http://lwww.Isv.ens—cachan.fr/Publis/
Accepted for publication in Theoretical Computer Science.

Tree automata with one memory, set constraints and
cryptographic protocols *

Hubert Comon'
Department of Computer Science,
Gates 4B, Stanford University,
CA 94305-9045
and
Laboratoire Spécification et Vérification,
CNRS and Ecole Normale Supérieure de Cachan
61 Avenue du Président Wilson
94235 Cachan cedex, France
comon@lsv.ens-cachan.fr

Véronique Cortier?

Laboratoire Spécification et Vérification,
CNRS and Ecole Normale Supérieure de Cachan
61 Avenue du Président Wilson
94235 Cachan cedex, France
cortier@lsv.ens-cachan.fr

December 31, 2002

“This is an extended version of a paper whose abstract appeared in Proc. ICALP 2001.

TPartially supported by a NATO grant. Partially supported by DoD MURI “Semantic
Consistency in Information Exchange,” ONR Grant N00014-97-1-0505, and NSF CCR-9629754.
Partially supported by INRIA project SECSI and RNTL project EVA

Partially supported by INRIA project SECSI and RNTL project EVA

Abstract

We introduce a class of tree automata that perform tests on a memory
that is updated using function symbol application and projection. The
language emptiness problem for this class of tree automata is shown to be
in DEXPTIME.

We also introduce a class of set constraints with equality tests and prove
its decidability by completion techniques and a reduction to tree automata
with one memory.

Finally, we show how to apply these results to cryptographic protocols.
We introduce a class of cryptographic protocols and show the decidability
of secrecy for an arbitrary number of agents and an arbitrary number of
(concurrent or successive) sessions, provided that only a bounded number of
new data is generated. The hypothesis on the protocol (a restricted copying
ability) is shown to be necessary: without this hypothesis, we prove that
secrecy is undecidable, even for protocols without nonces.

Contents

1

2

Introduction

Protocol motivation

2.1 Dolev-Yao'sresult

2.2 A more expressive model
2.21 Messagesl
2.2.2 Events and Global States
2.2.3 Inductive Relations.
2.2.4 Protocols
2.2.5 Global State Transitions.
2.2.6 Secrecy Policy 000,
2.2.7 An undecidability result

Definite set constraints
3.1 Definite set constraints and intersection constraints
3.2 Intersection constraints with non-emptiness guards

Tree automata with one memory

Set constraints with equality tests

5.1 Definition of the class
5.1.1 General set constraints with equality tests
5.1.2 A complete deduction system
5.1.3 An undecidability result L.
5.1.4 Basic variables and expressions
5.1.5 Our assumptions

5.2 Saturation
5.2.1 Normalization
5.2.2 Abstractionso Lo
5.2.3 Getting rid of basic variables
5.2.4 Complexity issues in eliminating the basic variables . . .
5.2.5 Simplifying again the expressions
5.2.6 Deductionrules. 0.

5.3 Connection with automata with one memory

Analysis of cryptographic protocols
6.1 A decidable class of protocols
6.2 Proof of Theorem 55

Conclusion

(%))

16
16
18

21

25
25
25
26
27
28
30
33
33
35
36
41
42
46
53

55
56
99

65

A Proof of lemma 27
B SET-constraints and Automata with one memory

C Protocols and Horn Clauses

69

86

87

1 Introduction

Set constraints were introduced in the eighties and have been studied thoroughly
since, with applications to the analysis of programs of various styles (see [2] for
a survey). Typically, the problem of interest is to decide the satisfiability of
a conjunction of set expression inclusions e C €' in which the set expressions
are built from variables and various constructions, including, e.g., projection.
Although some set variables may occur several times in an expression, most
classes of set constraints do not make it possible to write a set expression for a
set of terms of the form f(¢,¢), in which one subterm occurs more than once.
One exception is the class of constraints studied in [6].

Our motivating interest is to develop classes of cryptographic protocols for
which some form of secrecy is decidable. A historical class of decidable proto-
cols are the so-called ping-pong protocols [14]. Although none of the protocols
of [8] belongs to this class, ping-pong protocols remain a decidable class, while
most larger classes of security protocols are undecidable [5]. One of the main
restrictions in [15, 14] is that messages are built using unary symbols only. In
contrast, many protocols of interest are written using a binary encryption sym-
bol and a pairing function. Another restriction in [15, 14] is that each protocol
participant is stateless: after a message is sent, the participant does not retain
any memory of the contents of the message. This is a significant limitation since
many protocols rely on challenge-response steps, that require memory. A previ-
ous investigation of ping-pong protocols with added state led to undecidability
[19].

It is insightful to observe that Dolev and Yao’s result [15] can be proved using
set constraints. This suggests a generalization of their approach to trees. A tech-
nical complication, though, is that the generalization to trees is less expressive
than one might expect: in the case of unary functions only, a function and its
inverse are set inverses of each other, in the sense that f(f~(X)) is precisely X.
However, this is no longer true with trees: if f;° L and fy L are the two projec-
tions corresponding to a binary function symbol f, the set f(ffl(X), f;l(X))
contains pairs f(#1,t2) which are not necessarily in X. In order to increase
the expressiveness of set constraints with binary functions, we need a “diagonal
construction”, enabling us to test for equalities between the members of sets.

In this paper, we introduce a new class of set constraints, allowing limited
diagonal constructions. This class is incomparable with the class sketched in [6].
We show that satisfiability is decidable for this class, allowing us to generalize
Dolev and Yao’s result to trees. More precisely, we define a class of crypto-
graphic protocols whose decidability does not assume any bound on the number
of sessions (whether concurrent or not), improving over former decision results,
e.g. [3, 27, 25] (see [12] for a survey on decidability results for cryptographic

protocols). We also allow compound keys. Protocols in the class assume a lim-
ited copying capability for the agents. More precisely, we assume that an agent
can only blindly copy one piece of the received message in the message (s)he
sends. By “blindly” we mean here, without any type knowledge; this notion will
be made precise in the paper. Let us emphasize that this restriction is satis-
fied by almost all protocols that we found in the literature. We also prove that
this restriction is necessary: secrecy becomes undecidable if we allow two blind
copies.

Our class of set constraints does not capture all protocol concepts of interest.
In particular, as can be seen from the survey [8], many authentication protocols
make use of nonces or time stamps, which we cannot express (more precisely,
we have to assume that there is a bounded number of nonces produced by each
principal in any combination of sessions). On the other hand, properties of
protocols that are modeled using set constraints are decidable, while nonces
and timestamps typically lead to undecidability [5]. Moreover, we can express
conservative approximations of general protocols, and it is possible in principle
that set constraints with equality tests provide algorithms for determining the
security of some such protocols.

We prove the decidability of set constraints with equality tests by a reduc-
tion to an emptiness problem for a class of tree automata with constraints. Tree
automata with various forms of constraints have been studied by several authors
(see [9] for a survey). However, the class we consider in this paper is incompa-
rable with known decidable classes. Roughly, we allow each state to hold one
arbitrarily large memory register and restrict the use of this memory to equality
tests. Since memory registers are updated using projections and function appli-
cation, this class is a generalization of pushdown word (alternating) automata.
Despite the generality of the class, there is a simple proof that the emptiness
decision problem is in DEXPTIME.

We start in section 2.1 by introducing Dolev and Yao result and its formu-
lation in terms of set constraints. In section 2.2, we recall (one possible) formal
semantics of cryptographic protocols. We also prove that, even in the absence
of nonces, secrecy is undecidable.

In section 3.1, we recall classical results on definite set constraints and gen-
eralize them to set constraints with non-emptiness guards in section 3.2. The
results of this last sections are used in the following sections.

In section 4, we introduce tree automata with one memory and we prove
some decidability results, relying on definite set constraints with non-emptiness
guards. This can be seen as a stand-alone decidability result.

Next, we introduce in section 5 our class of set constraints with one equality,
showing how to reduce the satisfiability of these constraints to the non-emptiness
decision for tree automata with one memory. The reduction is similar to the

saturation process described in [7] for set constraints with intersection, but it is
more complicated due to equality tests.

In section 6.1 we define our class of cryptographic protocols and show how to
apply the results of the previous sections to prove that secrecy is decidable for
this class.

Several technical proofs, which are not interesting by themselves, are pushed
to appendices.

2 Protocol motivation

2.1 Dolev-Yao’s result

Dolev and Yao [15] consider protocols in which each principal holds a single
public key (which is known to everybody) and a corresponding private key that
is known to them only. The principals are able to build messages using plain
text, encryption ex with the public key of X and signatures dx appending the
name of principal X. Here is a simple example from [15]:

Example 1 ([15]):

Alice sends to Bob a message encrypted using
A — B: eg(da(es(s))) Bob’s public key consisting of a signed encrypted
text s

Bob acknowledges the reception by sending back to
B— A: ea(s) Alice the text s, encrypted using the public key of
Alice

In this model, communication channels are insecure. This allows an intruder
to intercept messages, remember them, and replace them with alternate (possibly
forged) messages. The intruder may decrypt a message if the corresponding key
has become known to him, may append or remove signatures, and may encrypt
using any public key. The secrecy question asks whether there is a way for
an intruder to get the plain text message s that is supposed to be kept secret
between Alice and Bob. In the above example, the answer is yes (the protocol
is insecure). For example, Dolev and Yao give the following attack: After a first
session of the protocol, the intruder, I, who overhears the messages exchanged
during that session, sends to A the message ea(dr(ea(s))), which he can build
using the reply from Bob, and receives ey(s) in return.

The possible use of set constraints in cryptographic protocols analysis has
been suggested in several papers, e.g. [20]. It is however interesting to see
that the Dolev-Yao decidability proof can be summarized using set constraints
by letting I be the set of messages that can be built by the intruder (after any

number of sessions). Since I can intercept any message of any run of the protocol,
we write set constraints putting every protocol message in I. For the example
protocol above, we have

ey (dx(ey(s)) € T ex(ey! (dx! ey (D) € T

for every pair of principals X, Y, since Bob acknowledges a message m from Alice
by sending eA(e]g,l(d;‘l(egl(m)))). Finally, for every principal X, we express the

ability of the intruder to perform operations using public information about X:

dx(I)C 1, ex(I)C1, dy'(I)C T

This process translates a protocol into a collection of set constraints about the
set I of messages available to the intruder. Secrecy now becomes the question
whether the set constraints, together with s ¢ I, is satisfiable 7 Assuming a fixed
number of principals, this is decidable in polynomial time for set constraints
arising from Dolev-Yao’s ping-pong protocols: we can compute an automaton
accepting the minimal solution of the definite set constraint and check the mem-
bership of s.

There are several restrictions in the Dolev-Yao approach. In particular, only
a fixed number of principals and, as mentioned above, only unary symbols may
be used. A pairing function or a binary encryption symbol, allowing to write
e.g. e(k,m) instead of e;(m), i.e. allowing to consider keys as first-class objects,
would considerably increase the expressive power. Such a model is presented
below.

2.2 A more expressive model

We start from a model inspired by Paulson [26] and developed by Millen and
Ruess in [24]. However, we do not use the trace model as in [24] or [26], but a new
state-transition model similar to the MSR model proposed by Mitchell et al [5]
or those presented in [13]. Such models are much too expressive to be decidable,
thus we consider in this paper a restricted model which does not allow nonce
creation but on the other hand we add an arbitrary number of function symbols.
In particular, we add compound keys and hashing. If a limited number of nonces
is allowed for each pair of principals, nonce creation can be simulated beforehand,
using additional binary function symbols Ny, ..., N, whose arguments are agent
names.

In this section, it will be shown that this restricted model is still undecidable
but not so far from decidability : sections 4 and 5 develop a decidable class of
set constraints which will be used as a tool to extract a decidable fragment (see
section 6.1) of the model described below.

2.2.1 Messages

They are built from a set of function symbols F. Symbols of F are split into
several sets:

agent’s names: we assume that F contains constants and function symbols
which allow to built agent’s names. We assume that the set of agent’s
names is infinite. Furthermore, we distinguish an infinite subset of honest
agents Ap,.

invertible symbols which, intuitively, correspond to constructions whose com-
ponents can be computed by an intruder. Typically, the pairing functions
belong to this set of symbols since it is assumed that an intruder can re-
trieve each component u,v from a pair < w,v >. Such symbols can be
applied to any term.

one way symbols which, intuitively, correspond to constructions whose com-
ponents cannot be computed by an intruder. Typically, hash functions
belong to this set. Such function symbols can be applied to any term. In
addition, we assume that there are two special function symbols with one
argument: pub() and priv(). Intuitively, pub() and priv() return respectively
a public and a private key when they are applied to agents names.

partially invertible symbols which intuitively correspond to constructions
whose components can be computed by an intruder, subject to some knowl-
edge of the intruder. More specifically, we will consider only one such func-
tion: encryption. (This is the only relevant example we can think of, but we
could generalize to more symbols in this set). For such a binary function,
which takes as argument a term k (a key) and a term w and whose appli-
cation will be written {u}, the intruder can build {u}; when he knows u
and k and can retrieve v when he knows {u}; and the inverse key k1. A
priori, the encryption function can be applied to any pair of terms so that
we are not restricted to so-called “atomic keys”. However, we will assume
that the inverse of a key is the key itself, except for expressions pub(a) and
priv(a) which are inverse of each other.

The set agent’s names is denoted by AG, the set of invertible symbols by ZF
and the set of one way symbols by OF. We get F = AGWIF W OF W {{_}_}.

Orthogonally, F is split into three sets of function symbols: those which
are known publicly PF (for instance pub(), < _,_ >, {_}.), those which are
cannot be used by the public UF, but only by specific agents (for instance a key
construction function, which is known to a specific server only) and finally those
which can be used by an intruder AJF, only with specific arguments. This last
notion is the dual of partially invertible symbols. priv() is an example of such a

symbol, which can be used by an intruder i, with the argument ¢ only. We will
see later more examples. To summarize, the set of function symbols consists of

F=AGWIFwOFW{{}}=PFWUFWAF

where pub() € PF, priv() € AF, {_}_ € PF. For each partially constructible
symbol in AF, it must be specified which of the arguments must be specific and
which are unrestricted. The only argument of priv() is restricted.

Moreover, we assume a finite set of sorts containing in particular the sorts
Agent, Ah, Ad, Message such that Ah and Ad are subsorts of Agent and Agent is
a subsort of Message, the sort of all messages. In addition, the set of messages
of sort Ah is exactly Aj; and the set of messages of sort Ad is exactly AG — Ay,.
Elements of AG are constants or function symbols returning agent’s names of
sort Agent. The functions symbols pub(), priv(), {-}_ take messages as argument
and return messages: pub(),priv(),{-}_: Message x Message — Message. The
type of other symbols has to be specified with the protocol.

The set of messages is the set of (ground) terms 7'(F) built over the above
described signature and whose sort is Message.

As an example of an additional sort, we could consider nonces. Note how-
ever that, in our (un)decidability results, we will always assume that there is a
bounded number of nonces; it is then possible to represent them as messages of
the form e.g. n;(a,b) where a,b are agents (in which case n; € AF NOF and it
is restricted in its first argument, meaning that only a can generate n;(a,b), for
any b).

Describing protocols and the behavior of honest participants requires vari-
ables ranging either over messages or over agents. Variables ranging over agents
are usually called roles. Message schemes are terms of sort Message, built over
JF and possibly variables.

Example 2 We present here a protocol ezample (inspired by Kerberos), which
will be used as a running example through the paper.

1. A—-S : AB

2. S—A : {<B,K(A B),{<A K(A, B) >}shr(B) >}shr(A)
3. A=-B : < {m(A7 B)}K(A,B): {< A, K(A B) >}shr(B) >
4. B— A : {h(m(A,B))}K(A.’B)

In words, A tells the key server S that she wants to securely communicate with
B. Then S sends back to A a message, encrypted using a key that she shares
with the server and containing a session key K (A, B) together with a certificate
which can be opened by B only. At the third step, A sends her message m(A, B),
encrypted using the key K (A, B), together with the certificate, which is copied

10

blindly from message 2. Finally, B acknowledges the reception, sending back a
digest h(m(A, B)) of the previous message, encrypted using the shared key.

We are going to see in more detail how this protocol is formally described
in the model. For the moment, let us only make precise the components of the
stgnature.

We assume here siz sorts: Nat, Agent, Ah, Ad, Message,Key. The last sort is
protocol specific. Introducing such a sort means that the agents are assumed to
be able to see whether a message is a key or not (we will discuss this hypothesis
later on).

There is a specific constant s (the server) of sort Agent. The way other
agent’s names are built is irrelevant. We could, for instance, use natural numbers
together with a label for (dis)honest participants: 0 :— Nat, succ : Nat — Nat,
ha : Nat — Ah, da : Nat — Ad. For simplicity, in what follows, we will use
the notation ay,as,... for honest agents (i.e agent of sort Ah) and i1,is, ... for
dishonest agents (i.e. the other agents). Note that the set of agents is infinite.

Then, we use TF = {< _,_ >,< _,_,_ >}. These tupling functions take
arbitrary messages as arguments and return messages.

OF = {h,m, K,shr, succ, 0, ha,da}

with h : Message — Message, m : Agent X Agent — Message, K : Agent X
Agent — Key, shr: Agent — Key.
Now, the following are public symbols:

PF={<__><___>pub,{},h 0, suce da, hat

In particular, anybody can know every agent name and every agents public key.
Now, K can only be used by the server

UF ={K}
Finally,
AF = {m, prv, shr}

where both symbols are restricted in their first argument.

2.2.2 Events and Global States

There are two kinds of events: message and state events. A state event is of the
form Q = S(A,n, X) where S is taken in a finite set F; of function symbols. Typ-
ically, Fs = {Init, Resp, Serv}. Usually, for state events of the form Serv(A, n, X),
A is always equal to s the constant representing the server. A is a ground term
of sort Agent, n is a natural number that represents the step of the protocol, and
X = Mem(Q) is a tuple of messages representing the memory held by the state.

11

A state scheme is built in the same way, except that the agent can be abstracted
(using a role) and the messages are replaced with message schemes.

A global state is a set (not a multiset) of events. The content of a global state
is its set of messages, written:

def

Cont(H) = H N Messages
Example 3 (ezample 2 continued)
The messages i1 or m(i1,a2) can be built from the formalism described in our

running example. Init(iy, 1, < i1,a1,s >) is a state event. Intuitively, it repre-
sents the dishonest agent i1 ready to start a session as initiator.

2.2.3 Inductive Relations.

Given a term t = f(t1,...,t,), parts(t) is defined inductively as follows:

o if f e OF UAG, then parts(t) o {t},

o if f € ZF, then parts(t) o {t} UU, parts(t;),

o if f ={_} , then parts({t1}+,}) o {t} U parts(t1).

Given a set of terms S, parts(S) is the set of parts of all terms in S.

analz(S) is the subset of parts(S) consisting of only those subterms that are
accessible to an attacker: analz(S) is the least set S’ containing S and such that:

o if f(t1,...,t,) € S’ and f € ZF, then t1,...,t, € S,
o if {t1}s, €S and t,' €5, thent; € S'.

Conversely, an attacker may use any available function to build new messages.
synth(S) is the least set of messages S’ containing S and such that

o If fe PFandty,... t, €S, then f(t1,...,t,) € 5

o If f € AF. fisrestricted w.r.t. its arguments j1,.... Jk, t1,....t, € S’, and
tivs--o,tj, € Ag, then f(t1,....t,) € S’, where A, is the set of dishonest
agents (Ag = {i, |n € N}).

The intruder in our model synthesizes faked messages from analyzable parts
of a set of available terms and he can iterate the process. This motivates
the following definition: fake(S) is the least set S’ containing S and such that
synth(S”) € S" and analz(S') C S’. Note that fake(.S) is not necessarily equal
to synth(analz(5)) if we do not assume atomic keys: for instance if an intruder
knows t1, {t}<¢, t,>,t2, he can build t by first constructing < t;,t2 > and then
decrypt the message.

12

Example 4 (example 3 continued)
Assume that (in some state), the intruder holds the following messages:

S1 = {{< m(a1,i1), a2 >}k (ar,a2)) MK (a1,02)) }pub(iy)
{m(a17 GQ)}K(al,az): pUb(Zl)}

Then analz(S1) contains for instance h(K (a1, a2)),m(ay,i1) but not m(ay,as).
fake(S1) contains for instance {< ag, h(K(a1,a2)) >}nm(ar,ir))-

2.2.4 Protocols

A protocol transition ¢ is of the form Pre(t) — Post(t), where Pre(t) and
Post(t) are (finite) sets of messages and states. Unlike in [13], there is not any
new spell : the secrecy policy may be specified independently as presented later.
Such transitions specify a possible global state change in a way to be explained
below. A transition ¢ shows a state change for one agent. Formally, Pre(t) and
Post(t) contain at most one state event and Pre(t) contains one state event if
and only if Post(t) contains one state event.

A protocol is simply a set of protocol transitions, an initial global state H
and a secrecy specification Sy. When Hy is not specified, it is assumed that
Hy = (). Both the protocol transitions and the secrecy specification is infinite.
They are however represented by means of instances of a finite number of terms:
typically, the protocol is given by a finite set of rules u; — v; where u; and v;
are finite sets of message schemes and state schemes. Such rules represent the
infinite set u;o0 — v;o where ¢ is any substitution compatible with the types.

The secrecy policy Sy is given by an finite union of sets of the form:

{t1,.oitn | 21, . 2 € AR}

where x1,...,x. are the free variables of the message schemes t1,...,t,.
So represents the set of messages that the intruder should not hold.

Example 5 (example 4 continued)

The protocol, as described in example 2 is a bit sloppy. We used there the
standard notations, but, if we want to be more precise, we have to specify for
istance in message 3 how Alice retrieves the different components of the message
she sends. Typically in such protocols, A, B are roles, not agent’s names. The
“B7” in message 3 can be either the name sent in message 1 or the name passed in
message 2 (It does not make a difference in this particular example. But it does
make a difference in other situations, as shown by the attack on the Needham-
Schroeder protocol [22]).

13

Init(A, 1, <A, B,s>),
0 — Resp(B,1,< B, s>), (0)
Serv(s, 1,s)
{Init(A,1,<A,B,s>)} — {Init(A,2,<A,B,s>),<A, B>} (1)

{ Serv(s, 1, s) } R {Serv(s,Q,s), })
<A B> {BvK(A7B)7{A7K(A7B)}shr(B)}shr(A)

Init(A,2, <A, B,s>), Init(A,3,< A, B, s, X,m(A, B)>),
{ {B X Y}shr(A } - { <{m(A,B)}x,Y> } (3)
{ Resp(B,1,< B, s>), } { {Resp(B,1,<B,s, A, Z, X >), } @)
<A{Z}x,{A X}ohum) > {M(Z)}x}

Figure 1: Rules of the protocol

This protocol should not reveal the messages m(a,b), K(a,b), shr(a) when a
and b are honest agents. This can be expressed by the following secrecy policy So:

So = {m(a,b),K(a,b) | a,b € Ap} U {shr(a) | a € Ap}.

Next, the protocol rules are given in figure 1. The rule 0 says that, at any
time, a new session can be started (the precondition is an empty set). After
applying this rule to an instance a, b, the agents a,b, s are ready to act as partic-
ipants of a protocol session.

The rule 1 corresponds to the first step of the protocol: any agent a who is
ready to act as A in the protocol can send the message < a,b > to s and switch to
a state in which she remembers having completed the first step (hence the second
argument is 2) and having sent the message < a,b > to s.

Rule 2 corresponds to the second step of the protocol: if s is ready to serve a
key and if the message < a,b > has been sent, then the server switches, generates
the key K (a,b) and sends the expected message. Note that the variables A, B are
local to the rule, hence the instances are not necessarily the same as in the
previous step: an intruder can very well perform the first step of the protocol, in
which case there are two < a,b >,< a’,b' > in the global state and the second
istance may be used instead of the first one.

In the rule 3, the agent a, who completed the first steps of the protocol expects
a message of the form {b,a, B}shr(a)- She can check that the message is an en-
crypted message containing three components and that the first component is an
agent’s name, with whom she started a session. However, she cannot check that
the second component is indeed K (a,b) and, similarly, she cannot open the third
component (the ticket). Hence these two components are left as local variables
of the rules which can be instantiated in an arbitrary way, provided that'Y gets
a term of sort Message and X gets a term of sort Key. (We assume here that a
is able to recognize whether a term has type Key or not.)

14

Similarly, in the last rule, the expected instance of Z is m(a,b), but it could
be any faked message: there is no way to check this.

This formal specification of the protocol gives more precision on the abilities
of each agent. We make precise here what is expected by each participant and
what is his behavior.

2.2.5 Global State Transitions.

Given a protocol P and a set of initial knowledge I (of the intruder), the global
succession relation transforms a state H to a new state H'. A succession is either
honest, i.e. it corresponds to an action by an agent following the protocol, or it
is faked by the intruder.

e H'isan honest successor of H, denoted by honest(P)(H, H'), if there exists
an applicable transition ¢ in P such that H' = (H\(Pre(t) N States)) U
Post(t).

e H' is a fake successor of H, denoted by fake(I)(H,H'), if there exists a
field X € fake(Cont(H) U T) such that H' = H U {X }.

In the honest case, a transition t is applicable in H if Pre(t) C H. In the fake
case, the intruder is restricted to adding only messages that can be inferred from
the content of the current state and the initial knowledge. In either case, we
write global(P,I)(H, H'). This relation determines a logical transition system
with the initial global state H(as its initial state. The set of reachable states of
this transition system is denoted by reachable(P, I).

2.2.6 Secrecy Policy

Given the intruder’s initial knowledge I and a secrecy policy Sp, a global state
H is called I, Sy-secure if fake(Cont(H) U I) NSy = 0; these states are collected
in the set secure(I, Sp). Now, a protocol P is called secure if secure(I, Sp) is an
invariant of the transition relation associated with P and Sy is the secrecy policy
associated to P; i.e. for all I, reachable(P,I) is a subset of secure(I, Sp).
Remark : actually, it is sufficient to prove that secure(ly, Sp) is an invariant for
Iy the maximal set compatible with Sy :

Iy = {m | parts(m) N Sy = 0}.

This definition is slightly different from the one given in [13] but it matches
more precisely the idea of secrecy while the definition given in [13] was an over-
approximation of secrecy in order to allow inductive proofs.

15

2.2.7 An undecidability result

We present now an undecidability result. Let us emphasize that we do not have
here the nonce construction. Hence, the result is stronger than the undecidability
result of [18].

Theorem 6 [t is undecidable whether or not a protocol P is secure.

A proof of this result has been proposed S. Even and O. Goldreich in [19]
by reducing secrecy to the Post Correspondence Problem (PCP). A simplified
proof was proposed by M. Rusinowitch. The intuitive idea is the following one:
consider a finite alphabet ¥ and an instance of PCP: (u;,v;)1<i<n, ui, v; € X*.
We construct the following protocol:

A — B:{<0,0>}g,
B — A:{<N.Ny>}g,
A<z y>ik, — B:A{<zuiyoi >}, st auste, 1<i<n

The key K, is a symmetric, private key between A an B. The last rule describes
n rules for the agent A. The left-hand-side describes the message expected by
A. One can show that s remains secret if and only if there is no solution to
the considered instance of PCP. A similar protocol can be build without using
composed keys.

An inconvenient of both constructions is that for each instance of PCP with
no solution, the corresponding protocol does not have one honest instance. Using
Petri nets, we construct in [10] a reduction such that the corresponding protocol
is a “real” protocol in the sense that each rule of the protocol can be played in
the given order : the first rule, than the second and so on, i.e., there is at least
an honest instance of the protocol. In addition this reduction only uses standard
cryptographic primitives, namely pairing and encryption with symmetric keys
and a fixed number of roles (actually only one role) and a finite number of pro-
tocol rules. For each reduction (using PCP or Petri Nets), the intruder actually
may actually only forwards messages and does not need to forge new ones.

3 Definite set constraints

3.1 Definite set constraints and intersection constraints

This class of set constraints has been introduced in [21] and studied by various
authors (e.g. [7]). Each constraint is a conjunction of inclusions e; C ey where
e1 is a set expression and es is a term set erpression. Term set expressions are
built out of a fixed ranked alphabet of function symbols F, the symbols T, L

16

and set variables. A set expression is either a term set expression or a union of
two set expressions e; Ues, or an intersection of two set expressions e; Nes or the
image of set expressions by some function symbol f(ei,...,e,) or a projection
£ t(e1) where f is a function symbol and i € [1..n] if n is the rank of f. Note
that negation is not allowed.

Example 7 Here is a definite set constraint:

fHHX) € g(Y) fAX.Y)NX, X)

-
gY)NY C X a C

X
Y
where a, f, g are function symbols and X,Y are set variables.
Set expressions denote sets of subsets of the Herbrand universe T'(F); if o assigns
each variable to some subset of T'(F), then [], is defined by:
X], ¥ xo
et ve)lo & {f(t,. . ta) | Vi€ [Lun],t; € [eillo)
[eineds & [eado N [e2]o
N Ole & (i | 3t ot f(t1, o) € [e]0}

[Tl = T(F)
[, = 0
le1 Ues], Lof [ei]o U Je2]s

o satisfies e; C ey iff, [e1], C [ea]s. This extends to conjunctions of inclusions.

Example 8 (example 7 continued)

The substitution o[X — 0,Y — {a}] satisfies the set constraints described in
example 7.

Following a standard translation (see e.g. [7]), the definite set constraints
can be rewritten (in polynomial time) into intersection constraints which are
conjunction of inclusions of one of the forms:

X C f(N,....Y,) f(X1,....Xn) € gYi,....Yn)
where X, X1,...,X,,,Y,Y1,...,Y,, are intersections of set variables. In other

words, the constraints can be flattened and union and projections eliminated
thanks (in particular) to the equivalence:

FFUX)CY & Xnf(T,...,T)Cf(T.....Y,T,..)

1 =

where the Y is in ith position.
The translation 7 from definite set constraints to intersection constraints may
require the introduction of new variables. Formally, 7 preserves the solutions:

17

Lemma 9 o is a solution of the definite set constraint C' if and only if there ex-
ists o', solution of the intersection constraint T(C'), such that o is the restriction
of ' to the variables of C.

Theorem 10 ([7]) The satisfiability of intersection constraints (resp. definite
set constraints) is DEXPTIME-complete and each satisfiable constraint has a
least solution which is accepted by a finite tree automaton.

Moreover, the decision procedure provides effectively the finite tree automa-
ton accepting the least solution.

3.2 Intersection constraints with non-emptiness guards

Now, we consider a slight extension of intersection constraints, yielding a result
similar to theorem 10. If e is a set expression, let nonempty(e) be a statement
which is satisfied by o iff [e], is not empty.

We extend the formalism as follows. A flat expression is either an intersection
of set variables or a set expression f(X1,..., X,) where Xi,..., X,, are intersec-
tions of set variables. An intersection constraint with non-emptiness guards is a
conjunction of clauses

nonempty(e}), ..., nonempty(e!) = e C es

where €], ... e, e, es are flat expressions.

3N
The interpretation of such constraints is the expected one. Note that, of
course, they extend intersection constraints. However, the algorithm given in [7]
can be applied with slight changes only.
In other words, enriching the intersection constraints with clauses of the

above form, we still have the same result as in theorem 10, as a corollary of [7]:

Theorem 11 The satisfiability of intersection constraints with non-emptiness
guards is DEXPTIME-complete and each satisfiable constraint has a least solu-
tion which is effectively accepted by a finite tree automaton.

Proof: If we want to be as self-contained as possible, we need to reproduce, at
least partly, the proof of [7]. In the next section, we will also rely on this proof.

First, we can assume that all expressions occurring in the guards also occur
as members of inclusions (if necessary, add e C e and flatten again).

Now, according to [7], we saturate the constraints using the inference rules
given in figure 2.

In this figure, X, X1,..., X,,, X', X1, ..., X, are intersection of set variables
and e, €', e1, ea, €], €, are any flat set expressions. If these rules are applied to in-
tersection constraints, we get as conclusions intersection constraints again, with

18

Reflexivity

Transitivity
e1 C e
Weakening
Xin...nX, CX;
€1 C €9 6’1 C 6’2
Compatibility

exNej Ceané

nonempty(e) e C ¢

Propagation 1
nonempty(e’)

nonempty(X1),...,nonempty(X,)

Propagation 2
nonempty(f(X1,..., X))

nonempty(f(X1..... Xn)) f(X1.....Xn) € f(X1.....X})
Projection
X; CX]

nonempty(e) e C f(X1,...,X,) eCg(X],.... X))

Incompatibility Iff#g
false

nonempty(e) nonempty(e), ¢ = ¢’ C €

Cut

p=eCé¢

Figure 2: Inference rules for intersection constraints

19

the convention that expressions f(eq,...,e,) N f(€],..., e,) are eagerly normal-
ized into f(e; Ney,...,enNel).

As shown in [7] the rules of figure 2 are correct and applying the inference
rules saturates the set constraint in deterministic exponential time (assuming
that reflexivity and weakening do not introduce new variables).

For every constraint v, we let v be the saturated set. As in [7] again, let °
be the solved form of ~:

7S = {f(e1,...,en) T X € ~¢ | nonempty(f(e1,....en)) € 'yc}

where X is a variable.

~% is essentially the definition of a tree automaton whose states are set vari-
ables. Let o be the substitution, assigning to each variable X, the language
recognized by this tree automaton in state X. We are going to prove that either
false € v¢ or else ¢ is the least solution of 4. The minimality of o comes from
automata theory. Let us concentrate on the fact that o is a solution of ~.

The proof that o satisfies all inclusions e; C ey in ¢ is identical to [7].
Consider a clause nonempty(eq),...,nonempty(e,) = e C ¢ with n > 1. If
there is an i such that [e;], is empty, then the clause is trivially satisfied. Oth-
erwise, we may assume that every e; is an intersection variable since ¢ satisfies
nonempty(f(Y1,...,Y,)) if and only if it satisfies nonempty(Y7), ..., nonempty(Y},).
Then let e; be the intersection X} N.. .ﬂXfi. For every 1, there is a term ¢; which
is accepted by the tree automaton in every state Xg . We prove below that, if
t is accepted in all states X1,..., X, then nonempty(X;1N...N X,) € ¢, Let
us assume this for the moment. Then, by the rules Cut and Propagation 2,
e C ¢ € 4“, which proves that ¢ satisfies e C ¢/, thanks to [7].

We prove by induction on the size of ¢ that, if ¢ is accepted in all states
X1,..., X, then nonempty(X; N ... X,) € 7°.

e If ¢t is a constant, by definition of the automaton, t C X; € v for every i.
Then, by Compatibility (applied n — 1 times), t € X;N...N X, € v¢

o If t = f(t1,...,tn). By definition of the automaton, there are inclusions
flel,....el)) C X; € ¢© such that, for every j € [1..m], for every i, t; €
[[eé-}](,. Now, we apply the induction hypothesis: for every j, nonem pty(ejl- N
. .ﬁe?) € ~“. By Propagation 2, nonempty(f(ein...net,....el Nn...N
en)) € 4¢. Now, by Compatibility,

fledn...ner,....ekn...ne?)) CXin...NnX, e~°

and, by Propagation 1, we conclude that nonempty(X;N...NX,) € 7°.

20

To summarize: the assignment o defined by the solved form 7% also satisfies
the conditional inclusions of 4, which means that 4 is satisfiable whenever
false ¢ v¢ and o is then the minimal solution of ~.

O

In the proof of the last result, we have seen in passing that nonempty(X) is a
logical consequence of the constraint iff it belongs to the saturated set. It follows
that:

Corollary 12 Deciding whether the minimal solution of a definite set constraint
with non-emptiness quards assigns the empty set to X 1s DEXPTIME-complete

Actually, the DEXPTIME-hardness of this corollary is missing so far. But
we can reduce the non-emptiness problem of the intersection of n tree automata
(which is DEXPTIME-complete) by translating the definitions of the automata
into intersection constraints and adding a clause

nonempty(X;N...NX,)=aCX

where X71,...,X,, are the set variables corresponding to the accepting states of
the n automata respectively, X is a new variable and a is a constant.

4 Tree automata with one memory

The idea is to enrich the expressiveness of tree automata by allowing them to
carry and test some information. For instance, a pushdown automaton will keep
a stack in its memory and check the symbols at the top of the stack. What we
do here is something similar. Our automata work on trees instead of words and
may perform more general constructions and more general tests. We will see
later as an example how to express pushdown automata in our formalism.

Informally, a tree automaton with one memory computes bottom-up on a tree
t by synthesizing both a state (in a finite set of states ()) and a memory, which
is a tree over some alphabet I". Each transition uses some particular function
which computes the new memory from the memories at each direct son. Each
transition may also check for equalities the contents of the memories at each son.

Given an alphabet of function symbols I', the set of functions ® which we
consider here (and which may be used to compute on memories) is the least set
of functions over T'(I') which is closed by composition and containing:

e for every f € T of arity n, the function Az, ...z . f(21,...,27p)

e for every n and every 1 < i < n, the function A\z1,....,z,.7;

21

e for every f € I' of arity n and for every 1 < i < n, the (partial) function
which associates each term f(¢q,...,t,) with ¢;, which we write Af(%).xz;.

For instance, if I' contains a constant (empty stack) and unary function
symbols, ® is the set of functions which push or pop after checking the top
of the stack.

Definition 13 A tree automaton with one memory is a tuple (F,I',Q,Qf, A)
where F is an alphabet of input function symbols, I is an alphabet of memory
Junction symbols, Q is a finite set of states, Q is a subset of final states, A is

a finite set of transition relations of the form f(qi,...,qn) %) q where

e f € F is called the head symbol of the rule,
e cis a subset of {1,....,n}2, defining an equivalence relation on {1,...,n}.

e I € & such that F takes k arguments where k is the number of equivalence
classes w.r.t. ¢

® qi,....qn,q € Q, (q is the target of the rule).

A configuration of the automaton consists of a state and a term in T'(T")
(the memory). Then computations work as follows: if ¢ = f(t1,...,t,) and the
computation on tq,...,t, respectively yields the configurations qi, 71, ... , @n, T,
then the automaton, reading ¢, may move to ¢, 7 when there is a transition rule
flai, - yan) % q and for every i = j € ¢, 7, = 75 and T = F(75,,...,7,)

where i1, ...,7, are any representatives of the equivalence classes for ¢ (the way
i; is chosen in its equivalence class is not relevant). A tree t is accepted by the
automaton whenever there is a computation of the automaton on t yielding a
configuration ¢,y with ¢ € Qy.

Example 14 Assume that the transitions of the automaton A are (other compo-
nents of the automaton are obvious from the context, T is the identity relation):

T 1=2
gle) —— ¢ [(@asqa) ——— ¢
Ax1.x1 /\x1.h(m1)

9(t) ——— ¢ flag) ——— ¢
Azq.h(zy) Ah(z1).m1

o

A computation of the automaton on f(g(f(a,a)),g(a)) is displayed on figure 3,
i which the configurations reached at each node are displayed in a frame.

22

f
], — 0]

a0 AC
wt], —]

Figure 3: A tree ¢t and a computation of A on ¢

Pushdown automata (on words) perform transitions a,q,a -y — ¢, -~
where a is an input symbol, ¢, ¢ are states and «, 3,y are words over the stack
alphabet (the rule pops « and pushes (). Such a rule can be translated in

the above formalism, viewing letters as unary symbols: a(q) —— ¢. If

Az.fa—lx
w=ai(...ar(_)...), we use here the notation w=!(z) for a,;l(. .. (a7 "(x))), the
additional subscript 1 being implicit for each letter, which has only one argument.

This translation does not make use of equality tests. Orthogonally, it is
possible to simulate tree automata with equality tests between brothers [4]. This
requires some coding, because the function F' can refer to one representative
for each class only, hence we cannot keep directly in the memory the subtree
recognized so far. However, it is possible to show that any language recognized
by an automaton with equality tests between brothers (and, more generally,
with non-overlapping equality tests) is also accepted by an automaton with one
memory. We don’t need the projections here.

In some respect, our definition is a generalization of both models: we can
both use a stack and check for equality, and keep record of deep subtrees. We
avoid overlapping tests, which yield undecidability [23, 9], because we allow only
one representative of each class in the function in the body of F.

Theorem 15 The emptiness of the language recognized by a tree automaton with
one memory is decidable in DEXPTIME. More generally, the reachability of a
given configuration is decidable in DEXPTIME.

Proof: For every q € @, let M, be the subset of T(I") of memory contents m
such that there is a tree t and a computation of the automaton on ¢ yielding
the configuration < g, m >. We prove that the sets M, are the least solutions
of the definite set constraint with non-emptiness guards Cy, consisting, for each
transition rule f(qi,...,qn) %) q of the inclusion

nonempty(eg,,), ..., nonempty(eq,) = F(eq,, ,..-€q,) C Xq

23

and ey, is the intersection for all indices / equivalent (w.r.t. ¢) to ij of Xg,.

Cj can be assumed to be an intersection constraint with non-emptiness
guards (see section 3).

First, the assignment o9 which maps every X, to M, is a solution of the
constraint. Indeed, consider any clause of the above form with F' = A\zq, ..., 2;.G
and assume (for simplicity) that z1, ..., z, do not occur in G, while z,41,...,zp
occur (once) in G.

If [[GQif]]”U # (0 for every i, then it is possible to reach configurations <
qi,m1 >, ..., < qn,my > such that mj € [[eqij]](,o, i.e m; = m; whenever i = j €
c. Now, consider any terms mj,...,mj_, respectively in M ., ,..., Mj. There
are trees t1,...,t,,....t; such that there are computations of the automaton on
this trees yielding respectively the configurations < q1,m1 >,.... < @r,my >, <
¢Gr41,my >, ..., < qg,m)_, >. From these configurations, reading the input f,
the automaton can move to the configuration < ¢, G(m/),...,m}_) >, hence
G(mfy,...,mj_,) € M,.

Conversely, we have to prove that any solution o of the constraint is larger
than og. Let m € M,. There is a computation of the automaton on some
tree t, yielding the configuration < ¢.m >. We prove, by induction on ¢, that
m € [Xl

e If £ is a constant, then there must be a rule a ? gand F=m e T(T).
By definition, there is a constraint F' C X,. Hence m € [X,],.

e Now, let t = f(t1,...,t,) and let f(q1,...,qn) —;> q be the last rule applied

in the computation yielding < m,q >. Let moreover < ¢q1,m; >,...,<
qn, My > be the configurations corresponding to computations on t1, ..., t,.
By definition, m; = m; whenever (i,5) € ¢ and m = F(m;,,...,m;,).

By induction hypothesis, for every i, m; € [X;], and, because of the
equality constraints, m; € [eq, Jo if (i,4) € c. It follows that o satis-
fies nonem pty(eqij) for all j and, since o satisfies the clause associated with
the rule, it satisfies F'(eq, ,....€q,) C Xq. In particular, m € [X,],.

This completes the proof that the sets M, are the least solutions of the constraint
Ca.

Then the non-emptiness of the language recognized by A reduces to the
problem of deciding whether at least one of some designated variables gets a non-
empty set in the least solution of the constraint. This is DEXPTIME-complete,

thanks to corollary 12.
O

The result can be generalized to alternating tree automata with one memory
keeping the same complexity. Alternation here has to be understood as follows:

24

we may replace the states occurring in the left hand sides of the rules with
arbitrary positive Boolean combinations of states. The above proof simply works,
using additional intersections and unions.

Corollary 16 The emptiness problem of alternating tree automata with one
memory is DEXPTIME-complete.

Note however that the class of automata with one memory is neither closed
under intersection nor complement (both yield undecidable models).

5 Set constraints with equality tests

5.1 Definition of the class
5.1.1 General set constraints with equality tests

We consider now definite set constraints as in section 3, with non-emptiness
constraints and with an additional construction: function symbols can be labeled
with equality tests, which are conjunctions of equalities p;1 = ps between paths.
The intention is to represent sets of terms ¢ such that the subterms at positions
p1 and p2 are identical. We assume, without loss of generality, that there is no
union and no projection symbol, which, as we have seen, is not a restriction
(provided that the equality tests do not overlap projection symbols).

We use the standard notations on terms [17]. Let us recall some of them. A
position will be a string of non-negative integers. A term t labeled with F can
be seen as a mapping from the set Pos(t) of its positions to F. The subterm of
t at position p is written t|,.

An equality constraint ¢ is an equivalence relation on a finite set of positions
P(c). We assume that no strict prefix of a position in P(c) does belong to P(c)
(this restriction will be dropped in section 5.2.1). We will often write equality
constraints as finite sets (or finite conjunctions) of expressions p; = pa where
p1,po are positions. Then, it must be understood that c is the least equivalence
relation containing the pairs (p1, p2) on the set of positions occurring in some of
the equalities. We also say that a position p is checked by ¢ when p € P(c).

A term ¢t satisfies ¢, which we write ¢ |= ¢ , if every path in P(c) is a position

of t and moreover, t|,, = t|,, (the subterms of ¢ at positions p; and po are
identical).
We enrich the set expressions of section 3 with the construction f¢(e1,...,ep)

where ¢ is an equality constraint. These expressions are interpreted as follows:

def

[féer,....,en)]e = {t€fler,....en)]o | tECc}

25

The set of paths in an expression e is defined as follows:
II(f(e1, ... en)) {eyUl-Tl(e1)U...Un-I(ey)

H(61 N 62) H(el) U H(GQ)
nx) = {e

def

def

Let p € II(e). We let e|, be the set of subexpressions at position p:

def
ele = {e}
def

(61 N 62)|i-p el‘i-p U e2|i-p
def
(.fc(ela"'aen))|i-p = ei‘p
Xy <0

When e|, contains only one element, we confuse e|, with this element and
say that e|, is the subexpression of e at p.
We will assume that, in every expression f°(e1,...,ey),

P(c) CII(f(e1,.--.€n))

All other constructions are the same as in section 3. In particular, right hand
sides of inclusions should not contain constructions f¢. When c¢ is empty, we
may omit it or write T.

Example 17 f21=12(f(Z,Y)N X, g(X)NY) C f(Y,g(X)) is an inclusion con-
straint. 0 = {X — {a,b, f(a,b)};Y — {b,g(a),g(b), f(a,b)}; Z + {a,b}} is a
solution of the constraint since [f12721(f(Z,Y)NX, g(X)NY)]o = {f(f(a,b),g(b))}

5.1.2 A complete deduction system

We first design a complete deduction system and show that every satisfiable set
constraint has a least solution. These results are not meant to be practical.

Let S be a set constraint as in the previous section, whose variables are
Var(S) = {X1,...,X,}. Let ¥ be the subset of (2T))" of assignments o
mapping every variable X; to a finite set.

We may assume in this section that, in every clause

p=eCe¢

the expression €’ does not contain intersection symbols. This is not a restriction
as a clause ¢ = e C €/[e1 Neg] is equivalent to the two clauses ¢ = e C €[e;] for
1=1,2.

With this assumption, we can associate with each right hand side of an
inclusion €’ a term to € T'(F, X) such that every variable occurs only once in ¢,
and €’ is obtained from . by substituting set variables to the variables of t..

We define the one step deduction relation Ts on ¥ U {0} as follows:

26

Ts(0) 'O

If there is a clause ¢ = e C €’ in S such that o |= ¢ and there is a t € [e], such
that ¢ is not an instance of ¢./, then T's(o) = [.

Otherwise, for each clause C = ¢ = e Ce’' in S
e If 0 = ¢, then we let f¢ be the assignments mapping every set variable

to the empty set

e If o = ¢, then for every term t € [e],, and every set variable X, we
let 0;.c(X) be the set of terms t|, such that €|, = X.

Finally, we define Ts(o) by:

[Xil (o) < [Xi]o U{0r.0(X)) | C € S.t € [e]}

We let 0 be the assignment mapping every set variable to the empty set and
we define o“ as the least fixed point of +:

o (X;) = | Té(o) (X))
i=1

if Té(og) # O for every i and 0 = O otherwise.

Proposition 18 ¢“ = [iff S is not satisfiable.
If 0% £ [, it is the least solution of S.

Proof: It is similar to the standard result that the least fixed point of the direct
consequence operator of a Horn clause set is the least model of the program.

If 0 # O, then ¢“ is contained in any solution of S (by induction on 7,
Ti(og) is contained in any solution of).

Now, if ¢“ # [, then ¢“ is a solution of S: this is a routine verification. [

5.1.3 An undecidability result

As a consequence of undecidability results on tree automata with equality tests
(see e.g. [9]), the satisfiability of such general constraints is undecidable, because
of possible overlapping tests.

Proposition 19 The satisfiability of such general constraints (even without non-
emptiness preconditions) is undecidable.

27

Note that such a result is consistent with theorem 6 and the translation of security
problems into set constraints as given in section 6.1. We sketch the proof of this
proposition, because, even if the reader should already be convinced, the proof
sheds some lights on the restrictions we take later on.

Proof: (sketch) We encode Turing machine computations. A configuration is
represented as a triple containing the state, the part of the tape on the left of the
head (including the head position) and the part of the tape on the right of the
head. Tape contents are encoded using unary symbols (one for each element in
the tape alphabet), in such a way that symbols which are close to the head appear
abaabaab

/]\

the words b(a(a(b(a(0))))).a(a(b(0))). We use a binary tupling symbol < _, _, >
to put together the two components of the tape and the state. Now, for instance,
with each transition rule < q,a >—< ¢/, b,left > we associate the constraint:

on the top of the terms. For instance a tape content is represented by

f12:2121,131:213(< q',X, b(Y) >,Zﬁ f(< q,a(X),Y >7_|_)) C A

X,Y being tape contents, the equality tests ensure that we keep the same re-
maining tape contents when we move from one state to another.

The idea is that the least solution og of the constraint will assign to Z the
(encoding of the) set of computations of the Turing machine. Adding

me(<QfaTaT>T)gX0

for the final states and
<qy,0,0>C 7

for the initial state, the emptiness of o((Xy) is equivalent to the halting problem
(i.e. the reachability of the state qy). O

5.1.4 Basic variables and expressions

That is why we are going to put more restrictions on the constraints. The idea
is to divide the set variables into two sets: the basic and the non-basic variables.
The basic ones correspond to sets of terms whose only a fixed part can be seen.
This corresponds to non-invertible symbols in section 2.2. We do not impose any
restrictions on the equality tests for such basic variables since, intuitively, the
non-invertible symbols impose a boarder in the terms under which no test takes
place, hence limiting the overlaps of equalities which yield the undecidability
result.

For non-basic variables, we impose a restriction., which, roughly, allows to
check the equalities using one memory only. The goal is of course to use the
results of section 4.

28

If X is a variable of a constraint S, then let R(X) be the set of atomic
constraints whose right hand side contains X.

We introduce now one-way function symbols of a constraint S. This notion
is of course related to the one-way function symbols of section 2 (it is a gener-
alization). Intuitively, a symbol is one-way in a constraint S if, in each of its
applications, there is no way to look at the subterms. “Looking at the subterms”
occur in two cases: when we apply a “projection” (i.e. when there is an inclusion
whose right member is headed with that symbol) and when we check for equality
of some subterms.

Definition 20 A function symbol g is one-way in a set constraint S if

e it does not occur on the right of an inclusion constraint of S

e in any expression e = f¢(e1,...,e,) occurring in S, for everym € P(c) and
for every strict prefiz ©’ of m, el does not contain any expression headed
with g.

Let OF(S) be the set of one-way function symbols in S.

Definition 21 The basic variables of a set constraint v is the largest set of
variables occurring in vy such that

o If X is basic then R(X) only contains one-way symbols and basic variables.
o If X is basic then

— either R(X) contains only one clause ¢ = e C X such that X does
not occur in e.

— or every function symbol occurring in R(X) occurs (possibly) only in
R(Y') where Y is basic.

Intuitively, the function symbols used recursively to construct basic variables
cannot be used for non-basic variables.

Example 22 The following example is inspired by examples from section 2. Let
Nat, A, DA, HA, M, Key, In be set variables and ~ consist of:

0 C Nat succ(Nat) C Nat
da(Nat) C DA ha(Nat) C HA
DA C A HA C A
K(A,A) C Key shr(A) € M
A C M Key € M
<M,M> C M M}y C M

29

Intruder capabilities such as:

<lIn;In> C In {Iln}jy € In
InNn< T, T> C <lIn/In> nn{ThH, < {In},
A C In shr(DA) C In
IhnN< T, T, T> C <ln,/In,In>

And protocol-specific constraints such as

<AA> C In
<> ({< A Key, M >} Ay N in {m(A, A)}Key, M) C In

where ¢ stands here for 121 = 211 A 111 = 212 A 112 = 22 A 113 = 3. (We
will see in section 6.1 how to translate cryptographic protocol into set constraints
and, in particular, we will develop a full example). In this example, all function
symbols are one-way, except the tupling < _,_ > and < _,_,_ > and encryption
{_}_, because of the intruder’s constraints.

Then In and M are not basic while all other variables are basic.

This notion is extended to expressions: an expression e is basic if
e ¢ is a basic variable or
e ¢ is an intersection e1 N es and either eq or eg is basic

e ¢ is an expression f(e1,...,ey) (or f(e1,...,e,)) and eq,..., e, are basic

5.1.5 Our assumptions

Definition 23 (Basicness condition) An an equality test ¢ in an expression

fe(e1, ..., ey) satisfies the basicness condition (w.r.t. a set of basic variables) if
Dei-q e There are positions p1, pa such that
i#3 \ _ p~epiprrep-jand
P Foref D either e|p, or e|p,
Yw, p-j-wodep-i-q contains basic expressions only

where >prer 15 the prefix ordering on positions.

An expression e satisfies the basicness condition (w.r.t. a set of basic vari-
ables) if for each expression f¢(e1, ..., e,), the equality test c satisfies the basicness
condition.

The situation is depicted on figure 4: one of the three terminal positions on the
picture should hold basic expressions only.

30

Figure 4: The basicness condition

Example 24 Let us examine the last constraint which is displayed in example
22.
<> ({< A Key, M >} a) N in {m(A, A)}Keyv M) C In

where ¢ stands for 121 = 211 A 111 = 212 A 112 = 22 A 113 = 3. At positions
121,111, there is only one subexpression A, which is basic. At position 112, there
1s only one subexpression: Key, which is also basic. Remain the positions 3,113,
which do not hold basic expressions.

In the definition, p' can only be 3 and p € {1,11}. The basicness condition
reduces to check that subexpressions at positions 12,111,113 are basic, which is
the case here.

Note that, if there are only two occurrences of non-basic variables in the
expression, then the basicness condition is always satisfied.

The basicness condition looks a bit complicated, but let us give more intu-
ition.

From tree automaton point of view, while computing on the trees bottom-up,
we want to be able to check the equalities without carrying more than one mem-
ory at each node. The difficulty is that we need the stability under intersection
of this property.

Consider for instance the following constraints:

XN fXY)Y) C Y
A2y nf(X,Y),X) € X

Only one memory is sufficient to recognize the instances of any of the two con-
straints. Putting them together, however, we can derive

UMY N (X Y), X)) N f(X,Y),Y) CY.

31

Now, we need 2 memories to accept the instances of the left hand side since, when
reaching X we must keep this term in the memory (it is checked for equality
higher up) and we must also keep in the memory f(X,Y’), which is also checked
for equality higher up. Note that here X, Y are not basic since f is not a one-way
function symbol.

Actually, a more natural, weaker, condition would be to assume that, in any
¢, if p, g are in two different equivalence classes, then they do not share any prefix.
Imposing such a condition only yields an undecidable class of constraints.

On the other hand, if we intersect a basic expression with any expression,
the result is a basic expression. Hence, the basicness condition expresses roughly
that on the sides of a path checked for equality, we only find basic expressions,
freeing us from keeping additional information when we intersect with another
expression.

The basicness condition is also relevant for our application, as we will see.

The constraints satisfying the basicness condition are called set constraints
with equality tests (ET-constraints for short). Let us summarize:

Definition 25 An ET-constraint is a finite conjunction of clauses
p=eCe
in which e, e’ are set expressions built using
e Set variables
o The constant symbol L
e Intersection
e Function symbol application f(...) or f(...).
We assume:

e That right hand sides (the expression €' above) do not make use of the
constructions € with a non-empty c.

e For every construction f(e1,...,e,), P(c) CI(f(e1,...,en))
o The basicness condition

ET-constraints contain properly intersection constraints since we can con-
struct an ET-constraint whose least solution is the set of trees A = {f(¢,t) |t €
T(F)}. The only other decidable set constraint formalism which allows to ex-
press A is the class defined in [6], in which, however, equality tests are restricted
to brother positions (which is not the case here). On the other hand, we have
restrictions which are not present in [6].

32

5.2 Saturation

We use here a fixed point computation method which is similar to the one in [7]:
the goal is to deduce enough consequences so that the inclusions whose right hand
side is not a variable become redundant, hence can be discarded. Unfortunately,
the first step (representation) in [7] cannot be used in the same way here, since
it does not preserve the class of constraints we consider.

** description of the structure of the section **

We start with some simplifications of the constraints.

5.2.1 Normalization

For every expression e, let us define two notions of size:

* |e|7 is the cardinal of ¢y €lp- This is proportional to the memory size,
which is required to store the expression, regardless to the equality tests.

o |et is the sum, for every expression f(e1,. ..., en) € U,ene) €lp Of the size
of c. The size of an individual test ¢ is the sum of sizes of positions checked
by c.

The goal of the first transformation step (Normalization) is to reduce the
expression to a normal form.

Definition 26 An expression e is normal if the following conditions are satisfied
fore:

1. All subexpressions of e satisfy the basicness condition

2. If f(e1,....en) N € € €lpy, P ~c q and p-p1 ~c q1 for a non-trivial p,
then e|py.pp, is a basic expression. ("For ancestor positions, the lowest one
is basic”).

3. For every p € M(e), if g°(e1,...,e,) Ne' € ey, then, for every py ~c pa,
the subexpressions at positions py and pa in g°(e1,...,e,) are identical.

4. for every equality test ¢ occurring in e, every equivalence class of ¢ contains
at least two positions which do not share any non-trivial prefix

5. For every p € Il(e), €|, is either an intersection of variables or an inter-
section g°(e1,...,en) N X1 N...N Xy, in which case, for every p € I(e),
elp is a singleton.

6. If f(e1,....en)Ne € elpy, P D1 ~c q for non-empty p, p1, g“'(e'l, e N
e’ € elpyp, then either e|p,.pp, s a basic expression, or else for every

P ~e d, elpypp s a basic expression ("For overlapping tests, the lowest

one is basic 7).

33

elp, = fCNe elp, = fene

p p
I Fner el
P1 q V4 /
basic/ basic/

or every position
tested by ¢’ is basic

Property 2 Property 6

Figure 5: The properties 2 and 6

Conditions 1 and 2 are satisfied initially. Actually, even a property stronger
than condition 2 is initially satisfied since, so far, any two distinct positions in
P(c) are incomparable w.r.t. the prefix ordering. We need however this weaker
property to keep it invariant.

Properties 2, 6 are illustrated on figure 5.

The main result of this section, whose proof is quite long and technical and
is given in appendix A is the following:

Lemma 27 FEvery expression e which satisfies the basicness condition can be
transformed into a normal expression € such that, for every o, [e]o, = [€¢]o-

We also conjecture that the transformation, as described in the appendix, yields
an expression €' such that |¢/|# and |e|; are polynomially bounded by |e|; and
le|p.

As a side consequence, the subexpression at a given position is now defined
in a unique way:

Lemma 28 Ife is an expression satisfying condition 5, then for every p € Il(e),
elp is a singleton.

Proof: We prove that e, is a singleton for every p € TI(e) by induction on e.
If e is a variable or a constant, then e, is a singleton consisting in e itself.
Now, assuming e satisfies condition 5, e is either an intersection of variables or
an expression f(er,...,e,)NX1,...NX,. In the first case II(e) = {€} and e|, =
{e} by definition. In the latter case, if p = i-p/, then e|, = €;[y UX1|ip ... = €l
by definition. And, by induction hypothesis, €;|, is a singleton. O

So, now, we can use the terminology “the subexpression at position p”, as
well as replacement at position p: C[e], means either (this will be unambiguous

34

from the context) that e occurs at position p in the expression Cle], or that we
have replaced the subexpression at position p with e.

The normalization is extended to constraints: every expression occurring in
the constraint can be assumed normal thanks to lemma 27.

5.2.2 Abstractions

We abstract out subexpressions introducing new variables, as long as this pre-
serves the form of the constraints. For instance, for contexts C[],, an inclusion
e C C[f(é;)]p becomes C[X], C e, f(¢') C X where X is a new variable. This
results in an equivalent constraint (on the original variables) in which the inclu-
sions are e C ¢’ where €’ is either an intersection of variables X1 N...N X, or an
expression f(Xi,...,X,).

More formally, we use the following rules, assuming that n > 2 and p is not
the root position:

(A1) p= f€)nNerCe — (BX)f(E)CX,p0=XNey Cé
(Ay) $=eCClf()], = (BX)¢p=eCCIX]y f(¢) X, X C f(e)
(A3) ¢=eCCleinN...Neylp, — (@X)p=eCC[X]p,e1N...Ne, CX

In these rules, X is a new variable: we assume that there is no capture. The
following lemma is a consequence of the definitions:

Lemma 29 Applying abstraction does terminate on any constraint S, resulting
in a constraint S" such that the solutions of S are the restrictions of solutions of
S’ to the free variables of S. Moreover, if S is an ET-constraint, then so is S’
and if every expression is normal in S, then every expression is normal in S’.

We can also abstract out in the conditions of the inclusions. However, using
such a rule in an unrestricted way would lead to non termination of the satu-
ration. That is why we are going to use it only once, to simplify the original
constraint and forget it afterwards:

(A4) nonempty(e),d = e1 C ey
= (FY)eCY A nonempty(Y), ¢ =e; C ey

In this rule, e is assumed not to be a variable. It is also assumed that there is
no capture (Y is a new variable).

Lemma 30 (Ay) preserves the solutions of the constraint.

Proof: Assume S — S’ using the rule (A4). If o is a solution of S, extending
o with Y +— [e], yields a solution of S’.

35

Conversely, if ¢’ is a solution of S’, then its restriction o to variables other
than Y is a solution of S: either o [~ nonempty(e), ¢, in which case o satisfies
nonempty(e), » = e1 C eg, or else [e], is non-empty. In the latter case, [Y], is
non-empty (because of the constraint e C Y') and [e1], = [e1]s C [e2]o = [e2]o-
]

Inspecting the normal forms w.r.t. (A1), (A2), (A3), (A4), together with our
hypotheses, the atomic constraints are now of the form ¢ = e C ¢’ where ¢ is
a conjunction of nonempty(X), €’ is of the form f(Xi,...,X,) or X;N...NX,
and e is either X; N...N X, or f¢(€).

5.2.3 Getting rid of basic variables

Next, we can get rid of basic type variables. The main idea is that we can replace
each basic variable with a suitably chosen finite set, while keeping the desirable
properties. This is described in the next lemmas.

We let B(S) be the set of basic variables of S. We split each ET-constraint

into two parts S = Sp W Syp: Sp is the union of R(X) for X € B(S) and Syp
is the remaining constraint.
Remember that for any basic variable, either every function symbols of R(X)
occurs only in Sp (first type) or R(X) contains only one clause on the form
¢ = Cx(X1,...,X;) € X where X is distinct from the X; (second type). We
first get ride of the basic variables X of second type by replacing them by the
clause Cx (X1,..., Xi).

Lemma 31 Given an ET-constraint S, let
S/d:FfS[X = CX (Xla e an)]X of second type -

Then S" is an ET-constraint and S is satisfiable if and only if S' is satisfiable.

Proof: Since Cx (X1, ..., X}) contains only one-way function symbols and basic
variables, C'x (X1, ..., X}) is a basic expression thus S’ is an ET-constraint.

If o is a solution of S/, then o extended to the basic variables of second type by
o(X) =[Cx(X1,...,Xk)]o is clearly a solution of S.

Conversely, if S is satisfiable, then S has a minimal solution ¢. By minimality
of o, we have necessarily [X], = [Cx(X1,...,X;)],. Thus o is solution of S’.
O

From now on, we consider only ET-constraints with only basic variables of second
type. In particular, the function symbols occurring in S do not occur in Syp.

36

Example 32 We consider some of the constraints presented in FExample 22.

0 C Nat succ(Nat) C Nat
S da(Nat) C DA ha(Nat) C HA
B DA C A HA C A
| K(A,A) C Key
I A C M Key C M
SNB <MM> C M {M}M Cc M
shr(A) € M

Then there is one basic variable of second type: Key. Thus we transform our
ET-constraint following lemma 31:

0 C Nat succ(Nat) < Nat
Sp da(Nat) C DA ha(Nat) C HA
i DA C A HA C A
AC M KAA C M
SNB <M,M> Cc M {M}M cC M
shr(A) € M

Lemma 33 Sp has a least solution o,. It is possible to compute a finite tree
automaton A,,, whose states are finite sets of variables in Sp and such that
om(X) is the set of trees accepted in the state {X}.

Proof:

Since one-way function symbols do not occur on the right of inclusions, in any
constraint ¢ = e C €/, € is an intersection of variables. Then Sp is satisfiable:
assigning every variable to T(OF) is a solution. Then, by proposition 18 there
is a minimal solution o,,.

We can also easily construct the minimal solution in an effective way, apply-
ing e.g. the saturation rules of figure 2 to this particular case: because there are
only one-way functions in Sp, there is no construction f¢(...) here. The satu-
rated constraint coincides here with the solved form (since there are no function
symbols on the right).

As in section 3.2, the solved form corresponds to a tree automaton A,, whose
states are set variables. (|

Let ~ be any equivalence relation on T(OF). = is extended to the least
congruence relation on T'(F), which we write again =

o from the set of variables to 27(%)
by:

. Then, every assignment
is extended into the assignment o~ defined
o (X) ¥ (L € T(F) | 3u e T(F).t ~u,u € o(X)}.

in other words, o is saturated by =.

37

Lemma 34 For every equivalence relation = on T'(OF), if o is a solution of an
ET-constraint S, in normal form w.r.t. Norm, (A1), (As2), (A43), (A4), then ox
1 a solution of S.

Proof: Assume ¢ = ¢ C ¢’ € S. Since ¢ only consists of formulas nonempty(X)
where X is a variable, o |= ¢ if and only if o = ¢.

Let t € [e], and u = t.

We prove, by induction on the size of ¢’ that

tee], = uele]o

e If ¢ is a variable, the implication follows from the congruence property of

~
~.

o If ¢/ = e Neo, this is straightforward

o if ¢ = f(e1,...,e,) then f ¢ OF (by definition of one-way symbols).
From t € [€'], it follows that ¢t = f(t1,...,t,). Then u = f(ur,..., up)
with ¢; &~ wu; for every i, since f ¢ OF(S). By induction hypothesis, for
every 14, t; € [e;],, hence u; € [e;]s., therefore u € [, .

O

Now, the idea is to construct a finite index relation ~ such that we may
interpret the basic variables in a set of representatives modulo ~.

Lemma 35 There is a congruence ~ and an assignment o® to the variables of
S such that 0% = o, and 0°(X) is finite for every variable X .

Proof: We use the automaton describing o, and we consider ~ defined by
t =~ v iff t and u are accepted in exactly the same states of the automaton. Let R
be a set of representatives for &~ such that if f(t1,...,%,) is in R then, t1,...,t,
are also in R. o assigns RN [X],,, to X. U

Remark : Note that every element of R is recognized by at least one state X
of the automaton.

Example 36 We consider again the constraints presented in Evample 32. The
automaton A, associated with Sp is the following one:

0 — aNat succ(qnat) — dNat
da(qnat) = 9DA ha(qnat) = dHA
DA — 4A IgHA — 4dA

38

Thus the equivalence classes are:

{succ"(0)|n € N}, {da(succ"(0))ln € N}, {ha(succ"(0))ln € N}

We choose R = {0, ha(0),da(0)} and o"(Nat) = {0}, c°(HA) = {ha(0)}, 0°(DA) =
{da(0)}, 0%(Agent) = {ha(0),da(0)}.

If o is an assignment of basic set variables to finite set of terms in T(OF),
then o(Syp) is the set constraint obtained, replacing each basic variable X
with (e, (x)¢- Since basic variables do not occur on the right hand sides of
inclusions in Syp, o0(Syp) can be normalized in an ET-constraint, removing
unions occurring on the left or in the conditions by duplicating the constraints.

Example 37 In our evample 36, c"(Snp) is equal to:

ha(0) C M da(0) C M

K (ha(0),ha(0)) € M K(ha(0),da(0)) C M
K(da(0),ha(0)) € M K(da(0),da(0)) € M
<M,M> C M M}y € M
shr(ha(0)) C M shr(da(0)) € M

Lemma 38 Let 0¥ be the restriction to basic variables of the assignment defined
as in lemma 35. Let =~ be the congruence as defined in lemma 35. Then S is
satisfiable iff o°(Snp U Sor) is satisfiable.

Proof: First assume that S is satisfiable and o is a solution of S. Thanks to
lemma 34, we can assume w.l.o.g. that 0 = o~. Let us construct ¢’ such that
ol, = o and ¢’ is a solution of 0*(Syp).

For every term ¢t € T(F'), let ¢ | be its representative for ~. We define

o'(X) = {t 1 [t € (X))

Let us prove that ¢ is a solution of 0°(Syg). Let ¢ = ¢ C €' in Syp. If o' [~ ¢
then o' satisfies the clause. Otherwise, o = ¢ and therefore [e], C [e/],. Let
t € [e], (and hence t € [¢'],). We want to prove that t | € [¢'],. By abstraction,
¢’ is either an intersection of variables or an expression f(Xi,...,X,). In the
first case, t € [¢'], implies, by definition of o', t [€ [¢'],. In the second case,
f ¢ OF, by definition of one-way function symbols. Then ¢ € [¢'], implies
that t = f(t1,...,t,) and t |= f(t1 |,...,tn). Then t; € [X;], implies, by
definition of ¢’, that t; |€ [X;],, hence t € [¢/] .

Conversely, assume that o’ is the minimal solution of o(Syp). We extend
o' with ¢¥ to basic variables. Let us prove that o7, is a solution of S. We first
need to establish some properties on o':

39

Lemma 39 Ifu € [X],, then u=u .

Proof: For every term t € T'(F), let t | be its representative for ~. ¢t |= C[t1 |
sty] for some context C, such that ¢t = C[t1,...,t,] and for every term
ut,u= Cluy,...,u,] with #; & u;. The maximal context C' verifying the
property above is called the canonical context of t. Note that since the t; | are
representatives of the minimal solution of Sp, then the function symbols of the
ti I do not occur in Syp. In addition, the ¢; are equivalent (modulo =) to the
t; }, thus we have also that the function symbols of the #; do not occur in Syp.
Let us first prove by induction on e that:

for every o, if for every term ¢t and every set variable X, t € [X],
implies t = t |, then for every expression e occurring in ¢%(Syp),
t € [e], implies t =t |.

Indeed, assume that for every term ¢ and every set variable X, ¢t € [X], implies
t =t | and consider e occurring in ¢*(Syg) and u € [e],, u = Cluy, ..., uy,]
where C' is the canonical context of u. For every i, let us split up both e and C:

e cither there exists p; and C; < C'such that C;[u;] € [e|p,], and e|,, = "NY.
In particular, C;[u;] € [Y],, thus by hypothesis, Ci[u;] = Ci[u;] |. By
construction of the context, C;[u;] L= Ci[u; |] thus u; = u; |.

e or there exists p; such that u; € [e|p;],. Since e = o%(e1) for some e;
occurring in Syp, we have to consider again two cases:

— either p; is not a path in ey, i.e., there exists ¢; < p; such that eq |, = X
where X is a basic variable and el,, € 0"(X). Thus u|, € 0*(X) C R
and ulg, = Cj[u;]. Since uly, € R, Cj[u;] = Cilui] = Cjlu; |, thus
Ui = U; J.

— either p; is a path in e;: Since the function symbols of u; does not
occur in Syp and u; € [e|p,]s, €1]p, is necessarily an intersection of
variables: e1],, = X1 N ...N X,. If one of the variable, say X1, is
basic then o%(e;) € 0%(X) and we conclude like above. Else u; €
[Xin...NnX,]s and we conclude by hypothesis.

We are now ready to end the proof of Lemma 39 by induction on the fixed point
of our deduction system: assume that for every n’ < n, then u € [X]]Tn/(%)
implies v = v |. and let us show that u € [X]gn(,) implies u = u |. Let
¢ = e C e € o’ Snp) be the clause which generated u (we assume w.l.o.g. that
¢’ does not contain intersection symbols like in section 5.1.2):

if ¢’ = X then u € [e][pn-1(4,) and we conclude by induction.

ap)

40

if ¢ = f(X1,..., Xn) and X = X; then there exists v € [e]rn-1,,) such that
v=f(...,u,...). Since f does not occurs in R(X) for X basic variable,
v can not be accepted in any state X where is a basic variable, thus v |=
f(...,ud,...). By induction and the property we have just demonstrated,
we know that v = v | which implies u = u |.

]

We are now ready to prove lemma 38. o, is a solution of Sp, by definition of ~
and o’. Let us consider a clause ¢ = e C ¢/, which does not belong to Sp. Since
¢ only contains atomic formulas of the form nonempty(X), o’ | ¢ iff o, = ¢.
Assume that ¢’ |= ¢ (if it is not the case, then o, trivially satisfies the clause).
By induction on e, any term ¢ € [e],. is equivalent, modulo ~ to a term

u € [e],r such that u € [¢'],s. Indeed, if e is a variable, this is true by definition
of ~. If e = e1 N eg, then, by induction, there exists u; € [e1], and uy € [ea]y
such that ¢ &~ w; and t = ws. By lemma 39, u1 = uy |, us = wuo |, thus
up = ug and u; € [e]yr. If e = f(e1,...,e,) (last case), then t = f(t1,...,tn),
t; € [[67',]](,/%. By induction, there exists u; =~ t; such that u; € [e;],s, thus

ud:eff(ul, .o Up) € [e],r and u A t.

Now, either ¢’ is the intersection of the variables X;, in which case there
exists u; € [Xi]o for every i such that u; ~ t, hence t € [X;], for every
i, or else ¢ = f(X1,...,X,). In the latter case, f ¢ OF and therefore ¢ =
ft1, ... tn),u= f(u1,...,u,) with ¢; ~ u; and u; € [X;],. Again, this implies
that t; € [X;],,, for every 4, hence t € [e'],..

O

Thanks to lemma 38, and as far as satisfiability is concerned, we can now
restrict our attention to the constraint oo(Sypg) in which there is no longer any
basic variable.

From the cryptographic protocols point of view, if we assume that the set of
principal names correspond in the set constraint formalism to a basic variable
N (which is the case in all formalism we know), lemma 38 shows that, if there
is an attack, then there is an attack with a bounded number of principals. The
bound is given by the cardinal of o¢(/N). Again, in any description of principals
that we can think of, oo(/N) will contain at most two elements. Then, the result
shows that, if there is an attack, then there is an attack involving two distinct
principals only (a honest one and a dishonest one).

5.2.4 Complexity issues in eliminating the basic variables

Before going any further, let us comment on the complexity of o¢(Syp) with
respect to S.

41

First consider the computation of o,,. Following theorem 11, the computation
of A,, requires deterministic exponential time in general, since it is quite easy
to encode the emptiness problem for the intersection of tree automata [28].

On the other hand, we want to point out a particular case which can be rele-
vant to the application to cryptographic protocols. Sp often satisfies additional
properties, which we describe below.

For every basic variable X, let Head(X) be the least set of (one-way) function
symbols such that

e if f(...) C X is an inclusion of R(X), then f € Head(X)

e if X1N...NX,, C X € R(X), then Head(X1)N...NHead(X,) C Head(X)

Lemma 40 If for every two basic variables X,Y, either X CY € Sg orY C
X € Sp or Head(X)NHead(Y) = 0, then it is possible to compute in polynomial
time a finite tree automaton whose states contain the basic variables and which
accepts o (X) in state X.

Proof: We can compute Head(X) in polynomial time. Then, while saturating
Sp, we replace every intersection with either () or the largest variable, preventing
the combinatorial explosion. O

A second source of complexity comes from the computation of an ET-constraint
out of og(Syp): eliminating the disjunctions may lead to an exponential blow-
up in general. However, with the same hypothesis as above, the cardinal of
00(X) is smaller or equal to the number of inclusions of the form ¥ C X. In
particular, in our running example, only o(¢(A) contains more than one element:
o0(A) = {ha(0),da(0)}. In addition, if we assume that there is no inclusion be-
tween basic variables as it was the case in our previous version [11], then og(X)
assigns each basic variable either the empty set of a singleton set and therefore
oo(Snp) is smaller in size than S itself.

5.2.5 Simplifying again the expressions

The goal of this section is to achieve further simplifications. In particular we show
that, after eliminating the basic variables, we can get rid of nested constructions
fe(..).

Thanks to lemma 38, we can now restrict our attention to the constraint
00(SnB). In such a constraint, there is no longer any basic variable, which allows
for several simplifications. First, we can abstract one the left side of inclusions
such that the inclusions are e C e’ where e is either an intersection of variables
or an expression f¢(€) in which, at any position which is not a strict prefix of a
position checked by ¢, there is a variable.

42

Simplification

(Ng) tMNeq — 1
If ¢ is ground
and TI(eq) € TI(¢)

(No) ¢p=eltNeg), Ce — (3Y) ¢, nonempty(Y) = eft], C ¢,
tNeg CY
If ¢ is ground
and I(eq) C II(¢)

(N1o) frmteE = (@)
If fe(e)|, = f°(é)|, are ground

(N11) ¢ = e[fC/\p:q(éﬂp Ce — true
If t € f"P=9(&)|,.p, is ground,
u € fP=U(E)|qp, Is ground

for some p; and ¢ # u

Figure 6: Simplification rules

Formally, we use the following rules, assuming that n > 2 and p is not the
root position: and that p is not a strict prefix of any path checked (higher) in C":

(Ag) o= Clf @, Ce — (3X)g=ClX],Ce, f(e) X
(A5) ¢=CleinN...Ney)p Ce — (FX)p=CX],Ce,e1nN...Ne, CX

In these rules, X is a new variable: we assume that there is no capture. The
following lemma is a consequence of the definitions:

Lemma 41 Applying abstraction does terminate on any constraint S, resulting
in a constraint S" such that the solutions of S are the restrictions of solutions of
S’ to the free variables of S. Moreover, if S is an ET-constraint, then so is S’
and if every expression is normal in S, then every expression is normal in S’.

In addition, in the equality tests, if f¢P=9(€) is an expression such that the
subexpression at position p (or ¢) is basic then the expressions at positions p, ¢
must contain the same ground term. This is also sufficient: the equality test
p = q can then be removed if the appropriate inclusions ¢ C X (¢ is ground) are
added. Formally, we use the rules displayed in figure 6.

43

Lemma 42 The simplification rules displayed in figure 6 are terminating. If
S is an ET-constraint in which all expressions are mormal, then the result S’
of simplifying and abstracting oo(Sng) is an ET-constraint in which all expres-
stons are normal and which is satisfiable iff S is satisfiable. Moreover, in any
expression fC(e1,...,e,) occurring in S, ey, ..., e, do not contain a construction

/

g (...).

Proof: The correctness of the rules is a routine verification. let us only consider
the rule (Ng). If o [~ ¢, it suffices to assign 7'(F) to Y and both sides are satisfied
by 0. If 0 = ¢ and [e[t Nep]]s C [€']o, then extending o with Y — [t N eg], we
get a solution of the right hand side:

e cither [t Neg], = () and this is straightforward

e or else [tNep], = {t}, since ¢ is a ground term, in which case [e[t Nep]]s =
[e[t]]o

Conversely, if o is a solution of the right hand side, either [Y], is empty, which
means that ¢t ¢ [eg], and the left hand side is satisfied by o or [Y], = {t}, in
which case [e[t Neo]]s = [e[t]]s € [€]s-

Thanks to lemma 38, it only remains to show that all expressions are normal
in S’ whenever all expressions are normal in S and that, moreover, there is no
longer any nested equality test.

For every expression f¢(€), P(c) CII(f°(€)) . Only the case of (Ny) is not
trivial. The property is ensured by the side condition.

Condition 5 is satisfied ¢” may replace variables with ground terms, hence
replace expressions ¢g°(€) N X1 N... X, with ¢g°(&) Nt1 N...Nt,. However,
each t; is either a variable or is ground. If at least one of them is ground,
we can apply either (Ng) or (Ny).

Condition 3 is satisfied There are two situations in which property 3 is not
trivially preserved: first when, while removing disjunctions in ¢%(Sy), we
do not keep the consistency with equality tests: in an expression fP=9¢(¢),
X has been replaced with ¢ at a position p - p;, while X has been replaced
with u at the position ¢ - p;. This case is handled by rule (Nyyp).

The second situation in which condition 3 may not be preserved is when
we apply the rule (Ny). However, in this case, applying the rule to all
identical expressions restores condition 3.

Condition 1 is satisfied Thanks to (Njp) and (N11), we cannot have p ~. ¢,
el ground and e|, not ground. So, a repeated application of (N1g) consists
in removing an equivalence class, which preserves condition 1, thanks to
lemma 71. The rules other than (Nig) trivially preserve condition 1.

44

Conditions 4, 2 and 6 are satisfied Again, the only rule to be considered is
(N1p) since this is the only rule in the set which modifies the tests without
removing them entirely. As above, since its repeated application removes
a class, properties 4, 2 and 6 are preserved.

There is no nested test Assume that there are nested tests: f¢(€)|, = g° (€N

e.

First, if there are p; ~. p2 such that p is a prefix of p1, by properties 6 and
1, for every p' ~u ¢, gcl(e’) » must be a basic expression, hence a ground
term. Then, the rules (Ng), (Ng), (N10), (N11) ensure that ¢’ is empty.

On the other hand, if this is not the case and if there are p; ~. p2 such
that p; shares a non-trivial prefix with p, then, by property 1, f¢(€)|, must
be a basic expression, hence a ground term. In this last case ¢ must be
empty again.

Remains only the case in which, for every p; ~. pa, p1 is either incom-
parable with p or a prefix of p. Then, Abstract can be applied, which
contradicts the hypothesis on Syp.

O

We use a final simplification rule, abstracting away some more expressions:

(Ni2) ¢=celXnNgle],....el)]p Ce — (IY1,....Yy)
XNg(T,....,T) Cg(Y1,...,Yy)
p=elgYine.....YnNel

If p is non-empty.

The rule assumes that there is a variable T which captures all terms (this is
easy to define).

The correctness of the rule as well as the preservation of all properties is quite
straightforward. Let us now inspect the constraints we have still to consider.

Definition 43 The SET-constraints (Simplified Equality Tests constraints) are
a subclass of ET-constraints in which, for every clause

nonempty(e}), ..., nonempty(el,) = e C ¢’
(resp. nonempty(e}), ..., nonempty(e},) = false)
1. each of e €}, ... el is either an intersection of variables or an expression
feler,...,en) such that e,...,e, do not contain any equality tests nor

expressions X N g(...).

45

2. For every p € Il(e), except the root, either p is a strict prefix of some
q € P(c), or else e, is a (basic) ground term or p € P(c) and e, is an
intersection of variables.

3. If pr~ecaq, elp=elg.

4. € is either a variable or an expression f'(Xi,...,X,) where Xq,..., X,
are variables.

Lemma 44 The simplification rules displayed in figure 6 are terminating. If S
is a SET-constraint in which all expressions are normal, then the result S' of
simplifying and abstracting oo(Sng) is an ET-constraint

Proof: Let us show that S’ verifies the four conditions of SET-constraints.

1. Assume e or one of the € is of the form f(eq,...,e,) and that one of the
ej contains an equality test ¢;. Then, by abstracting, it must be that ¢
overlaps ¢; which is not possible since S’ is normalized.

2. After abstraction, if p is not a strict prefix of some ¢ € P(c) and p is in
II(e), then p € P(c) and e|, is a variable. After simplifying, if p is not
a strict prefix of some ¢ € P(c), then e, is either a variable or a ground
term.

Conditions 3 and 4 are consequences of the definitions.]

5.2.6 Deduction rules

Now, we are ready to apply the deduction rules given in figure 7. ¢ |; is defined

by (¢ A) iid:efc\Li N Ly (t-p=i-q) iidZEfp:qand (j-p=24q) \Lid:ef—l—when

i # j. e is the expression in which the top symbol of e is constrained by c.
(It is used only in a context where e must be headed with a function symbol or
¢ =T). Finally, X denotes a variable in these rules.

Lemma 45 The inference rules in figure 7 are correct: the new constraint is a
consequence of the previous ones.

Proof: Only Projection and Deduction are not trivially correct. Let us start
with Projection.

We want to prove that, if o is a solution of ¢ = f¢(e1,...,e,) C f(e}, ..., €l),
then o is a solution of ¢, nonempty(f°(e1,....e,)) = efu Ceél.

Assume o = ¢, nonempty(f©(e1,...,e,)). Thenthereisanu € [f(e1,...,en)]s
and [f(e1,...,en)]o C[f(e],---sel)]o-

Let t € [[efuﬂg. We build v as follows: v is the term w in which

46

p1=e1CX =X Cen

Transitivity
¢1,¢2 = e1 C e
p=XnNe Ce ¢ =eCX
Compatibility
¢’¢I:>elﬁ62 g e/1
If both e; and ey are intersec-
tions of variables
¢ = f(€) Cg(e)
Clash if f#£g
¢ = false
¢:>.fc(€17"'7en) g .f(e{l7"'7e’,n)
Projection
b, nonempty(fe(e1, .. en))) = € C !
o1 = f“l(e%, el C Xy
¢k = ka(elf: e -76713,) - Xk
p=X1N..NXCe
Deduction

IXL XXX
o= f(XIn..nX} ... XPn...nX) Ce
¢1 = f(el,...,el) C F(XT, ..., X))

dr = for(ef, ... ek) g'f(X{“,...,X’“)

The clause ¢ = f(X{N...NX},..., X N...NX2) C e in the conclusion of
Deduction is marked so that it cannot be used as a premisse of Deduction. In
addition, if ¢1 = e; C X is a marked clause, then for every clause ¢o = X C eo,
then clause ¢1, 2 = e1 C es is also a marked clause.

Figure 7: The saturation rules

47

e u; is replaced with ¢
o for every i-p ~. j-q with i # j, u|;4 is replaced with t|,.
Let us show that v € [f(e1,...,en)]s-
e First, v € [f(e1,....en)]s: let v = f(vi,...,v5). v; =t € [ei], and we
prove by induction on |c| that, for every i # j, v; € [e;].
If ¢ is empty, or if ¢ does not contain any equation i-p = j-q, then v; = u;
and therefore v; € [e;],.

If i - p ~¢ j - q, by induction hypothesis, w; = vj[ul;qlq € [€;]o. Moreover,
by property 3, e;|, = €;|p, hence t|, € [ej|q],. Now, since we assumed in
the condition of the projection rule, that there is no intersection symbol
along the path j - ¢, v; € [e;]o-

e We have to prove now that v = ¢
— For the testsi-p=i-q€c,vEi-p=1i-q follows from ¢t =p = ¢
(since t |=c | 7).
— The tests i - p = j - q with i # j are satisfied by construction.
— For the tests ji1-p = jo-q, either there is a r such that j;-p ~. i-r and we
are back to the previous case, or else u|j, ., = v|j,.p and ulj,.q = vV|j,.q
which implies v = j1 - p = jo - ¢ since u = j1 - p = jo - q.
Now, v € [f¢(e1....,en)], implies that v € [f(e},....€,)]s, hence t € [e!],.
Now consider Deduction. The rule is actually a combination of several rules
which are all correct: for every 7, we introduce

(1) X;nf(T,....T) = f(Xi,..., X))

Then, we may intersect both sides of X3 N...N X, C e with f(T,...,T) and
use a compatibility. We get:

o= f(XL,... . XHn...nfxk ... xkce

Normalizing the left hand side, we get the clause:

o= f(XIn...nX},....XI'n...nX) Ce

Now, for every i, from (1) and the inclusion ¢; = f<(et,...,e}) C X;, inter-

e n

secting again both sides with f(T,...,T), we deduce by transitivity and since
fe(.) C (T, T):

i = [l o) CF(XD o X))

48

Lemma 46 FEvery transformation rule transforms a SET-constraint into a SET-
constraint.

Proof: Only the projection rule has to be considered: we need to check that
efii satisfies the conditions of SET-constraints, which follows from the fact that
P qiffpei~eqg-i O

Now, we consider the termination problem. The main problem is to control
the creation of new variables.

Lemma 47 The number of variables created during the saturation procedure can
be bounded by |S|; x a.

Proof: Only Deduction introduces new variables. It is simpler to see the
Deduction rule as a variable introduction (rule (1) in the proof of lemma 45)
combined with other deduction rules, which preserve the semantics and do not
introduce variables. As far as variables creation is concerned, we can, w.l.o.g,
assume that the conclusion of Deduction are the clauses X; N f(T,...,T) C
f(Xf, ..., X1, In particular, if the rule is applied twice with the same variable
X, and the same function symbol f. we can use the same variables X;

The main problem is that these new variables X; may trigger again the
introduction of new variables. However, if we trace the origin of such variables,
we observe that introducing the X]’: is subject to the presence of a constraint
¢i = f%(...) C X;. Now, if later a constraint ¢, = fci() C X;: triggers
the introduction of new variables again, the expression f%(...) must be the
projection of some expression occurring at the previous level. And since we can
only perform a bounded number of projections on a given expression, we can
bound the number of successive variables generation. Let us formalize this.

Let us associate first with each variable a level: the variables occurring in the
original constraint have level 0, and, each time we introduce new variables with:

(1) XN f(T,....T)C f(X1,...,Xn)

the level of every variable X; is one plus the level of X.
We prove, by induction on the level m of a variable X, that, if (1) is applied
to X, then there is an expression e in the original set constraint and clauses

p=>¢ CX, ¢ = X' C Xy, ..., dnr1 = X, C X such that ¢ is obtained
by at least m successive projections of e (we say that e’ is a projection of e if
e=fe1,...,en) and €' = efii for some 1).

When m = 0, observe that clauses ¢ = f¢(...) C X' are either in the
original set constraint, or obtained by projection, or obtained by Transitivity
or obtained by Deduction itself. In case Transitivity has been applied, there

49

exist an other clause ¢’ = f¢(...) € X" and a clause ¢" = X" C X'. Thus,
by a simple induction, there exist a clause ¢/ = f°(...) € X" and clauses
¢ = X" C X1, ..., ¢ny1 = X, C X' such that ¢' = f¢(...) € X” has been
obtained by projection or by Deduction itself. However, in the latter case, we
explicitly prevented using the resulting clause as a premisse of Deduction.

When m > 0, observe that the variables Xj’ created by Deduction appear
in only one clause on the right of an inclusion: the clause ¢; = f(et, ... el) C
f(Xi,...,Xi). Only Projection, applied to this clause, may produce a clause
in which X; occurs on the right of an inclusion: there exists a clause ¢; =
eé-ci“ - X; such that eéci“ is the projection of f<(e},...,el). Then we apply
the induction hypothesis to ¢; = £ (e},...,e) C X; since X; is of level m — 1.

Now, how many expressions f¢(...) can be derived by projection from a
given expression 7 Note first that no projection can be applied to a ground
(basic) expression since one-way symbols do not occur on the right of inclusions.
Then, by definition of expressions occurring in a SET-constraint, the number
of expressions f¢(...) which can be derived by projection from an expression
g¢(...) is the number of strict prefixes of positions in P(¢'). Tt follows that the
number of new variables is bounded by |S|; x a.

O

Lemma 48 The rules of figure 7 are terminating: a fized point is reached after
finitely many steps (at most O(|S|* x 20+VISI) where a is the mazimal arity of
a function symbol and |S| = |S|; + |S|£ is the size of the original constraint.

Proof: We are going to show that only a finite number of distinct clauses can
be generated by the rules.

As we have seen in the proof of lemma 47, the number of distinct expressions
f¢(...) occurring on the left of an inclusion is bounded by |S|;, plus the number
of times Deduction is applied, which is itself bounded by [S|; x a thanks to
lemma 47. The other left sides of inclusions are intersection of variables, hence
there are at most 2951t *1Vsl guch possible left hand sides, thanks to lemma 47.

The right sides of inclusions are variables or a function symbol applied to
variables, which gives a bound of a|S|; + |Vs| + |F| x (a|S]: + |Vs|)®.

Finally, we have to analyze the possible preconditions. They are conjunctions
of

e nonempty(X) where X € Vg

e nonempty(f“(e1,...,e,)) where f(er,...,e,) occurs as a left member of
an inclusion constraint

50

Thanks to lemma 47, this gives the following bound for the number of possible

distinct preconditions:
9lVs|+[Sl

Now, putting everything together, at most
((a+ 1) x ISle + 215 51V51) x (@l Sl + V| + 1] x (alSle + [V])?) x 2Vsl++15)

distinct clauses can be generated. Since |S|+|Vs| < |S| and a|S|;+|Vs| < ax|S],
we get the bound O(|S|® x 2(e+ DSy,
O

If S is an ET-constraint, let solved(S) be the clauses ¢ — a in S such that
either a is false or else a is an inclusion f¢(€) C X where X is a variable.

As in [7], the following completeness result is obtained by inspecting each
clause C' € S which is not in solved(S), showing that, thanks to saturatedness,
the least solution of solved(SS) is a solution of C. There are only some additional
cases for non-flat constraints e.g. f(X N g(é),e') C f(e").

Theorem 49 If S is saturated, then either both S and solved(S) are unsatisfiable
or else S has a least solution, which is the least solution of solved(S).

Proof: If solved(S) is unsatisfiable, then S, which contains solved(.S), is unsat-
isfiable. Now, assume solved(S) is satisfiable and let « be its least solution. We
show that « is a solution of S.
We prove, by induction on n + size(t) that, for every clause ¢ = e C €’ in S
such that a |= ¢, and for every t € [e]n (¢) (which we abbreviate t € [e],),
solved(.S)

t € [€]a-

The result will follow, by minimality of a.

There are only three kinds of clauses ¢ = e C ¢/, which are possibly in S and
not in solved(S). We study each of them (¢’ is either a variable or an expression

f(X1, ..., X0)).

»=XCg(Y1,...,Yn) , t € [X]n, hence there is a clause ¢’ = ey C X in
solved(S) such that a = ¢’ and ¢ € [eg],—1. By Transitivity, there is a
clause ¢, ¢’ = eg C g(Y7,...,Y) in S. Since a = ¢,¢' and t € [eg]n—1,
we apply the induction hypothesis and get ¢t € [g(Y1,...,Ym)]a-

¢»=X1N...NnX, Ce We use an induction on the multiset M (X;N...NX,) def

{k1,...,kp} of integers k; such that ¢ € [X;];, and t ¢ [X;]x,—1. The
maximum of ki,...,k, is, by hypothesis, smaller or equal to n. If it is
strictly smaller than n, we use directly the induction hypothesis. If this
multiset is equal to {n}, then we are back to the first case. Hence, let us

51

assume now that the multiset is strictly larger than {n}, which means in
particular that p > 2.

Since t € [X;]x, for every i, there are clauses ¢; = e C X; in solved(S)
such that a |= ¢; and t € [e}]x,_1- If one of the expressions €} is an
intersection of variables, then by Compatibility, there is a clause ¢;, ¢’ =
XiN...NX;o1NeyNX;p1N...NnX, CeinS. Moreover, a = ¢ and
telXin...nX;-1NeyNXip1N...N Xy, Finally, M(X1N...NX;1N
el N Xip1 N ...N X,) is obtained replacing k; in M (X1 N...,NX,) with
a multiset of strictly smaller numbers. Hence we get a strictly smaller
multiset and we may apply the induction hypothesis: ¢ € [e].

Now, if none of the expressions e} is an intersection of variables: t =
f(ti,....t,) and e = f(e], ... e},). If one of the clauses

¢z:>f(€llaae:1) QXZ

is marked, then there exist a clause ¢! = f(ei,...,e!) C X! marked by
Deduction and clauses ¢; = X/ C X' . py1 = X" C X; such that
i = ¢h 1, ..., Ppy1. Thus, there is a clause ¢ = Z1N...N Z,, C X
which triggered the application of Deduction. Then, applying repeatedly
transitivity, there is a clause ¢; = Z1 N ... N Z,, C X;. In such a case,
for every k, ej,C = Z,i N...NnZ" Now, t € leilr,—1, hence, for every
k.j, ty € [Z]]k,—1. Tt follows that, for every j, t € [Z;]s,—1. Now, by
Compatibility, there is a clause ¢, p; = X1N...Z1N...NZ,...NX,, Ce
in S. And, as before, we get an intersection of variables with a strictly
smaller multiset. We conclude thanks to the induction hypothesis.

Remains only the case where none of the clauses ¢; = f(ei,...,el) C X;
is marked. In this last case, we can apply Deduction. For every clause

¢i = fCi(ezia s 762) g f(%a s 7X7Z'1)a « |: ¢Z and t € [[fq(ezia cee 762)}]&717
hence t; € [X;]x, for every i, j, by induction hypothesis.

If ¢ is a constant, then ¢ = ¢t C e is a clause of S and we can conclude.
Otherwise, if e is a variable, then

o= f(Xin...nX,.....X{n...nX})CX

is a clause of solved(S). Hence t = f(t1,...,tn) € [X]n+1.
If e is not a variable, then e must be f(Y1,...,Y,) and, by Projection,
for every 7,

¢,nonempty(f(X{ N...NX.,....,X'n...nXM") = X{n...nX] CY,

is a clause of S. « satisfies the premisse since ¢ is a witness for the second
part of the precondition. Moreover, for every j, t; € [X{ n...N Xj],

52

and M(X{ N...N Xg) is smaller or equal to M (X; N ..., X,). Then, by
induction hypothesis, t; € [Y;]q for every j. Hence t € [e],.

b= fer,....,ep) C g(X1,....Xp). If f # g. then, by Clash, the clause ¢ =
false is in S, hence in solved(S), which contradicts a |= ¢.

Assume now f = g. Then t = f(t1,...,t,). By Projection, there is a

clause .
Ci e ¢, nonempty(f“(e1,...,¢ep)) = echi C X

in S, for every i. Since t € [f°(e1,...,en)]as
a |= ¢, nonempty(f(e1,...,en)).

For every i, t; € [e;], since t € [f(e1....,ep)]n and t; = ¢ | since t = ¢
(and by definition of ¢ |;). Thus t; € [eS*],, which implies t; € [Xi]a by
induction., thus f(t1,...,t,) € [f(Y1,...,Y))]a-

O

We are now reduced to prove that the satisfiability of solved(S) is decidable.

5.3 Connection with automata with one memory

Theorem 50 For every satisfiable SET-constraint S, there is an (effectively
computable) alternating automaton with one memory Ag and an homomorphism
H such that Ag accepts t in the state X iff H(t) € [X]. where « is the least
solution of solved(S).

Proof:

The memory alphabet of the automaton is the set of function symbols used
in the constraint and the alphabet F4 is the memory alphabet with some addi-
tional symbols allowing to check on auxiliary branches non emptiness conditions.
More precisely,

e the states of Ag consist of

— the variables of S. We write them ¢x such states, for X a variable of

S
— the states g for every ¢ = nonempty(e1). ..., nonempty(e,,) such that
nonempty(e1), ..., nonempty(e,,), nonempty(€p+1), - - ., nonempty(e,) is

a precondition of a clause in S.

— for every expression e = f¢(ey,...,e,) and for every non-leaf position
p of such an expression, a state g,

53

— a state g, for every constant a € F
e The memory alphabet is F

e The set of function symbols F4, consists in an auxiliary binary symbol E
and, for every symbol f € F a symbol f*! whose arity is one plus the arity

of f.

Let H be the homomorphism:

H(f(t, .. tn) % f(Ht).... H(ty))
H(f+ (oo t1s . tn) % f(H(t), ..., H(ty))
H(E(t,t) ¥ q

where a is any constant in F. «(X) will be the image by H of the trees recognized
in state ¢x by Ag.

By convention, if p is a leaf position of f¢(e1,...,e,), we let g., be the
conjunction gx, A ... Agx,, if e[, = Xi N...N X, and gep = qq if €], is the
constant a.

The transition rules of Ag consist of

T
1. a — qq.
a

2. f(Gets- - Qen) %\ 2 Qfe(er,....en) fOr every literal nonempty(f“(e1, ..., en))
L1409 -Q
- def

occurring in S. 7 is the equality test ¢ defined as follows: i-p=j-q =
. . ——— def ~ ~
i=jand ¢ Acag = ¢1 A ca.

3. 9(Gepis- s Qepk) in> ¢ep in which e = f(eq,...,ey) occursin S, p is a
non-root position of e, e[, is headed with g. F = Az1,..., zp.2; if p-i is

a prefix of a position in P(c). Note that if there are several such indices,
lemmas 27 and 42 imply that the choice is irrelevant. ¢ | p is defined as

in the projection rule: ciefi:efc, 01A62¢i-p(126f (c1di-p)A(cali-p),
(G-pr=k-p2)bip= Tifeitheri#jork#iand (i-pr=i-po)
. def

i-p= (p=p2)lp

-
4. E(qe,qe) m dnonempty(e),nonempty(e’) for every nonempty(e), nonempty(e’)

which is an initial sequence of a precondition of a clause of S.

5. E(q¢,ge) — T, d¢nonempty(e) for every ¢,nonempty(e) which is an

Ary,r9.71
initial sequence of a precondition of a clause of S.

54

6. f(qs:qens - 1 Gen) —Ii> gx for every clause ¢ = ¢ C X in S such that

e= fe1,...,en). F'=Aw;,,...,z; .t where t is the expression e in which,
at each el;,, such that j-p € P(c) is replaced with z;; where i; = j € .

The following intermediate results are proved in appendix B:

e If a term is accepted in state g, where ¢ is a precondition, then o = ¢

o If o |= ¢, then there is a term accepted in state g,

e If a term ¢ is accepted in state ¢x, then H(t) € a(X)

e If £ € a(X), then there exists ¢’ is accepted in state ¢x such that H(t') = ¢.

From these lemmas, it follows that Ag accepts the least solution « of solved(.S)
in the sense that ¢ is accepted in the state X iff H(t) € [X]a.-
O

Remark: We conjecture that the minimal solution of a SET-constraint is
recognized by an alternating tree automata with one memory. However, to prove
this would require more saturation rules to get rid of non-emptiness conditions
(as in section 3).

As a consequence of theorem 50 we get:

Theorem 51 The satisfiability of ET-constraints is decidable.

Proof: As a consequence of lemma 45, lemma 48, theorem 49, we can assume
that S is a solved form.

Then, consider all clauses ¢ = false in S and let S’ be the rest of S.

S’ is satisfiable, then, thanks to theorem 50, there is an automaton Ag such
that t is accepted in ¢x iff H(t) € [X]o where « is the minimal solution of S’.

Let Q¢ be the set of states g, such that ¢ = false is in S. Then S is satisfi-
able iff, the automaton Ag with final states QQy does not accept any tree, which
is decidable thanks to theorem 15. (|

6 Analysis of cryptographic protocols

We present here a decidable fragment of the class of protocols described in Section
2.2 and we illustrate the relevance of this fragment by an example (inspired by
Kerberos).

95

6.1 A decidable class of protocols

As we have seen in section 2, the specification of a protocol and its secrecy policy
rely not only on the rules of the protocol, but also on the signature. In particular,
we must say what are the expected types of each argument of a function symbol.
This is far from being innocent, since this corresponds to the ability of each
agent to recognize different data types. If all function symbols are assumed
to take messages or agents as arguments and return messages or agents, then
the principals are assumed to distinguish only agents from other messages. For
instance, a pair of agents can be taken as a key in this case. Since many attacks
are due to type confusion [8], such a signature specification would allow to detect
many more attacks. On the other hand, if typing information is available, then
deciding secrecy is easier.

One specificity of our model is that both the signature, hence the available
type information, and the protocol itself are parameters. The defining conditions
for our class will therefore depend on both the signature and the protocol and
be more restrictive when the typing policy is more sloppy.

A rule of a protocol is of the form
{S(A,i, M), My,.... My} — {S(A,i+1,M"), Mj,.. .,Mé}

where M; are messages. As we have seen in section 2, the secrecy for gen-
eral protocols of this form is undecidable. To obtain a decidable class, we
consider protocols such that, for each rule, the variables which are shared by
My, ..., My, Mj,... ,Mé satisfy a “basicness condition”. Roughly, such a condi-
tion will state that only one variable may occur several times in different contexts
without being of basic type. For instance, if we don’t assume any special ability
of agents to recognize data types, then repeated variables occurring in different
contexts must be agents names, except for possibly one such variable.

In order to express our condition, let X be a variable for each sort s in the
signature and let Cpsg be the union of the definite set constraints

f(Xsortla s 7XSOI'tn) C XSOI’ta

for every function symbol f of type sort; x ... X sort, — sort, and the definite
set constraints

Xsort C Xsort’

if sort is a subsort of sort’. The basic sorts are defined as in definition 21: this
is the largest set of sorts such that

e If s is basic then R(X;) only contains one-way symbols and basic sorts.

56

e If 5 is basic then

— either R(Xj) contains only one clause e C X such that X does not
occur in e.

— or every function symbol occurring in R(X;) occurs (possibly) only
in R(Xy) where s’ is basic.

For instance, we have seen in example 22 that, in our running example, all sorts
are basic except Message. Let Bysg be the set of basic sorts.
Now, for each rule

rl={S(A,i, M), My, ..., M,} — {S(Ai+1,M"), M{,.... M},

let £, << A, M >,Mj,..., My, < A, M’ >, My, ..., M; > and for each vari-

able Y, occurring in rl, let S,y def {p such that t,;|, = Y'}. Let ¢,y be the
equality constraint p; = ... = p|; for p; € Sy y. In the particular case where
Syy is a singleton, ¢,y is the empty constraint. Finally, let ¢,; be the conjunc-
tion of the ¢,;y for all variables Y occurring in rl.

Example 52 We describe here the t,; and c¢.; corresponding to our running
example (see figure 1, example 5).
For the rule

S(A.1,<A,B,s>),
0 — { S(B,1,<B,s>),

S(s,1,s)
we get the term and constraints:
ty, = <<A<ABs>><B,<B.s>><ss>>
¢, 2 11=121 A 122=21=221

For the rule 1:

{S(A,1,<A,B,s>)} — {S(A4,2,<A,B,s>),<A,B>}

= <<A <A B,s>> <A <A B,s>>, <A, B>>,

= 11 =121 =212 =221 A 122 = 222

For the rule 2:

S(s,1,s) S(s,2,5),
{ <A. B> } 7 { {B’K(AvB)v{A7K<A7B)}shr(B)}shr(A) }

o7

i, = <<s.5> <A B> <s.5>,
< {B7 k1 (Av B): {Aa k1 (Av B)}shr(B)}shr(A) >>
def

Cpl, = 21 = 4121 = 41311 = 413121 =42 A 22 =411 = 4122 = 413122 = 4132
For the rule 3:

{ S(A727<A:B:S>)7 } N { S<A737<A:B:SaXam(AaB)>)a }
{B, X, Y Fehr(a) <{m(A,B)}x.Y >

tTlg & <<A,<A,B,S>>,{B,X,Y}Shr(A),
<A <A B,s,X.ni(A B)>> <{ni(AB)}x,Y >>
¢y, = 11=121=22=31=321 = 3251 = 4111 A
122 = 211 = 322 = 3252 = 4112 A 212 = 324 = 412 A 213 = 42
For the rule 4:
{ S(B,1,<B,s>), } { {S(B,1,<B,s,A, Z,X>), }
<{Z}x,{A X}e(p) > {h(Z)}x}
ty, = <<B,<B,s>><{Z}x,{A X}qn) >
<B,<B,s,A, Z,X>>{H(Z)}x}
¢y, = 11=121=222=31 =321 A 211 =324 = 411 A 212 = 2212 = 325 = 42

For each term ¢, let ¢ be the expression obtained by replacing in ¢ each variable
of sort s with Xg. Finally, let u,; be the expression (with equality constraints)
obtained from ¢,; by adding (at the top) the constraint c,;.

We are now ready to define the basicness condition.

Definition 53 A protocol P satisfies the basicness condition if, for each rule rl

of P, uy as defined above satisfies the basicness condition w.r.t. the set of basic
sorts.

We tried to give here a definition which is as general as possible, hence might
be a bit difficult to grasp. Let us give a simple sufficient condition:

Proposition 54 A protocol satisfies the basicness condition if, for each rule rl
of the protocol, one of the following holds:

o There is at most one variable occurring at least twice in vl and whose sort
s not basic.

08

e There is a decomposition of tl into Clt1,...,t,] such that every variable
which is not of sort Agentoccurs in at most one t;.

For instance, in example 52, only Y, Z have a non-basic sort, hence the first
condition above is met by every rule.
For simplicity, we often write A and Msg instead of respectively Xpgent and

XMessage-

Theorem 55 If P satisfies the basicness condition, then the secrecy of P is
decidable.

In particular, our running example satisfies the basicness condition. Indeed,
there are at most two occurrences of non-basic variables in each expressions.
However, note that giving the ability for agents to recognize messages of the
form K (a,b) was not innocent: if we replace our key variable K by a message
variable X then our protocol does not remain in our decidable class.

We prove the theorem in next section.

6.2 Proof of Theorem 55

The proof of Theorem 55 proceeds in two steps. First, we show that every
protocol can be “translated” into Horn clauses such that a message can be sent if
and only if a corresponding formula can be derived from the Horn clauses. Then,
we show that if a protocol satisfies the basicness condition then the corresponding
Horn clauses can be expressed as ET-constraints, thus secrecy is decidable.

Step 1

Lemma 56 Let P be a protocol with its secrecy policy So. Let Iy be the maximal
set of initial knowledge of the intruder (compatible with the secrecy policy Sy of
P) mentioned in section 2. Then, there exists a set H of Horn clauses with a
special predicate I such that I(m) is derivable from C (where m is a message),
iff there exists a reachable H such that m € H.

Proof: 7 is built as the union of four sets: Husg, H1,, Hi and Hp.
Husg corresponds to the construction of the messages with their sort: Hpgg is the

union of the clauses
Psortl(ﬂfl) cee Psortn(l"n)

PSOrt(f(xlv .- xn))

59

for every function symbol f of type sort; X ... X sort, — sort, where the
Pgort are new predicates. We also add to Hpsg the union of the clauses

Psort ()

Psort’(x)

for every sort, sort’ such that sort is a subsort of sort’. Moreover, we need to
distinguish between symmetric and public keys: every term is symmetric except
the terms of the form pub(t) or prv(t). Thus we add to Hpsg the clauses

PMessage(Il) e PMessage(xn)

Sym(f(z1,...,2y))

for every function symbol f, f # pub and f # prv. Then it is easy to prove that
Pgort(m) is derivable from Hygg if and only if m is a message of sort sort and
Sym(m) is derivable from Hpgg if and only if m is a symmetric term.

Then, by the following lemma (proved in Appendix C), there exists a set of Horn
clauses Hp, such that Io(m) is derivable from Hjyy U Hnsg if and only if m € Io.

Lemma 57 Letty,.... t, be message schemes with the free variables x1, ..., xp.
Then, there exists a set of Horn clauses Hy, with two predicates Iy and P>, such
that Io(m) is derivable from Hr, U Husg if and only if parts(m) N {t;o |1 < i <
n,(f(.’L’Z') S Ah} = (.

The clauses of Hj are described Figure 8. They simulate the capabilities of the
intruder.

To simulate the protocol rules, we first define the set of expressions types(t)
generated by a message scheme ¢ by induction on ¢t. If ¢ is a constant, then
types(t) = 0. If t is a variable of sort sort, then types(t) = {Pgort(t)}. If ¢
is a term of the form f(t1,...,%,), then types(t) = J,<;<,, types(t;). Intuitively
types(t) is the set of constraints corresponding to the sorts of the variables of ¢.
We sometimes write types(t1,to) instead of types(t1) U types(ta).

Example 58 Let us consider the message scheme {B, K, X}k of our running
example. Then

types({B, X, Y }shr(a)) = {PAgent(B)a PKey(X)a PMessage(Y)a PAgent(A)}

ensures that A and B stand for agent variables, X stands for a key variable and
Y for a message variable.

60

Initial
knowledge I(2)
I(f(z1,...,20))
Analysis
I({z1}a) I(x2) Sym(zs)
I(’I’l)
I({z1}pub(as)) I (prv(z2))
I(x1)
I(a1) - I(xn)
Synthesis

I(f(xla s 7xn))

feLF, 1<i<n

I({ml}prv(z‘z)) I(pUb(:EQ))

I(z1)

f€PF

I(z1) -+ I(zn) Ppa(zj).. Pralzy) f€ AT,

f restricted v.s.

I(f(r1,...,mp))

jla"'ajk

Figure 8: Horn clauses for the intruder capabilities

Then Hp is the union, for each rule

{S(AaiaM)aMla"'

61

My} — {S(A,i+1,M'), M, ..., M}

s Mg

of the protocol P, of the clauses described in Figure 9.
We prove by induction in Appendix C that H verifies the required property,
which concludes the proof of Lemma 56

Remark: The predicate symbols of H are the Pgort, P>p introduced by Lemma
57 and three distinct predicate symbols: I, Iy and Sym.

Example 59 We present here the clauses Hp corresponding to our running ex-
ample. For simplicity, we factorize the rules whose premises are identical, letting
them contain several conclusions (though it must be kept in mind that these are

I(si(A,M)) I(My) ---I(M,) types(A, M, My,..., M, Mj,..., M)

I(sit1(A, M'))

I(Sl(AaM)) I(Ml) I(Mp) typeS(AMMlaMpaM{aﬂMé)

Fori=1,...,q

Figure 9: Horn clauses corresponding to the rule {S(A,i, M), Mi....,M,} —
{S(A,i+1,M"), Mq,..., M}

Horn clauses).

Initialization rule:

PAgent(A) PAgent(B)

I(51(A, <A, B,5>) I(s1(B,<B,5>)), I(s1(5,5))

Rule 1:
Ppgent(A) Ppgent(B) 1(s1(A, <A B, s>))
I(s2(A,<A,B,s>)) I(<A,B>)
Rule 2:
Prgent(A) Pagent(B) I(si(s,s)) I(<A,B>)
I(S2<Sv3)) I({BﬂK(AvB)v{mAaK<A7B)}shr(B)}shr(A))
Rule 3:

PAgent (A) PAgent(B) PKey(X) PMessage(Y)

I(SQ(A’ <A7 B, 5>)) I<{Ba X, Y}shr(A))

I(s3(A, <A, B,s,X,m(A,B)>)) I(<{m(A,B)}x,Y>)

and similarly for Rule J.

62

Step 2 We can start the second part of the proof of Theorem 55. We write
H +* E when E is derivable from .
Let P be a protocol. Its secrecy policy Sy is defined by:

S
Sy = U {tjl,...,tflj ‘T{,T,; € Ar},
=1

where the tg are message schemes with free variables I]i, e ,xf;j. By definition of
secrecy, P is not secure iff there exists a reachable H such that fake(Cont(H) U
Ip)N Sy = 0, ie.,
iff there exists a reachable H' such that Cont(H') N Sy =0, i.e.,
iff there exists a reachable H', 3i, j, Ja;,, a;, € Ay such that ¢! (a;,,...,a;,) € H'
iff, by Lemma 56, 34, j, 3a;,, ..., a;, € Aj such that H -* I(tg(ail, s G)).

Thus, we are left to prove that Ji,j,Ja;,,...,a;, € Ay such that H F*
I(tg (aiys...,a4,)) is decidable.

We express the set H of Horn clauses as a set constraint: the set of definite set
constraint corresponding to Husg is the set Cysg described Section 6.1 augmented
with the inclusions:

f(MSg: S MSg) C XSym

for every function symbol f € F. f # pub, f # prv.

The definite set constraint C; corresponding to Hj is described in figure 10. The

set of definite set constraint Cy, corresponding to Hj, is constructed similarly.
We associate with each Horn clause described in Figure 9 the following ET-

constraint:

< (A M) N IM 01, M, 0T sici(A M), M],...,M, > T (5)

where ¢,; and - are defined in section 6.1. The union of these ET-constraint is
denoted by Cp.

Example 60 The Horn clause corresponding to the rule 3 of our running ex-
ample 1s expressed by:

<s(A, <A A s>)N 1A, XKeya MSg}shr(A) ni,
s3(A, <A, A, s, Xgey, m(A, A)>), <{m(4, A)}XKey’ Msg>>sC T
where ¢y, s the equality constraint described in Figure 77, Section 6.1.

Let C be the union of Cpsg. Cr,. Cr and Cp. The set variables of C are the
variables Xgort for each sort sort and the four additional variables: X, which
corresponds to P>y, I, Iy and X gyp,.

C is a faithful representation of H:

63

Initial

knowledge ool
Analysis flI,...,1)C1I feLF
07" ({Msg}rasym NI) C 1
O Mg} orugur 1y N ST 37 ({Msg} pup(ene—2 (1) N 1) € 1
Synthesis i crI f ePF,i< arity(f)
feAF,
f restricted v.s. ji,...,Jk

oy = Xpg if Ji,m = 75,
o, = I otherwise.

flar,...,an) C I

Figure 10: Set constraints corresponding to the intruder capabilities

Lemma 61 Let M be a collection of sets S for every (unary) predicate symbol
Q. Then M is a model of H iff the substitution o assigning X¢g to Sq is a
solution of C.

Proof: Let M be a model of H and let us show that o satisfies C.
The only non obvious part of the proof is to show that S; satisfies the set
constraint defined in Equation 5. Let rl be a rule of the protocol, let

te< SZ'(A, MO')QS[,]T[{;HS[,.. . ,]%O'HS[,Si+1(A,MJIO'),JmU,.. . ,]%U >

such that ¢ satisfies c,y. t =<si(a,m),m1,...,my, siy1(a,m’),my,...,my> and

si(a,m), my,...,my € Sy. Since t satisfies ¢,y, by applying the clause defined in

Figure 9, we deduce s;1(a,m’),m},... ,m’q € Sy, thus, by applying the clause
I(my) I(m2)

, t is in Sy, thus Sy satisfies the constraint 5.
I(< mi, M2 >)

Conversely, let o4 be a model of C. The only non obvious part of the proof is
to show that S; satisfies the Horn clause defined in Figure 9. Let m = Mo',m =
M'o, m; = Mio'.m, = M]o, a = Ao’ such that s;(a,m),m1,...,m, € S and
o' satisfies the conditions cond(A, M, M, ..., M,, M{,...,M]). Thus for every

q
variable X of A, M, My,..., My, My,..., My, o'(X) € Z(Sg): o' respects the

64

type of the variables. Let t =< s;(a,m),m1,...,myp,siv1(a,m'),my, ... mg >,
then

te< Si(A,]f\ZO')ﬁS],mﬁS],...,f\ZpUﬁSh
Si_:,_l(A,MIU),Jf\Z{U,.. . ,]%U >

and, by construction of ¢,;, t satisfies ¢,;. Thus t is in S;. Applying the set con-
straint <>;1 (Sr) C S, we get si+1(a,m’),m’1,...,mf1 € Sy, thus S; satisfies
the Horn clause defined in Figure 9. U

Then, applying Lemma 61, it is easy to verify that
3i,3a4,, ..., a;, € Ap such that H " I(t;(a;,,....a;,))

if and only if
cJInti(Xpn. - Xan) €L
i
is not satisfiable.
Assume now that P satisfies the basicness condition as in theorem 55, then
the set C as constructed above is a set of ET-constraints. Thus

CUImti(XAh:'--aXAh) cl
)

is also a set of ET-constraints. Then, thanks to theorem 51, the satisfiability of
this constraint is decidable, which completes the proof of theorem 55.

7 Conclusion

Let us summarize the contributions of the paper (roughly in increasing order of
significance) and discuss their meaning and possible further developments.

1. The security of a protocol P is undecidable, even for a restricted class in
which there are no nonces, no compound keys and there is at least one
honest instance of P. This is theorem 6. This shows that the source of
undecidability does not come from nonces, but from the memorization and
copying facilities of the agents.

2. The satisfiability of intersection constraints with non-emptiness guards is
DEXPTIME-complete. This is theorem 11. It is a slight extension of
results about set constraints.

65

3. We introduced the new class of tree automata with one memory and we
showed that the emptiness is DEXPTIME-complete for this class. This is
theorem 15. This result is interesting in itself. One open question is its
generalization with disequality tests (and not only equality tests between
memory contents).

4. We introduced a class of set constraints with equality tests, in which the
tests are not restricted to brother positions. We showed the decidability of
constraints in this class by a reduction to tree automata with one memory.
This is theorem 51. It must be emphasized that we did not use the full
power of automata with one memory here.

Interpreting lemma 38 in the context of cryptographic protocols, it shows
that, for basic variables, we may restrict our attention to finitely many in-
stances (the representatives w.r.t. an appropriate equivalence relation).
This shows in particular that we can assume w.l.o.g. that there is a
bounded number of principals (the bound is given by the index of the
equivalence relation).

One possible research direction is to investigate generalizations of this
lemma, for instance in the context of nonces: is there an equivalence rela-
tion (preserving the solutions) which reduces the general case to the case of
finitely many nonces 7 Such a result would not necessarily contradict the
undecidability result of [18] since the protocol resulting from the coding of
that paper does not satisfy the basicness hypothesis. In other words, as
suggested by theorem 6, the key for deciding the secrecy of cryptographic
protocols might be to limit the copying facilities of the agents, not the
number of sessions or nonces they generate.

5. We showed the decidability of secrecy for a class of cryptographic protocols,
without any assumptions on the number of sessions (whether parallel or
not). This is theorem 55. This result is obtained by a reduction to set
constraints with equality tests, but we did not use the full power of such
constraints.

The use of set constraints, abstracting away the order in which messages
have been sent over the network is proved to be relevant. Also, the ability
of agents to recognize different types of data appeared clearly as a simplifi-
cation factor, which can be tuned so that we fall in or out of the decidable
class. We have showed the relationship between this ability and the copy-
ing facilities of the agents: the more they are able to distinguish between
different data types, the more they are allowed to copy blindly pieces of
messages, without escaping from the decidable class.

66

There are still several weaknesses in our paper. First, the constraint solving
technique is too complex: we conjecture that our algorithm is in DEXPTIME,
though we only showed a doubly exponential upper bound. It is also too compli-
cated for the applications we have in mind. That is mainly because we tried to
be as general as possible. However, most of the time, we don’t need such general
constraints. In particular, we can avoid the most complicated step (lemma 27)
simply by designing normalized constraints only.

Finally the big open question is the extension of these results to an unbounded
number of nonces.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi
calculus. Information and Computation, 148(1), 1999.

[2] A. Aiken. Introduction to set constraint-based program analysis. Science
of Computer Programming, 35:79-111, 1999.

[3] R. Amadio and D. Lugiez. On the reachability problem in cryptographic
protocols. In Proc. CONCUR’00, volume 1877 of Lecture Notes in Computer
Science, 2000.

[4] B. Bogaert and S. Tison. Equality and disequality constraints on brother
terms in tree automata. In A. Finkel, editor, Proc. 9th. Symposium on
Theoretical Aspects of Comp. Science, Cachan, France, 1992.

[5] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In P. Syverson, editor, 12-th IEEE Computer
Security Foundations Workshop. IEEE Computer Society Press, 1999.

[6] W. Charatonik and L. Pacholski. Negative set constraints with equality.
In Proc. IEEE Symp. on Logic in Computer Science, pages 128 136, Paris,
1994.

[7] W. Charatonik and A. Podelski. Set constraints with intersection. In Proc.
IEEFE Symposium on Logic in Computer Science, Varsaw, 1997.

[8] J. Clarke and J. Jacobs. A survey of authentication protocol literature:
Version 1.0. Draft paper, 1997.

[9] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available
on: http://www.grappa.univ-1ille3.fr/tata, 1997.

67

[10]

[14]

[15]

[16]

[20]

[21]

H. Comon and V. Cortier. Tree automata with one memory, set con-
straints and cryptographic protocols. Research Report LSV-01-13, Labo-
ratoire Spécification and Vérification, ENS de Cachan, France, December
2001.

H. Comon and V. Cortier and J. Mitchell. Tree automata with one memory,
set constraints and ping-pong protocols In Proc. 28th Int. Coll. Automata,
Languages, and Programming (ICALP’01), Crete, Greece, July 2001.

H. Comon and V. Shmatikov. Is it possible to decide whether a crypto-
graphic protocol is secure or not ? Draft paper, 2001.

V. Cortier and J. Millen and Harald Ruef}. Proving Secrecy is easy enough
14th IEEE Computer Security Foundations Workshop, pages 97-108, Cape
Breton, 2001.

D. Dolev, S. Even, and R. Karp. On the security of ping pong protocols.
Information and Control, 55:57-68, 1982.

D. Dolev and A. Yao. On the security of public key protocols. In Proc.
IEEE Symp. on Foundations of Computer Science, pages 350 357, 1981.

C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decid-
ability and undecidability. Proc. 25th Int. Coll. Automata, Languages, and
Programming (ICALP’98), Aalborg, Denmark, July 1998, volume 1443 of
Lecture Notes in Computer Science, pages 103-115. Springer, 1998.

N. Dershowitz and J. Jouannaud. Handbook of Theoretical Computer Sci-
ence, volume B, chapter Rewrite Systems, pages 243-320. Elsevier, 1990.

N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of
bounded security protocols. In Proc. Workshop on formal methods in secu-
rity protocols, Trento, Italy, 1999.

S. Even and O. Goldreich. On the security of multi-party ping-pong proto-
cols. Technical Report 285, Technion, Haifa, Israel, 1983. Extended abstract
appeared in IEEE Symp. Foundations of Computer Science, 1983.

N. Heintze and J. Tygar. A model for secure protocols and their composi-
tions. IEEE transactions on software engineering, 22(1), 1996.

N. Heinze and J. Jaffar. A decision procedure for a class of set constraints.
In Proc. IEEE Symp. on Logic in Computer Science, Philadelphia, 1990.

68

[22] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Proc. Tools and Algorithms for the Construction and Analysis
of Systems (TACAS) (Margaria and Steffen, eds.), vol. 1055 of Lecture Notes
in Computer Science, Springer-Verlag, pages 147-166, 1996.

[23] J. Mongy. Transformation de noyaux reconnaissables d’arbres. Foréts
RATEG. PhD thesis, Laboratoire d’Informatique Fondamentale de Lille,
Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France,
1981.

[24] J. Millen and H. Ruefl. Protocol-Independent Secrecy Proc. of the Workshop
on Formal Methods in Computer Security, Chicago, 2000.

[25] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryp-
tographic protocol analysis. To appear in Proc. 8th ACM Conference on
Computer and Communications Security, 2001.

[26] L. Paulson. The inductive approach to verifying cryptographic protocols
Journal of Computer Security, 1998, volume 6, pages 85-128.

[27] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of
sessions is NP-complete. In Proc. 14th IEEE Computer Security Foundations
Workshop, pages 174 190, 2001.

[28] H. Seidl. Haskell overloading is DEXPTIME-complete. Inf. Process. Lett.,
52:57-60, 1994.

A Proof of lemma 27

Lemma 27 Fuvery expression e which satisfies the basicness condition can be
transformed into a normal expression €' such that, for every o, [e], = [€'], and,
moreover |€' |z and |€'|¢ are polynomially bounded by |e|; and |€'|£.

Note first that condition 2 is initially satisfied by all expressions since we
assumed that any two expressions in P(c) are incomparable with respect to the
prefix ordering.

We are going to perform successive transformations, verifying more and more
conditions, while preserving those which have already been reached. Initially, we
only assume that condition 1 is satisfied, as stated in the hypothesis of the lemma.

Step 1 The goal of this step is to ensure, in addition to properties 1 and 2 a
property, which implies condition 3.

69

If ¢ is an equality test and p is a position, we write p - ¢ the equality test
/\chTp -q = p-r. In addition to condition 3, we want to ensure that in any
expression ¢(...,e;,...) such that, for some c¢1, i-¢; C ¢, if ¢; = f“l(e_;) ne’,
then P(c1) C I(f7 (¢')).

To define our rule, we first need to introduce a new equivalence relation:

Definition 62 Given an equality test ¢ such that ¢ is satisfiable, we define ~.

preq=p,q€S andp~q
pr~e q=p,q €S and p~q
pP=q=q=p
pzq,q:r:p:t
p-qEIS }i{p-qesl
p=p p-q=p - -q

Lemma 63 The fized point for ~. and S. is reached after a finite number of
steps. In addition, there exists an order <. on the equivalence classes of ~. such
that u <.’ implies that no position of u is a prefiz of a position of u'.

Proof: (sketch) First, if there are two non-empty positions such that p-q ~p
then c is unsatisfiable: by induction (on the fixed point computation of S, ~), if
t = ¢ A, then for every p >~ q, t = p = ¢q. Since we are only considering finite
terms, we cannot have t|, = t|,.4-

Consider the DAG G whose vertices are elements of P(¢)UP(c¢’) and (labeled)

edges p — p-i. Then, for each p ~e, P, merge the two corresponding vertices.

We get a new graph G, whose set of vertices is contained in the original set
of vertices. Then, by induction (on the fixed point computation of S,~), S is
included in the set of paths of in Gy and if p ~ ¢, then the path labelled by p
and those labelled by ¢ leads to the same vertex (starting from the vertex e).
As we have seen above, G is acyclic, thus S and ~ are finite, thus the fixed
point for S, ~ is reached after a finite number of steps. Note that the number
of vertices of Gy is smaller or equal to the number of vertices of G.

Since Gy is acyclic, Gy induces an order < on its vertices such that if v < v’
than no path leading to the vertex v is a prefix of a path leading to the vertex
v'. Each equivalence class u of ~ is included in the set of paths of one of the
vertex v, of the graph. We first order arbitrarily the equivalence classes which
lead to the same vertices and then we extend this order by u <. v if v, < v,

and v, # v,s. Then u <.« implies that no position of u is a prefix of a position
of u'. O

70

e (O o ()
O-+-0O-+-0O—+0O

Figure 11: G and Gy for ¢

Example 64 Consider 1 =21A3=41A2=31. Then, the graphs G and
Gy are pictured in figure 11 and

~.={1=21,3=41,2 = 31,21 = 311,31 = 411,311 = 4111}.

In addition, we define the equality test c. of an expression e by induction on

CerNhen = Cey N.../NCe,
Cfc(e1,...,en) = C/\]-Cel/\/\ncen/\].:]./\/\n:n
Let ~., be the equivalence relation corresponding to c. and ui,...,u, be its

equivalence classes numbered in such a way that u; <., u; implies ¢ < j (this is
possible thanks to lemma 63).

Then, (N7) is the successive application of N, ,...,N,, where
(Nu) e— e[m eu}pEuﬂH(e)
p € unle)
e €ely

Note: The rule (N7) is obviously terminating since it requires at most as
many steps as the number of classes modulo ~.,. However, its complexity is
unclear. We conjecture for instance that |¢/|# is plynomially bounded by |e|r
and |el;.

Lemma 65 (N;) preserves the semantics as well as properties 1 and 2.

Proof: For every equivalence class u and for every pi,ps € u N Il(e), by
construction, ¢. = p; = p2. Hence the rule preserves the semantics.

71

Now, it preserves properties 1 and 2 since it consists in repeatedly replacing
an expression e’ with the intersection of €/ and other expressions, without chang-
ing the tests and, if an expression is basic, then its intersection with any other
expression is also basic.]

Lemma 66 If ¢’ is the result applying (N1) to e, then:
e Vpe S, NI(e), €, is a singleton.
o Vp~, p el =¢€|y.
o ife!l, = f(e1,....en)Ne", thenp-c C~. and for alll <i<n,p-i€S,,.

e ifpell(e) and p > p' for some p' € u; where u; is minimal for <., then
el|p < UqEH(e) 6“1'

o ifl, = fler, - en) N FE(EL, .. eh) N e’ then for every i = 1,..,n,
/!
€; = €i.

Proof: We prove by induction on k that if €’ is the result of applying N, ... N,
to e, then for all 7 < k,

1. ¥p € u; NTI(e'), €|, is a singleton.
2. Vp,p' € uy NII(e), €], = €'|,.
3. ife|, = fe(e1,....en)Ne’ thenp-c C~, and foralll1 <i<n,p-ie€S,,.

4. if p e TI(¢') and p > p' for some p' € u; NII(e'),7 < k where u; is minimal
for <., then ¢’ ©

p € S(e), where S(e)=Uenc) €lo-

If £ = 0, i.e., no rule has been applied, then 1, 2 and 4 are true. 3 is true by
construction of S, and ~_.

Assume it is proved for k and let us prove the property for k£ 4+ 1. We consider

" the result of € by N,,,, where ¢’ is the result of e by the application of
Ny, ... Ny,

6// _ 6’[m em]peuk_,_lﬁﬂ(e’)-
p € uppp NTI(E)
= e/‘p/

Consider ¢q,¢" € u; NTI(e"), i < k+ 1.
e cither ¢ is incomparable with the paths of w1 N I(e), then €’|, = €|,

and, by induction hypothesis, €|, is a singleton.

72

e or there exists p € ugy1 NI(e) such that ¢ > p, i.e. ¢ =p-qi, then

6”‘11 - e,[ﬂ el”]peuk+1ﬂﬂ(e’)'
P € upy NII(e)
g € €y

By construction of our equivalence relation, since p ~ p’ and p - q; € u;,
we have p’ - ¢1 € u;. Thus, by induction hypothesis €'|,y.,, = €'[p.q, and is
a singleton,thus e”|, = €/|,.

e or there exists p € u,,1 NII(e) such that ¢ < p, which is impossible by the
choice of the order on the equivalence classes.

Conclusion: in any cases, we have that e”|; = €'|, is a singleton and €|, = €”|,.
Assume p > ¢ for some p € II(¢”) and assume u; is minimal w.r.t. <., then
e"|, = €|, C S(e) by induction.

Consider ¢,q¢" € upr1 NII(e”). Assume ¢ ¢ II(e'). Then ¢ is a path created by
application of N, ,,. This means that there exists p € up41 N1II(e') such that p
is a strict prefix of ¢ which contradicts G acyclic.

Thus ¢, ¢ are in uy1 NTI(e’), thus by construction

y = m e///
p e Upy1 N H(e’)
" e e/‘p/

" ‘ "

€ lg=¢€

is a singleton. Assume p > ¢, i.e. p = ¢ - p1, for some p € TI(e”) and assume u;
is minimal w.r.t. <., then for all p’ € uy1 NII(e'), we have €'|,; = e|,, since by
minimality of w41 no rule can have been applied above p’ for p’ € upq NTI(e).
Thus

e'ly = U e"[p C S(e)
P € upr1 NTI(e)
e/// c e‘p/
It remains to prove 3: assume €|, = f°(e1,...,e,) Ner. Then, either ¢ is
incomparable with the paths of wiyq N II(e’), then €”’|; = €|, and we can
apply the induction hypothesis. Or ¢ < p for some p € wuy; N II(e’), then
g = fe(e),...,el)Ne*) and 3 is ensured by induction. Or (last case) ¢ > p

for some p € ugyy NI(€'), then ¢ = p- ¢ and there exists p’ € ugyq N II(e')
such that €|, = €/[,7.4,. Thus, by induction hypothesis p’ - ¢ €~., and for every
1<i<mn,p-ieS.. Now, by construction of ~. and S._, since p ~._ p/, we
have p-c €x~., and forevery 1 <i<n,p-i € S,.

73

o N eld:eff1:21/\3:4l(XﬂX1:g(Xle)’Y"q(Y))
N3N X N X, Z.9(2), Xo)

o1 S8 oM=L (X X 7 g(X N X)), Y, g(Y)
NA3YX N X, ZNg(X N X1),9(ZNg(X N X1)), Xo)

Nug def

er % e3=fIFAME(XNX ZNg(XNXL), Y Ng(ZNg(XNXy)),
9(Y Ng(ZNg(XnNXi))))

NPPHX N XL ZNg(X NX1), Y Ng(ZNg(XNX1)), Xs)
Ny, o _ _
ez -5 es= TR X A X ZNg(X N X)), Y Ng(ZNg(X N X)),
XoNg(Y Nng(Zng(XnXi))))
NFPPHX N XL ZNg(X NX1), Y Ng(ZNg(X N Xy)),

X2 Ng(Y Ng(Z0g(XNX1))))
Figure 12: Reduction of e by (Ny)

Now consider the last property. ce contains the identities p = p for p € II(e).
Hence, if f(eq,...,en)NfC (e}, ... el)Ne" € €|, then e; = €/ is the intersection
of expressions €|,y such that p-i ~, p’ (note that e;, e} € €'|,.;.

O

Thanks to lemma 66, we have the required properties:

Corollary 67 If € is the result of e by the application of (N1), then for every
equality test, if p ~. q then the expressions at positions p and q in €' are identical.
In addition, in any expression g°(...,e;,...) such that, for some c1, i-c1 C ¢, if
e; = f€ () ne", then P(cy) CII(f€(¢)).
Example 68 Consider

e = fITEINX, g(X), Y, g(V)) N 27X, Z, 9(2), Xo)
Then cegl =21 A3 =41 A2 =31 and the equivalence classes of ~., are:
up={1,2-1,3-1-1,4-1-1-1},ups ={2,3-1,4-1-1},uz3 = {3.4-1},us = {4}

The successive applications of Ny, , Ny,, Ny, and N, are described figure 12.

Note that, now, “every expression in e|, is basic” is equivalent to “there is
an expression in e|, which is basic” since the intersection of a basic expression

74

with any other expression yields a basic expression. That is why, from now on,
we may say, by abuse of language that “e|, is basic” to mean either of the two
above versions.

We consider, in addition to the rule (Ny), the following “cleaning” rules:

(No) fery..ven) N flel, .. eh) = flerNeél, ... enNey)
(N3) fe(e1,...,en) ﬂgc/(ell,...,e'm) =1 if f#g.

Lemma 69 The rules (N2), (N3), applied to normal forms w.r.t. (Ny), preserve
the semantics as well as properties 1, 2, 3 and the properties described in lemma

66.

Proof: First, by lemma 66, in any application of (Nz), we must have e; = e].
Then, it sufficient to notice that ¢, is unchanged by application of (N3), hence
its application does not trigger (N7) and preserves the properties of lemma 66. [

Step 2 We start with some properties of equality tests.

Lemma 70 Let j - c1 be the subset of co containing all equalities whose both
sides are prefived by 7. If co satisfies the basicness condition in e and e satisfies
condition 3, then cq satisfies the basicness condition in every expression belonging
to el;.

Proof: Let p-i1-q ~¢, P, i1 #i2 and p’ Zpres p- Then j-p-i1-q~¢, j-p’ and
J+0 Fpref J-p. By basicness of ¢, either el is basic or e|;.p.;, contains basic ex-
pressions only or else j-p-ig-w ~, j-p’ for some w, which implies p-iz-w ~., p' O

Lemma 71 If ¢ satisfies the basicness condition in e and c¢1 is an equivalence
class of ¢, then ¢\ ¢1 satisfies the basicness condition in e.

y . ;o . , .)
Proof: Let p-i1-q ~n. P, 11 # i2 and p' Zprep p- Then p-iy - q ~c p
and, by basicness of ¢, either e/, or every expression in e|,;, is basic or else
p-ig - w ~. p'for some w. In the latter case, since ¢1 is an equivalence class,

D- 19 W ~c\er p,' 0

Now, we use the following two transformation rules:

Ad-c Adec . 1 k-
(Ng) f(0 e egy) = fR(0 ey ﬁg“(ej,...,ejj),...)
if e; = gcl(ejl-7 . ,e?j) Ne” and ¢ does not contain any test whose both sides are

prefixed by 7.

75

(Ns) fermment=imen(@) - f4@)

if pr -c1U...py - ¢y is a union of equivalence classes, every p; is non empty
and, for every i, there is an expression e; at position p; in f¢*(€) such that
e = g“g(e_;) Ne’ and ¢ = ¢. (In words: we may remove classes which are
consequences of equality tests lower in the expression).

Lemma 72 (Ny) and (N5) preserve conditions 3, 1 and 2. An expression which
1s unchanged by application of these two rules satisfies condition 4. Moreover,
the size (w.r.t. F) is preserved by the two rules, the size (w.r.t. t) is reduced by
the second rule and, using repeatedly the first rule in an expression e results in
an expression €' such that |e'|; < |e|?.

Proof: (sketch) By lemmas 70 and 71, these transformations preserve condition
1 and they preserve trivially condition 3.

Condition 2 is also preserved since we did not merge any equality test so far.

The satisfaction of condition 4 follows from an inspection of the expressions
which are left unchanged by any application of these rules.

The preservation of |e|x follows from the definition. If ¢ yields a new test
', possibly after repeated applications of (Ny), then there is a p; such that ¢
consists in equalities p = ¢ such that p1 - p ~. p1 - q. If we fix the size of py, then
the sum of sizes of such ¢ is bounded by |¢|. Hence the total size of the new
tests is bounded by |c|?. O

Step 3 The purpose of this step is to show how to satisfy in addition the
condition 5, while preserving properties 3, 1,4, 2. In what follows, integers 1, j...
are always assumed range over a finite set 1..n which is consistent with the arity
of function symbols.

Let e be an expression f¢(é1) N re (é3) N.... If e is in normal form w.r.t.
(N;), i <5, then we may assume that €] = €3. Indeed, this is true of normal
forms w.r.t. (N7), (N2), (N3) thanks to lemmas 66 and 69, and such a property
is trivially preserved by the rules (N4), (N5). We will however only assume in
what follows the weaker property II(f¢(é1)) = II(f¢ (&)).

We define ¢ M ¢ (relatively to e) as follows: first, if ¢ A ¢ is unsatisfiable, we
replace it with L. Otherwise, for every non-trivial equivalence class ¢q for ¢, let

Q(co, ')y ={w | Ip € P(cy), p-w € P(c), €|p.w not basic }
and

Qm(co.) ={w-i| I € Q(co.), w <prep W', V' € Q(eo,), w i Lpres w'}

76

Figure 13: A representation of Q(co., ') and Q,,(co,)

Intuitively, Q,(co, ¢') is the border of Q(cg, ') with its maximal elements. See

figure 13.
Each time Q(cp, ¢') is empty, we let ¢g = ¢y and, otherwise:

G N pPw=quw

P~egd WEQRm (co,c’)

Then .
_c! de —
¢ = /\ co°
cpa class of ¢
def __7—
e define now the sequence ¢,, as follows: ¢; = ¢, ¢ = ¢ and ¢,11 = ¢,
We defi the seq foll . ¢, = ¢ and cny c

def ——¢
/ =
and ¢, 1 = ¢,

Note that if p-w = q-w € &, then p-w,q-w € I(f(e1)) = IL(f(3))).
Moreover, if ¢ # ¢, then |¢| > |c|. It follows that the sequences ¢, and ¢, are
ultimately stationary: let c¢o and ¢, be the respective limit values of ¢, and .

We define

def
cnd = e /\cgo.

Example 73 Let us consider ¢ d:efl =2 andc d:ef211 =3 A11 =4 and assume

that every position of ¢ or ¢ is not basic. Then cT1c is computed in two steps:
step 1 Q(e,d) ={11,1} thus Qu(c,c') = {11}.
Q(dt) = Q(c?,¢c) = 0 where ' =211 =3 and ¢ = 11 = 4.
Thus c2 e =111 =211 and &, 7 = ¢/ =211 =311 = 4.
step 2 Q(ca, ch) = 0.
Let Y 911 = 3 and ' 1 = 4, then Q(cl,ca) = 0 and Q(c3, ¢3) =

(1} thus Qu(c3, e2) = {1}.
Thus cs & 5% = ¢y = 111 = 211 and ¢ & 5™ = 211 = 3A 111 = 41.

7

Gh =3, & =d, thus el 111 =211 7211 =3 A 111 = 41.

Let us analyze a bit more precisely the complexity: for every pair p ~. q,
there is a position r € P(¢) U P(¢') such that p = p; -4 and r = p; - r1. Then, if
a is the maximal arity of a function symbol, then

P(end)] < (|| +1¢]) x a

where a is the maximal arity of a function symbol and since the number of
possible choices for p; is bounded by |c| + |¢/|. It follows that

M| < (el +1el) x M(e,d) x a < a x (e + |¢/])?

where M (c,) is the maximal length of a position in P(c) U P(c).
Then we use the following transformation rule:

(Ng) feler,....en)N fcl(ell,...,e;l) — fcmcl(el Nep,...,enNe)

it T1(7°(2)) = TI(/' ().

First, P(c), P(c") CII(f(€)), thanks to property 3. It follows that P(cMc’) C
II(f(€)). The semantics is also preserved since, as long as all positions p - i and
q -1 are in II(f¢(€)), and the top symbols at positions p and ¢ are identical, an
equality test p = ¢ € ¢ is equivalent to the conjunction of equality tests p-i = g-1.

Condition 3 is also trivially satisfied. Remains to verify the preservation of
the other ones: condition 4 is shown to be preserved in lemma 74, condition 1 in
lemma 75, condition 2 in lemma 76.

Lemma 74 The rule preserves property 4.

Proof: Actually, every ¢y and % satisfy property 4. Indeed, if, in the class ¢qg
of p (in ¢), q does not share any prefix with p, then in the class of p - w (w.r.t.
€0), ¢ - w does not share any prefix with p - w. O

Lemma 75 The transformation preserves the basicness condition.

Proof: It suffices to show that €A ¢ satisfies the basicness condition, whenever
c,c do. Then we use an induction on the fixed point computation for ¢ ¢’.

Assume p-i-q ~,, 5 P, ' Fprer 0. J # 4 and, for every w, p-j-w o, p.
Then p is not empty. Assume w.l.o.g that p-i-¢q,p’ € P(cy) where ¢g is an
equivalence class of ¢. (If this is not the case, exchange the roles of ¢ and).
Then, by lemma 74, there is a pj ~z p-i- ¢ such that p is not a prefix of pj.
Hence we may assume w.l.o.g. that p is not a prefix of p’ (possibly after replacing
p’ with some p}).

78

If p-i-q ~. p'. then the result follows from the basicness property of c:
in such a case, we must have ¢ = ¢((since, in any case, either ¢g = ¢y or
P(cy) N P(co) =), hence p-j-w~cp iff p-j-w~_,5p.

Let us assume now that this is not the case: ¢g # cg, p-i-q = pg - wq - ig with
wo - 19 € Qm(co, ') and pg ~c qo.

pP-t-q=Dpo-wo -

P’ =qo - wo - o W <

Po ~c qo ~c p6 and { wO . ipr;f p

o D1~ 0710 Fpres 1
e|py py 18 DOt basic

In addition, we may assume, thanks to property 4 again that py and gy on one
hand and pf and ¢; on the other hand do not share any non-trivial prefix.

First case: p <,.¢f po . There is a ¢’ such that pg = p-i-q'. We use the
basicness property of ¢, considering the equivalence p - i - ¢’ ~. qo: either
elp.; is basic or ey, is basic or p- j - w ~ pg for some w. In the first two
cases, we get what we want (e, basic implies e,.;., basic). In the last case,
p-j-w-wp-ig ~z p' by construction, hence contradicting the hypothesis

Yw'p-g-w' oA o0

Second case: pg - wo >pref P Zpref Po - Since wq - ig Lpref P1 and wo <ppef P1,
p1 = wg - jo - « for some jg # ig and . We apply now the basicness
property of ¢/, considering the equivalence pf, - wq - jo - @ ~» q1 (recall that
P - P1 ~e q1). Since 6‘?6'131 is not basic, only two cases can occur:

Case 2.1: e|p6.w0.i0 is basic which implies ep,.u-i, basic, hence the de-
sired conclusion

Case 2.2: pj - wp - ig-w ~¢ q1 ~ Py - p1 for some w. Let p = pg-pa, wy =
p2 - i-wi. Then p{-ps-i-wy-ip-w ~ g1 and, since i # j, by the
basicness of ¢, either € py-j 18 basic or elq, is basic or else there is a
wg such that pj - pa - 7 - w2 ~ q1.

In the first case, €[p,.p,.j is also basic (i.e. el,.; is basic) and we con-
clude.

The second case contradicts the hypothesis that e‘pfym is not basic.
In the third case, pjy - pa - j - w2 ~e pj - P1 ~e Py - wo - G9. Then, by
construction, pg-wo-ig ~z,\7 Po-P2-J w2 = p-j-we, which contradicts
again the hypothesis.

Third case: p=pg-wg, ¢ =ip and ¢ is empty . p; = wg - jo - a with jy #
ig. If 7 = jp, from e‘p{)'pl is not basic, we conclude the desired result.
Otherwise, 7 # jo and we use the basicness property of ¢/, considering

79

again py - wo - jo - & ~¢ q1, j # jo. Either e[y ., ; is basic (in which case
we also conclude) or there is w] pj, - p1 ~¢ pp - wo - J - wh.

In the latter case, we use again the basicness property on ¢, considering
Py - wo - jo - & ~¢ qi, i # jo. Either e pbwo-io is basic, in which case we
conclude, or else there is a w4 such that pj - p1 ~ py - wo - o - wh. Now,
let us recall that, by construction, Yo' € Q(co,c’), wo - ig £pref w'. Since
wo - 1o - wy € Q(co,), we must have w} empty.

€l py wo-in 18 basic (in which case we conclude) or

It follows that pj-wo-ig ~e p-wo-j-wsy, which contradicts p-i ., p-j-ws.

O

Lemma 76 The transformation (Ng) preserves property 2.

Proof: We prove, by induction on n that

1. for every p-q.p € P(c,) U P(c),) such that ¢ is not empty, either e|,., is a
basic expression or else ¢, 41 # ¢, Or ¢}, 1 F).

2. ¢, and ¢, (individually) satisfy property 2

The lemma will follow.

For every n, if p € P(c,) and if p- ¢ € P(c),) and if e/, is not basic, then
q € Q(v0,¢),) by definition (g is the equivalence class of p) and, since ¢ is not
empty, a suffix of ¢ belongs to Q. (70, ¢,,). It follows that Foon # 7o and therefore
Cnt1 F Cp. S0, from now on we may assume w.l.o.g that both p and p- ¢ are in
P(ey).

In the base case, ¢, = ¢ and ¢/, = ¢ and ¢, satisfy condition 2. Then, if
p.p-q € P(c), e|p.q is basic.

Consider now the induction step and let p € P(q5), p-q € P(31"), ¢ is not
empty and g,y are classes of ¢,,.

Assume first that 55 # ~g. Then, according to the definition of ¢, 41, there
are positions such that:

p=pr-w-i
W <pref W
D2 ~e, P1
p2-w' € P(c,)
€|py-w is not basic
| V" € Q(no,¢),),w i £prep w”

We consider now several cases for p - q.

80

case 1: p-q € P(Wcln), ¥ =1 C ¢, . Then p; <pref P+ q and we con-
clude using property 2 on ¢, (Induction hypothesis).

case 2: p-q € P(71), 71 #7 C ¢, . Then, by definition, there are posi-
tions such that:

(prg=p3-wi-ia
01 <preg 0
P4 ~ep, P3
pa-wy € P(cy,)
€|psw 18 MOt basic
\ Vwi € Q(m.¢c),), w1 i1 £pref WY

In this case, p-q = p3-wi i1 = p1 -w - 1i-q, hence p3 and p; must
be comparable w.r.t. the prefix ordering. If they are distinct, assume
pi is the largest one, then, by property 2 on ¢,, €|, must be basic,
hence e|, or e|,., must be basic and we conclude. Otherwise, p1 = p3
and 79 = 1. By hypothesis, V" € Q(yo0,¢),),w - i £prep w”, thus
w" =w-i-q¢ Q(y,c,), which can only occur when €|y, .4.i-q = €|pq
is basic, and we conclude again.

Assume now Y5 = vg. If 37 = 1, we conclude by the induction hypothesis:
property 2 holds on ¢,.

Otherwise, there are positions such that:

(prg=p1-wi-i
Wt <preg
P2 ~ec, P1
p2-wi € P(cy,)
e\pg,wxl is not basic

L vwlll € Q(’Yltc;l)vwl U1 %pref wlll

%C% = 7o implies p1 Lprer p- If p1 >prep . from p1 ~c, p2, we conclude
that e|,, is basic (hence e|,.,), thanks to the induction hypothesis.

We are left to the case p = p1- Then py ~c, p and p; - w) € P(c,) and w)
is not empty, hence 75 # ~g, a contradiction.

O

Lemma 77 Property 5 is satisfied for normal forms w.r.t. (Ng).

Proof: At step 1, we ensured that, for every p € Il(e), ¢|, only contains expres-
sions of the form f(e)N...N f(€) N X1 N...N Xy,. The rule (Ng) imposes

81

/A
A

Figure 14: the tests of example 78

n = 1, hence property 5.]

In this step, we did not increase |e|r and |c M| < a x (|¢] + |'|)?, hence

e'le < axeff.

Step 4 . The purpose of this last step is to rearrange the equality tests so
that there are no overlapping tests except possibly for basic expressions. (More
formally, we need to ensure condition 6).

Let us show first some examples of what we want.

Example 78 ¢ =/ fI=12=2(pl=12=21=22((X X)), f(X, X)). (X, X)). e con-
tains overlapping tests. We can however use first the rules (Ny), (N2) and get

f11:12:2(f11:12:21:22(f1:2(X, X),f1:2(X,X)),f(X,X))

Now, it turns out that the intermediate test is a consequence of the top one and
the lowest ones, and it can be removed, yielding (after normalization w.r.t. (N2))

FUERTRATX X)), TA(XL X)), FTA(XL X))

for which there is no overlapping test.
In this example, pictured in figure 14, we see that we do not need to change the
tests but only to reorganize them.

Example 79 Let

e = fHITIHTIERZ(F172(g (X, X, Y). g(X, X, Y)), X),

82

Figure 15: the tests of example 79

which contains overlapping tests. Using the rule (Ny) we get

PO 290X X, Y), g(X, X, Y)N 2772 (012 (X XL Y), 02X, XL Y), X)

with ¢ ¥ 111 = 121 = 112 = 122 = 2. Using rule (Ng) we get
f111:121:112:122:2(f11:12:21:22/\13:23(91:2(X-, X, Y), ngQ(X, X, Y)) X)

Now, the class 11 = 12 = 21 = 22 is a consequence of the top and low tests and
it can be removed:

111=121=112=122=2/ »13=23/ 1=2 1=2
f (P2 (X,XY) g T (XL XLY), X)
Finally the low tests can also be removed since they are consequences of the top
one, yielding:

JUISIBSISIRE fIS2 (X X V), g(X, X, V), X)

i which there is a remaining overlapping test. However, in e, Y must be basic
(thanks to the basicness condition) and thus the lower positions 13 and 23 cor-
respond to basic expressions.

In this example, pictured in figure 15, we need to push some tests down.

So, the idea is to first inherit the constraints thanks to rule (Ny) (this has
been done at step 2), next normalize w.r.t. (Ng) (this has been done at step 3)
and finally remove useless tests, which we do now.

(N7) f(e1)[g™ " (¢2) Neslp, — 7 (€1)[g™(€3) N ey,
If

83

e (g is an equivalence class in ¢ A ¢g

c1Ap1- /\ T Cr Fe Co
r € T(ge2"0(e3))
r#e

9270 (eB)|r = her(é7) e

e = f(e1)[g="0(€2) N ebp,

= is the consequence relation according to the following rules:

— reflexivity, symmetry and transitivity

— right compatibility: p=qEc.p-r=¢q-r

— folding (w.r.t. e): if e|, = f¢(e/) Ne” and f has arity n, then p-1 =
qg-1N...Ap-n=q-nk=.p=q.

c1 e &)

— conjunction introduction: ;
c2 e b

} =1 Ny |=e &) A,
We must be careful on how to apply this rule. Consider the following example

Example 80 ¢ % f11=1=2(pu=12=2(f1=2(0T () 7(X)), g7 (X)), ¢" (X)). This
expression is in normal form w.r.t. the previous transformations. There are
two ways of applying rule (N7): we can remove the constraint 1 = 2 since
11=12=2A11-TA12-T |=1-(1 = 2). Then the expression is in nor-
mal form for N7 and there are still some overlapping tests. The other possibility

is to apply (N7) to11=12=2:111=12=2A1-1-(1=2) = 1- (11 =12=2)
and there is no longer any overlapping tests in the expression.

We assume that the previous steps have been completed and use the rule
(N7) top-down.

Lemma 81 (N7) (applied top-down) is terminating, it preserves the semantics
and the properties 5, 3, 1, 4, 2.

Proof: The termination is straightforward: the size of the expression is strictly
decreasing (and the resulting expression €’ satisfies |¢/|z = |e|# and |¢/|; < |e]:.)
The condition of the rule ensures the preservation of interpretations. Prop-
erty 5 is preserved since we do not change the term structure of the expression.
Property 3 is not necessarily preserved by one-step application of (N7). However,
if po - p1 = po - P} is checked higher up in the expression, then the expressions at
positions p; and p} must be identical (by property 3) and the rule (N7) will be
applied twice to these expressions, yielding removal of ¢y for both occurrences.
Lemma 71 ensures the preservation of property 1. Also, property 4 is pre-
served since we remove an equivalence class and property 2 is preserved since we

84

remove some tests. O

Lemma 82 Normal forms w.r.t. rule (N7) (applied top-down) satisfy condition

6.

Proof: Assume that we are in the situation of property 6: e = f(e1, ..., e,)Ne,
P1 D2 ~c ¢ P1,p2 are non-empty, f(e1,....en)|p, = g (€],....€e),) Ne” and
p € P(d).

Assume that there is no position p) such that p; - pb ~. p1 - p2 and p is
comparable with p’ w.r.t. >,..¢. Let p1-ph ~c p1-p2 such that ph is the position
which shares the longest prefix with p’ . Then we can write p’ = w - j - w’ and
ph =w-i-w" with i # j. By condition 1 (for ¢), considering p;-w-i-w" ~. p1-pa,
either elp,.p, is basic or e|p1.p/ is basic or Jwy,p1 - p2 ~¢ p1 - w - j - wy. This last
case contradicts the maximal shared prefix hypothesis.

We are left to the case where p’ is comparable w.r.t. >,,..¢ with some position
ph such that py - ph ~c p1 - pa.

If p’ ~« ¢ and ¢’ does not share any non-trivial prefix with p’ (this is possible
thanks to property 4 on ¢’), then a similar property holds for ¢’: we assume now
that p’ ~ ¢’ and there are positions p,, and pf such that p1-pa ~c p1-ph ~c p1-ph
and p’ and p), on one hand and ¢’ and p§ on the other hand are comparable w.r.t.
the prefix ordering. p), must be distinct from p} since p’ and ¢’ do not share any
prefix.

By rules (Ny), (Ng), ¢ =c1M...M¢, and ¢1 = py = phy. Now, we consider a
number of cases, depending on the comparisons between p', ¢', ph, ¢b:

Case 1: p' <pref Db -
In this case, by definition of I7, e‘pl-p’g must be basic: ¢ has to contain a
suffix of pf), and we use property 2 on ¢’. It follows that el,, ., is basic.

Case 2: ¢’ <pr ph . This is similar to the first case.

Case 3: pl Zpref p/2 and q/ Zpref pIQI :
Let p' = pl - ¢b. By definition of M, p’ ~» pi - ¢5. Then ¢’ must be equal
to p4 - ¢h and ¢ = p1 - (p' = ¢'). Next, equalities p’ ~~ ¢”, in which p’ and
q" share a non-trivial prefix must be consequences (w.r.t. =.) of equality
tests on subexpressions: this is true for normal forms w.r.t. (N4) and this
is an invariant of (Ng) since cM ¢ . e A .

Then, rule N7 can be applied (contradiction).

85

B SET-constraints and Automata with one memory

We consider a satisfiable SET-constraint S and we assume that Ag is constructed
as described in section 5.3.

We can first note that if e = f(e1,...,e,) occurs in S and if p is a non-
root position of e, then ¢ | p has only one non-trivial equivalence class. This is
ensured by conditions 1, 4 and 2 of normal expressions (see definition 26.

We prove by induction on the size of ¢ that, if « is the solution of solved(S),
then for every t accepted in gx, H(t) € a(X).

For the sake of simplicity, we will say shortly that “t is accepted in < ¢, m >"
instead of “there is a computation of the automaton on ¢ yielding the configura-
tion < ¢, m >.

Lemma 83

o if t is accepted in < qep, T >, then H(t) € alel,), H(t) = c | p and
T = H(t)|pp for some p tested by c | p (since H(t) =c | p and since c | p
has only one non-trivial equivalence class, for every p',p" tested by c | p,
we have H(t)|pp = H(t)|ppr)-

o ift is accepted in < ge,T >, then H(t) € a(e) and T = a.

o ift is accepted in < qx,T >, then H(t) € a(X) and 7 = H(t).
o if t is accepted in < qy, T >, then a |= ¢.

e if t is accepted in < qqu, T >, thent =a and T = a.

Proof: (sketch) If || = 1, then ¢t = b for some constant in F and the only
transition leading to b is b —1—) Qp-

Assume Lemma 83 is satisfied for every ¢ of size < n and consider t such that
it =mn+1.
If ¢ is accepted in < gep, T >, then t = g(t1,...,tx) such that ¢; is accepted in
< Qepi,Ti >. By induction hypothesis, H(t;) € a(elpi), H(t;) = c | p-i and
T = H(t;)|pip for some p' tested by ¢ | p-i. H(t) = g(H(t1),...,H(t,)). thus
H(t) € ale|,). We have also that H(t) = ¢ | p, thus H(t) = ¢ | p. Finally,
7 = 7; for some i such that p-i is a position checked by ¢, thus 7 = H(t)|,., for
some p’ tested by c | p.
The other cases are proved similarly.]

Conversely, if t € a(X) where a is the minimal solution of solved(S), then
there exists ¢ such that H(t) =t' and t’ is accepted in state ¢x.

Lemma 84

86

1. if t € a(X), then there exists t' such that H(t') =t and t' is accepted in
< qx,t' >.

2. ift € a(e|,) and t = c | p, then there exists t' such that H(t') =t and t' is
accepted in < Gep,t]p > for some p' tested by c | p.

3. if t € ale), then there exists t' such that H(t') =t and t' is accepted in

< Qe,a >.
Proof: (sketch) We prove that if T;lved(S)(w) satisfies the properties of lemma
84, then 771 (0) also satisfies the properties of lemma 84. The result follows

solved(S)
by minimality of a.

Assume T"

solved
that it 77, 4(S)

Assume now that

(5)(@) satisfies the properties of lemma 84. First, we can verify

(0) = ¢ then there exists ¢’ such that ' is accepted in state gg.

n—+1
Tsolved(S)

tion on > (the reverse prefix order), we show that
2 and 3.

Thus, it is sufficient to prove that T:Z:id(s)(@) satisfies property 1: assume
t € [X]n, then there exists a clause ¢ = ¢ C X such that T:élved(S)(w) = ¢
and t € [e],. Applying the induction hypothesis and the rules of the automaton,
we deduce that there exists ¢’ such that H(¢') = ¢ and ¢’ is accepted in < gx,t' >.
O

(@) satisfies property 1, then, by well-founded induc-

Tn+1

solved(S)(m) satisfies property

C Protocols and Horn Clauses

Let P be a protocol. We assume %Msgv Hr and Hp constructed as described in
Section 6.2.

We first construct Hj, such that the maximal initial knowledge of the in-
truder Iy is a minimal interpretation of the predicate Iy which satisfies H,.

Lemma 57 Let tq1,...,t, be message schemes with the free variables x1,...,x}.
Then, there exists a set of Horn clauses Hy, such that Io(m) is derivable from
M1y U Hnsg if and only if parts(m) N {t;o |1 <i < n,o(x;) € Ap} = 0.

Proof: Let p be the maximal depth of the terms ¢1,...,t,. Let S = {t;jo|1 <
i <n,o(z;) € Ap}. We introduce a new predicate P>, such P, accepts the
terms of depth larger or equal to p. The clauses Hj, for P>, and I are described
figure 16. |m|q denotes the depth of the term m. Let H' = Hpgsg Y Hio-

By construction, H' = P~p(m) if and only if the depth of m is greater or equal
to p.

87

Pxp(m)

Msg(zq) ... Msg(x

n) Pep(wi)

Pyl f (a1,

Inp(x1) ... Ip(zy)

,.'I/'n)

Pop(wi)

Ip(f(z1,...,20))

Msg(z1) ... Msg(z

n) Psp(zi)

Io(f(l‘l, [P

Ip(x1) Msg(xz2)

)

PZp(xi)

To({z1}as,)

if mlg <p
and parts(m) NS =10

if Imlg=1p

1<i<n, felF

1<i<n,feOF

Figure 16: Horn clauses for P-, and I

88

Let us show by induction on the number of rules which have been applied that
if H'+ Iy(m) then parts(m) NS = (. Let m be a term such that H' - Io(m) and
let us consider the last rule which has been applied:

rule (1): parts(m) NS = @ by definition of rule (1).

rule (4): m = f(ma,...,my such that f € ZF, H' F Ip(m1),...,Io(my) and
there exists i such that H' F Ps,(m;).

parts(m) = {m} U U parts(m;).
1<i<n

By induction hypothesis, parts(m;) NS = (. In addition, there exists i
such that |m;|lq > p, thus |m|s > p which implies that m ¢ S. Thus
parts(m) NS = 0.

rule (5): m = f(mq,...,m, such that f € OF and there exists i such that
H' F Ps,(m;), thus |m|g > p. Since parts(m) = {m} and |m|q > p, we
have parts(m) N S = 0.

rule (6): this case is similar to the previous ones.

Conversely, an induction on the depth of m proves that if parts(m) NS = (), then
H' - Io(m). O

We prove here Lemma 56 by proving the following stronger lemma.

Lemma 85 Let m be a message and a an agent, C F* I(T) iff there exists a
reachable H such that [m] € H and
C b* I(s;(a,m)) iff there exists a reachable H such that S(a,i,m) € H.

To prove this, we need few lemmas:

Lemma 86 If there exists a reachable Hy such that mi1 € Hy where mq is a
message and if there exists a reachable Ha such that ea € Ha where es is either
a message or a state, then there exists a reachable H such that mi,eq € H.

A transition t of a protocol is applicable in H provided Pre(t) C H. Thus, if ¢
is applicable in H, then t is applicable in H', for all H' D H. In the same way.
if X € fake(Cont(H)UI) then X € fake(Cont(H')UTI), for all H' D H.
Therefore, let H be the global state obtained from H; by applying all the tran-
sitions used to obtain Hs. €9 is in H and mj is still in H since the transitions
do not remove any message.

Lemma 87 Let S a set of messages such that Vm € S C +F*m. Then VYm €
fake(S), CHtH*m.

89

Pairing, unpairing, encryption and decryption are simulated by the clauses in
Figure 8.

For Lemma 56, we first prove by induction on n that if C =" I(7) then there
exists a reachable H such that [m] € H and if C " I(s;(a,m)) then there exists
a reachable H such that S(a,i,m) € H.

For n =0, it is true,

Assume the hypothesis is verified for n, and assume C F"*1 I(m). The
last deduction rule is either one of those presented Figure 8, in this case, by
inspection of the deduction rules, using the induction hypothesis and Lemma
86, we conclude that there exists a reachable H such that [m] € H. Or the last
deduction rule is one of those presented Figure 9. Then,

CH" I<5i(aa m_O))’ Msg(m_[]): I(m_l)a Msg(m_l)v R I(m_p)= MSg(m_p)

where m; = M;o', mg = Mo’ and o’ preserves the type : if o'(x4) = # where
A is an agent variable, then C F" A(t), thus ¢ is an agent. By application of the
induction hypothesis and applying Lemma 86, there exists a reachable H such
that m,mq,...,m, € H. Thus, the transition

t={S(Ad',i,Mco'), Myio',..., Myo'} —
{S(Ad’,i+1,M'd"), Mjo', ..., ;a'}

is applicable in H. Let H' the global state obtained from H by applying ¢, m is
in H'.

Assume C F"! [(s;(@,m)). The only choice for the last deduction rule is
one those presented Figure 9. The same reasoning as above allow us to conclude
that there exists a reachable H such that S(a,i,m) € H.

Conversely, we prove by induction on n that if there exists a n-reachable H
such that [m| € H or S(a,i,m) € H then C F* I(m) or C F* I(s;(a,m)) where
n-reachable stands for “reachable with n global transitions”.

For n =0, H = Hy and Hy does not contain any message or state.

Assume the hypothesis is verified for n, and assume there exists a n + 1-
reachable H such that [m] € H. Thus, there exists a n-reachable Hy such that
H is an honest or fake successor of H'. If [m] € H', we conclude immediately.
Assume [m] & H':

honest successor Let ¢ the applicable transition such that H = (H'\(Pre(t) N
H') U Post(t)). By application of the induction hypothesis and applying
the clause described in Figure 9, we conclude C F* I(m).

fake successor If H = H'U{m} where H' is n-reachable and m € fake(Cont(H)U
I). Lemma 87 and the induction hypothesis allows us to conclude.

90

