On the Decidability of a Class of
XOR-based Key-management APIs

Véronique Cortier'* and Graham Steel?**

! Loria UMR 7503 & CNRS & INRIA Lorraine projet Cassis, France
Veronique.Cortier@loria.fr
http://www. loria.fr/ cortier
2 School of Informatics, University of Edinburgh, Scotland
Graham.Steel@ed.ac.uk
http://homepages.inf.ed.ac.uk/gsteel

Abstract. We define a new class of security protocols using XOR, and show
that secrecy after an unbounded number of sessions is decidable for this class.
The new class is important as it contains examples of key-management APIs,
such as the IBM 4758 CCA API, which lie outside the classes for which secrecy
has previously been shown to be decidable. Earlier versions of the CCA API were
shown to have serious flaws, and the fixes introduced by IBM in version 2.41 have
not been formally verified in a model with unbounded sessions. In showing the
decidability of this class, we also suggest a simple decision procedure, which we
plan to implement in future work to finally verify the revised API.

1 Introduction

Security protocols are small programs that aim to secure communications over
a public network like the Internet. The design of such protocols is notoriously
difficult and error-prone. Formal methods have proved their usefulness in the
rigorous analysis of security protocols. However, security protocol analysis is,
in general, undecidable [7]. In recent years, a number of theoretical results have
shown the decidability of particular fragments of the problem, or have proposed
safe abstractions [4] that, in practice, make the problem more amenable to auto-
mated approaches. For example, we know that security is co-NP-complete if the
number of sessions is bounded [11], which is often sufficient to discover attacks.
Recent results are also concerned with showing decidability of the analysis of
protocols that use operators with non-trivial algebraic properties. For example,
the problem for protocols including XOR (exclusive OR) was shown to be de-
cidable first for a bounded number of sessions [5, 2], and then, for certain classes
of protocol, for an unbounded number of sessions [3, 13].

* This work has been partially supported by the ACI-SI project SATIN and the RNTL project
POSE.
** Supported by EPSRC Grant number GR/S98139/01, ‘Automated Analysis of Security Critical
Systems’.

An important example of a protocol that uses XOR is the key management
transaction set of the IBM 4758 CCA API'. This is the application program in-
terface of a tamper-proof hardware security module (HSM), designed for use in
applications such as PIN processing. It can be thought of as a set of two-party
security protocols, each describing an exchange between the HSM and the user.
An intruder trying to break in to the box may compose the protocols in any
order. Such hardware security modules are widely used in security critical sys-
tems such as electronic payment and automated teller machine (ATM) networks.
Bond and Anderson discovered flaws in the transaction set that allowed an in-
truder to obtain access to PINs [1]. The attack requires the intruder to exploit
the algebraic properties of XOR. IBM made changes to the API in version 2.41,
but though previous formal work has been able to rediscover the flaws in the
old version [12, 8], the new version of the API has not been formally verified
to ensure that the required secrecy properties hold, for an unbounded number of
sessions.

In this paper, we first show that the IBM CCA API is outside both the classes
of protocols using XOR which have been previously shown to be decidable. We
then define a new class of protocols, called WFX-class, that includes the IBM
CCA API, and prove its decidability. Our proof is considerably simpler that
the corresponding proofs for the two previously treated classes, and suggests a
simpler decision procedure.

The paper is organised as follows: in §2, we give the formal definition of
our setting. We also explain the IBM CCA API in more detail. In §3, we define
our WFX-class of protocols, compare it with the existing decidable classes, and
state and prove the theorems showing its decidability. This is followed by some
thoughts on further work in §4.

2 Background

To provide the necessary background, we first define our (mostly standard) no-
tation for reasoning about protocols, and then explain the nature and purpose of
security APIs.

2.1 Definitions

Cryptographic primitives are represented by functional symbols. More specif-
ically, we consider the signature X’ containing an infinite number of constants
including some special constant 0 and two non constant symbols { _[}_and &

' CCA stands for ‘Common Cryptographic Architecture’. See http://www-3. ibm.com/
security/cryptocards/pcicc.shtml

of arity 2. We also assume an infinite set of variables V. The set of terms or
messages is defined inductively by

T: terms
variable z
(Th,...,T) application of symbol f € X of arity k > 1

constant c € X

T
SR

A term is ground if it has no variable.

The term { m [}, is intended to represent the message m encrypted with the
key k (using symmetric encryption). The term m; 6 mo represents the message
m1 XORed with the message ms. The constants may represent agent identities,
nonces or keys for example.

Substitutions are written 0 = {z; = t1,...,x, = t,} with dom(o) =
{z1,...,2,}. o is ground iff all of the ¢; are ground. The application of a sub-
stitution o to a term ¢ is written o (t) = to.

The size of a term ¢, denoted by |¢|, is defined as usual by the total number
of symbols used in ¢. More formally, |a| = 1 if a is a constant or a variable and
|f(t1,...,tn)| =1+ > |t|if fis of arity k > 1. The size of a set of terms
S is the sum of the size of the terms in S.

We equip the signature with an equational theory E' that models the alge-
braic properties of the XOR operator:

r®Yd2)=(20y)dz rdYy=ydx
rPx=0 rPd0==x

It defines an equivalence relation that is closed under substitutions of terms for
variables and under application of contexts. In particular, we say that two terms
t1 and t9 are equal, denoted by t; = t9 if they are equal modulo the equational
theory E. If two terms are equal using only the equations of the first line, we
say that they are equal modulo Associativity and Commutativity (AC).

Intruder capabilities and the protocol behaviour are described using rules of
the form ¢1, ..., t, — t,4+1 where the ¢; are terms.

Example 1. The intruder capabilities are represented by the following set of
three rules:

r,y —{zf, encryption
{zly,y—= decryption
T,y > rDy xoring

The set of deducible terms is the reflexive and transitive closure of the
rewrite rules.

Definition 1. Let R be a set of rules. Let .S be a set of ground terms. The term
u is one-step deducible from S if there exists a rule t1,...,t, — t € Randa
ground substitution 6 such that ¢;6 € .S and u = 6.

A term u is deducible from S, denoted by S Fz u, if u € S or there exist

ground terms wq, ..., u, such that u,, = u and wu; is one-step deducible from
SU{uy,...,u;—1} forevery 1 < i < n. The sequence uy,...,u, is a proof
that S % w.

We write I instead of - when R is clear from the context.

Example 2. Let R be the set of rules described in Example 1. Let S =
{{{n [}asa ® b,b}. Then n is deducible from S and {{n [}q,a @ b,b,a is a
proof of S F n. Indeed a is one-step deducible from {a & b, b} using the rule
x,y — x @y and the fact that (a ® b) & b = a and n is one-step deducible from
{{nla,a} using the rule { x[},,y — .

2.2 Security APIs

Hardware security modules, such as the IBM 4758, are widely used in se-
curity critical systems such as electronic payment and automated teller ma-
chine (ATM) networks. They typically consist of a cryptoprocessor and a small
amount of memory inside a tamper-proof enclosure. They are designed so that
should an intruder open the casing or insert probes to try to read the memory,
it will auto-erase in a matter of nanoseconds. In a typical ATM network ap-
plication, this tamper-proof memory will be used to store the master keys for
the device. Further keys will then be stored on the hard drive of a computer
connected to the HSM, encrypted under the HSM’s master key. These keys can
then only be used by sending them back into the HSM, together with some other
data, under the HSM’s application program interface (API). The API will typ-
ically consist of a few dozen key management and PIN processing commands,
and their prescribed responses. One can think of the API as defining a number
of two-party protocols between a user and the HSM. However, there are some
important differences between HSM APIs and typical key-exchange protocols.
We are concerned only with two ‘agents’, the HSM itself and a user (or mali-
cious intruder). The HSM itself is considered to be ‘stateless’, in the sense that
no information inside the HSM changes during transactions. HSMs APIs also
typically make use of bitwise operations such as XOR.

The attacks on the 4758 CCA were first discovered by Bond and Ander-
son [1]. They exploit the way the 4758 constructs keys of different types. The
CCA supports various key types, such as data keys, key encrypting keys, im-
port keys and export keys. Each type has an associated ‘control vector’ (a public

value), which is XORed against the master key to produce the required key type.
So if data is the control vector for data keys, then all data keys will be stored
outside the 4758 box encrypted under km @ data. Only particular types of keys
will be accepted by the HSM for particular operations. For example, there is a
data encryption command, which allows data keys to be used to encrypt given
plaintext, but disallows, for example, PIN derivation keys from being used for
such a purpose. In our formalism, we write the data encryption command like
this?:

x, { xk1 Frmgdata — 4% [Fxk (Encrypt Data)

In Bond’s attack, the intruder changes the type of a key by exploiting the
properties of XOR. The attack assumes that a would-be intruder has access to
one part of a three part key. Keys are divided into parts to allow separate people
to physically transfer key information to another 4758 module, and thereby to
facilitate secure communication between two HSMs (for example, between a
module in an ATM and a module in a bank). The idea of dividing the key into
three parts is that attacks requiring collusion between three employees are con-
sidered infeasible. In Bond’s attack, the APIs key part import command is used
to generate keys with a known difference. The attack is assumed to be carried
out by the third member of a 3-person team, who has the third part, call it k3, of
a 3 part key kek = k1 @ k2 @ k3. This key kek is to be used as an import key
with type imp. He is supposed to add k3 to the previous parts using the third key
part import command:

{| xk1 @ xk2 |}km@kp@xtypea Xk3a xtype — {‘ xkl & xk2 & xk3 |}km@xtype
(Key Part Import (3))

For the attack, he first XORs his key part k3 against the (publicly known) control
vectors for data keys and PIN derivation keys, data and pin. Then he uses the
key part import command like this:

{ k1 & k2 [}xmekpoimp, k3 @ data @ pin, imp — {| kek @ pin @ data [} imgimp

The key import command can then be used to change a key of one type to any
other type. The rule for the key import command looks like this:

{’ Xkey ’}xkek@xtypm xtype, {‘ xkek ‘}km@imp - {‘ Xkey ‘}km@xtype
(Key Import)

2 Symbol names beginning with z or y denote variables, other lower case letters denote ground
atoms. There is a full listing of the protocol in Appendix 1

Having obtained the tampered key part
{ kek @ pin @ data [}xm@imp, the intruder uses the command like this:

{‘ pdk ‘}kek@piny data, {‘ kek @ data @ Pin |}km®imp - {‘ pdk ‘}km@data

This allows a PIN derivation key, pdk, of type pin, to be converted to a data
key, and which can then used to encrypt data, which is a critical flaw: a cus-
tomer’s PIN is just his account number encrypted under a PIN derivation key.
So, the attack allows a criminal to generate a PIN for any card number. Bond
and Anderson discovered several variations of the attack, suitable for intruders
with differing initial knowledge.

IBM responded to the attack by publishing a 7-page document describing
how the attack could be prevented®. This is divided into three possible solu-
tions. The first is to disable the key parts import mechanism completely and use
asymmetric cryptography for importing keys. The second is to use access con-
trol to prevent any single user from using both the key part import commands
and the key import command. The third is to use procedural controls to check
that key parts have not been not tampered with. The aim of our current project
is to use formal techniques to analyse these recommendations: to prove them
secure if they really are secure, or to provide counterexamples if they are not.
The work in this paper is concerned with verifying the second recommendation,
where key part import is still enabled, but can only be used in a restricted way.
Formally, this is represented by analysing the API against an attack by two dis-
tinct intruders: the first has access to all the commands except the key import
command. The second has access to all the commands except the key part im-
port commands. The complete formalism of the initial and corrected of the 4758
CCA API protocol is presented in Appendix.

Previous formal work has focused almost entirely on rediscovery of the
flaws in the old version of the API. Ganapathy et al. used model checking [8],
Steel used theorem proving with XOR-constraints in dalac [12], and Youn et
al. the theorem prover Otter [14]. None of this work was able to verify any of
the IBM fixes to be secure for an unbounded number of sessions (i.e., an un-
limited number of command invocations, in any order). The work in this paper
aims to address this problem. Note that in Bond’s original paper, a fix to the API
was proposed which involved scrapping the use of XOR to create key types, and
using one way functions instead. Courant and Monin formally verified this fix
using the Coq proof assistant [6]. However, this is of limited relevance to real-
world systems, since the fix would not be backwards-compatible, and so is very
unlikely to be implemented.

3 Available from:
http://www.cl._.cam.ac.uk/"mkb23/research/CVDif-Response.pdf

3 A New Decidable Class

Here we first define our class using the notation of §2.1, then compare it to
existing decidable classes, and finally give the proof of decidability.

3.1 Definition of WFX-Class Protocols

Rather than restricting the use of variables in protocol rules, we take advan-
tage of the form of API-like protocols, noticing that they only perform simple
operations.

Definition 2. Aterm ¢ is an XOR termif t = @;" , u;, n > 1 where each w; is
avariable or a constant.
Aterm ¢ is an encryption term if ¢ = { u[},, where » and v are XOR terms.
A term ¢t is a well-formed term if it is either an encryption term or an XOR
term. In particular, a well formed term contains no nested encryption.
Arulety, ... t, — t,11 IS well formed if

— each ¢; is a well-formed term.
- Var(tp4+1) € Ui, Var(t;) (no variable is introduced in the right-hand-
side of a rule).

A proof is well-formed if it only uses well-formed terms.

Definition 3. The WFX-class protocol consists of a pair (R, S), where R is a
finite set of well-formed rules, and S is a finite set of ground, well-formed terms.

Intuitively, the rules in R represent the commands of the API and the in-
truder capabilities, and the ground terms S the initial knowledge of the intruder.
We call our class WFX since these are well-formed protocols using the XOR
operator.

In particular, the rules representing the intruder capabilities (defined in Ex-
ample 1) and the rules representing the 4758 CCA API protocol (introduced in
§2.2 and listed in full in the appendix) are all well-formed.

3.2 Comparison to Existing Classes

To the best of our knowledge, there exist only two decidable classes for proto-
cols with XOR, for an unbounded number of sessions. In both cases, the main
difference with our class is that we make restrictions on the combination of func-
tional symbols rather than on the occurrences of variables. As a consequence,
our class is incomparable to the two existing ones.

In the class defined in [3], each rule ty,...,t, — t,41 must satisfy the
following requirement:

— either each ¢; contains only one variable x

— or the set of variables is z1, . . ., xx and there exists a functional symbol f of
arity k such that each ¢, is either some z; or is of the form ¢[f (1, . .., xx) /Y]
where ¢ is a term that has only one variable y.

The rules for the CCA key-management API do not fit into this class. In par-
ticular, the rule Key Import (given above in §2.2 and crucial for modelling the
API protocol) does not satisfy these conditions since, for example, the term
{ xkek [}xmaimp does not contain all the variables of the rule and is not reduced
to a single variable either.

In [13], a variable dependence graph G, is associated to each rule r. In this
graph, nodes represent the terms of the rules, and two terms are adjacent if they
share a variable. Each rule » must satisfy the following conditions:

1. each term is linear: no variable occurs twice in a term,
2. G, is acyclic and adjacent terms share at most one variable.

Again, the rule Key Import does not fulfil the conditions since three distinct
terms share the variable xtype, thus creating a cycle in the variable dependence
graph.

Conversely, in our class we cannot consider nested encryption or XORed en-
cryption. For example, terms of the form {| {| a [}, [}, or y & { a [}, are forbidden
in our rules. In addition, we do not consider arbitrary cryptographic primitives
like in [3] and [13]. In particular, we do not consider the pairing function.

3.3 Proof of Decidability

The key idea of our decidability result is to show that only well-formed terms
need to be considered when checking for the deducibility of a (well-formed)
term. In particular, there is no need to consider nested encryption. This allows
us to consider only a finite number of terms: we have a finite number of atoms in
the initial set of rules which can only be combined by encryption and XORing,
and XORing identical atoms results in cancellation. At the end of the proof, we
comment on the complexity of the resulting decision procedure.

We first prove that whenever an encryption occurs in a deducible term, the
encryption is itself deducible.

Proposition 1. Let R be a set of well-formed rules. Let .S be a set of ground
well-formed terms (intuitively the initial knowledge). Let » be a ground term
deducible from S and vy, . .., v, be a proof that S - w. If {] u; [}, is a subterm
of wthen {Juy [fu, € SU{v1,..., v}

The proof is by induction on the number of steps needed to obtain u. Note
that {| u1 [}, must be ground since w is ground.

— ifu € S, let {u; [}y, be a subterm of u. Since S is a set of ground well-
formed terms, we must have u = {| uq [}y, thus { uq [}y, € S.

— if w is one-step deducible from S U {v1,...,v,—1}. Then there exists a
well-formed rule 4, ..., ¢, — ¢ and a ground substitution 6 such that ¢,0 €
SU{v1,...,vp—1} and u = t6. Let { uj [}, be a subterm of w.

o cither u = { uy [}y, and thus {Ju; [}u, € SU{v1,...,v,} (remember
that v,, = u).

e or {{uy [fy, is a strict subterm of u. By well-formedness of the rule,
{| u1 [}, must be a subterm of 6 for some x variable of t. Thus {| w1 [},

is a subterm of a term in S U {v1, ..., v,_1}. By induction hypothesis,
we deduce that {ju; [}y, € SU{v1,...,vp—1} thus {u; [fu, € S U
{Ula s 7vn}'

We are now ready to prove our main result, that states that only well-formed
terms need to be considered when checking for deducibility.

Proposition 2. Let R be a set of well-formed rules and .S be a set of ground
well-formed terms such that

— R containsthe rule x,y — = @ v;
— S contains 0 (the null element for XOR should always be known to an in-
truder).

Let u be a ground well formed term deducible from S. Then there exists a well-
formed proof of S F w.

Proof: We first introduce some notation. Any term ¢ can by written { = a; &
o @ap©{ti [ty & @ {tp Ity (equality modulo AC) where the a; are
constants or variables. The atomic part of ¢, denoted by atom(t),is a1 ®- - -®ay.
The set of external encryptions of ¢ is Senc(t) = {{|t1[s....,{tp [}, }. By
convention, if the atomic part of ¢ is empty, thatit¢ = {|t1 [}y @ --- & {{tp [y,
we define atom(t) = 0. The elements of a term ¢ is the set elements(t) =
{atom(¢)} U Senc(t). For any term ¢ the following equality holds:

t = atom(t) ® @ c
ceSenc(t)

We define the function -~ over terms that replaces any internal encryption
term by 0. More formally, - is inductively defined as follows:

u=u if w 1s a variable or a constant
t1 Dty = EEB 2
it ={tl5

where - is defined by:

=u if w 1s a variable or a constant
h@to=t®ty
{tilte, =0

The function - is extended to sets of terms as expected.
Consider a proof uq, ..., u, of S - u. We show by induction on n that we
can construct well-formed terms w1, . . ., w;, such that

2|l

— wi, ..., wpis a well-formed proof of S - € for any e € elements(u),
- Ui, elements(u;) C {w1,...,wp}.

This would conclude the proof since due to the well-formedness of u, elements(u) =

The base case u € S is trivial since we have elements(u) = {u} by well-
formedness of terms in S.

Assume now that there are well-formed terms w1, . . ., wy, such thatwy, . .., w,
is a well-formed proof of S I~ € for any e € eIements(uj), 1 < j <4, such that
U;:l elements(u;) € {wi,...,w,}. Let us show that we can construct a well-
formed term w41 such that U;ill elements(u;) C {wr,..., wp, wpy1} and
Wi, ..., Wp, ..., Wyt isa well-formed proof of S I € forany e € elements(u;1).
The term ;1 is one-step deducible from S U {uy,...,u;} thus there exists a
well-formed rule ¢1,...,t; — ¢ and a ground substitution ¢ such that for all
1 <j<ktjf e SU{u,...,u;}and u;1 = t6. Let 6’ be the substitution
obtained from € by replacing each external encryption by 0. More precisely,
z0' = atom(z6) for any x € dom(6).

It is easy to verify that for any well-formed term v, we have v6’ € elements(v6):

1. either v is an encryption term and elements(vf) = {v0} = {v6'}
2. orwv is an XOR term and vf’ = atom(vf).

Thus, for each t;, since t;0 = w; for some 1 < [< 7, we have t]ﬂ’ €
Ui_, elements(u;) thus ¢;6' € {wy,...,w,}. We deduce that t0’ is one-step
deducible from {wy,...,wy} and {w1, ..., wp, wpy1} is a well-formed proof
of St t0" where w41 = t0’ (note that ¢t0’ is a well-formed term).

— If ¢ is an encryption term, then elements(t6) = {t6’}, which concludes the

proof.
— If ¢ is a XOR term, then elements(tf) = {atom(¢f)} U Senc(tf). We have
atom(tf) = t§' = wpy1 thus atom(t0) € {wi,...,wp, wpt1}. Now, for

any ¢ € Senc(tf) external encryption of ¢, since ¢ is a XOR term, c¢

must be a subterm of some x variable of ¢ thus c¢ already occurs as sub-

term of some ¢;f. By Proposition 1, we have that ¢ € S U {u1,...,u;}
thus elements(c) = {¢} C {wi,...,wp}. We deduce that elements(tf) C
{wy,...;wp,wpr1} O

Using Proposition 2, we can now easily conclude the decidability of de-
ducibility.

Theorem 1. The following problem

— Given a finite set of well-formed rules R containing the rule x,y — = @ v,
a finite set S of ground well-formed terms containing 0 and a ground well-
formed term w,

— Does St u?

is decidable in exponential time in the size of R, S and w.

Letaq,...,a, be the constants that occurin R, S or u. Let k be the maximal
number of terms in the left-hand side of arule in R. Forany ¢1,...,{; =t € R,
we have [< k. We show that S % u can be decided in O(22+").

The decision procedure is as follows: we saturate .S by adding any well-
formed deducible terms. We obtain a set S*. By Proposition 2, S Fr w if and
only if w € S*. In S* there are at most

— 2" XOR terms
— and 2" x 2" = 22" encryption terms

thus |S*| < 227*1 Note that we consider here terms modulo AC which means
that we only consider one concrete representation for each class of terms equal
modulo AC. This can be done for example by fixing an arbitrary order on the
constants and use it to normalise terms.

Now, at each iteration, we need to consider any tuple of terms (uq, ..., u;)
with u; in the set that is being saturated and check whether it is an instance of
the left-hand side of a rule of R. We consider at most |S*|* < 2k(27+1) tuples
at each iteration. All together, we need at most O(2(F+1)(2n+1)) operations to
compute S*.

4 Further Work

First, we are currently implementing our procedure in order to (hopefully) ob-
tain a proof of safety of the new version of the IBM 4758 CCA API protocol.
Since our algorithm is exponential, its implementation requires further optimi-
sations and modifications. In particular, it should not be necessary to construct

all deducible messages. A backward search should allow us to consider only
the messages which can lead to the target (the secret). In addition, we have
proved an exponential complexity upper bound but we do not know whether it
is EXPTIME-hard. We plan to investigate more precisely the complexity class
of the problem of deciding deducibility for WFX protocols.

Our second area of future work is to extend our XOR decidability result
to more cryptographic primitives and relaxed hypotheses. Regarding crypto-
graphic primitives, a first primitive to consider in order to capture more security
protocols, is the concatenation function. Regarding the hypotheses, one key el-
ement of our result is that any encrypted term that occurs in a deducible term is
itself deducible. For this property to hold, we do not actually require the terms
in the premise of a rule to be well-formed. We plan to investigate larger classes
of protocols where the notion of well-formedness is relaxed. Additionally, it
should be possible to extend the proof that nested encryptions may be safely
ignored to protocols with unbounded message length, e.g. group protocols. This
result alone would not be sufficient to show decidability, but would still provide
a powerful heuristic for use in automated tools.

Third, we plan to study further properties of the encryption scheme used
by the IBM 4758, in order to get closer to the implementation. In particu-
lar, decryption is of course an explicit operation, publicly available. It could
be represented by a function symbol dec and its associated cancellation rule
dec({ = [}y,y) = «. In the 4758 setting, it is also likely that re-encrypting a
message right after decrypting it leads to the same message. Thus the following
equality should also be considered: {| dec(x,y) [}, = . This equation enables
more transitions. For example, consider the protocol rule {| z [}, — secret: if
an agent receives an encrypted message with k, he sends out the secret. If no
message with the key k& has been published, this protocol rule is secure in our
setting while it is not using the new equation. Indeed, by sending some public
value a, the intruder can learn the secret since a = {| dec(a, k) [} 1. This exam-
ple shows that adding the two equations can impact strongly the security of a
protocol. Our goal is to prove (or disprove) the safety of the CCA API protocol
in the presence of these two equations. This problem seems related to the result
of Millen [9], where it is shown that if a symmetric-key protocol specifies no
encryption of free, untyped variables, then it may safely be analysed in the free
algebra with only implicit decryption, i.e. without considering the two equations
above. Our protocol is clearly outside this class. However, we suspect that there
may be a variation of our well-formedness property for API-class protocols that
is also sufficient to allow a protocol to be analysed with only implicit encryp-
tion. This would form a distinct but overlapping class with Millen’s ‘EV-free’
class. In order to prove this, our equivalent of Millen’s ‘star substitution’, which

converts derivations with explicit decryption to derivations without, would have
to be a little more complex. Without EV-freedom, we cannot be sure that sub-
stitutions do not give rise to reductions via the cancellation equations. However,
without nested encryptions, these reductions must be at the top level of a term, in
which case there should be an equivalent derivation step using implicit decryp-
tion available. Part of our future work will be to investigate this, and attempt a
proof.

References

1.

2.

12.

13.

14.

M. Bond and R. Anderson. API level attacks on embedded systems. |EEE Computer Mag-
azine, pages 67-75, October 2001.

Y. Chevalier, R. Kiisters, M. Rusinowitch, and M. Turuani. An NP decision procedure for
protocol insecurity with xor. In Proc. of 18th Annual |EEE Symposiumon Logic in Computer
Science (LICS’03), 2003.

. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order logic

and application to cryptographic protocols. In Proceedings of the 14th International Confer-
ence on Rewriting Techniques and Applications (RTA' 2003), volume 2706 of LNCS pages
148-164, Valencia, Spain, June 2003. Springer-Verlag.
H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. In Proc. of
the 12th European Symposium On Programming (ESOP’ 03), volume 2618 of LNCS pages
99-113, Warsaw, Poland, April 2003. Springer Verlag.

. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity

decision in presence of exclusive or. In Proc. of 18th Annual |EEE Symposium on Logic in
Computer Science (LICS’03), pages 271-280, 2003.

J. Courant and J.-F. Monin. Defending the bank with a proof assistant. In Proceedings of
Workshop on Issuesin the Theory of Security (WITS’06), Vienna, March 2006.

. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security

protocols. In Proc. of the Workshop on Formal Methods and Security Protocols, Trento,
Italia, 1999.

V. Ganapathy, S. A. Seshia, S. Jha, T. W. Reps, and R. E. Bryant. Automatic discovery
of API-level exploits. In Proceedings of the 27th International Conference on Software
Engineering (ICSE’ 05), pages 312-321, New York, NY, USA, May 2005. ACM Press.

J. K. Millen. On the freedom of decryption. Inf. Process. Lett., 86(6):329-333, 2003.

. R. Nieuwenhuis, editor. Automated Deduction - CADE-20, 20th International Conference

on Automated Deduction, Tallinn, Estonia, July 22-27, 2005, Proceedings, volume 3632 of
Lecture Notes in Computer Science. Springer, 2005.

. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is NP-

complete. In Proc. of the 14th Computer Security Foundations Workshop (CSFW 01), pages
174-190. IEEE Computer Society Press, 2001.

G. Steel. Deduction with XOR constraints in security API modelling. In Nieuwenhuis [10],
pages 322-336.

K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational Horn clauses.
In Nieuwenhuis [10], pages 337-352.

P. Youn, B. Adida, M. Bond, J. Clulow, J. Herzog, A. Lin, R. Rivest, and R. Anderson.
Robbing the bank with a theorem prover. Technical Report UCAM-CL-TR-644, University
of Cambridge, August 2005.

Appendix - Protocol Description

IBM CCA Symmetric Key Management Transaction Set

xk1, xtype — {‘ xk1 ‘}km@kp@xtype (Key Part Import (1))

{| xk1 Frmakpaxtype: xk2, xtype — { xk1 & xk2 [fkmakpextype
(Key Part Import (2))

{I xk1 @ xk2 Fumokpaxtype: Xk3, xtype — {| xk1 @ xk2 @ xk3 [Fkm@xtype
(Key Part Import (3))

{‘ xkey1l |}Xkek®xtypea xtype, {| xkek |}kmEBimp - {| xkeyl |}km@xtype
(Key Import)

{‘ Xkeyl ‘}km@xtypea xtype, Xtype, {’ xkek ’}km@exp — {‘ Xkey1 |}xkek€axtype

(Key Export)
X, {| xkey1 [fxmadata — 1 X [fxkey1 (Encrypt Data)
{‘ X |}Xkey17 {| Xkeyl |}km@data — X (DeCrypt Data)

{‘ Xkeyl ‘}xkekl@xtypev xtype, {’ xkek1 ’}km@imp {| xkek?2 ’}km@exp
— { xkey1 [} xkek2amxtype (Translate Key)

Let Rapi1 be the set of rules listed above. It models the 4748 CCA API
initial protocol. Let Rap2 be the set of the rules in Rapj; minus the Key Import
command. Let Rap3 be the set of rules in Rapj; minus all the Key Part Import
commands (1-3). To model the second fix proposed by IBM, we have to check
that both Rapj» and Rap3 are secure.

Intruder Abilities

z,y —{ xlly encryption
lzly,y— decryption
T,y > rDy xoring

Let R; be the set of rules listed above. They model the intruder capabilities.

Initial Knowledge of intruder
Control vectors:

kp, imp, exp, data, pin
PIN key encrypted for transfer

{| pdk |}kek@pin
An account number
pan

For the original API (Rapi1), where an intruder potentially has access to the
Key Part Import (3) command as well and Key Import, the initial knowledge
includes the following:
A key part:

k3

A partially completed key (result of Key Part Import (2)):
{l kek @ k3 [fm@kpimp

Let S7 be the set of terms listed above. It corresponds to the initial knowledge
of the intruder in the first version of the protocol.

To verify IBM’s second fix, we must consider two models, with differing
initial knowledge. In the first (Rapi2) the user (and hence the intruder) has the
same initial knowledge as the original intruder, i.e. So = Sj. In the second
model (Rapi3), the intruder does not have the partially completed key, but he
does know the completed key. So let S3 = (S1 — {{ kek & k3 [}kmakpmimp }) U

{{ kek [Hameimp }-

The Secrecy Property

The property is the security of customer PINs, which are obtained by encrypting
their account numbers under the PIN derivation keys. So the term that must
remain a secret is {| pan [} pqx.

For the initial (flawed) protocol, the secrecy property can be stated as:

?
51 F RapnUR; {| pan |}pdk

For the corrected protocol, there are two secrecy properties:

?
S2 FRappUR; { pan |}pdk

?
S3 I Rapsur; 1 Pan [fpdk

