A Cryptographic Model for Branching Time
Security Properties — the Case of Contract
Signing Protocols*

Véronique Cortier!, Ralf Kiisters?, and Bogdan Warinschi®

! CNRS, Loria, veronique.cortier@loria.fr
2 ETH Zurich, ralf.kuesters@inf.ethz.ch
3 University of Bristol, bogdan@cs.bris.ac.uk

Abstract. Some cryptographic tasks, such as contract signing and other
related tasks, need to ensure complex, branching time security properties.
When defining such properties one needs to deal with subtle problems
regarding the scheduling of non-deterministic decisions, the delivery of
messages sent on resilient (non-adversarially controlled) channels, fair
executions (executions where no party, both honest and dishonest, is
unreasonably precluded to perform its actions), and defining strategies
of adversaries against all possible non-deterministic choices of parties
and arbitrary delivery of messages via resilient channels. These problems
are typically not addressed in cryptographic models and these models
therefore do not suffice to formalize branching time properties, such as
those required of contract signing protocols.

In this paper, we develop a cryptographic model that deals with all of the
above problems. One central feature of our model is a general definition
of fair scheduling which not only formalizes fair scheduling of resilient
channels but also fair scheduling of actions of honest and dishonest prin-
cipals. Based on this model and the notion of fair scheduling, we provide
a definition of a prominent branching time property of contract signing
protocols, namely balance, and give the first cryptographic proof that the
Asokan-Shoup-Waidner two-party contract signing protocol is balanced.

1 Introduction

Cryptographic tasks, such as contract signing [1,15, 8] and other related tasks,
need to ensure complex, branching time properties, i.e., properties of the overall
structure of the set of all possible executions of a protocol (as opposed to prop-
erties of single execution traces). Examples of such properties are balance [11]

* The first and third author were partly supported by ACI Jeunes Chercheurs JC9005
and ARA SSTA Formacrypt. The second author was supported by the SNF under
Grant 200021-116596/1. The work described in this paper has been supported in
part by the European Commission through the IST Programme under Contract IST-
2002-507932 ECRYPT. The information in this document reflects only the author’s
views, is provided as is and no guarantee or warranty is given that the information
is fit for any particular purpose. The user thereof uses the information at its sole
risk and liability.

and abuse-freeness [15]. Defining such properties requires to cope with several
challenges that are typically not addressed in cryptographic models. The main
challenges include: modeling non-deterministic behavior of honest parties, re-
silient (non-adversarially controlled) channels, fair executions in which no party,
honest or dishonest, can unreasonably be precluded to perform its actions, and
strategies of adversaries to achieve certain goals against all possible behaviors of
resilient channels and honest parties; the existence or absence of such strategies
is a branching time property of a protocol, not a property of a single execution
trace. Providing a computational model that deals with all such challenges and
applying it to branching time properties of contract signing protocols is the main
purpose of this paper.

We illustrate the above points via the balance property for (two-party) op-
timistic contract signing protocols as first defined by Chadha et al. [11] in a
symbolic (Dolev-Yao based) model. These protocols can be used by two parties,
A and B, to obtain each other’s signature on a previously agreed contractual
text with the help of a trusted third party (TTP), which, however, is only con-
tacted in case of a problem. If and when the TTP is contacted depends on
non-deterministic decisions of the parties. For example, A may decide to send
an abort request to the TTP in case she doesn’t want to wait any longer for
a message from B, or suspects that B is dishonest. Contract signing protocols
typically assume that A and B communicate with the TTP over resilient (non-
adversarially controlled) channels: without such channels an adversary could
block all messages from/to the TTP. Now, balance for an honest party A and a
dishonest party B, as defined by Chadha et al., requires that in a protocol run
it is not possible to reach a state where B has both i) a strategy to obtain a
signed contract from A (no matter how A, the TTP, and the resilient channels
behave) and ii) a (possibly different) strategy to prevent A from obtaining a
signed contract from B (no matter how A, the TTP, and the resilient channels
behave). Since, when following one of these strategies, the adversary, i.e., B, has
to achieve his goal-—obtaining a signed contract or preventing A from obtaining
a signed contract—against the behavior of other entities that he cannot control
or foresee (non-deterministic choices of A and delivery of messages on resilient
channels), in a computational model it is necessary to determine the behavior of
these entities by a scheduler which is independent of the adversary, and in fact,
may work against the adversary. Moreover, for the balance property to make
sense, the scheduler should not stop the run of a system if one of the entities in
the system (A, the TTP, the resilient channels, the adversary) “can still take
an action”. In other words, the scheduling should be fair for all entities (both
honest and dishonest). For example, if at some point A could still contact the
TTP, then the scheduler should not stop the run of the system at this point
but should eventually schedule A: contacting the TTP might enable A to get
the contract. Stopping the system before scheduling A would be unfair and un-
realistic since no one stops A from contacting the TTP in a real protocol run.
Note that a scheduler is just an imaginary entity that is only needed to model
how things are potentially scheduled in a real protocol run. Conversely, if B (the

adversary) wants to send a message to the TTP, the scheduler should not stop
the run of the system but eventually schedule B: sending a message to the TTP
might enable B to obtain a signed contract which he otherwise might not be
able to get. Again, stopping the system before scheduling B would be unfair and
unrealistic since no one stops B from contacting the TTP in a real protocol run.
Note that B is an arbitrary adversary (machine), and hence, a general notion of
fair scheduling is needed to capture whether “B can still take an action” (e.g.,
send a message).

Clearly, standard cryptographic models, in which only one adversary is con-
sidered controlling the complete communication network, and honest principals
can not make non-deterministic choices are insufficient for dealing with the class
of protocols and properties considered here. Some cryptographic models take
some (not all) of the above aspects into account, but with a different focus and
in a way not suitable for the classes of protocols and properties we consider (see
the related work).

CONTRIBUTION OF THIS PAPER. In this paper, we propose a computational
model that deals with the challenges mentioned above and allows to specify
complex, branching time properties.

More precisely, our model is based on a general computational model for sys-
tems of interactive Turing machines (ITMs). The model is presented in Section 3.
Based on this model, we define a security-specific model (see Section 4) where
we use I'TMs to capture the behavior of the honest principals, the adversary, the
network and resilient channels, and the scheduler. The purpose of the scheduler
is to resolve non-deterministic behavior of honest principals, to schedule the re-
silient channels, and to trigger the adversary. As explained above, modeling the
scheduler as an entity independent of the adversary is important. The adversary
and the scheduler are each equipped with what we call a view oracle which can
be invoked by these entities to obtain a view on the history of the run of the
protocol so far, and hence, to adapt their actions accordingly; typically, the ad-
versary and the scheduler have different view oracles, and hence, different views
on the history. The view of the adversary typically includes all messages on the
network channels and only messages on those resilient channels which are not
required to be read-protected. Conversely, the scheduler might have complete
information about the resilient channels. The exact definition of the views (view
oracles) depends on the security properties considered and can be adapted de-
pending on the strength of the security guarantee desired. The ITMs that we
use cannot be exhausted and can respond to an unbounded number of requests,
as for example needed when modeling the TTP in contract signing protocols.
Also, this, for example, ensures that the scheduler cannot exhaust the adversary
or honest parties, which otherwise would lead to unrealistic runs (recall that the
scheduler is only an imaginary entity that is used to model reality).

As mentioned, fair scheduling is an important ingredient in the definition
of many security properties, and it is non-trivial to define in computational,
resource-bounded settings. We provide a general definition of when a scheduler
is fair for a system of ITMs (see Section 5). We emphasize that our definition

is independent of the specific structure of the system or the specific ITMs used
in the system. This is important as we need to capture fair scheduling also
for arbitrary dishonest parties, i.e., adversary machines. Intuitively, we call a
scheduler fair for a system if it does not stop the run of the system at a point
where at least one of the other machines in the system, e.g., honest parties, the
adversary, resilient channels, “can still take an action”, e.g., an honest princi-
pal could (non-deterministically) decide to start an abort protocol, a resilient
channel could deliver a message, or the adversary is ready to send a message
to an honest principal. We formalize that a machine “can still take an action”
in a general way as follows: We say that a machine can take an action if the
machine can be activated by the scheduler with some input so that at the end
of the activation the machine has changed its local configuration, and hence,
performed some action. (We note that according to our definition of ITMs, if
an ITM outputs a message, then it changes its local configuration.) The above
definition in particular applies to adversary machines and also to honest parties
and resilient channels. For example, if at some point A in a contract signing
protocol could either wait for a message from B or contact the TTP to run the
abort protocol and the scheduler schedules A to run the abort protocol with
TTP, then A changes its local configuration, e.g., goes from state ¢.,q;; to state
Qabort- While there does not exist a fair scheduler for every system, we identify
sufficient, reasonable conditions for a system to have a fair scheduler. The way
fair scheduling is defined here appears to be new and is of interest independent
of its application to branching time properties (see also the related work).

Based on our computational model and the notion of fair schedulers, we
provide a definition for balance of (contract signing) protocols (see Section 6).
In this definition, we need to quantify (universally and existentially) over two
different schedulers. The first scheduler may be unfair and may collude with the
adversary in order to reach a certain point in the protocol run. The second one
has to be fair, but tries to prevent the adversary from achieving his goal. As
a proof of concept, we apply our definition to the ASW two-party optimistic
contract-signing protocol [1], which is presented in Section 2, and show it to
be balanced when implemented with primitives that satisfy standard security
assumptions (see Section 6.2). Our proof of balance of this protocol is the first
computational proof of this (now rigorously defined) property for a contract
signing protocol.

We point the reader to the long version of our paper [13] for further details.

RELATED WORK. Rigorous models, security definitions as well as analysis meth-
ods and tools for branching time properties of contract signing protocols have
been proposed in [11,22,21,25,22,5 12,19, 20]. However, all these works are
based on the symbolic (Dolev-Yao) model and do not consider the more involved
computational case.

Backes et al. [7] (see also [6]) proposed a definition of fair scheduling in
a computational model. While they only consider fair scheduling of channels
(which is insufficient for branching time properties), our definition is concerned
with fair scheduling of arbitrary machines. Other works that use some kind of

fairness in specific settings are [3] and [16]. None of the mentioned works, [7, 6, 3,
16], studies branching time properties or properties of contract signing protocols.

Asokan, Shoup, and Waidner [2] propose a fair contract signing protocol and
present a computational model to study fairness of their protocol. However, the
model and the notion of fair scheduling that they use is tailored to their specific
setting and does not apply to branching time properties.

Canetti et al. [10] study a computational model based on probabilistic 1/0
automata (PIOAs) in which non-deterministic behavior of principals can be mod-
eled. However, they focus on simulation-based security and do not study fairness
issues or branching time properties.

2 A Running Example: The ASW Protocol

In this section, we provide an informal description of the ASW protocol [1].
This protocol is our running example which we use throughout the paper to
provide intuition for the models and the notions that we introduce. A more
formal description in terms of the model that we propose in this paper can be
found in [13].

CRYPTOGRAPHIC PRIMITIVES. The ASW protocol uses concatenation, signa-
tures and hashing. We denote the concatenation of bit strings mq,...,m, by
(mq,...,my), and sometimes by mq,...,m,. We assume that every m; can
uniquely be recovered from the concatenation. Verification and signing keys of
principal P are denoted by vp and sp, respectively. The signature of m gener-
ated using sp is denoted by sig, , (m). We require for the associated signature
verification algorithm sigver(-, -,) that sigver(m, s,vp) = true if s is a signature
on m generated using sp, and that sigver(m, s,vp) = false otherwise. We write
siglm, vp] for (m,sig,,(m)), and write h(m) for the hash of message m.

PROTOCOL DESCRIPTION. The ASW protocol enables two principals A (the orig-
inator) and B (the responder) to obtain each other’s signature on a previously
agreed contractual text text (a fixed bit string) with the help of a trusted third
party (TTP) T, which however is only invoked in case of problems. In other
words, the ASW protocol is an optimistic two-party contract-signing protocol.

There are two kinds of valid contracts: the standard contract, which is of the
form (sigma,val, Na, siglmp,vp], Ng), and the replacement contract, which
is of the form sig[(sig[ma,va),siglmp,vp]), vr|, where Ny and Np are nonces,
generated by A and B, respectively, ma4 = (va,vp,vp,text,h(N4)) and mp =
(siglma,val, h(Np)).

The ASW protocol consists of three subprotocols: the exchange, abort, and
resolve protocol. These subprotocols are explained next.

Exchange protocol. First A sends the message sig[ma,v4| indicating A’s interest
to sign the contract. By sending this message, A “commits” to signing the con-
tract. Then, similarly, B indicates his interest to sign the contract, by replying
with sig[mp,vp]. Finally, first A and then B reveal N4 and Np, respectively.

Abort protocol. If, after A has sent her first message, B does not respond, A
may contact T to abort, i.e., A runs the abort protocol with 7. Note that A
may wait as long as she wants before contacting 7' (non-deterministic action).
In the abort protocol, A first sends a4 = sig[(aborted,siglma,val),va]. If T
has not received a resolve request before (see below), then T sends back to A
the abort token ar = sig[(aborted, a4}, vr]. Otherwise (if T received a resolve
request, which in particular involves the messages siglma,va4] and siglmp, vp|
from above), it sends the replacement contract ro = siglr,vr] to A, where r =
(siglma,val,siglmp, vp]).

Resolve protocol. If, after A has sent the nonce N4, B does not respond, A may
contact T to resolve, i.e., A runs the resolve protocol with T. Again, A may
wait for as long as she wants before contacting T (non-deterministic action).
In the resolve protocol, A sends the message r to T. If T has not sent out an
abort token before, then T returns the replacement contract r7, and otherwise
T returns the abort token ar. Analogously, if, after B has sent the nonce Ng, A
does not respond, B may contact T to resolve, i.e., B runs the resolve protocol
with T similarly to the case for A.

We note that the communication with T (for both A and B) is carried out
over resilient channels. More specifically, these channels are authenticated, so
the adversary can read their content but he is not entitled to modify, delete, or
delay messages sent over these channels.

3 The General Computational Model

Our general computational model is defined in terms of systems of interactive
Turing machines (ITMs) and is related to the models in [4,9,14,17]. However,
our exposition follows more closely that of [24].

ITMS. An (inezhaustible) interactive Turing machine (ITM, for short) M is a
probabilistic Turing machine with the following tapes: a security parameter tape
for storing the security parameter, a random tape for storing random coins, zero
or more input and output tapes, and work tapes. The input and output tapes
have names; different tapes have different names. These determine how ITMs are
connected in a system of ITMs. If an ITM sends a message on an output tape
named ¢, then only an ITM with an input tape named c can receive this message.
An ITM M may use oracles, called the oracles associated with the ITM. If the
oracles Oy,..., 0, are associated with M we sometimes write M(O1,...,0,)
instead of M to emphasize this fact. The runtime of an ITM is polynomially
bounded per activation (in the security parameter, the current input, and the
size of the current configuration). This allows the ITM to “scan” the complete
incoming message and its complete current configuration. Hence, an ITM can
not be exhausted (therefore the name inezhaustible interactive Turing machine).

SYSTEMs OF ITMs. A system S of ITMs is a parallel composition M || --- || M,
of ITMs M;, i =1,...,n. These machines communicate over input and output
tapes; at every time only one ITM is active and all other ITMs wait for new

input. A machine is activated when it receives input on one of its input tapes.
If a machine does not activate another machine (by outputting a message), the
so-called master ITM is triggered. We require w.l.o.g. that if a machine outputs
a message, then its local configuration changes. Given S = M1 || -+ || M,,, we
write S(17,r1,...,r,) for the system obtained from S by writing a security
parameter 7 on the security parameter tapes and random coins r; € {O, 1}* on
the random tapes of the M;. A run of S(17,71,...,r,) is defined to be a sequence
of global configurations ¢ where a global configuration q is a tuple (q1,...,¢n) of
the configurations ¢; of the single machines M;, for every i =1,...,n.

In general, a run of a system does not necessarily terminate. For example, if
in § = M; || My the ITMs M; and M, are connected via enriching input tapes,
then they can send message back and forth between each other forever.

We say that a system S is a polynomial-time system if there exists a prob-
abilistic Turing machine which simulates runs of & and whose runtime is poly-
nomially bounded in the security parameter with overwhelming probability. For
polynomial-time systems, we denote by S(n) the random variable that returns
runs of § with security parameter 1 where the coins for the ITMs in § are
chosen uniformly at random. We write S() ~ ¢ to say that the final global
configuration in a run returned by S(n) is ¢. If ¢’ is a global configuration for
S(n), we write Sg(n) to denote the distribution of runs obtained when the ini-
tial configuration of the ITMs in S are defined according to ¢’ (with possibly
random coins added on random tapes if needed). In case ¢’ is drawn from a
family D = {D,}, of distributions, we write Sp(7) for the random variable that

returns a run according to the following experiment: ¢’ < D,,, output Sy (n). We
define S,/ (1) ~ ¢ and Sp(n) ~ ¢ analogously to S(n) ~ ¢. Here, and in the rest
of the paper we only consider families of distributions D that are polynomially
samplable, i.e., that are the output of a probabilistic polynomial-time Turing
machine.

Given a system S, we call an ITM € an environment for S if i) the runtime of
€ is polynomial in the security parameter alone (and independent of the length
of the input that &£ receives) and ii) & is I/O-compatible with S, i.e., £ only
writes to external input tapes of S and £ only reads from external output tapes
of §. Adopting terminology from [18], we call S reactively polynomial if S|| & is
a polynomial-time system for every environment £ of & where £ does not have
an associated oracle.

4 The Security-specific Model

Based on the general computational model introduced above, we define below
the security-specific model. In this model, we consider specific systems of ITMs,
called protocol systems. These systems consist of protocol machines, which de-
termine the actions of honest principals, an adversary machine, a scheduler, and
buffers for network and resilient channels. The adversary does not have com-
plete control over the communication. Specifically, while we let the adversary
control the network, he does not control resilient channels, i.e., the adversary

can not modify, delete, or delay messages sent on this channel. (We often allow
the adversary to read messages sent on resilient channels, though.) The purpose
of the scheduler is to schedule messages sent over resilient channels, i.e., the
scheduler decides when and which messages written on the resilient channel are
delivered. Also, the scheduler resolves non-deterministic choices made by hon-
est principals, e.g., whether to wait for a message of another party or to abort
the protocol. Furthermore, the scheduler determines when the adversary is ac-
tivated. In particular, the adversary is not necessarily scheduled as soon as an
honest principal outputs a message. Instead some message sent on a resilient
channel or an honest principal that needs to make a non-deterministic decision
might be scheduled first (by the scheduler). However, if the adversary sends a
message to an honest principal this principal is activated right away. Allowing the
scheduler to first schedule other entities (honest principals or resilient channels)
would significantly weaken the power of the adversary.

PRrROTOCOLS. A protocol I1 is defined by a tuple (H, D, {H; };c») where H and D
are finite disjoint sets of names of honest and dishonest principals, respectively,
and {H;};cx is a family of ITMs, called protocol machines (see below), which
specify honest principals; dishonest principals will be simulated by the adversary.
We define P = HUD to be the set of all principals. We note that H; may specify
the actions of principal 7 in one session of a specific protocol, e.g., it specifies one
session of the initiator of the ASW protocol, or multiple sessions of i in possibly
different roles.

PROTOCOL SYSTEMS. A system induced by I consists of the protocol machines
of IT, an adversary machine A, a scheduler machine S, and buffer machines for
the network and resilient channels. More precisely, a (protocol) system S for IT
is of the form

S = ([lienH:) || (|lien,jerNeth) || (|lier,;erRC) || A || S

where H;, i € H, is a protocol machine of IT modeling an honest principal, Neté7
i € H, j € P is a network buffer (machine) on which ¢ sends messages over the
network intended for 7, RC;, i € H, j € P is aresilient channel buffer (machine)
on which 7 sends messages intended for j, A is the adversary (machine), and S
the scheduler (machine). We call S the system induced by II, A, and S and
denote it by S(II, A, S). We refer to the system S with A and S removed by
S(IT). Analogously, we refer to the system S with S removed by S(II, A). We
now explain informally how the machines of S(IT, A, S) work and how they are
connected via tapes (see [13] for details).
A network buffer machine Neté receives messages from H; and stores them.
The adversary has typically access to these messages.

A resilient channel buffer machine RC; stores messages and interacts with

H; just as Net;-. In addition, RC; is scheduled by the scheduler who determines
which messages are delivered. The adversary may or may not have access to
RC’. This depends on whether or not RCj should be read-protected.

A protocol machine H; may send messages to the network buffers Netz and

the resilient channel buffers RC;- for every j € P as explained above. If H; does
not produce output, the scheduler S is activated. A protocol machine H; can be
activated by messages from the network (the adversary), the resilient channels
(these messages are guaranteed to be authentic), and the scheduler. Messages
from the scheduler are meant to resolve non-deterministic choices made by H;
(these messages are assumed to come from a fixed, finite set of messages).

The adversary machine A is associated with an oracle, called the view oracle,
which can be invoked by A to obtain a wview on the history of the run of the
overall system so far. The view usually does not contain full information about
the history. It is typically restricted to the content of the network buffers so far
and the content of (some) of the resilient channel buffers, depending on whether
these channels are supposed to be read-protected. In addition to invoking the
view oracle, A can send messages to honest principals either via network (unau-
thenticated) or resilient channel connections (authenticated). A message sent
by the adversary on one of these channels is delivered directly. The adversary
machine A can only be activated by the scheduler. We only allow adversary
machines for which the system S(II, A) is reactively polynomial.

The scheduler S is also associated with a view oracle which provides S with
a view on the history of the run of the overall system so far. Typically this view
will be different from the view of the adversary and depending on the security
property may contain full information about the history, no information at all,
or something in between. As explained above, the purpose of S is to resolve non-
deterministic choices of honest principals (H;), to schedule messages on resilient
channels, and to determine when the adversary A is triggered. For this purpose,
S sends appropriate messages to these machines.

5 Fair Schedulers

Intuitively, we define a scheduler to be fair if it does not stop the run of a system
when at least one of the (other) machines in the system can still take an action,
e.g., an honest principal could start an abort protocol, a resilient channel could
deliver a message, or the adversary is ready to output a message to an honest
principal. As already explained in the introduction, fair scheduling is important
in the definition of many security properties, such as fairness and balance for
contract signing protocols.

The problem of defining fair schedulers is to make precise what it means
that a machine “can still take an action”. Notice that we need a general def-
inition that works for arbitrary machines (honest principal machines, resilient
channel machines, and adversary machines) not only for specific machines, such
as specific buffers as in [7, 6].

Roughly speaking, we say that a machine “can still take an action” if the
machine can be activated by the scheduler with some input so that at the end of
the activation the machine has changed its local configuration, i.e., scheduling
the machine causes it to make some progress or to perform some action. (Recall

from Section 3 that if an ITM sends out a message, then it changes its local
configuration.) For example, if an adversary machine wants to send a message
to an honest principal, then when it is triggered by the scheduler it would send
the message and change its local configuration. Hence, a fair scheduler has to
eventually trigger the adversary as the adversary “can still take an action” in
the above sense. Similarly, a fair scheduler has to eventually trigger a protocol
machine that does not receive a message from the network but has the option
of contacting the TTP, as contacting the TTP causes the protocol machine to
change its local configuration.

We note that a scheduler does not necessarily know when a machine, includ-
ing the adversary, “can still take an action” in the sense just explained. Hence,
it might schedule such a machine even though this machine does not want to
take an action. However, a machine can always read the message received from
the scheduler (possibly even query the view oracle in case of the adversary) and,
in case it does not want to take an action, it can return to its old local con-
figuration. Note that here we use that ITMs cannot be exhausted. In case of
exhaustible ITMs unrealistic runs would occur.

The above discussion motivates the following definition of fair schedulers.
Roughly speaking, the definition below says that if the run of a system stops,
then even if in the system the old scheduler is replaced by a new one (even
one with full information on the history of the run), the new scheduler cannot
continue the run of the system (at least not with non-negligible probability)
such that one of the ITMs in the system changes its local configuration. In other
words, a fair scheduler may only stop the run of a system if no ITM in the
system (other than the scheduler itself) can or wants to take a further action,
i.e., no other scheduler can cause an ITM to change its local configuration. We
state this definition for general systems rather than only for protocol systems
(Section 4). In this definition, we use what we call a full-information oracle.
Called at some point in a run of a system, a full-information oracle returns the
whole history of the run so far for all machines involved including the random
coins used so far by the ITMs. We state the definition for the case that the initial
global configuration comes from a family D = {D,}, of distributions. This is
useful for modeling, for example, an initialization phase.

Definition 1. Let Q be a reactively polynomial system which does not contain
a master ITM. An ITM S is a fair scheduler for @ and a family D = {D,}, of
distributions on (initial) global configurations if it is an environment for Q and
if for every environment S for Q which has access to a full-information oracle
the probability that the following experiment returns 1 is negligible in the security
parameter 1:

Exp(n. S, 5):

Run Q with S, i.e.: Sp(n) ~ ¢ with S =Q|| S

Continue the run with 8 instead of S, i.e.: Syn(n) ~ ¢" with S" = Q|| S and q"
1s obtained from q' by replacing the configuration of S by the initial configuration
of §' and writing the history of the run so far on one of the work tapes of S'.

If there exists an ITM M in Q such that the local configuration of M in ¢ is
different from the corresponding local configuration in ¢'", then output 1, and
otherwise, output 0.

Applied to protocol systems (Section 4), a fair scheduler may only stop if i)
the resilient channel buffers are empty, ii) triggering a protocol machine with any
message (among the finite set of possible once, e.g., abort) does not change the
local configuration of this machine, and iii) triggering the adversary machine with
the message schedule does not change the local configuration of this machine
(which means that the adversary does not want to take a step anymore).

Since ITMs cannot be exhausted they might change their local configuration
whenever they are invoked. Hence, a fair scheduler would never be allowed to
stop. Thus, we observe:

Observation 1 There are systems for which no fair scheduler exists.

SYSTEMS WITH FAIR SCHEDULERS. We now identify some reasonable restrictions
on protocols and adversaries as to ensure the existence of a fair scheduler. Due to
space limitations, we only provide informal definitions. First, we put a restriction
on the adversary.

Definition 2. (informal) An adversary machine for a protocol II, view oracles
Ouadvs Osch, and a family of distributions D = {D,}, on (initial) global con-
figurations D is fairness-enabling if the number of configuration changes of the
adversary in every run of the system S = S(II, A(Ouay), S(Oser)) (and hence,
the number of actions, such as sending messages, the adversary can perform)
can be bounded by a polynomial which is independent of the scheduler S(Osep)-

The immediate analog to the definition above for protocol machines would be
too restrictive since the number of configuration changes of a protocol machine
might depend on the number of interactions with the adversary, and hence,
depends on the adversary. For example, if a TTP is modeled in such a way that
it reacts to all requests (which could come from the adversary), then the number
of configuration changes of the TTP depends on the adversary. This motivates
the following definition.

Definition 3. (informal) Given oracles Ouqy and Ogep, and a family of distri-
butions D = {D,},, on (initial) global configurations, a protocol II is fairness-
enabling if the number of configuration changes of protocol machines in II in
every run of the system S = S(IT, A(Oudy), S(Osen)) can be bounded by a poly-
nomial which may depend on A(Ouqy) but not on S(Osep).

The following theorem states that for every fairness-enabling protocol and every
fairness-enabling adversary, there exists a fair scheduler (even without access
to a view oracle). Hence, for systems built from fairness-enabling protocols and
adversaries, fair scheduling is possible. In the rest of the paper, we concentrate
on such systems, which seem to capture all realistic cases. In order to state and

prove the theorem, we first need to be more precise about the view oracle of
adversaries.

A view oracle is called an adversary view oracle if it is a deterministic
polynomial-time algorithm which when invoked in a run of a protocol system
gets as input the history of the run so far, except for the history of the sched-
uler, i.e., the history of the configurations (including the random coins used so
far) of all machines in the system, except for the history of the configurations
of the scheduler. We require that if the configurations of the I'TMs, other than
the scheduler, in a run of the protocol system have not changed from one point
in the run to the next step in the run, then the adversary view oracle returns
the same view as before. Note that even if the adversary view oracle obtains as
input the full history of the system (excluding the scheduler) it typically will
only return a restricted view on that history to the adversary.

Theorem 2. For every fairness-enabling protocol II, view oracle Ogep, adver-
sary view oracle Ouqy, polynomially samplable family of distributions D = {D,},
on (initial) global configurations, and fairness-enabling adversaries A=A (Oqdy),
there exists a scheduler S (even one without access to a view oracle) that is fair
for S(II, A) and D.

6 Balanced Protocols and Results for the ASW Protocol

In this section, we define the notion of balance and show that the ASW protocol
is balanced. The definition makes use of the previously introduced concept of
fair scheduling.

6.1 Definition of Balance

The notion of balance for (two-party) contract-signing protocols was first intro-
duced by Chadha et al. [11] in the symbolic (Dolev-Yao) setting. In a nutshell,
their definition says that a protocol is balanced for an honest signer, say A, if
no “unbalanced” state can be reached in a run of the contract-signing protocol
where a run involves A, the Dolev-Yao intruder playing the role of the dishonest
signer B, the TTP, the network and resilient channels. A state is unbalanced (for
A) if in this state B has both i) a strategy to obtain a signature on the contract
from A and ii) a (possibly different) strategy to prevent A from obtaining a
signature on the contract from B. In other words, B can unilaterally determine
the outcome of the protocol, which puts him in an advantageous position, for
example, when making a deal with another party. In the first phase—reaching
an (unbalanced) state— the non-deterministic choices made by honest princi-
pals and the way messages on resilient channels are scheduled might help B to
reach the (unbalanced) state. However, in the second phase, B needs to have
the mentioned strategies to achieve the two goals—obtaining a valid contract
and preventing A from obtaining a valid contract—, and these strategies have to
work no matter what non-deterministic choices the honest principals make and
no matter how messages on resilient channels are scheduled.

Now, we introduce a computational analogue of the notion that we sketched
above. We measure the success probability of an adversary that tries to un-
dermine the balancedness of the protocol via an experiment which works in
two phases (see below for a formal definition): In the first phase, the protocol
runs along with the adversary A and a scheduler S which may resolve non-
deterministic choices of honest principals and schedule messages on resilient
channels and the adversary in a way that helps A. At the end of this phase, a
state (global configuration), say ¢, is reached. Now, one of the two goals (having
the contract or preventing the other party from getting one) is picked (by some
function challenge) and the adversary is asked to reach the chosen goal, start-
ing from ¢ but now running with a different scheduler which will try to resolve
non-deterministic choices of honest principals and schedule resilient channels and
the adversary in a way that is disadvantageous for A. Intuitively, for balanced
protocols, from any state ¢ that is reached, at least for one of the two goals the
probability that the adversary can reach this goal should be low.

In the following definition, we require that the scheduler used in the sec-
ond phase of the experiment is fair in order to ensure that protocol runs are
in fact completed both by honest parties and the adversary. This is crucial for
two reasons: On the one hand, the adversary might otherwise be prevented from
taking further actions, but these actions may be necessary for the adversary to
achieve the required goal. Hence, the scheduling would be unfair for the adver-
sary. And in fact, it would be unrealistic since in real protocol runs no one stops
the adversary from taking further actions. On the other hand, honest principals
might otherwise be prevented from taking counter-measures to the misbehavior
of the adversary. Hence, the scheduling would be unfair (and again unrealistic)
for the honest parties. Note that achieving fair scheduling for both honest parties
and the adversary is guaranteed by our definition of fair scheduling (Section 5).
However, a notion only based on fair message delivery [7, 6] would be insufficient.

In order to ensure that, in the second phase, fair scheduling is possible, we
split the adversary in two parts, A (for the first phase) and A’ (for the second
phase) and require that A’ is fairness-enabling. The scheduler used in the first
phase is not required to be fair (in particular it can stop at arbitrary points),
and adversary A is not assumed to be fairness-enabling.

The definition of balance is parameterized by two deterministic polynomial-
time algorithms, goal, and goal,, the goal functions, which given a global con-
figuration return 1 (goal reached) or 0 (failed to reach the goal), e.g., goal,
might formalize “A does not have a signed contract from B” and goal, might
formalize “B has a signed contract from A” (see Section 6.2). Parameterizing the
definition of balance by the goal functions seems unavoidable since, for example,
what a signed contract is and what it means for a party to have a signed contract
are details that may differ from one protocol to another (see, e.g., [1] and [15]).
We call a deterministic polynomial-time algorithm which given a global config-
uration returns 1 (requiring the adversary to achieve goal,) or 2 (requiring the
adversary to achieve goal,) a challenge function.

Definition 4. Let II be a protocol and goal, and goal, be deterministic poly-
nomial-time algorithms as above. Let Osep, and O, be view oracles, and Ogqy
and O, be adversary view oracles. Then, II is called balanced w.r.t. goal,,
goaly, Oudv, O ys Osch, and O, if for all adversary machines A = A(Oqqy)
and A" = A'(O!,,) for II, and all (not necessarily fair) schedulers S = S(Ogep)
for II, there exists a challenge function challenge such that if A’ is fairness-
enabling for IT, O, , Ouqv, and a family D = {D,}, of distributions on (initial)
global configurations defined below, then there exists a scheduler S = S'(O.,)
fair for S(II, A") and D such that the probability that the following experiment

returns 1 1s negligible in the security parameter 7).
Exp(n,I1,A, A, S, S goal,,goal,, challenge):

S(n) ~ q where S =S(I1, A, S).

i = challenge(q).

Sy (n) ~ " where 8" = S(I1, A’ S'), the initial configuration of A’ is obtained
by writing i and the current configuration of A on the work tape of A, and ¢
is obtained from q by replacing the configuration of S by the initial configuration
of §' and the configuration of A by the initial configuration of A'.

Return goal,(q").

The distribution D,, is defined to be the distribution of ¢’ in the above experiment.
(Note that D = {D,,} is polynomially samplable.)

We emphasize that the above experiment can be simulated in polynomial time.
This is a crucial fact when trying to show that a protocol is balanced via a
proof by reduction. Note that while one could provide challenge and S’ with
more information, giving them less information only makes the balance property
stronger. We also point out that in typical applications of the above definition
the protocol I will be fairness-enabling w.r.t. O._,, O, . and D, and hence,
fair scheduling is possible in the second phase of the experiment.

6.2 The ASW Protocol is Balanced

We prove that the ASW protocol is balanced for i) the case that an honest ini-
tiator A runs an instance of the protocol with a dishonest responder B (modeled
as the adversary) and an honest TTP 7', and ii) the case that an honest respon-
der B runs an instance of the protocol with a dishonest initiator A (modeled
as the adversary) and an honest TTP T. More formally, we need to specify the
protocols, oracles, and functions used as parameters in the balance definition.
Let ITASW-A denote the protocol with honest parties A, T', and W, and dis-
honest party B where A acts as an initiator, 7" as a TTP, and W as a “watch
dog”. Formal specifications of A and T in terms of ITMs can be found in [13].
We note that A writes Contract on some of her work tapes if according to
the specification of the protocol she has a valid contract (standard or replace-
ment) with B and T on the contractual text. The watch dog W is used to check
whether the adversary (dishonest B) has a valid contract. The protocol IT ASW-B
is defined similarly, except that now A is dishonest and B is honest. The formal

specification of the responder B as ITM can be found in [13]. It is not hard to
check that ITASW-A and ITASW-B are fairness-enabling w.r.t. the distribution used
in Definition 4 and that S(IT*W-A) and S(ITASW-*) are reactively polynomial.

We define the view oracles 0531\,/\’ and (’)ﬁ;’y for the adversary to be adversary
view oracles (Section 5) which return the history of all network and resilient
channel buffers in the system (but no other machines). In particular, resilient
channel buffers are not required to be read protected.

To get strong security guarantees, we allow the scheduler in the first phase
of the definition of the balance property to see what the adversary sees plus
the history of the configurations of the adversary (including the random coins

used by the adversary); (’)SACSAN is defined accordingly. Conversely, we make the

scheduler in the second phase weak by defining OAY in such a way that it
does not provide any information about the history. For a global configuration
q let goal,(q) = 1 iff the honest party (A in IT*W"A and B in IT"SWB) does
not have a contract, i.e., Contract is not written on one of its work tapes. Let
goal,(q) = 1 iff the adversary has a valid contract, i.e., Contract is written on
a work tape of the watch dog.

We are now ready to state the theorem on balance of the ASW protocol. The
theorem holds for instances of the protocol implemented with primitives that

satisfy standard cryptographic assumptions (see [13] for precise definitions).

Theorem 3. If the signature scheme is existentially unforgeable under chosen
message attacks and the hash function is preimage resistant, then IT"SWA and

ITAWB gre balanced w.r.t. goal,, goal,, (9(’;\;\)’\’, OaAgxy, Oﬁ‘cs,}b/v, and OSACS,)’,V.

The theorem should extend to the case that a party runs multiple copies of
the protocol provided that different instances of the protocol use unique session
identifiers (see [13]).

References

1. N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair
exchange. In SEP 1998, pages 86—99. IEEE Computer Society, 1998.

2. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE Journal on Selected Areas in Communications, 18(4):593-610, 2000.

3. M. Backes and B. Pfitzmann. Computational probabilistic non-interference. In
ESORICS 2002, volume 2502 of LNCS, pages 1-23, 2002.

4. M. Backes, B. Pfitzmann, and M. Waidner. Secure Asynchronous Reactive Sys-
tems. Technical Report 082, Cryptology ePrint Archive, 2004.

5. Michael Backes, Anupam Datta, Ante Derek, John C. Mitchell, and Mathieu Tu-
ruani. Compositional analysis of contract signing protocols. In CSFW 2005, pages
94-110, Washington, DC, USA, 2005. IEEE Computer Society.

6. Michael Backes, Dennis Hofheinz, Jorn Miiller-Quade, and Dominique Unruh. On
fairness in simulatability-based cryptographic systems. In FMSE 2005, pages 13—
22, September 2005. Preprint on IACR ePrint 2005/294.

7. Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Polyno-
mial fairness and liveness. In CSFW 2002, pages 160-169. IEEE Computer Society,
2002.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

B. Baum-Waidner and M. Waidner. Round-optimal and abuse free optimistic
multi-party contract signing. In U. Montanari, J.D.P. Rolim, and E. Welzl, editors,
ICALP 2000, volume 1853 of LNCS, pages 524-535. Springer, 2000.

R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Technical report, Cryptology ePrint Archive, December 2005. Online
available at http://eprint.iacr.org/2000/067.ps.

Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier
Pereira, and Roberto Segala. Time-bounded Task-PIOAs: A Framework for Ana-
lyzing Security Protocols. In S. Dolev, editor, DISC 2006, pages 238-253. Springer,
2006.

R. Chadha, M.I. Kanovich, and A.Scedrov. Inductive methods and contract-signing
protocols. In P. Samarati, editor, CCS 2001, pages 176-185. ACM Press, 2001.
R. Chadha, J.C. Mitchell, A. Scedrov, and V. Shmatikov:. Contract Signing, Op-
timism, and Advantage. In R.M. Amadio and D. Lugiez, editors, CONCUR 2003,
volume 2761 of LNCS, pages 361-377. Springer, 2003.

V. Cortier, R. Kiisters, and B. Warinschi A Cryptographic Model For Branching
Time Security Properties — the Case of Contract Signing Protocols. Technical
Report 251, Cryptology ePrint Archive, 2007.

A. Datta, R. Kiisters, J.C. Mitchell, and A. Ramanathan. On the Relationships
Between Notions of Simulation-Based Security. In J. Kilian, editor, T'CC 2005,
volume 3378 of LNCS, pages 476-494. Springer-Verlag, 2005.

J.A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract sign-
ing. In CRYPTO 1999, volume 1666 of LNCS, pages 449-466. Springer-Verlag,
1999.

D. Hofheinz and J. Miiller-Quade. A synchronous model for multi-party computa-
tion and the incompleteness of oblivious transfer. In FCS 200j.

D. Hoftheinz, J. Miiller-Quade, and D. Unruh. Polynomial Runtime in Simulata-
bility Definitions. In CSFW 2005, pages 156-169. IEEE Computer Society, 2005.
Dennis Hofheinz, Jorn Miiller-Quade, and Dominique Unruh. A simple model
of polynomial time UC. Presented at the ECRYPT Workshop on Models for
Cryptographic Protocols — MCP’06.

D. Kéahler and R. Kiisters. Constraint Solving for Contract-Signing Protocols. In
M. Abadi and L. de Alfaro, editors, CONCUR 2005, volume 3653 of LNCS, pages
233-247. Springer, 2005.

D. Kahler, R. Kiisters, and Th. Wilke. Deciding Properties of Contract-Signing
Protocols. In Volker Diekert and Bruno Durand, editors, STACS 2005, number
3404 in LNCS, pages 158—169. Springer-Verlag, 2005.

D. Kahler, R. Kiisters, and Th. Wilke. A Dolev-Yao-based Definition of Abuse-free
Protocols. In M. Bugliesi, B. Preneel, V. Sassone, and 1. Wegener, editors, I[CALP
2006, volume 4052 of LNCS, pages 95-106. Springer, 2006.

S. Kremer and J.-F. Raskin. Game analysis of abuse-free contract signing. In
CSFW 2002, pages 206—220. IEEE Computer Society, 2002.

Steve Kremer and Jean-Francois Raskin. A game-based verification of non-
repudiation and fair exchange protocols. In CONCUR 2001, volume 2154 of LNCS,
pages 551-565. Springer-Verlag, 2001.

R. Kiisters. Simulation-Based Security with Inexhaustible Interactive Turing Ma-
chines. In CSFW 2006, pages 309-320. IEEE Computer Society, 2006.

V. Shmatikov and J.C. Mitchell. Finite-state analysis of two contract signing
protocols. T'CS, 283(2):419-450, 2002.

