A;M 0))I(si(A;M)) I(M1) � � � I(Mp) types(A;M;M1; : : : ;Mp;M 01; : : : ;M 0q)I(M 0i)For i = 1; : : : ; q
Figure 9: Horn
lauses
orresponding to the rule fS(A; i;M);M1; : : : ;Mpg �!fS(A; i+ 1;M 0);M 01; : : : ;M 0qg
Horn
lauses).Initialization rule: PAgent(A) PAgent(B)I(s1(A;<A;B; s>)) I(s1(B;<B; s>)); I(s1(s; s)) :Rule 1: PAgent(A) PAgent(B) I(s1(A;<A;B; s>))I(s2(A;<A;B; s>)) I(<A;B>)Rule 2: PAgent(A) PAgent(B) I(s1(s; s)) I(<A;B>)I(s2(s; s)) I(fB;K(A;B); fxA;K(A;B)gshr(B)gshr(A))Rule 3: PAgent(A) PAgent(B) PKey(X) PMessage(Y)I(s2(A;<A;B; s>)) I(fB;X; Y gshr(A))I(s3(A;<A;B; s;X;m(A;B)>)) I(<fm(A;B)gX ; Y >)and similarly for Rule 4.

62

Step 2 We
an start the se
ond part of the proof of Theorem 55. We writeH `? E when E is derivable from H.Let P be a proto
ol. Its se
re
y poli
y S0 is de�ned by:S0 = s[j=1 ftj1; : : : ; tjnj j xj1; : : : ; xjkj 2 Akg;
where the tji are message s
hemes with free variables xj1; : : : ; xjkj . By de�nition ofse
re
y, P is not se
ure i� there exists a rea
hable H su
h that fake(Cont(H) [I0) \ S0 = ;, i.e.,i� there exists a rea
hable H 0 su
h that Cont(H 0) \ S0 = ;, i.e.,i� there exists a rea
hableH 0, 9i; j, 9ai1 ; : : : ; aip 2 Ah su
h that tji (ai1 ; : : : ; aip) 2 H 0i�, by Lemma 56, 9i; j;9ai1 ; : : : ; aip 2 Ah su
h that H `? I(tji (ai1 ; : : : ; aip)).Thus, we are left to prove that 9i; j;9ai1 ; : : : ; aip 2 Ah su
h that H `?I(tji (ai1 ; : : : ; aip)) is de
idable.We express the setH of Horn
lauses as a set
onstraint: the set of de�nite set
onstraint
orresponding to Hmsg is the set Cmsg des
ribed Se
tion 6.1 augmentedwith the in
lusions: f(Msg ; : : : ;Msg) � XSymfor every fun
tion symbol f 2 F , f 6= pub, f 6= prv.The de�nite set
onstraint CI
orresponding to HI is des
ribed in �gure 10. Theset of de�nite set
onstraint CI0
orresponding to HI0 is
onstru
ted similarly.We asso
iate with ea
h Horn
lause des
ribed in Figure 9 the following ET-
onstraint:< si(A;fM) \ I; fM1 \ I; : : : ; fMp \ I; si+1(A; fM 0); fM 01; : : : ; fM 0q >
rl� I (5)where
rl and f� are de�ned in se
tion 6.1. The union of these ET-
onstraint isdenoted by CP .Example 60 The Horn
lause
orresponding to the rule 3 of our running ex-ample is expressed by:<s2(A;<A;A; s>) \ I; fA;XKey;Msggshr(A) \ I;s3(A;<A;A; s;XKey;m(A;A)>); <fm(A;A)gXKey;Msg>>
rl3� Iwhere
rl3 is the equality
onstraint des
ribed in Figure ??, Se
tion 6.1.Let C be the union of Cmsg, CI0 , CI and CP . The set variables of C are thevariablesXsort for ea
h sort sort and the four additional variables: X�p, whi
h
orresponds to P�p, I; I0 and XSym .C is a faithful representation of H: 63

Initialknowledge I0 � I
Analysis f(I; : : : ; I) � I f 2 IFfg�11 (fMsggI\Sym \ I) � Ifg�11 (fMsggprv(pub�1(I)) \ I) � I fg�11 (fMsggpub(prv�1(I)) \ I) � ISynthesis f�1i (I) � I f 2 PF ; i � arity(f)

f(�1; : : : ; �n) � I f 2 AF ;f restri
ted v.s. j1; : : : ; jk�m = XAd if 9i;m = ji;�m = I otherwise.
Figure 10: Set
onstraints
orresponding to the intruder
apabilities

Lemma 61 Let M be a
olle
tion of sets SQ for every (unary) predi
ate symbolQ. Then M is a model of H i� the substitution �M assigning XQ to SQ is asolution of C.Proof: Let M be a model of H and let us show that �M satis�es C.The only non obvious part of the proof is to show that SI satis�es the set
onstraint de�ned in Equation 5. Let rl be a rule of the proto
ol, lett 2< si(A;fM�)\SI ;℄M1�\SI ; : : : ; fMp�\SI ; si+1(A; fM 0�); fM 01�; : : : ; fM 0q� >su
h that t satis�es
rl . t =<si(a;m);m1; : : : ;mp; si+1(a;m0);m01; : : : ;m0q> andsi(a;m);m1; : : : ;mp 2 SI . Sin
e t satis�es
rl , by applying the
lause de�ned inFigure 9, we dedu
e si+1(a;m0);m01; : : : ;m0q 2 SI , thus, by applying the
lauseI(m1) I(m2)I(<m1;m2>) , t is in SI , thus SI satis�es the
onstraint 5.
Conversely, let �M be a model of C. The only non obvious part of the proof isto show that SI satis�es the Horn
lause de�ned in Figure 9. Let m =M�0;m =M 0�, mi = Mi�0;m0i = M 0i�, a = A�0 su
h that si(a;m);m1; : : : ;mp 2 SI and�0 satis�es the
onditions
ond(A;M;M1; : : : ;Mp;M 01; : : : ;M 0q). Thus for everyvariable X of A;M;M1; : : : ;Mp;M 01; : : : ;M 0q, �0(X) 2 I(S ~X): �0 respe
ts the

64

type of the variables. Let t =< si(a;m);m1; : : : ;mp; si+1(a;m0);m01; : : : ;m0q >,thent 2< si(A;fM�) \ SI ;℄M1� \ SI ; : : : ; fMp� \ SI ;si+1(A; fM 0�); fM 01�; : : : ; fM 0q� >and, by
onstru
tion of
rl , t satis�es
rl . Thus t is in SI . Applying the set
on-straint <>�1i (SI) � SI , we get si+1(a;m0);m01; : : : ;m0q 2 SI , thus SI satis�esthe Horn
lause de�ned in Figure 9. �Then, applying Lemma 61, it is easy to verify that9i;9ai1 ; : : : ; aip 2 Ah su
h that H `? I(ti(ai1 ; : : : ; aip))if and only if C[i I \ ti(XAh; : : : ;XAh) �?is not satis�able.Assume now that P satis�es the basi
ness
ondition as in theorem 55, thenthe set C as
onstru
ted above is a set of ET-
onstraints. ThusC[i I \ ti(XAh; : : : ;XAh) �?
is also a set of ET-
onstraints. Then, thanks to theorem 51, the satis�ability ofthis
onstraint is de
idable, whi
h
ompletes the proof of theorem 55.
7 Con
lusionLet us summarize the
ontributions of the paper (roughly in in
reasing order ofsigni�
an
e) and dis
uss their meaning and possible further developments.1. The se
urity of a proto
ol P is unde
idable, even for a restri
ted
lass inwhi
h there are no non
es, no
ompound keys and there is at least onehonest instan
e of P . This is theorem 6. This shows that the sour
e ofunde
idability does not
ome from non
es, but from the memorization and
opying fa
ilities of the agents.2. The satis�ability of interse
tion
onstraints with non-emptiness guards isDEXPTIME-
omplete. This is theorem 11. It is a slight extension ofresults about set
onstraints.

65

3. We introdu
ed the new
lass of tree automata with one memory and weshowed that the emptiness is DEXPTIME-
omplete for this
lass. This istheorem 15. This result is interesting in itself. One open question is itsgeneralization with disequality tests (and not only equality tests betweenmemory
ontents).4. We introdu
ed a
lass of set
onstraints with equality tests, in whi
h thetests are not restri
ted to brother positions. We showed the de
idability of
onstraints in this
lass by a redu
tion to tree automata with one memory.This is theorem 51. It must be emphasized that we did not use the fullpower of automata with one memory here.Interpreting lemma 38 in the
ontext of
ryptographi
 proto
ols, it showsthat, for basi
 variables, we may restri
t our attention to �nitely many in-stan
es (the representatives w.r.t. an appropriate equivalen
e relation).This shows in parti
ular that we
an assume w.l.o.g. that there is abounded number of prin
ipals (the bound is given by the index of theequivalen
e relation).One possible resear
h dire
tion is to investigate generalizations of thislemma, for instan
e in the
ontext of non
es: is there an equivalen
e rela-tion (preserving the solutions) whi
h redu
es the general
ase to the
ase of�nitely many non
es ? Su
h a result would not ne
essarily
ontradi
t theunde
idability result of [18℄ sin
e the proto
ol resulting from the
oding ofthat paper does not satisfy the basi
ness hypothesis. In other words, assuggested by theorem 6, the key for de
iding the se
re
y of
ryptographi
proto
ols might be to limit the
opying fa
ilities of the agents, not thenumber of sessions or non
es they generate.5. We showed the de
idability of se
re
y for a
lass of
ryptographi
 proto
ols,without any assumptions on the number of sessions (whether parallel ornot). This is theorem 55. This result is obtained by a redu
tion to set
onstraints with equality tests, but we did not use the full power of su
h
onstraints.The use of set
onstraints, abstra
ting away the order in whi
h messageshave been sent over the network is proved to be relevant. Also, the abilityof agents to re
ognize di�erent types of data appeared
learly as a simpli�-
ation fa
tor, whi
h
an be tuned so that we fall in or out of the de
idable
lass. We have showed the relationship between this ability and the
opy-ing fa
ilities of the agents: the more they are able to distinguish betweendi�erent data types, the more they are allowed to
opy blindly pie
es ofmessages, without es
aping from the de
idable
lass.
66

There are still several weaknesses in our paper. First, the
onstraint solvingte
hnique is too
omplex: we
onje
ture that our algorithm is in DEXPTIME,though we only showed a doubly exponential upper bound. It is also too
ompli-
ated for the appli
ations we have in mind. That is mainly be
ause we tried tobe as general as possible. However, most of the time, we don't need su
h general
onstraints. In parti
ular, we
an avoid the most
ompli
ated step (lemma 27)simply by designing normalized
onstraints only.Finally the big open question is the extension of these results to an unboundednumber of non
es.
Referen
es[1℄ M. Abadi and A. Gordon. A
al
ulus for
ryptographi
 proto
ols: the spi
al
ulus. Information and Computation, 148(1), 1999.[2℄ A. Aiken. Introdu
tion to set
onstraint-based program analysis. S
ien
eof Computer Programming, 35:79{111, 1999.[3℄ R. Amadio and D. Lugiez. On the rea
hability problem in
ryptographi
proto
ols. In Pro
. CONCUR'00, volume 1877 of Le
ture Notes in ComputerS
ien
e, 2000.[4℄ B. Bogaert and S. Tison. Equality and disequality
onstraints on brotherterms in tree automata. In A. Finkel, editor, Pro
. 9th. Symposium onTheoreti
al Aspe
ts of Comp. S
ien
e, Ca
han, Fran
e, 1992.[5℄ I. Cervesato, N. Durgin, P. Lin
oln, J. Mit
hell, and A. S
edrov. A meta-notation for proto
ol analysis. In P. Syverson, editor, 12-th IEEE ComputerSe
urity Foundations Workshop. IEEE Computer So
iety Press, 1999.[6℄ W. Charatonik and L. Pa
holski. Negative set
onstraints with equality.In Pro
. IEEE Symp. on Logi
 in Computer S
ien
e, pages 128{136, Paris,1994.[7℄ W. Charatonik and A. Podelski. Set
onstraints with interse
tion. In Pro
.IEEE Symposium on Logi
 in Computer S
ien
e, Varsaw, 1997.[8℄ J. Clarke and J. Ja
obs. A survey of authenti
ation proto
ol literature:Version 1.0. Draft paper, 1997.[9℄ H. Comon, M. Dau
het, R. Gilleron, F. Ja
quemard, D. Lugiez, S. Tison,and M. Tommasi. Tree automata te
hniques and appli
ations. Availableon: http://www.grappa.univ-lille3.fr/tata, 1997.

67

[10℄ H. Comon and V. Cortier. Tree automata with one memory, set
on-straints and
ryptographi
 proto
ols. Resear
h Report LSV-01-13, Labo-ratoire Sp�e
i�
ation and V�eri�
ation, ENS de Ca
han, Fran
e, De
ember2001.[11℄ H. Comon and V. Cortier and J. Mit
hell. Tree automata with one memory,set
onstraints and ping-pong proto
ols In Pro
. 28th Int. Coll. Automata,Languages, and Programming (ICALP'01), Crete, Gree
e, July 2001.[12℄ H. Comon and V. Shmatikov. Is it possible to de
ide whether a
rypto-graphi
 proto
ol is se
ure or not ? Draft paper, 2001.[13℄ V. Cortier and J. Millen and Harald Rue�. Proving Se
re
y is easy enough14th IEEE Computer Se
urity Foundations Workshop, pages 97-108, CapeBreton, 2001.[14℄ D. Dolev, S. Even, and R. Karp. On the se
urity of ping pong proto
ols.Information and Control, 55:57{68, 1982.[15℄ D. Dolev and A. Yao. On the se
urity of publi
 key proto
ols. In Pro
.IEEE Symp. on Foundations of Computer S
ien
e, pages 350{357, 1981.[16℄ C. Dufourd, A. Finkel, and Ph. S
hnoebelen. Reset nets between de
id-ability and unde
idability. Pro
. 25th Int. Coll. Automata, Languages, andProgramming (ICALP'98), Aalborg, Denmark, July 1998, volume 1443 ofLe
ture Notes in Computer S
ien
e, pages 103-115. Springer, 1998.[17℄ N. Dershowitz and J. Jouannaud. Handbook of Theoreti
al Computer S
i-en
e, volume B,
hapter Rewrite Systems, pages 243{320. Elsevier, 1990.[18℄ N. Durgin, P. Lin
oln, J. Mit
hell, and A. S
edrov. Unde
idability ofbounded se
urity proto
ols. In Pro
. Workshop on formal methods in se
u-rity proto
ols, Trento, Italy, 1999.[19℄ S. Even and O. Goldrei
h. On the se
urity of multi-party ping-pong proto-
ols. Te
hni
al Report 285, Te
hnion, Haifa, Israel, 1983. Extended abstra
tappeared in IEEE Symp. Foundations of Computer S
ien
e, 1983.[20℄ N. Heintze and J. Tygar. A model for se
ure proto
ols and their
omposi-tions. IEEE transa
tions on software engineering, 22(1), 1996.[21℄ N. Heinze and J. Ja�ar. A de
ision pro
edure for a
lass of set
onstraints.In Pro
. IEEE Symp. on Logi
 in Computer S
ien
e, Philadelphia, 1990.
68

[22℄ G. Lowe. Breaking and �xing the Needham-S
hroeder publi
-key proto
olusing FDR. In Pro
. Tools and Algorithms for the Constru
tion and Analysisof Systems (TACAS) (Margaria and Ste�en, eds.), vol. 1055 of Le
ture Notesin Computer S
ien
e, Springer-Verlag, pages 147{166, 1996.[23℄ J. Mongy. Transformation de noyaux re
onnaissables d'arbres. ForêtsRATEG. PhD thesis, Laboratoire d'Informatique Fondamentale de Lille,Universit�e des S
ien
es et Te
hnologies de Lille, Villeneuve d'As
q, Fran
e,1981.[24℄ J. Millen and H. Rue�. Proto
ol-Independent Se
re
y Pro
. of the Workshopon Formal Methods in Computer Se
urity, Chi
ago, 2000.[25℄ J. Millen and V. Shmatikov. Constraint solving for bounded-pro
ess
ryp-tographi
 proto
ol analysis. To appear in Pro
. 8th ACM Conferen
e onComputer and Communi
ations Se
urity, 2001.[26℄ L. Paulson. The indu
tive approa
h to verifying
ryptographi
 proto
olsJournal of Computer Se
urity, 1998, volume 6, pages 85-128.[27℄ M. Rusinowit
h and M. Turuani. Proto
ol inse
urity with �nite number ofsessions is NP-
omplete. In Pro
. 14th IEEE Computer Se
urity FoundationsWorkshop, pages 174{190, 2001.[28℄ H. Seidl. Haskell overloading is DEXPTIME-
omplete. Inf. Pro
ess. Lett.,52:57{60, 1994.
A Proof of lemma 27Lemma 27 Every expression e whi
h satis�es the basi
ness
ondition
an betransformed into a normal expression e0 su
h that, for every �, [[e℄℄� = [[e0℄℄� and,moreover je0jF and je0jt are polynomially bounded by jejt and je0jF .Note �rst that
ondition 2 is initially satis�ed by all expressions sin
e weassumed that any two expressions in P (
) are in
omparable with respe
t to thepre�x ordering.We are going to perform su

essive transformations, verifying more and more
onditions, while preserving those whi
h have already been rea
hed. Initially, weonly assume that
ondition 1 is satis�ed, as stated in the hypothesis of the lemma.Step 1 The goal of this step is to ensure, in addition to properties 1 and 2 aproperty, whi
h implies
ondition 3.

69

If
 is an equality test and p is a position, we write p �
 the equality testVq�
r p � q = p � r. In addition to
ondition 3, we want to ensure that in anyexpression g
(: : : ; ei; : : :) su
h that, for some
1, i �
1 �
, if ei = f
0(~e0) \ e00,then P (
1) � �(f
0(~e0)).To de�ne our rule, we �rst need to introdu
e a new equivalen
e relation:De�nition 62 Given an equality test
 su
h that
 is satis�able, we de�ne '
and S
 to be the least set S and equivalen
e relation ' su
h that:p �
 q) p; q 2 S and p ' qp �
0 q) p; q 2 S and p ' qp ' q) q ' pp ' q; q ' r) p ' rp � q 2 Sp ' p0 �) � p0 � q 2 Sp � q ' p0 � qLemma 63 The �xed point for '
 and S
 is rea
hed after a �nite number ofsteps. In addition, there exists an order �
 on the equivalen
e
lasses of '
 su
hthat u �
 u0 implies that no position of u is a pre�x of a position of u0.Proof: (sket
h) First, if there are two non-empty positions su
h that p � q ' pthen
 is unsatis�able: by indu
tion (on the �xed point
omputation of S;'), ift j=
 ^
0, then for every p ' q, t j= p = q. Sin
e we are only
onsidering �niteterms, we
annot have tjp = tjp�q.Consider the DAG G whose verti
es are elements of P (
)[P (
0) and (labeled)edges p i�! p � i. Then, for ea
h p �
i p0, merge the two
orresponding verti
es.We get a new graph Gf , whose set of verti
es is
ontained in the original setof verti
es. Then, by indu
tion (on the �xed point
omputation of S;'), S isin
luded in the set of paths of in Gf and if p ' q, then the path labelled by pand those labelled by q leads to the same vertex (starting from the vertex �).As we have seen above, Gf is a
y
li
, thus S and ' are �nite, thus the �xedpoint for S, ' is rea
hed after a �nite number of steps. Note that the numberof verti
es of Gf is smaller or equal to the number of verti
es of G.Sin
e Gf is a
y
li
, Gf indu
es an order � on its verti
es su
h that if v � v0than no path leading to the vertex v is a pre�x of a path leading to the vertexv0. Ea
h equivalen
e
lass u of ' is in
luded in the set of paths of one of thevertex vu of the graph. We �rst order arbitrarily the equivalen
e
lasses whi
hlead to the same verti
es and then we extend this order by u �
 u0 if vu � vu0and vu 6= vu0 . Then u �
 u0 implies that no position of u is a pre�x of a positionof u0. �
70

Gf : �1 2 3 41 1 1
G:

4 � 12 � 1 3 � 1

�
1 2 3 41 2 3

1 1 1
4

Figure 11: G and Gf for

Example 64 Consider
def=1 = 21 ^ 3 = 41 ^ 2 = 31. Then, the graphs G andGf are pi
tured in �gure 11 and'
= f1 = 21; 3 = 41; 2 = 31; 21 = 311; 31 = 411; 311 = 4111g:

In addition, we de�ne the equality test
e of an expression e by indu
tion one by:
e1^:::^en =
e1 ^ : : : ^
en
f
(e1;:::;en) =
 ^ 1 �
e1 ^ : : : ^ n �
en ^ 1 = 1 ^ : : : ^ n = nLet '
e be the equivalen
e relation
orresponding to
e and u1; : : : ; un be itsequivalen
e
lasses numbered in su
h a way that ui �
e uj implies i � j (this ispossible thanks to lemma 63).Then, (N1) is the su

essive appli
ation of Nu1 ; : : : ; Nun where(Nu) e! e[\p0 2 u \�(e)e00 2 ejp0
e00℄p2u\�(e)

Note: The rule (N1) is obviously terminating sin
e it requires at most asmany steps as the number of
lasses modulo '
e . However, its
omplexity isun
lear. We
onje
ture for instan
e that je0jF is plynomially bounded by jejFand jejt.Lemma 65 (N1) preserves the semanti
s as well as properties 1 and 2.Proof: For every equivalen
e
lass u and for every p1; p2 2 u \ �(e), by
onstru
tion,
e j= p1 = p2. Hen
e the rule preserves the semanti
s.71

Now, it preserves properties 1 and 2 sin
e it
onsists in repeatedly repla
ingan expression e0 with the interse
tion of e0 and other expressions, without
hang-ing the tests and, if an expression is basi
, then its interse
tion with any otherexpression is also basi
. �
Lemma 66 If e0 is the result applying (N1) to e, then:� 8p 2 S
e \ �(e0), e0jp is a singleton.� 8p '
e p0, e0jp = e0jp0 .� if e0jp = f
(e1; : : : ; en)\e00, then p �
 �'
e and for all 1 � i � n, p � i 2 S
e.� if p 2 �(e0) and p > p0 for some p0 2 ui where ui is minimal for �
, thene0jp � Sq2�(e) ejq.� if e0jp = f
(e1; : : : ; en) \ f
0(e01; : : : ; e0n) \ e00 then for every i = 1; ::; n,ei = e0i.Proof: We prove by indu
tion on k that if e0 is the result of applyingNu1 : : : Nukto e, then for all i � k,1. 8p 2 ui \�(e0), e0jp is a singleton.2. 8p; p0 2 ui \�(e0), e0jp = e0jp0 .3. if e0jp = f
(e1; : : : ; en)\ e00, then p �
 �'
e and for all 1 � i � n, p � i 2 S
e .4. if p 2 �(e0) and p > p0 for some p0 2 ui \ �(e0); i � k where ui is minimalfor �
, then e0jp � S(e), where S(e)def=Sq2�(e) ejq.If k = 0, i.e., no rule has been applied, then 1, 2 and 4 are true. 3 is true by
onstru
tion of S
e and '
e .Assume it is proved for k and let us prove the property for k + 1. We
onsidere00 the result of e0 by Nuk+1 where e0 is the result of e by the appli
ation ofNu1 : : : Nuk . e00 = e0[\p0 2 uk+1 \ �(e0)e000 2 e0jp0

e000℄p2uk+1\�(e0):
Consider q; q0 2 ui \�(e00), i < k + 1.� either q is in
omparable with the paths of uk+1 \ �(e), then e00jq = e0jqand, by indu
tion hypothesis, ejq is a singleton.

72

� or there exists p 2 uk+1 \ �(e) su
h that q � p, i.e. q = p � q1, thene00jq = e0[\p0 2 uk+1 \ �(e0)e000jq1 2 e0jp0
e000℄p2uk+1\�(e0):

By
onstru
tion of our equivalen
e relation, sin
e p ' p0 and p � q1 2 ui,we have p0 � q1 2 ui. Thus, by indu
tion hypothesis e0jp0�q1 = e0jp�q1 and isa singleton,thus e00jq = e0jq.� or there exists p 2 uk+1 \�(e) su
h that q < p, whi
h is impossible by the
hoi
e of the order on the equivalen
e
lasses.Con
lusion: in any
ases, we have that e00jq = e0jp is a singleton and e00jq = e00jq0 .Assume p > q for some p 2 �(e00) and assume ui is minimal w.r.t. �
, thene00jq = e0jp � S(e) by indu
tion.Consider q; q0 2 uk+1 \ �(e00). Assume q 62 �(e0). Then q is a path
reated byappli
ation of Nuk+1 . This means that there exists p 2 uk+1 \ �(e0) su
h that pis a stri
t pre�x of q whi
h
ontradi
ts Gf a
y
li
.Thus q; q0 are in uk+1 \ �(e0), thus by
onstru
tione00jq = e00jq0 = \p0 2 uk+1 \�(e0)e000 2 e0jp0
e000

is a singleton. Assume p > q, i.e. p = q � p1, for some p 2 �(e00) and assume uiis minimal w.r.t. �
, then for all p0 2 uk+1 \�(e0), we have e0jp0 = ejp0 , sin
e byminimality of uk+1 no rule
an have been applied above p0 for p0 2 uk+1 \�(e0).Thus e00jp = [p0 2 uk+1 \ �(e)e000 2 ejp0
e000jp1 � S(e)

It remains to prove 3: assume e00jq = f
(e1; : : : ; en) \ e4. Then, either q isin
omparable with the paths of uk+1 \ �(e0), then e00jq = e0jq and we
anapply the indu
tion hypothesis. Or q < p for some p 2 uk+1 \ �(e0), thene0jq = f
(e01; : : : ; e0n) \ e40) and 3 is ensured by indu
tion. Or (last
ase) q � pfor some p 2 uk+1 \ �(e0), then q = p � q1 and there exists p0 2 uk+1 \ �(e0)su
h that e00jq = e0jp0�q1 . Thus, by indu
tion hypothesis p0 �
 2'
e and for every1 � i � n, p0 � i 2 S
e. Now, by
onstru
tion of '
e and S
e , sin
e p '
e p0, wehave p �
 2'
e and for every 1 � i � n, p � i 2 S
e .
73

e Nu1! e1def=f1=21^3=41(X \X1; g(X \X1); Y; g(Y))\f2=31(X \X1; Z; g(Z);X2)e1 Nu2! e2def=f1=21^3=41(X \X1; Z \ g(X \X1); Y; g(Y))\f2=31(X \X1; Z \ g(X \X1); g(Z \ g(X \X1));X2)e2 Nu3! e3def=f1=21^3=41(X \X1; Z \ g(X \X1); Y \ g(Z \ g(X \X1));g(Y \ g(Z \ g(X \X1))))\f2=31(X \X1; Z \ g(X \X1); Y \ g(Z \ g(X \X1));X2)e3 Nu3! e3def=f1=21^3=41(X \X1; Z \ g(X \X1); Y \ g(Z \ g(X \X1));X2 \ g(Y \ g(Z \ g(X \X1))))\f2=31(X \X1; Z \ g(X \X1); Y \ g(Z \ g(X \X1));X2 \ g(Y \ g(Z \ g(X \X1))))
Figure 12: Redu
tion of e by (N1)

Now
onsider the last property.
e
ontains the identities p = p for p 2 �(e).Hen
e, if f
(e1; : : : ; en)\f
0(e01; : : : ; e0n)\e00 2 e0jp, then ei = e0i is the interse
tionof expressions ejp0 su
h that p � i '
e p0 (note that ei; e0i 2 e0jp�i. �Thanks to lemma 66, we have the required properties:Corollary 67 If e0 is the result of e by the appli
ation of (N1), then for everyequality test, if p �
 q then the expressions at positions p and q in e0 are identi
al.In addition, in any expression g
(: : : ; ei; : : :) su
h that, for some
1, i �
1 �
, ifei = f
0(~e0) \ e00, then P (
1) � �(f
0(~e0)).Example 68 Considere = f1=21^3=41(X; g(X); Y; g(Y)) \ f2=31(X1; Z; g(Z);X2)Then
edef=1 = 21 ^ 3 = 41 ^ 2 = 31 and the equivalen
e
lasses of '
e are:u1 = f1; 2 � 1; 3 � 1 � 1; 4 � 1 � 1 � 1g; u2 = f2; 3 � 1; 4 � 1 � 1g; u3 = f3:4 � 1g; u4 = f4gThe su

essive appli
ations of Nu1, Nu2, Nu3 and Nu4 are des
ribed �gure 12.Note that, now, \every expression in ejp is basi
" is equivalent to \there isan expression in ejp whi
h is basi
" sin
e the interse
tion of a basi
 expression74

with any other expression yields a basi
 expression. That is why, from now on,we may say, by abuse of language that \ejp is basi
" to mean either of the twoabove versions.We
onsider, in addition to the rule (N1), the following \
leaning" rules:(N2) f
(e1; : : : ; en) \ f(e01; : : : ; e0n)! f
(e1 \ e01; : : : ; en \ e0n)(N3) f
(e1; : : : ; en) \ g
0(e01; : : : ; e0m)!? if f 6= g.Lemma 69 The rules (N2); (N3), applied to normal forms w.r.t. (N1), preservethe semanti
s as well as properties 1, 2, 3 and the properties des
ribed in lemma66.Proof: First, by lemma 66, in any appli
ation of (N2), we must have ei = e0i.Then, it suÆ
ient to noti
e that
e is un
hanged by appli
ation of (N2), hen
eits appli
ation does not trigger (N1) and preserves the properties of lemma 66. �
Step 2 We start with some properties of equality tests.Lemma 70 Let j �
1 be the subset of
2
ontaining all equalities whose bothsides are pre�xed by j. If
2 satis�es the basi
ness
ondition in e and e satis�es
ondition 3, then
1 satis�es the basi
ness
ondition in every expression belongingto ejj.Proof: Let p � i1 � q �
1 p0, i1 6= i2 and p0 6�pref p. Then j � p � i1 � q �
2 j � p0 andj �p0 6�pref j �p. By basi
ness of
2, either ejj�p0 is basi
 or ejj�p�i2
ontains basi
 ex-pressions only or else j �p�i2 �w �
2 j �p0 for some w, whi
h implies p�i2 �w �
1 p0 �
Lemma 71 If
 satis�es the basi
ness
ondition in e and
1 is an equivalen
e
lass of
, then
 n
1 satis�es the basi
ness
ondition in e.Proof: Let p � i1 � q �
n
1 p0, i1 6= i2 and p0 6�pref p. Then p � i1 � q �
 p0and, by basi
ness of
, either ejp0 or every expression in ejp�i2 is basi
 or elsep � i2 � w �
 p0for some w. In the latter
ase, sin
e
1 is an equivalen
e
lass,p � i2 � w �
n
1 p0. �Now, we use the following two transformation rules:(N4) f
^j�
1(: : : ; ej; : : :)! f
^j�
1(: : : ; ej \ g
1(e1j ; : : : ; ekjj); : : :)if ej = g
0(e1j ; : : : ; ekjj) \ e00 and
 does not
ontain any test whose both sides arepre�xed by j. 75

(N5) f
^p1�
1^:::^pn�
n(~e)! f
(~e)if p1 �
1 [: : : pn �
n is a union of equivalen
e
lasses, every pi is non emptyand, for every i, there is an expression ei at position pi in f
^:::(~e) su
h thatei = g
0i(~e0i) \ e00i and
0i j=
i. (In words: we may remove
lasses whi
h are
onsequen
es of equality tests lower in the expression).Lemma 72 (N4) and (N5) preserve
onditions 3, 1 and 2. An expression whi
his un
hanged by appli
ation of these two rules satis�es
ondition 4. Moreover,the size (w.r.t. F) is preserved by the two rules, the size (w.r.t. t) is redu
ed bythe se
ond rule and, using repeatedly the �rst rule in an expression e results inan expression e0 su
h that je0jt � jej2t .Proof: (sket
h) By lemmas 70 and 71, these transformations preserve
ondition1 and they preserve trivially
ondition 3.Condition 2 is also preserved sin
e we did not merge any equality test so far.The satisfa
tion of
ondition 4 follows from an inspe
tion of the expressionswhi
h are left un
hanged by any appli
ation of these rules.The preservation of jejF follows from the de�nition. If
 yields a new test
0, possibly after repeated appli
ations of (N4), then there is a p1 su
h that
0
onsists in equalities p = q su
h that p1 � p �
 p1 � q. If we �x the size of p1, thenthe sum of sizes of su
h
0 is bounded by j
j. Hen
e the total size of the newtests is bounded by j
j2. �
Step 3 The purpose of this step is to show how to satisfy in addition the
ondition 5, while preserving properties 3, 1,4, 2. In what follows, integers i; j:::are always assumed range over a �nite set 1::n whi
h is
onsistent with the arityof fun
tion symbols.Let e be an expression f
(~e1) \ f
0(~e2) \ : : :. If e is in normal form w.r.t.(Ni), i � 5, then we may assume that ~e1 = ~e2. Indeed, this is true of normalforms w.r.t. (N1); (N2); (N3) thanks to lemmas 66 and 69, and su
h a propertyis trivially preserved by the rules (N4); (N5). We will however only assume inwhat follows the weaker property �(f
(~e1)) = �(f
0(~e2)).We de�ne
 u
0 (relatively to e) as follows: �rst, if
 ^
0 is unsatis�able, werepla
e it with ?. Otherwise, for every non-trivial equivalen
e
lass
0 for
, letQ(
0;
0) = fw j 9p 2 P (
0); p � w 2 P (
0); ejp�w not basi
 gandQm(
0;
0) = fw � i j 9w0 2 Q(
0;
0); w <pref w0; 8w0 2 Q(
0;
0); w � i 6<pref w0g:76

Q(
0;
0)Qm(
0;
0)

Figure 13: A representation of Q(
0;
0) and Qm(
0;
0)Intuitively, Qm(
0;
0) is the border of Q(
0;
0) with its maximal elements. See�gure 13.Ea
h time Q(
0;
0) is empty, we let
0 =
0 and, otherwise:
0
0 def= ^p�
0q ^w2Qm(
0;
0) p � w = q � w
Then

0 def= ^
0a
lass of

0
0We de�ne now the sequen
e
n as follows:
1 =
,
01 =
0 and
n+1 def=
n
0nand
0n+1 def=
0n
n .Note that if p � w = q � w 2

0 , then p � w; q � w 2 �(f
(~e1)) = �(f
0(~e2))).Moreover, if
 6=
, then j
j > j
j. It follows that the sequen
es
n and
0n areultimately stationary: let
1 and
01 be the respe
tive limit values of
n and
0n.We de�ne
 u
0 def=
1 ^
01:Example 73 Let us
onsider
 def= 1 = 2 and
0 def= 211 = 3^ 11 = 4 and assumethat every position of
 or
0 is not basi
. Then
 u
0 is
omputed in two steps:step 1 Q(
;
0) = f11; 1g thus Qm(
;
0) = f11g.Q(
01;
) = Q(
02;
) = ; where
01 = 211 = 3 and
02 = 11 = 4.Thus
2 def=

0 = 111 = 211 and
02 def=
0
 =
0 = 211 = 3 ^ 11 = 4.step 2 Q(
2;
02) = ;.Let
120 def= 211 = 3 and
220 def= 11 = 4, then Q(
120;
2) = ; and Q(
220;
2) =f1g thus Qm(
220;
2) = f1g.Thus
3 def=
2
02 =
2 = 111 = 211 and
03 def=
02
2 = 211 = 3 ^ 111 = 41.77

3
03 =
3,
03
3 =
03, thus
 u
0 def= 111 = 211 ^ 211 = 3 ^ 111 = 41.Let us analyze a bit more pre
isely the
omplexity: for every pair p �
u
0 q,there is a position r 2 P (
) [P (
0) su
h that p = p1 � i and r = p1 � r1. Then, ifa is the maximal arity of a fun
tion symbol, thenjP (
 u
0)j � (j
j+ j
0j)� awhere a is the maximal arity of a fun
tion symbol and sin
e the number ofpossible
hoi
es for p1 is bounded by j
j+ j
0j. It follows thatj
 u
0j � (j
j+ j
0j)�M(
;
0)� a � a� (j
j+ j
0j)2where M(
;
0) is the maximal length of a position in P (
) [P (
0).Then we use the following transformation rule:(N6) f
(e1; : : : ; en) \ f
0(e01; : : : ; e0n)! f
u
0(e1 \ e01; : : : ; en \ e0n)if �(f
(~e)) = �(f
0(~e0)).First, P (
); P (
0) � �(f(~e)), thanks to property 3. It follows that P (
u
0) ��(f(~e)). The semanti
s is also preserved sin
e, as long as all positions p � i andq � i are in �(f
(~e)), and the top symbols at positions p and q are identi
al, anequality test p = q 2
 is equivalent to the
onjun
tion of equality tests p�i = q �i.Condition 3 is also trivially satis�ed. Remains to verify the preservation ofthe other ones:
ondition 4 is shown to be preserved in lemma 74,
ondition 1 inlemma 75,
ondition 2 in lemma 76.Lemma 74 The rule preserves property 4.Proof: A
tually, every
0 and
00 satisfy property 4. Indeed, if, in the
lass
0of p (in
), q does not share any pre�x with p, then in the
lass of p � w (w.r.t.
0), q � w does not share any pre�x with p � w. �
Lemma 75 The transformation preserves the basi
ness
ondition.Proof: It suÆ
es to show that
^
0 satis�es the basi
ness
ondition, whenever
;
0 do. Then we use an indu
tion on the �xed point
omputation for
 u
0.Assume p � i � q �
^
0 p0, p0 6�pref p, j 6= i and, for every w, p � j � w 6�
^
0 p0.Then p is not empty. Assume w.l.o.g that p � i � q; p0 2 P (
0) where
0 is anequivalen
e
lass of
. (If this is not the
ase, ex
hange the roles of
 and
0).Then, by lemma 74, there is a p01 �
0 p � i � q su
h that p is not a pre�x of p01.Hen
e we may assume w.l.o.g. that p is not a pre�x of p0 (possibly after repla
ingp0 with some p01). 78

If p � i � q �
 p0, then the result follows from the basi
ness property of
:in su
h a
ase, we must have
0 =
0 (sin
e, in any
ase, either
0 =
0 orP (
0) \ P (
0) = ;), hen
e p � j � w �
 p0 i� p � j � w �
^
0 p0.Let us assume now that this is not the
ase:
0 6=
0, p � i � q = p0 �w0 � i0 withw0 � i0 2 Qm(
0;
0) and p0 �
 q0.8>>>><>>>>:
p � i � q = p0 � w0 � i0p0 = q0 � w0 � i0p0 �
 q0 �
 p00p00 � p1 �
0 q1ejp00�p1 is not basi

and � w0 <pref p1w0 � i0 6<pref p1
In addition, we may assume, thanks to property 4 again that p0 and q0 on onehand and p00 and q1 on the other hand do not share any non-trivial pre�x.First
ase: p <pref p0 . There is a q0 su
h that p0 = p � i � q0. We use thebasi
ness property of
,
onsidering the equivalen
e p � i � q0 �
 q0: eitherejp�j is basi
 or ejp0 is basi
 or p � j � w �
 p0 for some w. In the �rst two
ases, we get what we want (ejp0 basi
 implies ep�i�q basi
). In the last
ase,p � j � w � w0 � i0 �
0 p0 by
onstru
tion, hen
e
ontradi
ting the hypothesis8w0:p � j � w0 6�
^
0 p0.Se
ond
ase: p0 � w0 >pref p �pref p0 . Sin
e w0 � i0 6<pref p1 and w0 �pref p1,p1 = w0 � j0 � � for some j0 6= i0 and �. We apply now the basi
nessproperty of
0,
onsidering the equivalen
e p00 �w0 � j0 � � �
0 q1 (re
all thatp00 � p1 �
0 q1). Sin
e ejp00�p1 is not basi
, only two
ases
an o

ur:Case 2.1: ejp00�w0�i0 is basi
 whi
h implies ejp0�w0�i0 basi
, hen
e the de-sired
on
lusionCase 2.2: p00 � w0 � i0 � w �
0 q1 �
0 p00 � p1 for some w. Let p = p0�p2; w0 =p2 � i � w1. Then p00 � p2 � i � w1 � i0 � w �
0 q1 and, sin
e i 6= j, by thebasi
ness of
0, either ep00�p2�j is basi
 or ejq1 is basi
 or else there is aw2 su
h that p00 � p2 � j � w2 �
0 q1.In the �rst
ase, ejp0�p2�j is also basi
 (i.e. ejp�j is basi
) and we
on-
lude.The se
ond
ase
ontradi
ts the hypothesis that ejp00�p1 is not basi
.In the third
ase, p00 � p2 � j � w2 �
0 p00 � p1 �
0 p00 � w0 � i0. Then, by
onstru
tion, p0 �w0 � i0 �
^
0 p0 �p2 �j �w2 = p �j �w2, whi
h
ontradi
tsagain the hypothesis.Third
ase: p = p0 � w0, i = i0 and q is empty . p1 = w0 � j0 � � with j0 6=i0. If j = j0, from ejp00�p1 is not basi
, we
on
lude the desired result.Otherwise, j 6= j0 and we use the basi
ness property of
0,
onsidering79

again p00 � w0 � j0 � � �
0 q1, j 6= j0. Either ejp00�w0�j is basi
 (in whi
h
asewe also
on
lude) or there is w01 p00 � p1 �
0 p00 � w0 � j � w01.In the latter
ase, we use again the basi
ness property on
0,
onsideringp00 � w0 � j0 � � �
0 q1, i 6= j0. Either ejp00�w0�i0 is basi
, in whi
h
ase we
on
lude, or else there is a w02 su
h that p00 � p1 �
0 p00 � w0 � i0 � w02. Now,let us re
all that, by
onstru
tion, 8w0 2 Q(
0;
0), w0 � i0 6<pref w0. Sin
ew0 � i0 � w01 2 Q(
0;
0), we must have w01 empty.ejp00�w0�i0 is basi
 (in whi
h
ase we
on
lude) orIt follows that p00 �w0 �i0 �
0 p00 �w0 �j �w02, whi
h
ontradi
ts p�i 6�
^
0 p�j �w02.�
Lemma 76 The transformation (N6) preserves property 2.Proof: We prove, by indu
tion on n that1. for every p � q; p 2 P (
n) [P (
0n) su
h that q is not empty, either ejp�q is abasi
 expression or else
n+1 6=
n or
0n+1 6=
0n.2.
n and
0n (individually) satisfy property 2The lemma will follow.For every n, if p 2 P (
n) and if p � q 2 P (
0n) and if ejp�q is not basi
, thenq 2 Q(
0;
0n) by de�nition (
0 is the equivalen
e
lass of p) and, sin
e q is notempty, a suÆx of q belongs to Qm(
0;
0n). It follows that
0
0n 6=
0 and therefore
n+1 6=
n. So, from now on we may assume w.l.o.g that both p and p � q are inP (
n).In the base
ase,
n =
 and
0n =
0 and
;
0 satisfy
ondition 2. Then, ifp; p � q 2 P (
), ejp�q is basi
.Consider now the indu
tion step and let p 2 P (
0
0n), p � q 2 P (
1
0n), q is notempty and
0;
1 are
lasses of
n.Assume �rst that
0
0n 6=
0. Then, a

ording to the de�nition of
n+1, thereare positions su
h that:8>>>>>><>>>>>>:

p = p1 � w � iw <pref w0p2 �
n p1p2 � w0 2 P (
0n)ejp2�w0 is not basi
8w00 2 Q(
0;
0n); w � i 6<pref w00We
onsider now several
ases for p � q.80

ase 1: p � q 2 P (
1
0n),
1
0n =
1 �
n . Then p1 <pref p � q and we
on-
lude using property 2 on
n (Indu
tion hypothesis).
ase 2: p � q 2 P (
1),
1 6=
1 �
n . Then, by de�nition, there are posi-tions su
h that:8>>>>>><>>>>>>:
p � q = p3 � w1 � i1w1 <pref w01p4 �
n p3p4 � w01 2 P (
0n)ejp4�w01 is not basi
8w001 2 Q(
1;
0n); w1 � i1 6<pref w001In this
ase, p � q = p3 � w1 � i1 = p1 � w � i � q, hen
e p3 and p1 mustbe
omparable w.r.t. the pre�x ordering. If they are distin
t, assumepk is the largest one, then, by property 2 on
n, ejpk must be basi
,hen
e ejp or ejp�q must be basi
 and we
on
lude. Otherwise, p1 = p3and
0 =
1. By hypothesis, 8w00 2 Q(
0;
0n); w � i 6<pref w00, thusw00 = w � i � q =2 Q(
0;
0n), whi
h
an only o

ur when ejp1�w�i�q = ejp�qis basi
, and we
on
lude again.Assume now
0
0n =
0. If
1
0n =
1, we
on
lude by the indu
tion hypothesis:property 2 holds on
n.Otherwise, there are positions su
h that:8>>>>>><>>>>>>:

p � q = p1 � w1 � i1w1 <pref w01p2 �
n p1p2 � w01 2 P (
0n)ejp2�w01 is not basi
8w001 2 Q(
1;
0n); w1 � i1 6<pref w001
0
0n =
0 implies p1 6<pref p. If p1 >pref p, from p1 �
n p2, we
on
ludethat ejp1 is basi
 (hen
e ejp�q), thanks to the indu
tion hypothesis.We are left to the
ase p = p1. Then p2 �
n p and p2 � w01 2 P (
0n) and w01is not empty, hen
e
0
0n 6=
0, a
ontradi
tion. �
Lemma 77 Property 5 is satis�ed for normal forms w.r.t. (N6).Proof: At step 1, we ensured that, for every p 2 �(e), ejp only
ontains expres-sions of the form f
1(~e) \ : : : \ f
n(~e) \X1 \ : : : \Xm. The rule (N6) imposes81

f
f f

ff
X

X
XXX

X

Figure 14: the tests of example 78
n = 1, hen
e property 5. �In this step, we did not in
rease jejF and j
 u
0j � a � (j
j + j
0j)2, hen
eje0jt � a� jej2t .Step 4 . The purpose of this last step is to rearrange the equality tests sothat there are no overlapping tests ex
ept possibly for basi
 expressions. (Moreformally, we need to ensure
ondition 6).Let us show �rst some examples of what we want.Example 78 e def= f11=12=2(f11=12=21=22(f(X;X); f(X;X)); f(X;X)). e
on-tains overlapping tests. We
an however use �rst the rules (N4); (N2) and getf11=12=2(f11=12=21=22(f1=2(X;X); f1=2(X;X)); f(X;X))Now, it turns out that the intermediate test is a
onsequen
e of the top one andthe lowest ones, and it
an be removed, yielding (after normalization w.r.t. (N2)): f11=12=2(f(f1=2(X;X); f1=2(X;X)); f1=2(X;X))for whi
h there is no overlapping test.In this example, pi
tured in �gure 14, we see that we do not need to
hange thetests but only to reorganize them.Example 79 Lete = f111=121=112=122=2(f1=2(g(X;X; Y); g(X;X; Y));X);

82

g

f
f

X X

X
g

Y YXX
Figure 15: the tests of example 79

whi
h
ontains overlapping tests. Using the rule (N4) we getf
(f1=2(g(X;X; Y); g(X;X; Y))\f11=12=21=22(g1=2(X;X; Y); g1=2(X;X; Y));X)with
 def= 111 = 121 = 112 = 122 = 2. Using rule (N6) we getf111=121=112=122=2(f11=12=21=22^13=23(g1=2(X;X; Y); g1=2(X;X; Y));X)Now, the
lass 11 = 12 = 21 = 22 is a
onsequen
e of the top and low tests andit
an be removed:f111=121=112=122=2(f13=23(g1=2(X;X; Y); g1=2(X;X; Y));X)Finally the low tests
an also be removed sin
e they are
onsequen
es of the topone, yielding:f111=121=112=122=2(f13=23(g(X;X; Y); g(X;X; Y));X)in whi
h there is a remaining overlapping test. However, in e, Y must be basi
(thanks to the basi
ness
ondition) and thus the lower positions 13 and 23
or-respond to basi
 expressions.In this example, pi
tured in �gure 15, we need to push some tests down.So, the idea is to �rst inherit the
onstraints thanks to rule (N4) (this hasbeen done at step 2), next normalize w.r.t. (N6) (this has been done at step 3)and �nally remove useless tests, whi
h we do now.(N7) f
1(~e1)[g
2^
0(~e2) \ e02℄p1 ! f
1(~e1)[g
2(~e2) \ e02℄p1If 83

�
0 is an equivalen
e
lass in
2 ^
0�
1 ^ p1 � ^r 2 �(g
2^
0(~e2))r 6= �g
2^
0(~e2)jr = h
r (~er) \ e0r
r �
r j=e
0

� e = f
1(~e1)[g
2^
0(~e2) \ e02℄p1� j=e is the
onsequen
e relation a

ording to the following rules:{ re
exivity, symmetry and transitivity{ right
ompatibility: p = q j=e p � r = q � r{ folding (w.r.t. e): if ejp = f
(~e0) \ e00 and f has arity n, then p � 1 =q � 1 ^ : : : ^ p � n = q � n j=e p = q.{
onjun
tion introdu
tion:
1 j=e
01
2 j=e
02 �)
1 ^
2 j=e
01 ^
02.We must be
areful on how to apply this rule. Consider the following exampleExample 80 e def= f111=12=2(f11=12=2(f1=2(g>(X); g>(X)); g>(X)); g>(X)). Thisexpression is in normal form w.r.t. the previous transformations. There aretwo ways of applying rule (N7): we
an remove the
onstraint 1 = 2 sin
e11 = 12 = 2 ^ 11 � > ^ 12 � > j= 1 � (1 = 2). Then the expression is in nor-mal form for N7 and there are still some overlapping tests. The other possibilityis to apply (N7) to 11 = 12 = 2: 111 = 12 = 2^ 1 � 1 � (1 = 2) j= 1 � (11 = 12 = 2)and there is no longer any overlapping tests in the expression.We assume that the previous steps have been
ompleted and use the rule(N7) top-down.Lemma 81 (N7) (applied top-down) is terminating, it preserves the semanti
sand the properties 5, 3, 1, 4, 2.Proof: The termination is straightforward: the size of the expression is stri
tlyde
reasing (and the resulting expression e0 satis�es je0jF = jejF and je0jt � jejt.)The
ondition of the rule ensures the preservation of interpretations. Prop-erty 5 is preserved sin
e we do not
hange the term stru
ture of the expression.Property 3 is not ne
essarily preserved by one-step appli
ation of (N7). However,if p0 � p1 = p0 � p01 is
he
ked higher up in the expression, then the expressions atpositions p1 and p01 must be identi
al (by property 3) and the rule (N7) will beapplied twi
e to these expressions, yielding removal of
0 for both o

urren
es.Lemma 71 ensures the preservation of property 1. Also, property 4 is pre-served sin
e we remove an equivalen
e
lass and property 2 is preserved sin
e we84

remove some tests. �
Lemma 82 Normal forms w.r.t. rule (N7) (applied top-down) satisfy
ondition6.Proof: Assume that we are in the situation of property 6: e = f
(e1; : : : ; en)\e0,p1 � p2 �
 q, p1; p2 are non-empty, f
(e1; : : : ; en)jp1 = g
0(e01; : : : ; e0m) \ e00 andp0 2 P (
0).Assume that there is no position p02 su
h that p1 � p02 �
 p1 � p2 and p02 is
omparable with p0 w.r.t. �pref . Let p1 �p02 �
 p1 �p2 su
h that p02 is the positionwhi
h shares the longest pre�x with p0 . Then we
an write p0 = w � j � w0 andp02 = w �i �w00 with i 6= j. By
ondition 1 (for
),
onsidering p1 �w �i �w00 �
 p1 �p2,either ejp1�p2 is basi
 or ejp1�p0 is basi
 or 9w1; p1 � p2 �
 p1 � w � j � w1. This last
ase
ontradi
ts the maximal shared pre�x hypothesis.We are left to the
ase where p0 is
omparable w.r.t. �pref with some positionp02 su
h that p1 � p02 �
 p1 � p2.If p0 �
0 q0 and q0 does not share any non-trivial pre�x with p0 (this is possiblethanks to property 4 on
0), then a similar property holds for q0: we assume nowthat p0 �
0 q0 and there are positions p02 and p002 su
h that p1 �p2 �
 p1 �p02 �
 p1 �p002and p0 and p02 on one hand and q0 and p002 on the other hand are
omparable w.r.t.the pre�x ordering. p02 must be distin
t from p002 sin
e p0 and q0 do not share anypre�x.By rules (N4); (N6),
0 =
1 u : : : u
n and
1 j= p02 = p002. Now, we
onsider anumber of
ases, depending on the
omparisons between p0; q0; p02; q02:Case 1: p0 <pref p02 .In this
ase, by de�nition of u, ejp1�p02 must be basi
:
0 has to
ontain asuÆx of p02 and we use property 2 on
0. It follows that ejp1�p2 is basi
.Case 2: q0 <pref p002 . This is similar to the �rst
ase.Case 3: p0 �pref p02 and q0 �pref p002 .Let p0 = p02 � q02. By de�nition of u, p0 �
0 p002 � q02. Then q0 must be equalto p002 � q02 and
 j= p1 � (p0 = q0). Next, equalities p0 �
0 q00, in whi
h p0 andq00 share a non-trivial pre�x must be
onsequen
es (w.r.t. j=e) of equalitytests on subexpressions: this is true for normal forms w.r.t. (N4) and thisis an invariant of (N6) sin
e
 u
0 j=e
 ^
0.Then, rule N7
an be applied (
ontradi
tion). �

85

B SET-
onstraints and Automata with one memoryWe
onsider a satis�able SET-
onstraint S and we assume that AS is
onstru
tedas des
ribed in se
tion 5.3.We
an �rst note that if e = f
(e1; : : : ; en) o

urs in S and if p is a non-root position of e, then
 # p has only one non-trivial equivalen
e
lass. This isensured by
onditions 1, 4 and 2 of normal expressions (see de�nition 26.We prove by indu
tion on the size of t that, if � is the solution of solved(S),then for every t a

epted in qX , H(t) 2 �(X).For the sake of simpli
ity, we will say shortly that \t is a

epted in < q;m >"instead of \there is a
omputation of the automaton on t yielding the
on�gura-tion < q;m >.Lemma 83� if t is a

epted in < qe;p; � >, then H(t) 2 �(ejp), H(t) j=
 # p and� = H(t)jp�p0 for some p0 tested by
 # p (sin
e H(t) j=
 # p and sin
e
 # phas only one non-trivial equivalen
e
lass, for every p0; p00 tested by
 # p,we have H(t)jp�p0 = H(t)jp�p00).� if t is a

epted in < qe; � >, then H(t) 2 �(e) and � = a.� if t is a

epted in < qX ; � >, then H(t) 2 �(X) and � = H(t).� if t is a

epted in < q�; � >, then � j= �.� if t is a

epted in < qa; � >, then t = a and � = a.Proof: (sket
h) If jtj = 1, then t = b for some
onstant in F and the onlytransition leading to b is b >�!b qb.Assume Lemma 83 is satis�ed for every t of size � n and
onsider t su
h thatjtj = n+ 1.If t is a

epted in < qe;p; � >, then t = g(t1; : : : ; tk) su
h that ti is a

epted in< qe;p�i; �i >. By indu
tion hypothesis, H(ti) 2 �(ejp�i), H(ti) j=
 # p � i and� = H(ti)jp�i�p0 for some p0 tested by
 # p � i. H(t) = g(H(t1); : : : ;H(tn)), thusH(t) 2 �(ejp). We have also that H(t) j= g
 # p, thus H(t) j=
 # p. Finally,� = �i for some i su
h that p � i is a position
he
ked by
, thus � = H(t)jp�p0 forsome p0 tested by
 # p.The other
ases are proved similarly. �Conversely, if t 2 �(X) where � is the minimal solution of solved(S), thenthere exists t0 su
h that H(t) = t0 and t0 is a

epted in state qX .Lemma 84 86

1. if t 2 �(X), then there exists t0 su
h that H(t0) = t and t0 is a

epted in< qX ; t0 >.2. if t 2 �(ejp) and t j=
 # p, then there exists t0 su
h that H(t0) = t and t0 isa

epted in < qe;p; tjp�p0 > for some p0 tested by
 # p.3. if t 2 �(e), then there exists t0 su
h that H(t0) = t and t0 is a

epted in< qe; a >.Proof: (sket
h) We prove that if Tnsolved(S)(;) satis�es the properties of lemma84, then Tn+1solved(S)(;) also satis�es the properties of lemma 84. The result followsby minimality of �.Assume Tnsolved(S)(;) satis�es the properties of lemma 84. First, we
an verifythat if Tnsolved(S)(;) j= � then there exists t0 su
h that t0 is a

epted in state q�.Assume now that Tn+1solved(S)(;) satis�es property 1, then, by well-founded indu
-tion on � (the reverse pre�x order), we show that Tn+1solved(S)(;) satis�es property2 and 3.Thus, it is suÆ
ient to prove that Tn+1solved(S)(;) satis�es property 1: assumet 2 [[X℄℄n, then there exists a
lause �) e � X su
h that Tnsolved(S)(;) j= �and t 2 [[e℄℄n. Applying the indu
tion hypothesis and the rules of the automaton,we dedu
e that there exists t0 su
h that H(t0) = t and t0 is a

epted in < qX ; t0 >.�
C Proto
ols and Horn ClausesLet P be a proto
ol. We assume HMsg ;HI and HP
onstru
ted as des
ribed inSe
tion 6.2.We �rst
onstru
t HI0 su
h that the maximal initial knowledge of the in-truder I0 is a minimal interpretation of the predi
ate I0 whi
h satis�es HI0 .Lemma 57 Let t1; : : : ; tn be message s
hemes with the free variables x1; : : : ; xk.Then, there exists a set of Horn
lauses HI0 su
h that I0(m) is derivable fromHI0 [Hmsg if and only if parts(m) \ fti� j 1 � i � n; �(xi) 2 Ahg = ;.Proof: Let p be the maximal depth of the terms t1; : : : ; tn. Let S = fti� j 1 �i � n; �(xi) 2 Ahg. We introdu
e a new predi
ate P�p su
h P�p a

epts theterms of depth larger or equal to p. The
lauses HI0 for P�p and I0 are des
ribed�gure 16. jmjd denotes the depth of the term m. Let H0 = HMsg [HI0 .By
onstru
tion, H0 ` P�p(m) if and only if the depth of m is greater or equalto p. 87

(1) I0(m) if jmjd � pand parts(m) \ S = ;
(2) P�p(m) if jmjd = p
(3) Msg(x1) : : :Msg(xn) P�p(xi)P�p(f(x1; : : : ; xn) 1 � i � n
(4) I0(x1) : : : I0(xn) P�p(xi)I0(f(x1; : : : ; xn)) 1 � i � n; f 2 IF
(5) Msg(x1) : : :Msg(xn) P�p(xi)I0(f(x1; : : : ; xn)) 1 � i � n; f 2 OF
(6) I0(x1) Msg(x2) P�p(xi)I0(fx1gx2) i = 1; 2

Figure 16: Horn
lauses for P�p and I0

88

Let us show by indu
tion on the number of rules whi
h have been applied thatif H0 ` I0(m) then parts(m)\S = ;. Let m be a term su
h that H0 ` I0(m) andlet us
onsider the last rule whi
h has been applied:rule (1): parts(m) \ S = ; by de�nition of rule (1).rule (4): m = f(m1; : : : ;mn su
h that f 2 IF , H0 ` I0(m1); : : : ; I0(mn) andthere exists i su
h that H0 ` P�p(mi).parts(m) = fmg [[1�i�n parts(mi):
By indu
tion hypothesis, parts(mi) \ S = ;. In addition, there exists isu
h that jmijd � p, thus jmjd > p whi
h implies that m 62 S. Thusparts(m) \ S = ;.rule (5): m = f(m1; : : : ;mn su
h that f 2 OF and there exists i su
h thatH0 ` P�p(mi), thus jmjd > p. Sin
e parts(m) = fmg and jmjd > p, wehave parts(m) \ S = ;.rule (6): this
ase is similar to the previous ones.Conversely, an indu
tion on the depth of m proves that if parts(m)\S = ;, thenH0 ` I0(m). �We prove here Lemma 56 by proving the following stronger lemma.Lemma 85 Let m be a message and a an agent, C `? I(m) i� there exists area
hable H su
h that [m℄ 2 H andC `? I(si(a;m)) i� there exists a rea
hable H su
h that S(a; i;m) 2 H.To prove this, we need few lemmas:Lemma 86 If there exists a rea
hable H1 su
h that m1 2 H1 where m1 is amessage and if there exists a rea
hable H2 su
h that e2 2 H2 where e2 is eithera message or a state, then there exists a rea
hable H su
h that m1; e2 2 H.A transition t of a proto
ol is appli
able in H provided Pre(t) � H. Thus, if tis appli
able in H, then t is appli
able in H 0, for all H 0 � H. In the same way,if X 2 fake(Cont(H) [I) then X 2 fake(Cont(H 0) [I), for all H 0 � H.Therefore, let H be the global state obtained from H1 by applying all the tran-sitions used to obtain H2. e2 is in H and m1 is still in H sin
e the transitionsdo not remove any message.Lemma 87 Let S a set of messages su
h that 8m 2 S C `? m. Then 8m 2fake(S); C `? m. 89

Pairing, unpairing, en
ryption and de
ryption are simulated by the
lauses inFigure 8.For Lemma 56, we �rst prove by indu
tion on n that if C `n I(m) then thereexists a rea
hable H su
h that [m℄ 2 H and if C `n I(si(a;m)) then there existsa rea
hable H su
h that S(a; i;m) 2 H.For n = 0, it is true,Assume the hypothesis is veri�ed for n, and assume C `n+1 I(m). Thelast dedu
tion rule is either one of those presented Figure 8, in this
ase, byinspe
tion of the dedu
tion rules, using the indu
tion hypothesis and Lemma86, we
on
lude that there exists a rea
hable H su
h that [m℄ 2 H. Or the lastdedu
tion rule is one of those presented Figure 9. Then,C `n I(si(a;m0));Msg(m0); I(m1);Msg(m1); : : : ; I(mp);Msg(mp)where mi = Mi�0, m0 = M0�0 and �0 preserves the type : if �0(xA) = t whereA is an agent variable, then C `n A(t), thus t is an agent. By appli
ation of theindu
tion hypothesis and applying Lemma 86, there exists a rea
hable H su
hthat m;m1; : : : ;mp 2 H. Thus, the transitiont = fS(A�0; i;M�0);M1�0; : : : ;Mp�0g �!fS(A�0; i+ 1;M 0�0);M 01�0; : : : ;M 0q�0gis appli
able in H. Let H 0 the global state obtained from H by applying t, m isin H 0.Assume C `n+1 I(si(a;m)). The only
hoi
e for the last dedu
tion rule isone those presented Figure 9. The same reasoning as above allow us to
on
ludethat there exists a rea
hable H su
h that S(a; i;m) 2 H.Conversely, we prove by indu
tion on n that if there exists a n-rea
hable Hsu
h that [m℄ 2 H or S(a; i;m) 2 H then C `? I(m) or C `? I(si(a;m)) wheren-rea
hable stands for \rea
hable with n global transitions".For n = 0, H = H0 and H0 does not
ontain any message or state.Assume the hypothesis is veri�ed for n, and assume there exists a n + 1-rea
hable H su
h that [m℄ 2 H. Thus, there exists a n-rea
hable H1 su
h thatH is an honest or fake su

essor of H 0. If [m℄ 2 H 0, we
on
lude immediately.Assume [m℄ 62 H 0:honest su

essor Let t the appli
able transition su
h that H = (H 0n(Pre(t)\H 0) [Post(t)). By appli
ation of the indu
tion hypothesis and applyingthe
lause des
ribed in Figure 9, we
on
lude C `? I(m).fake su

essor IfH = H 0[fmg whereH 0 is n-rea
hable andm 2 fake(Cont(H)[I). Lemma 87 and the indu
tion hypothesis allows us to
on
lude.
90

