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ABOUT THE DECISION OF REACHABILITY FOR
REGISTER MACHINES

VERONIQUE CORTIER'®

Abstract. We study the decidability of the following problem: given

p affine functions fi,..., fp over N* and two vectors vy, ve € N, is vy
reachable from vy by successive iterations of fi,..., fp (in this given
order)?

We show that this question is decidable for p = 1,2 and undecidable
for some fixed p.

Résumé. Nous étudions le probléme d’accessibilité suivant: étant
données p fonctions affines fi,..., f, sur N* et deux vecteurs d’entiers
v1, V2, est-ce que va est accessible depuis v; par I'application successive
de l'itération de f1, puis de f> et ainsi de suite jusque fp,?

Nous montrons que cette question est décidable pour p = 1,2 et indéci-
dable pour un certain po fixé (et donc pour tout p > po).

1991 Mathematics Subject Classification. 683Q60.

INTRODUCTION

Reachability is a fundamental question for computation models: a typical
safety property of a reactive system is the unreachability of some catastrophic
state. Reachability is straightforwardly decidable (in a time linear in the number
of states) for finite-state systems. For other (infinite-state) computation models,
it is most of the time undecidable.

In this paper, we study the border between decidability and undecidability
for a particular computation model: configurations are vectors of non-negative
integers. Each move from a configuration to its successor is given by an affine
function f(X) = AX 4+ B where A is a matrix of non-negative integers and B
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is a vector of integers. Such affine functions are used to model the evolution of
dynamical systems like the age repartition of trees of a forestry development or
the human population growth (see [9]): the initial vector represents the initial
repartition and the affine function describe the evolution of this repartition during
a year. They can also be used to compute limit trajectories (see [1]).

Petri nets with transfer are a particular case of this model (components of A
are 0 or 1), hence reachability is in general undecidable, see [6]. Many register
machines can be also modeled using such a computation model.

On the decidability side, in [2] B. Boigelot shows that

{f]kl...f;p(X)‘XGNm,kh...,kaN}

is definable in W S1S (weak monadic second order logic with one successor), hence
reachability is decidable, when fi,..., fi are affine functions such that the matrix
Ay, ..., A, are diagonalizing and their eigenvalues satisfy some conditions.

Instead of restricting the operations on the vectors, we consider here some
restriction on the control. For instance, it has been shown in [3] that reachability
for extended counter machines becomes decidable when the control is flat. We
consider here the iteration of some affine functions with such a flat control. More
precisely, given arbitrary affine functions fi,..., f,, we assume that fi,..., f, are
applied in a fixed order: first f; is applied an arbitrary number of times and then
f1 is not used again, then f5 is applied an arbitrary number of times and then
f2 is not used again, etc ... Under these conditions, we prove that reachability is
decidable for p = 1 (Section 2.1), for p = 2 (Section 3) and undecidable for some
p (Section 4).

1. PRELIMINARIES

1.1. INTRODUCTION

NoTATION: A(N) is the set of affine functions f : N¥* — N* such that f(X) =
AX + B where A is a matrix with nonnegative integer components and B is a
vector in ZF.
NoTATION: My (N) is the set of matrices of size k x k with nonnegative integer
components.
NoTATION: E* denotes the vector in N* such that the j* coordinate is 1 if j = i,
0 otherwise.

We consider the following decision problem: given fi,..., f, € Ax(N), given
U,V € N¥ does V belong to {fp" - f{*(U) | n1,...,n, € N}?

Example 1.1. We consider

X +

o

f(X) =

O O =
— = O
—_ O O
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Petri net extension affine function
Petri net A=1d
Double Petri net Id < A<2Id
Generalized Transfer Petrinet | 0 < A VjA; #0
Reset Petri net 0<ALId

Ficure 1. Example of transition classes which can be modeled

by f(X)=AX + B, cf [7]

a a—1 a a—n
Then f| b | = b ifa>1, ™1 b | = b if a > n.
c+b c c+nb
a

Ifa=0, f| b | is not defined because f(X) is not allowed to take negative

¢
values.
a 0
Then, given U = b and V = b |, where a,b.c € N, deciding if V
0 c

belongs to {f™(U) | n € N} is equivalent to decide if ¢ = ab.

This type of transition functions (f(X) = AX + B) is more general than many
other transitions which are considered in the literature (Figure 1). For example, if
A = Id, we obtain a Petri net. But, on the other hand, there is a strong restriction
on the control: fi,..., f, have to be iterated in a fixed order, which is not the case
in Petri nets. Such a control corresponds to the notion of “flat automata” in [3].

1.2. USEFUL PROPERTIES

We consider a partial order on vectors of integers in the following way:

Definition 1.2. Let U,V € N, U < V if and only if U’s coordinates are all
smaller than those of V.

The relation < is a well quasi-order( [5]). Moreover, it is easy to verify that for
every [ € Ar(N) (f(X) = AX + B), f is “increasing” for < : if Uy < U, then
f(Uy) < f(Us). This last property uses that A has only non-negative components
but does not require anything on B’s components. That is why we can allow B
to have negative components.

NoOTATION: We write V>U if at least one of V's coordinates is greater than the
corresponding one of U, i.e., if U 2 V.
Clearly, if V4 > V5 and Vo>U then Vi >U.

NOTATION: The size of V, written |V], is the sum of the absolute values of its
coordinates.
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2. DECIDABILITY RESULTS

2.1. DECIDABILITY FOR ONE FUNCTION

Since < is a well quasi-order and affine functions are increasing for <, the
problem stated in introduction is decidable when p = 1.
Theorem 2.1. Given f € Ay(N), U,V € N*, V € {f"(U) | n € N} is decidable.
Proof: We consider the following sequence: U, f(U), f>(U),..., f*(U),....
If there exists NV such that f~(U) # 0, then the sequence is finite and V € {f™(U) |
n € N} is decidable.
Otherwise there exist Ny < Na such that f(U) < fN2(U) because < is a well
quasi-order. T.et [ = Ny — N;. Forall 0 < <[ -1,

) < ) = ) < FIUR))

since f is increasing, thus fN1+i(U) < fN2+(U).

So we have:

le(U) S fN1+l(U) S S fN1+klU S
fN1+1(U) < leHH(U) < < fN1+1+kl(U) <
=@y < paEtEDH) - < < fHEDTR) . <

e FEither for one of these sequences two consecutive terms are equal, then
this sequence becomes constant.
e Or all these sequences are strictly increasing.

In concrete terms, we proceed on the following way: we compute successively
U, f(U), f2(U),..., fm(U),... (and at each step we check the equality to V) until
we find fM(U) < fN2(U), unless the sequence is finite.

Tn this case, the algorithm stops, there is no n such that V = f(U).
In the other case (if we find fN'(U) < fN2(U)), we compute successively

AUO) < P ) < PP ) < e < M) <
until either one of the coordinates is greater than the corresponding one of V', or
the sequence becomes constant (if two consecutive terms are equal). In the second
case, {f*(U) | n € N} is a finite set: we check if V € {f*(U) | n € N}. Otherwise
(if one of the coordinates is greater than the corresponding one of V), we try again
with

fN1+1<U) < fN1+1+l<U) < fN1+1+21(U) <... < fN1+1+kl<U) < ...

and so on with the [ sequences. 1
Nevertheless, even if the algorithm is effective, we have no bound regarding
its complexity. There is another algorithm which is more complicated, yielding
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however an explicit upper bound which is a tower of exponentials whose height
depends linearly on k, the number of registers, see [4]. The main idea of this
algorithm is to associate to the matrix A its dependence graph G 4 (there is an
edge between ¢ and j in G4, labelled by A; ; if and only if 4, ; # 0 ). Then, we
break down the graph G 4 into strongly connected components and study precisely
the behavior of each component when the affine function is iterated.

3. DECIDABILITY FOR TWO FUNCTIONS

A result similar to Theorem 2.1 also holds for the composition of two functions
in a given order.

Theorem 3.1. Given f,g € Ax(N), U,V € N¥, then V € {g"f™(U) | n,m € N}
s decidable.

Proof: we proceed with three steps:

(1) For m fixed, we compute n,, such that either (¢" f"(U))s>n,, is not de-
fined or (¢" f™(U))n>n,, is periodic or Vn > np,, g" f™(U)>V.

(2) For n fixed, we show that V € {¢" f™(U) | m € N} is decidable.

(3) We combine the first two steps with a kind of cross-ruling.

3.1. BEHAVIOR OF (¢" f™(U)),, m FIXED

We just give here a refinement of Theorem 2.1.

Theorem 3.2. Given f,g € Ay(N), U,V € N¥, given m € N, there exists n,, € N
(computable) such that:
(1) either Vn > n, g fm™(U)>V,
(2) or there exist N,,, l,, (computable) such that
Vi 2 Vi <l gVt fr(U) = gNet el fr(U),
i.e., there exist N),, Ly such that ¥Yn > N} 3i < l, ¢"f™U) =
gt f(U),
(3) or g"m f™(U) 20, thus for all n > n,,, " f™(U) is not defined.
Proof: We just refine the proof of Theorem 2.1:
Let U’ = f™(U), we consider the following sequence: U.f(U"),f>(U"),....f*(U"),...
Either there exists n,, such that g f™(U") Z 0 (case 3).
Or there exist Ny < Ny such that g1 (U’) < ¢™2(U’). In this case, we consider
the following sequences:

g (U) < gMHUY) < < gMFRUTy <
g UY) < gNHHHUY) <o < gMETER(DTY) <

gN‘+(l_1)(U') < gN‘+(l_1)+l(U’) << gN1+(l—1)+kl(U/) < ...
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e FEither for one of these sequences, two consecutive terms are equal, thus this
sequence is stabilized which implies that all these sequences are stabilized
(case 2).

e Or all these sequences are increasing and we compute each of them un-
til one of the coordinates of a term of the sequence is greater than the
corresponding one of V' (case 1).

O

3.2. BEHAVIOR OF (¢" f"(U))m, n FIXED

To control (¢" f™(U))m, we first establish a very useful lemma.
Lemma 3.3. Let f,g € Ax(N), U € N*, let | € N, > 0. We consider the follow-
ing sequence: g™(U),g"fL(U),g"f2(U),...,g"f™(U),... (n fized), then either

the sequence is eventually stabilized or it is never constant more than k + 1 steps.
More formally, this sequence has the following property:

Vmo (gnfmol(U) _ gnf(mg+1)l(U) = gnf(m0+k+1)l(U)
— Ym>mg g¢"f"(U) =g"fmlU)).

Proof: The proof of this lemma uses elementary properties of algebra.
Assume g" frol(U) = g fmot DY) = ... = gn fmotk+ D[], Tet us show that
g fmotkE2L(T) = gn fmol(U), which proves by induction that

Vm>mg g" " (U) = g" fU).

fOmot DLy — frol(U), ..., fimotkt D7) — fmol({J) are k + 1 vectors of the

k-dimensional vector space Qk, so they are linearly dependent in Q, thus they are

linearly dependent in Z (by multiplying by an appropriate integer). Thus

k+1
Jq1, .- qep1 €Z Zq ForotIN @) — fmol(U)) = 0.

Let N denote the greatest i such that ¢; is different from 0 (1 < N <k + 1).
Then qn (f0 W) - fol(U) + Z g (f W) — ol =o.

Applying f5¥+2=N yields:

qN(f(mo+k+2)l(U) _ f(m0+k+2—N)l(U))

+ 37 gi( ootk gy plmotk+2=NI(7)) = g,
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S0,
ang" (fMHEEINU) — plmortrzE L))

N—-1
+ D aig" (et — iR Nl) = 0.
i=1

=0
since (by hypothesis)

1< <kt 1< <k41

—_—~ —_——
VI<i<N -1 gnf(mo+2 +k+2- N)I(U) _ gnf(mo+k +2— N)I(U)

Conclusion: g"f<m0+k+2)l(U) = g" fmol(U). -

Definition 3.4. A sequence is k-almost increasing if this sequence is non-decreasing
and if it is never constant more than k steps.

Lemma 3.5. Forn fized, V € {g" f"(U) | m € N} is decidable.
Proof: We compute the sequence (f™(U))y, until:
either there exists N such that fV(U) # 0, the sequence stops and we test if
Ve {g"fm(U) [ m < N},
or there exist N,[ such that fN(U) < fN*(U), then

FYU) < FYHU) << PR <
fN+1<U) S fN+1+l(U) S S fN+1+kl<U) < ...

FNHED () < f'N+(lfl)+l(U) <o K FNHEEDHRT) <L

g fNU) < gnfNTHU) < < g VTR U < -
gan+l (U) < gan+1+l(U) <. < ganJr]Jrkl(U) <.

which implies

g VD) < gn PNHISDH(U) << grpNHISDHR() <

Using Lemma 3.3 (with U’ = fN(U)), each sequence is:

e cither (k + 1)-almost increasing,

e or eventually stabilized.
Hence, for each of these sequences, there exists m; (computable) such that Vm >
m;:

e cither g" fNT+™m([/)SV, thus each term of the sequence

(g™ fNTFUU)) >, is different to V,

e or gan+i+ml(U) — gan+i+mil(U)_
In concrete terms, we compute each term W of (g" fM+i+ml(1])),, until:

e ecither W>V which implies V ¢ {g" f™(U) | m € N},
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e or k+ 2 consecutive terms have the same value, it means that the sequence
is stabilized, which implies V' & {¢" f"™(U) | m € N},
e W =V which implies V € {g" f™(U) | m € N}.

One of these 3 cases is bound to happen. O

3.3. PROOF OF THEOREM 3.1

We need to control ¢" f™(U) when n and m vary at the same time. We first
establish a technical lemma used to initialize the proof of Theorem 3.1.

Lemma 3.6. Let f,g € Ay(N), U € N*, let Ny, € N*, Ny, 1> 0.
If fN(U) < fMH(U) < fU) <--- < i) <

Ing g fNU(U) 20
dny gm fHU) 20
and if .

Ing g fNTRU) 20

where n; is the smallest n such that g fN1+(U) # 0, then
(1) ng <ny <--- < my,
(2) Ym >k g fNEmH(U) 20
Proof:  The proof of (1) is easy: gno~lfM+(U) > gro=1fNi(U) > 0 thus
ny > no and so on.

The proof of (2) uses again elementary results of algebra.
), ..., fNMFR(T) are k 4 1 vectors linearly dependent in @ thus in Z, thus:

k
Epﬂa"'apk €L ZpileJril(U) =0.

=0

Let N denote the greatest i such that p; is not equal to 0. Assume py > 0 (if it
is not the case, multiply the equation by —1).
Let I ={i|p; >0,i# N}, J={j|p; <0}. ForjeJ, let ¢ =—p; >0,

pa NN 4> pa NN U) =) g D) (1)
iel jeJ
which implies
pnfNNHU) <Y g NN U)
jed
applying f*+1=N yields:

<k

—_—
pafNHERDL) < qufN1+(k +1-N +J)Z(U)
jes
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= pug™ fUTEU) <3 gy gt f TN W) (2)
JjEJ

ith coordonate <o
Applying g™+ to [N (U) < - < fMHR(U) yields

g NI U) < - < g R ).

Since g™+ fN1HEL(7) # 0, there exists ig such that the if" coordinate of g™+ fN1++ (1))
is negative, so for all 1 < i < k, the if! coordinate of g™ fM+i(U) is negative.
Thus (using 2), the i coordinate of g™+ fN1+(+DI([]) is negative, so:

g™ fN1+(k+1)l(U) # 0.

Hence Ym >k g™ fN1+tml % ( by induction. O
We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1: We consider the sequence (f™(U))-

e Either there exists N such that fV(U) # 0. Tt is the easy case:
{g"f™(U) |n,meN} ={g"f™(U)|neN,m < N}
For all m < N, we test it V € {¢”f™(U) | n € N}.

e Or there exist N,[ such that fN(U) < fNH(U) <. < fNHR() < - .-
Let us show that V € {g" fN*™(U) | n,m € N} is decidable, which proves
that V € {g"fNTH+™(U) | n,m € N} is decidable for all 1 < i <[ (take
U’ = f{(U)). Thus it implies V € {g"f™(U) | n,m € N} is decidable.

We first consider the sequence (g"f™ (U)),. Either there exists ng such
that g"o fN(U) # 0, then we consider the sequence (g" fNT!(U)),,, or there
exist ng, lg such that g™ fN(U) < gmot fN(U) < --- thusVn ¢ fN(U) >
0. We repeat this (at most k times) until we obtain Case 1 or Case 2.
Case 1:
Ing g™ fM(U) 20
Ing gm fH(U) 20

3y g fNERU) 20
Applying Lemma 3.6 yields Vm > kg™ fM+m(U) # 0. Thus, it
is enough to test if V€ {g"fN*"(U) | m € N} for all n < ny, (see
figure 2).
Case 2: There exists i < k such that ¥n g" fN*(U) > 0. We rename
N := N +il. So,

vaym  g" fNHU) > g" N (U) > 0. (3)

Let K = (k+1)|V|. We consider (¢" fN+X!(U)),,. Applying Theorem
3.2 yields 3 cases:
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#0

gnk fN+M(U)7Z 0 .

N
gy 2o
o 197N @) 2 0

Ny MRy V()

FIGURE 2. Case 1

>V
gnng-‘—Kl(U);V

FIGURE 3. Case 2

(1) There exists ng such that g™ fN+XI({]) # 0 which is inconsis-
tent with Equation 3.

(2) There exists ng such that ¥Yn > ng g¢" fN+EL(U)>SV. In this
case, (see Figure 3)

Vo > noV¥m > K gt Nty > gn VR ) S (4)
Thus we test if V € {g"fN+™(U) | n € N} for all m < K and

we test if V € {g"fNT™(U) | m € N} for all n < ng (which is
decidable by Lemma 3.5 with U’ = f¥(U) and f' = f!).
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already computed

FIGURE 4. Case 3
(3) There exist My, 1y, such that (see Figure 4)

Vo> M, Ji<ly gtfNTE D)= M pNER ) < v (5)

In this last case, we consider then:
ngfN+Kl(U) Z ngquL(Kf])l(U) 2 2 ngfN(U).

Applying Lemma 3.3 yields:

e cither this sequence is already stabilized, so
Vm 2 K " ) = oM YR ), (6)

e or this sequence is (k + 1)-almost increasing (at least until the K*" term
of the sequence), so:
K

Ml N+KlU >
MR >

+g"M YO = VI + g™ Y O))

= ngfN+Kl(U);V
which is inconsistent with Equation 5.
Thus we claim that

Yn > M Vm > K g"fNTml(U) = g" fNHEND). (7)
Indeed, let n > My, m > K,

g N U) = g™ (M PN )

(Equa:tion 6) gn’ <gM1 fN+Kl(U)) — gan+Kl(U).
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Thus {g" N (U) [ n,m e N} = | {g" N (U) | m e N}
n<M;

u (JA{g"NU) [ ne N
m<K

Thus V € {g" fN+™(U) | n,m € N} is decidable which completes the proof.
(I

4. UNDECIDABILITY IN THE GENERAL CASE

In the general case: if an arbitrary number p of functions are iterated in a fixed
order, V € {f,” -~ f{"(U) | n1,...,n, € N} becomes undecidable.

Theorem 4.1. Given fy,...,f, € Ax(N), U,V € N,
then Ve {fp" - 1" (U) | n1,...,n, € N} is undecidable.

We present here the sketch of the proof, lemmas needed for the proof are de-
veloped in sections 4.1, 4.2 and 4.3, we conclude with the proof in section 4.4.
Section 4.5 presents a refinement of Theorem 4.1.

Sketch proof: We start from Theorem 3.10 of [8] which is a stronger form of
Hilbert’s Tenth Problem, shown to be equivalent:

Theorem 4.2. [8] There is a polynomial P(z,y1,-..,Yn,) with integer coef-
ficients such that no algorithm exists for deciding whether or not an arbitrary
equation on the form

P(x07y17 ey yNo) =0
where xo is a positive integer, has a solution in nonnegative integers yi, ..., yYn,-

From now on, P is reserved for the polynomial mentioned in Theorem 4.2 and
Ny is reserved for the degree of P minus 1.
A straightforward corollary is the following;:

Corollary 4.3. There is no algorithm for deciding whether or not an arbitrary
equation on the form Q(x1,...,xn,) = 0 where Q is a polynomial with integer
coefficients and Nq variables, has a solution in nonnegative integers xi,...,TN,.

The idea of the proof is to establish a correspondence between each polynomial
P of Ngy variables and a system of affine functions (computable from P) which
simulates the computation of P(zy,...,xn,) for each tuple of Ny integers.

We establish the correspondence in the following way:

(1) The first functions C,, ., create a tuple of integers, (see Lemma 4.4)
(2) The functions fp,, ; compute the monomials of P, (Lemma 4.5)
(3) The functions A;i,A,’ni,D compute P, keeping positiveness at each step,
(Lemma 4.7)
Then we conclude with Corollary 4.3.
Notrarion: If m is the monomial aq,,...,ay, ! ...x?\;:o, let N, denote 2(a; +

- +an,) —1and K, = Y=L,
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4.1. PREPARATION STEP: GENERATION OF TUPLE OF INTEGERS

Lemma 4.4. For every monomial m = aal,,__,aNnx'f” ...xaNg", there exist Ny
affine functions Cryoys o, Cmay, € An,, (N) such that Yai,...,an, €N,

ay
: }m
ay

ang ai o aNg
Coidy, Ot On, = : }O/N N,,
o
aNg
0
0

where Oy, is the null vector of size Ny,. More formally, if a1 +---+a; <i <
a1+ -+ aj + ajir, the ith coordinate of C’Zﬁz"No .Cot L Op,, is equal to aj.

m.x
Proof of Lemma 4.4:
We build Ny functions Cy, »; = Id + V, o, where the it" coordinate of Vi, is 1
ifor+--4+a; <i<ap+---4+a; +a;41, 0 otherwise. [l

4.2. MULTIPLICATIONS FUNCTIONS

4.2.1. Definitions

We generalize Example 1.1 : if 4, 7,1, N are distinct integers (N > 4, j,1), there
exists a function f; j_; : N¥ — NV such that fi.j—1 computes the product of the
it" coordinate by the j** and writes the result on the I** coordinate :

In ffj_,l(xiElN + :ch]N) = ijJ]-V +dE) iff d = z;z;.

4.2.2. Computation of the monomaials

. [e3 .
Lemma 4.5. For every monomial m = aal,w’aNoac?l ...mNJUVO, there exist K,,
affine functions fm.1,..., fm.k,, € An, (N) such thatVay,...,ak, +1 €N,

a1 0

. C1

0

3/131 ,k}( ki k : .

.. m K, fR1 aK,, +1 _ 0 Zﬁ b= ar .-
f fr m - g

ElC]./ - ’CKm m, Ko, m,1 0 cy
CK,,
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Proof of Lemma 4.5 Let fm1 = fiosk.,+2, fmi = fit1,K,+isK,+it1 fOr
9<i<K,. 0

Together with Lemma 4.4, we obtain a straightforward corollary:
Corollary 4.6. For every monomial m = Qay,....an, x]! ...I‘?V](:’O, there are affine
functions frm1,... fm K Cmazrs oo Cmoay, € An,, (N) such that

Elk],"'-,kKWEN-, .
beN | dci,...,ck,, €N, fkf‘l?m...f::.’lcg{fg%...cal On,,=]| 0

m, m,xry
day,....an, €N, €2
K,
b
= {niyl ---nQNNO | ni,...,nN, GN}
0

4.3. COMPUTATION OF P

Lemma 4.7. Let P be a polynomial of Ny variables, whose constant term is 0.
There exists k, there exist affine functions fi,..., fn € Ax(N) such that

0
{beN| 3k, -k, fFr. . fko,= 0 Y={P(n1,--- ,nn,) | n1,...,nn, €N}
b

Proof of Lemma 4.7: Let P be a polynomial of Ny variables, whose constant term
is 0.
For each monomial m of P, we construct affine functions

fm,la R fm,Km-, Om.,:ma cey Cm,INO € ANm (N)

as described in Corollary 4.6.

We establish a one-to-one correspondence between each monomial m of P and
a “block” B,, whose size is N,,, X N,,,. From now on, we will only consider block
matrix and block vectors, of the form:

Bn, 0 0 0 |0 Vit
0 Bn, 0 0 |: Vi,
0 0 " 0 ’ :
0 0 0 Bm, |0 Vi,
0 e 0 1 a

where L is the number of monomials.
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We transform the functions f,,; and C,, ,, into functions fm’i and C‘mx in
Ani1(N), where N = Zfil Ny, , in the following way:

Vi,
Vmg .
IfCyy . = Id+V,, ». then C’m_m, = Id+ : where V,,. = Vm,zj if m; : m,
1T oy L : i 0 otherwise.
Ving
0
Bm, 0 0 0 0 Vi
) 0 By 0 0 | Vin,
If fm,z(X) = Am,iX'i'Vm,ia then fmz(X) = 0 0 .. 0 : X—|— .
0 0 0Bp, |0 Vi
0 ------ 0 1 0
h ij = AmJ' and ij = Vmﬂ' lf mj =m,
where B, = Id and  Vp, =0 otherwise.

Besides, for each m, let

where i, is the coordinate of the first line of block B,,. This set corresponds to
the coordinates we have to test: after the iterations of f,, 1, then f,, o, then, ..,
then f,, k,. , we obtain the product of the K, + 1 first coordinates if and only if
the coordinates whose numbers are in I, — {i,, + Ny, — 1} are equal to zero.

We split the monomials of P into 2 categories:

I= {m | Aoy ,...,anN

>0}, J={m|dq,.. oy, <0}

0

(aa17---;O¢NU is the coefficient of the monomial m = Qay ..o, T1 - - LINg-)
For every m in I (resp. in J), we define:

-y _ N+1 N+1
Al (vesp. A;) = Id — B ok, t o, an, ENT1
im + 2K, is the number of the line where the multiplication’s result of 27" - - x?vgo

is written.

The aim of this distinction between m € I and m € J is to iterate first all the A},
(we first add the nonnegative terms), then the A,,. In this way, if P(a1,...,an,) >
0, we make sure that during the computation of P(ay,...,ay,), the intermediate
vectors remain nonnegative at each iteration.

Let D denote a diagonal matrix such that if ¢ € Um I, then D;; = 1 else
D; ; = 0. Actually, D assigns irrelevant coordinates to 0.

Applying Corollary 4.6, we obtain the following equivalence:

3.%1...E|LENO P(I’],...,LENO):G (120
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if and only if

- - + +

HnDHnAml .. .HnAmMEinAml .. .EmAm )
M

E"I’I/mIJ . E"I’l/mh}(ml C E|7’I,m1”1 C E"I’I/m,”](mL 377,1 . 377,]\70

i=1 j=1 i=1

M B M’ N L K, No 0
e ([, (Lm0 ) (1) [ |-
i=1 i=1
0

=

where L is the number of monomials, M the number of nonnegative mono-
mials and M’ the number of negative monomials. This completes the proof of
Lemma 4.7. O

4.4. CONCLUSION: REDUCTION TO HILBERT’'S TENTH PROBLEM

We can now prove Theorem 4.1.
Proof: For each polynomial P of degree Ny, we associate:

P P —aog,.0 if ap,...0 <0
| —P+ap.. o ifag..0>0

Then P(x1,...,2y5,) = 0iff p(xl, co o TNg) = |ao,.. ol

The constant term of P is 0, thus we build
DaA;zla'--aA;nMArJ;Ll?"' 7A7J;LM,7fm1-,17"'7fm1,Nm17"'7me,17"'ame,NmL

from P as described in section 4.3.
Thus,
31'1...3.%]\]0 P(:C],...,.INO):O
if and only if

dzy... 3z, P(z1,....7N,) = |ao,.. ol

if and only if (see section 4.3)

0 0
(:) c DnD...C;L;\\,](? 0 np,...,nn, €N
\ﬂo,...,o 0

HVe{fy". .. f1"(U) | ny,...,n, € N} was decidable, then the Hilbert’s tenth
problem would be decidable too.
Conclusion: V € {fp* -+ f*(U) | n1,...,n, € N} is undecidable. O
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4.5. EXISTENCE OF A BOUND

We have shown that, given p € N, fi1,..., f, € Ax(N) U,V € N*, the problem
Vel{fp? ' (U) | ni,...,n, € N} is undecidable.

Actually, the number of functions f; can be fixed in advance (provided the
number of functions is large enough), it is not a parameter of the problem:

Theorem 4.8. There are fi1,..., fp affine functions in Ap(N) such that, given
U,V € Nt the problem V € {f," - f{*(U) | n1,...,n, € N} is undecidable.

It follows that:

Corollary 4.9. There exists K € N, such that: for all “fixed” p > K, given
firoo fo € AR(N), U,V € N the problem V € {fp" -+ f{*(U) | n1,...,n, € N}

is undecidable.

Proof: To show this last result, we re-use the strong form of Hilbert’s tenth
problem: theorem 3.10 of [8], cited here as Theorem 4.2.

We associate with the polynomial P (defined in Theorem 4.2), affine functions
Co: Cyis frmajs AL Ar, D € Aypq(N) as in section 4.4. Let a be the constant
term of P. Then:

given ng, P(no, y1,---,ym) = 0 has a solution in nonnegative integers yi, ..., ym
iff

Ve{Dw...ci...ClmUlnp,...,n1,...,nym €N},

where U = C7°On4q and V = |a| E]J\\,’Ill This is not decidable, so we complete

the proof. O

5. CONCLUSION

We have proved that the original reachability problem is undecidable for some
fixed number p of functions and that it is decidable for p = 1 and p = 2. There
are some restrictions on the f; which restore the decidability: for example, if
VivX |fi(X)] > X (where |V]| is the sum of the absolute values of its coordi-
nates) or if each B; is nonnegative. These minor results are not shown here (see [4]).

Acknowledgments : 1T would like to thank the anonymous referees for their helpful
and precise suggestions and comments.
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